TWI512152B - Method for setting the epitaxial reactor - Google Patents
Method for setting the epitaxial reactor Download PDFInfo
- Publication number
- TWI512152B TWI512152B TW099117542A TW99117542A TWI512152B TW I512152 B TWI512152 B TW I512152B TW 099117542 A TW099117542 A TW 099117542A TW 99117542 A TW99117542 A TW 99117542A TW I512152 B TWI512152 B TW I512152B
- Authority
- TW
- Taiwan
- Prior art keywords
- reaction chamber
- carrier
- deposited
- film
- reaction
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/08—Reaction chambers; Selection of materials therefor
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
- C23C16/4404—Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B35/00—Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Chemical Vapour Deposition (AREA)
Description
本發明係有關一種將一反應室設置於一裝置之方法,該裝置在一被載板支撐於反應室中的基板上沉積至少一層薄膜,其使用一進氣機構,尤其是藉助一載氣而將反應氣體輸入反應室中,該反應氣體在熱表面上分解成分解產物,該分解產物含有構成薄膜的成分。
本發明尚有關一種在一被載板支撐之基板上沉積薄膜之裝置,其使用一進氣機構,尤其是藉助一載氣而將反應氣體輸入反應室中,該反應氣體在熱表面上分解成分解產物,該分解產物含有構成薄膜的成分。
DE 689 08 927 T2曾提出一種磊晶反應器,其具一扁圓柱形反應室。反應室頂部由一蓋板構成,該蓋板中心設有一進氣機構,其將反應氣體輸入反應室中。反應室底部構成載板,其承載複數個基板。基板各被容置在一可旋轉的基板座中。載板下方被加熱,其可利用一電阻加熱器或一射頻加熱器。
反應室中進行一MOCVD製程。此處利用載氣,例如氫,將第三族金屬有機化合物,例如TMGa或TMIn,輸入反應室中。並將一氫化物第二反應氣體輸入反應室中,如AsH3
、PH3
或NH3
,而與第一反應氣體產生反應。
下方被加熱之載板上的基板,例如GaAs、GaN、InP或混合晶體,上方沉積出由第三及第五族元素構成的薄膜。輸入反應室中的反應氣體在熱表面上熱解。熱解生成的薄膜通常不只出現在基板表面,而亦會出現在包圍基板的載板面上。由於與載板相對的反應室頂部因載板之熱輻射而同樣被加熱,且未被及時冷卻,故該處亦會出現寄生成長。沉積在反應室壁上的薄膜基本上為不利。
此種裝置在沉積半導體薄膜後需原地進行反應室頂部的蝕刻,以移除反應室頂部及載板上的附著物。只沉積薄層時,反應室壁上的寄生成長較薄。其對薄膜品質的影響可被忍受。如該裝置沉積厚的且尤其是多層結構時,會在反應室壁上出現厚的塗層。沉積厚的且尤其是多層結構時,會對薄膜品質的一致性產生不利影響。
本發明之目的在於提供改良上述之裝置,使其可以先後連續之製程步驟沉積出品質一致的厚多層結構。
本目的由申請專利範圍第1項之反應室設置方法及申請專利範圍第6項之該反應室達成。
依據本發明,薄膜成長且尤其是基板上所沉積半導體薄膜之品質不僅受表面動力而亦受氣相動力左右。故決定薄膜品質的不僅是真正發生在基板表面的熱解製程,而亦包括預分解製程及接著在基板上方的氣相中進行的晶核及加成物生成。冷卻與載板相對的反應室頂部可調整反應室內的溫度分佈。其對輸入反應室之前驅物的預分解極為重要。研究及模型計算顯示,反應室內且尤其是在載板上的溫度分佈不僅受加熱載板的加熱裝置功率,亦受輻射損失及反應室壁的輻射特性左右。本發明發現,反應室表面的光學特性,如反射度、吸收度及透射度極為重要。依據本發明,反應室壁且尤其是與載板相對的反應室頂部之光學特性需與沉積薄膜互相配合。習知裝置沉積厚的薄膜所觀察到的不一致性原因在於,反應室頂部光學特性會在較長的成長時間內改變。如此使得進行製程時反應室頂部吸收的熱減少或增加,故反應室頂部的溫度改變,而影響整個反應室內部的溫度曲線,而亦影響製程氣體之分解且尤其是預分解特性。反射度改變時,反應室頂部對載板輻射的反射功率降低或增高。如此使得反應室內部的溫度分佈改變。光學特性的改變亦會使載板表面溫度且尤其是基板表面溫度在進行製程時持續升高或下降,直到反應室頂部均勻塗佈反應氣體之分解產物,尤其是當薄膜厚度大於光學厚度的兩倍,該光學厚度為製程溫度時最大輻射頻率波長的四分之一。本發明使至少反應室頂部自一開始便具有與欲塗佈薄膜或反應室寄生成長塗層相同之光學特性。此處之光學特性在製程溫度最大輻射所在的頻率範圍(浦朗克輻射定律或外因位移律)。成長溫度在500至1000℃的範圍中。
習知環形側壁及相對於載板之蓋板由高級鋼或鋁製成的磊晶反應器可依據本發明而簡單地改裝。側壁或頂部可設置尤其是可更換之襯件。該襯件之材料基板上具有與欲塗佈薄膜相同之光學特性。視反應室中之沉積材料而定,可選用配合該沉積薄膜光學特性之反應室壁。如欲沉積之半導體薄膜具高反射性且幾乎不透明,則選用之襯件同樣具一反射表面且不透明。欲塗佈薄膜稍微透明,則襯件亦同。一般之值為:透射度T~0;吸收度A~0.8;反射度R=1-A。
不需要使反應室壁表面且尤其是反應室頂部表面由與反應室中欲沉積薄膜相同之材料製成。依據本發明只需使壁極接近製程溫度範圍第三及第五族半導體薄膜之光學特性,其中R+A+T=1。如此可使反應室壁被塗佈時,與反應室之熱交互作用不改變。
本發明方法亦可先後進行多個長時間的沉積製程,而不需在其之間,亦即更換基板時,進行反應室之清潔。
所有揭示特徵本身皆具有發明性質。本發明揭示之特徵完全包含於本案之申請專利範圍中。
Claims (7)
- 一種將一反應室設置於一裝置之方法,該裝置在一被載板支撐於反應室中的基板上沉積至少一層第三及五族半導體薄膜,其使用一進氣機構,尤其是藉助一載氣而將反應氣體輸入反應室中,該反應氣體含有至少一第三族主族之有機金屬化合物和一第五族主族之氫化物並在反應室中之尤其是熱表面上分解成分解產物,該分解產物含有構成該第三及五族半導體薄膜的成分,其特徵為,使朝向與載板相對之反應室之至少一壁的反應室之表面選用一種光學反射度、光學吸收度及光學透射度與欲沉積薄膜一致的材料,以及該表面之材料進一步選用與欲沉積薄膜不同的材料。
- 如申請專利範圍第1項之方法,其中,載板及/或側壁表面具有欲沉積薄膜相同之光學特性。
- 如申請專利範圍第2項之方法,其中,載板構成反應室底部,進氣機構位在反應室頂部中心。
- 如申請專利範圍第1項之方法,其中,載氣及反應氣體以水平方向流經反應室。
- 如申請專利範圍第1項之方法,其中,配合欲沉積薄膜光學特性之反應室壁係可更換襯件。
- 一種在一被載板支撐之基板上沉積第三及五族半導體薄膜之裝置,其使用一進氣機構,尤其是藉助一載氣而將反應氣體輸入反應室中,該反應氣體含有至少一第三族主族之 有機金屬化合物和至少一第五族主族之化合物並在反應室中之尤其是熱表面上分解成分解產物,該分解產物含有構成該第三及五族半導體薄膜的成分,其特徵為,使與載板相對之反應室之至少一壁由一可更換襯件構成,該襯件之朝向反應室的表面具有與反應室中欲沉積之第三及五族半導體薄膜一致的光學反射度、光學吸收度及光學透射度,以及該表面之材料進一步選用與欲沉積之第三及五族半導體薄膜不同的材料。
- 如申請專利範圍第6項之裝置,其中,載板朝向反應室的表面及/或朝向反應室之側壁由襯件構成,其朝向反應室之表面的光學特性與欲沉積薄膜一致。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009025971A DE102009025971A1 (de) | 2009-06-15 | 2009-06-15 | Verfahren zum Einrichten eines Epitaxie-Reaktors |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201107542A TW201107542A (en) | 2011-03-01 |
TWI512152B true TWI512152B (zh) | 2015-12-11 |
Family
ID=42307189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099117542A TWI512152B (zh) | 2009-06-15 | 2010-06-01 | Method for setting the epitaxial reactor |
Country Status (9)
Country | Link |
---|---|
US (1) | US8846501B2 (zh) |
EP (1) | EP2443274B1 (zh) |
JP (1) | JP2012530368A (zh) |
KR (1) | KR20120039636A (zh) |
CN (1) | CN102803581B (zh) |
DE (1) | DE102009025971A1 (zh) |
RU (1) | RU2012101234A (zh) |
TW (1) | TWI512152B (zh) |
WO (1) | WO2010145969A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011500961A (ja) | 2007-10-11 | 2011-01-06 | バレンス プロセス イクウィップメント,インコーポレイテッド | 化学気相成長反応器 |
DE102016110408A1 (de) | 2016-06-06 | 2017-12-07 | Aixtron Se | Beschichteter Kohlenstoffkörper in einem CVD-Reaktor |
DE102016211614A1 (de) * | 2016-06-28 | 2017-12-28 | Siltronic Ag | Verfahren und Vorrichtung zur Herstellung von beschichteten Halbleiterscheiben |
US10276455B2 (en) | 2016-07-29 | 2019-04-30 | Taiwan Semiconductor Manufacturing Co., Ltd. | System and method for measurement of semiconductor device fabrication tool implement |
KR102369676B1 (ko) | 2017-04-10 | 2022-03-04 | 삼성디스플레이 주식회사 | 표시 장치의 제조장치 및 표시 장치의 제조방법 |
DE202017104061U1 (de) | 2017-07-07 | 2018-10-09 | Aixtron Se | Beschichtungseinrichtung mit beschichteter Sendespule |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080053373A1 (en) * | 2004-07-21 | 2008-03-06 | Schott Ag | Coating Installation Suitable For Clean Room Conditions |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4699675A (en) * | 1985-12-26 | 1987-10-13 | Rca Corporation | Vapor phase growth of III-V materials |
JPS62205620A (ja) * | 1986-03-06 | 1987-09-10 | Fujitsu Ltd | 気相成長方法およびその装置 |
FR2628984B1 (fr) | 1988-03-22 | 1990-12-28 | Labo Electronique Physique | Reacteur d'epitaxie a planetaire |
DE4008405C1 (zh) * | 1990-03-16 | 1991-07-11 | Schott Glaswerke, 6500 Mainz, De | |
JPH04206524A (ja) * | 1990-11-30 | 1992-07-28 | Kawasaki Steel Corp | 半導体の成膜装置 |
JP3257328B2 (ja) * | 1995-03-16 | 2002-02-18 | 株式会社日立製作所 | プラズマ処理装置及びプラズマ処理方法 |
JP2737720B2 (ja) * | 1995-10-12 | 1998-04-08 | 日本電気株式会社 | 薄膜形成方法及び装置 |
JP3070660B2 (ja) * | 1996-06-03 | 2000-07-31 | 日本電気株式会社 | 気体不純物の捕獲方法及び半導体製造装置 |
US6451686B1 (en) * | 1997-09-04 | 2002-09-17 | Applied Materials, Inc. | Control of semiconductor device isolation properties through incorporation of fluorine in peteos films |
US5970383A (en) | 1997-12-17 | 1999-10-19 | Advanced Micro Devices | Method of manufacturing a semiconductor device with improved control of deposition layer thickness |
US6108937A (en) * | 1998-09-10 | 2000-08-29 | Asm America, Inc. | Method of cooling wafers |
US6666924B1 (en) * | 2000-03-28 | 2003-12-23 | Asm America | Reaction chamber with decreased wall deposition |
US7037813B2 (en) * | 2000-08-11 | 2006-05-02 | Applied Materials, Inc. | Plasma immersion ion implantation process using a capacitively coupled plasma source having low dissociation and low minimum plasma voltage |
US6777347B1 (en) * | 2001-01-19 | 2004-08-17 | Taiwan Semiconductor Manufacturing Company | Method to produce porous oxide including forming a precoating oxide and a thermal oxide |
US20050081788A1 (en) * | 2002-03-15 | 2005-04-21 | Holger Jurgensen | Device for depositing thin layers on a substrate |
JP4720266B2 (ja) * | 2005-04-08 | 2011-07-13 | 東京エレクトロン株式会社 | 成膜方法、成膜装置及びコンピュータプログラム |
DE102005055093A1 (de) * | 2005-11-18 | 2007-05-24 | Aixtron Ag | CVD-Vorrichtung mit elektrostatischem Substratschutz |
DE102005056324A1 (de) * | 2005-11-25 | 2007-06-06 | Aixtron Ag | CVD-Reaktor mit auswechselbarer Prozesskammerdecke |
JP2008270595A (ja) * | 2007-04-23 | 2008-11-06 | Texas Instr Japan Ltd | 反応生成物剥離防止構造及びその製作方法、並びに当該構造を用いる半導体装置の製造方法 |
KR100870567B1 (ko) * | 2007-06-27 | 2008-11-27 | 삼성전자주식회사 | 플라즈마를 이용한 이온 도핑 방법 및 플라즈마 이온 도핑장치 |
JP2009007205A (ja) * | 2007-06-28 | 2009-01-15 | Sumitomo Electric Ind Ltd | 基板生産物を作製する方法 |
JP5311955B2 (ja) * | 2007-11-01 | 2013-10-09 | 株式会社半導体エネルギー研究所 | 表示装置の作製方法 |
JP2009117618A (ja) * | 2007-11-06 | 2009-05-28 | Sumitomo Electric Ind Ltd | エピタキシャル基板を作製する方法、及びベーキングを行う方法 |
WO2009106942A1 (en) * | 2008-02-27 | 2009-09-03 | S.O.I.T.E.C Silicon On Insulator Technologies | Semiconductor growth system which includes a boron carbide reactor component |
-
2009
- 2009-06-15 DE DE102009025971A patent/DE102009025971A1/de not_active Ceased
-
2010
- 2010-06-01 TW TW099117542A patent/TWI512152B/zh active
- 2010-06-08 KR KR1020127001103A patent/KR20120039636A/ko not_active Application Discontinuation
- 2010-06-08 RU RU2012101234/05A patent/RU2012101234A/ru unknown
- 2010-06-08 US US13/378,340 patent/US8846501B2/en active Active
- 2010-06-08 CN CN201080036234.1A patent/CN102803581B/zh active Active
- 2010-06-08 WO PCT/EP2010/057976 patent/WO2010145969A1/de active Application Filing
- 2010-06-08 EP EP10722124.4A patent/EP2443274B1/de active Active
- 2010-06-08 JP JP2012515430A patent/JP2012530368A/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080053373A1 (en) * | 2004-07-21 | 2008-03-06 | Schott Ag | Coating Installation Suitable For Clean Room Conditions |
Also Published As
Publication number | Publication date |
---|---|
CN102803581A (zh) | 2012-11-28 |
US20120094474A1 (en) | 2012-04-19 |
WO2010145969A1 (de) | 2010-12-23 |
CN102803581B (zh) | 2016-05-25 |
EP2443274B1 (de) | 2019-03-20 |
US8846501B2 (en) | 2014-09-30 |
KR20120039636A (ko) | 2012-04-25 |
TW201107542A (en) | 2011-03-01 |
DE102009025971A1 (de) | 2010-12-16 |
EP2443274A1 (de) | 2012-04-25 |
RU2012101234A (ru) | 2013-07-27 |
JP2012530368A (ja) | 2012-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI512152B (zh) | Method for setting the epitaxial reactor | |
Alevli et al. | Structural properties of AlN films deposited by plasma‐enhanced atomic layer deposition at different growth temperatures | |
Zhang et al. | Nanocrystalline TiO2 films studied by optical, XRD and FTIR spectroscopy | |
Aarik et al. | Texture development in nanocrystalline hafnium dioxide thin films grown by atomic layer deposition | |
US6402850B1 (en) | Depositing polysilicon films having improved uniformity and apparatus therefor | |
EP2419552B1 (en) | Reaction chamber of an epitaxial reactor and reactor using the chamber | |
Snure et al. | Optical characterization of nanocrystalline boron nitride thin films grown by atomic layer deposition | |
Dauelsberg et al. | Modeling and process design of III-nitride MOVPE at near-atmospheric pressure in close coupled showerhead and planetary reactors | |
Demirtaş et al. | Layer and size distribution control of CVD-grown 2D MoS2 using ALD-deposited MoO3 structures as the precursor | |
JP2021527338A (ja) | 堆積チャンバへのプロセス材料の流れを制御するための装置及び方法 | |
Li et al. | A 915 MHz/75 kW cylindrical cavity type microwave plasma chemical vapor deposition reactor with a ladder-shaped circumferential antenna developed for growing large area diamond films | |
Tarre et al. | Atomic layer deposition of Cr2O3 thin films: Effect of crystallization on growth and properties | |
Kaliwoh et al. | Characterisation of TiO2 deposited by photo-induced chemical vapour deposition | |
CN102249221B (zh) | 一种条纹宽度可控的激光加热制备单层石墨烯的方法 | |
Baker et al. | Hydride vapor phase epitaxy of AlN using a high temperature hot-wall reactor | |
JP4972356B2 (ja) | 気相成長装置 | |
Jia et al. | Effect of gas flow ratio on the microstructure and mechanical properties of boron phosphide films prepared by reactive magnetron sputtering | |
Dauelsberg et al. | Modeling and experimental verification of transport and deposition behavior during MOVPE of Ga1-xInxP in the Planetary Reactor | |
JP2013026358A (ja) | シャワープレート及び気相成長装置 | |
Santos et al. | Laser-assisted deposition of r-B4C coatings using ethylene as carbon precursor | |
JPH0238569A (ja) | シリコン基板上にアルミニウムの平滑な薄膜を作製する方法とそれを用いた光学的反射鏡 | |
Brien et al. | Modelling and simulation of MOVPE of GaAs-based compound semiconductors in production scale Planetary Reactors | |
Kim et al. | Uniform color coating of multilayered TiO 2/Al 2 O 3 films by atomic layer deposition | |
Fernández et al. | Nitride thin films grown by pulsed laser deposition assisted by atomic nitrogen beam | |
Clayton et al. | The kinetics of parasitic growth in GaAs MOVPE |