TWI508142B - 低能量、高劑量砷、磷與硼植入晶圓的安全處理 - Google Patents

低能量、高劑量砷、磷與硼植入晶圓的安全處理 Download PDF

Info

Publication number
TWI508142B
TWI508142B TW096148507A TW96148507A TWI508142B TW I508142 B TWI508142 B TW I508142B TW 096148507 A TW096148507 A TW 096148507A TW 96148507 A TW96148507 A TW 96148507A TW I508142 B TWI508142 B TW I508142B
Authority
TW
Taiwan
Prior art keywords
layer
film layer
oxygen
exposing
plasma
Prior art date
Application number
TW096148507A
Other languages
English (en)
Other versions
TW200834681A (en
Inventor
Majeed A Foad
Manoj Vellaikal
Kartik Santhanam
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200834681A publication Critical patent/TW200834681A/zh
Application granted granted Critical
Publication of TWI508142B publication Critical patent/TWI508142B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/3003Hydrogenation or deuterisation, e.g. using atomic hydrogen from a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2236Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase from or into a plasma phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31654Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself
    • H01L21/31658Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe
    • H01L21/31662Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe of silicon in uncombined form

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Description

低能量、高劑量砷、磷與硼植入晶圓的安全處理
本發明實施例大體上有關於半導體製程領域,更明確而言,是關於更安全地製造摻雜砷、磷或硼之基材的方法。
積體電路可能包含超過一百萬個形成在基材(例如半導體晶圓)上的微電子場效應電晶體,例如互補金氧半導體場效電晶體(CMOS),並且該些電晶體在電路中合作地執行各種功能。CMOS電晶體在其基材中的源極與汲極之間設置有一閘極結構。閘極結構通常包括一閘極電極與一閘極介電層。閘極電極設置在閘極介電層上,以控制介於源極與汲極之間且位於閘極介電層下方之通道區域中的電荷載子流動。
離子佈植製程典型用來將離子植入與摻雜至基材中,以形成具有所欲離子分佈模式與濃度的閘極和源汲極結構。在離子佈植製程中,可使用不同的製程氣體或氣體混合物來提供離子來源物種,例如砷(arsenic)、磷(phosphorus)或硼(boron)。特別是當砷暴露在濕氣中時,會發生如下反應式的反應而產生氧化砷與胂氣(或稱,砷化氫,Arsine gas):As+H2 O→AsH3 +Asx Oy
胂氣是毒性極高且可燃的氣體。當施加高摻雜劑劑量(1x1016 l/cm2 或更高)與低佈植能量(即約2仟伏特)時,摻雜劑無法植入薄膜堆疊層的深處。因此,有較多的摻雜劑 位在鄰近薄膜堆疊層的表面處,並且當基材移出處理室時可能會接觸到濕氣。位於基材表面附近的砷可能會發生不想要反應而形成胂氣。
因此,需要一種在植入摻雜劑後,避免形成有毒化合物的方法。
本發明大體上包括在一種在佈植製程之後,避免形成有毒氣體的方法。某些摻雜劑植入基材上的膜層中以後,當其接觸濕氣時,可能會形成有毒氣體及/或可燃性氣體。在一實施例中,先將摻雜劑佈植到基材上的膜層中,隨後使該已經過佈植的膜層暴露於含氧氣體中,以形成一保護性氧化層。可在執行膜層佈植製程的同一處理室中形成該氧化層。
在另一實施例中,基材處理方法包括在一處理室中將一摻雜劑植入一膜層內,並且使該已佈植的膜層暴露於一含氧電漿中,以在該已佈植膜層上形成氧化層,而在該已佈植膜層暴露在大氣中的氧氣下之前,讓摻雜劑留在該膜層中。
在另一實施例中,先將一摻雜劑植入基材上的一膜層中,隨後在該已佈植的膜層上沉積一覆蓋層。可在佈植膜層的同一個處理室中沉積該覆蓋層。
在另一實施例中,基材處理方法包括在一處理室中將一摻雜劑植入基材上的一膜層內,並且在該已佈植膜層暴露在大氣中的氧氣下之前,先在該已佈植摻雜劑的膜層上 沉積一覆蓋層;其中該覆蓋層係選自於由碳層、矽層、氧化矽層、氮化矽層、碳化矽層、有機層及上述膜層之組合所構成的群組中。
在另一實施例中,基材處理方法包括在一處理室中將一摻雜劑植入基材上的一膜層內,並且在該已佈植膜層暴露於大氣中的氧氣下之前,先使用由三氟化氮所形成的電漿來蝕刻該已佈植的膜層,以移除過量的摻雜劑。
本發明揭示一種避免在佈植製程之後形成有毒氣體的方法。第1A圖繪示一電漿反應器100,其可根據本發明實施例來執行離子佈植、形成氧化層以及形成覆蓋層。適合用來執行本發明的反應器可為P3iTM 反應器,其可購自於美國加州聖克拉拉市的應用材料公司(Applied Materials,Inc.,of Santa Clara,California)。另一種可用來執行本發明的反應器則描述於2006年12月8日申請的美國專利申請案11/608,357號中,並將其全文納入本文中以供參考。並且本文中所描述的多種方法可能在其他適當的電漿反應器中執行,包括購自其他製造商的電漿反應器。
電漿反應器100包含一室主體102,該室主體具有一底部124、一頂部126以及多個側壁122以圈圍出一製程區域104。基材支撐組件128係由室主體102的底部124所支撐著,並且基材支撐組件128可用來容納一基材106以進行處理。氣體分配板130連接至室主體102的頂部126,且面對著基材支撐組件128。抽吸口(pumping port)132 界定在室主體102中,且連接至一真空幫浦134。真空幫浦134透過一節流閥136連接至抽吸口132。氣體來源152耦接至氣體分配板130,以為基材106上所執行的製程供應氣體前驅化合物。
第1A圖中所繪的反應器100包含一電漿源190,如第1B圖之立體透視圖中所示者。電漿源190包含一對獨立的外部迴流導管(reentrant conduits)140、140’,其安裝在室主體102之頂部126外側並且橫跨彼此或彼此互相垂直,如第1B圖中所繪的示範性實施例般。第一外部導管140具有第一端140a,該第一端140a穿過頂部126中的開口198而連接至室主體102內之製程區域104的第一側中。第二端140b具有一開口196,其連接至製程區域104的第二側內。第二外部迴流導管140b具有第一端140a’,其具有一開口194耦接至製程區域104的第三側,並且第二外部迴流導管140b具有一第二端140b',該第二端140b'具有一開口192耦接至製程區域104的第四側。在一實施例中,第一與第二外部迴流導管140、140’設計成彼此垂直,而使得各外部迴流導管140、140’的兩端140a、140a’、140b、140b’以約90°的角度間隔設置在室主體102之頂部126的周長附近。外部迴流導管140、140’的垂直配置設計允許電漿源均勻地分佈在整個製程區域104上。第一與第二外部迴流導管140、140’可設計成能在製程區域104中提供均勻電漿分佈的其他配置方式。
磁穿透式環形核心142、142’環繞著各自外部迴流導管140、140’的一部分。導電線圈144、144’透過各自的阻抗匹配電路或元件148、148’而耦接至個別的RF電漿源功率產生器146、146’。每個外部迴流導管140、140’為一中空導電管,且各導電管各自被絕緣輪狀環150、150’所中斷,絕緣輪狀環150、150’分別打斷介於各自外部迴流導管140、140’的兩端140a、140b(以及140a’與104b’)之間的連續導電路徑。利用RF電漿偏壓功率產生器154來控制基材表面的離子能量,且該RF電漿偏壓功率產生器154透過一阻抗匹配電路或元件156連接至基材支撐組件128。
回到第1A圖,含有來自製程氣體來源152之氣體化合物的製程氣體透過頂部氣體分配板130引導至製程區域104中。將來自功率施加器的RF源電漿功率146耦合至導管140中的氣體,而在外部迴流導管140與製程區域104中的第一封閉環形路徑內產生一循環電漿電流。此外,將來自另一功率施加器的RF源電漿功率146’耦合至第二導管140’中的氣體,而在橫跨(例如垂直)該第一環形路徑的第二封閉環形路徑內產生一循環電漿電流。第二環形路徑包含第二外部迴流導管140’與製程區域104。各自路徑中的電漿電流可以各自RF源功率產生器146、146’的頻率做震盪(oscillate),例如反向震盪(reverse direction),且該頻率可彼此相同或稍有偏差。
在一實施例中,製程氣體來源152提供數種不同製程 氣體,以提供植入基材106中的離子。適當的製程氣體範例包括乙硼烷(B2 H6 )、三氟化硼(BF3 )、矽烷(SiH4 )、四氟化矽(SiF4 )、磷化氫(PH3 )、五氫化二磷(P2 H5 )、三氧化磷(PO3 )、三氟化磷(PF3 )、五氟化磷(PF5 )與四氟化碳(CF4 )等等。各RF電漿源功率產生器146、146’的功率受到操作,使得其結合效果能有效解離該些來自製程氣體來源152的製程氣體,而在基材106的表面處產生期望的離子流。RF電漿偏壓功率產生器154的功率則控制在一選定的功率量,以使製程氣體解離後的離子能量能加速朝向基材表面並且以期望的濃度植入基材106之頂面下方的一期望深度處。例如,以低於約50電子伏特(eV)的相對較低能RF功率可能得到相對較低的電漿離子能量。具有低離子能量的解離離子可能植入距離基材表面約0埃(Å)至約100埃的淺深度處。或者,由高RF功率產生具有高離子能量的解離離子(例如高於約50eV)可能植入距離基材表面實質超過100埃的深度處。
結合受控制的RF電漿源功率與RF偏壓功率可使氣體混合物中解離出具有足夠動量的離子,並且在處理室100中得到期望的離子分佈情形。離子受到偏壓並且被驅使朝向基材表面,而以期望的離子濃度、分佈與距離基材表面的期望深度將離子佈植至基材中。此外,由供應製程氣體所產生的受控制離子能量與不同的離子物種有助於將離子佈植在基材106中,而形成所欲的元件結構,例如基材106上的閘極結構與源汲極區域。
第2圖繪示在佈植製程之後,形成一摻雜劑氧化層之方法200的流程圖。方法200始於步驟202,在步驟202中,將一摻雜劑佈植至形成於基材上的一膜層中。「膜層(film)」一詞為包括一材料層或堆疊在基材上之多層材料層在內的通稱。在一實施例中,摻雜劑包括砷(arsenic)。在另一實施例中,摻雜劑包括磷(phosphorus)。在又一實施例中,摻雜劑包括硼(boron)。
待摻雜劑植入該膜層堆疊層中以後,方法進行到步驟204,在步驟204中,使該已佈植(例如,已摻雜)膜層暴露至一含氧氣體中。該暴露步驟可在執行該膜層佈植之同一反應室中的原位處進行。在佈植之後,具有已摻雜膜層的基材可留在該反應室中,以確保摻雜劑不會接觸到濕氣,因為濕氣可能與摻雜劑發生反應而形成有毒或可燃的氣體。在一實施例中,可在不使該已佈植(例如,已摻雜)膜層暴露於大氣中(從而暴露於濕氣中)的情況下,在另一獨立的反應室中使該已佈植(已摻雜)膜層暴露於含氧氣體中。
在步驟206中,藉著將該已佈植膜層暴露在含氧氣體中,使氧氣與之反應而在已佈植膜層的表面上形成氧化物。該氧化物可能是摻雜劑的氧化物及/或該佈植膜層的氧化物。可用的適當含氧氣體包括氧原子(O)、氧氣(O2 )、臭氧ozone(O3 )、氧化亞氮(N2 O)、一氧化氮(NO)、二氧化氮(NO2 )、五氧化二氮(N2 O5 )、上述氣體之電漿、自由基、衍生物及其組合物,或是其他適合的氧來源。含氧氣體可激 發成電漿。在一實施例中,可在執行佈植製程的同一處理室中激發該含氧氣體。在另一實施例中,可在遠端處激發電漿,並且將電漿輸送至處理室。可利用電容來源及/或感應來源來產生電漿。
在一實施例中,該已佈植膜層可暴露至一含氫氣體中。可在該已佈植膜層暴露於含氧氣體之前或之後,使該已佈植膜層暴露至一含氫氣體中。在一實施例中,含氫氣體包括氫氣。暴露至含氫氣體與暴露至含氧氣體的步驟可重複執行多次。該含氫氣體可激發成電漿。在一實施例中,可在執行佈植的同一處理室中激發該含氫氣體。在另一實施例中,可在遠端處激發電漿,並且將該電漿輸送到處理室。可使用電容來源及/或感應來源來產生電漿。基露至含氫氣體以及暴露至含氧氣體的步驟可於同一個處理室內但在不同時間區段中執行。
在一實施例中,可在形成於該已佈植膜層上的氧化層上沉積一覆蓋層。覆蓋層可選自於由碳層、矽層、氧化矽層、氮化矽層、碳化矽層、有機層及其組合物所構成之群組中。可在執行佈植的同一處理室中進行沉積以在該氧化層上沉積一覆蓋層。在一實施例中,可無需使膜層暴露於大氣(從而暴露於濕氣中)的情況下,在不同的處理室中沉積該覆蓋層。可在退火之後,移除該覆蓋層。
在又另一實施例中,可使已佈植膜層暴露於一氣體中以移除過量的摻雜劑。藉著移除過量的摻雜劑,摻雜劑可能不活化,從而減少形成摻雜劑的氫化物。在一實施例中, 該氣體可包括蝕刻氣體。在另一實施例中,該氣體可能包括三氟化氮(NF3 )。移除過量摻雜劑的步驟可在執行佈植的同一個處理室中進行。在一實施例中,可在不使膜層暴露於大氣中(從而暴露於濕氣中)的情況下,在不同的處理室中執行該移除過量摻雜劑的步驟。
形成氧化層、形成覆蓋層以及移除過量摻雜劑的步驟可以任意組合的方式來應用。在一實施例中,可形成氧化層,但不形成覆蓋層,且不移除過量的摻雜劑。在另一實施例中,形成一覆蓋層,但不形成氧化層,且沒有移除過量的摻雜劑。在另一實施例中,移除過量的摻雜劑,但沒有形成氧化層與覆蓋層。在一實施例中,形成氧化層及覆蓋層,但是沒有移除過量的摻雜劑。在另一實施例中,形成氧化層且移除過量的摻雜劑,但是不形成覆蓋層。在另一實施例中,形成覆蓋層且移除過量的摻雜劑,但不形成氧化層。此外,可與上述形成氧化層、形成覆蓋層以及移除過量摻雜劑之步驟以任意的組合方式來執行該暴露於含氫氣體的步驟。
在形成氧化層的過程中,以約300sccm至約450sccm的流速供應含氧氣體給處理室。在另一實施例中,含氧氣體的流速可大於450sccm。在該處理室中,使該已佈植膜層於約15毫托(mTorr)至約300毫托的處理室壓力下暴露約3至10秒鐘以形成該氧化層。含氧氣體可隨同一載氣共同流入該處理室中。載氣的流速可約50sccm。載氣可能包含一惰性氣體。在一實施例中,載氣包含氬氣。
第3圖繪示在佈植製程後形成覆蓋層之方法300的流程圖。方法300始於步驟302,在步驟302中,摻雜劑佈植至形成於基材上的一膜層中。摻雜劑為如上所述者。
待摻雜劑植入膜層內之後,方法進行到步驟304,在步驟304中,供應用來在摻雜膜堆疊層306上沉積覆蓋層的氣體。可在執行佈執製程的同一個處理室內的原位處進行覆蓋層的沉積。由於摻雜劑會與濕氣反應而形成有毒或可燃氣體,藉著在同一處理室中的原位處進行覆蓋住該已佈植基材的步驟,可確保摻雜劑不會暴露在濕氣中。
可利用化學氣相沉積製程(CVD)來沉積覆蓋層。可用的其中一種特別CVD製程包括電漿增強化學氣相沉積製程(PECVD)。覆蓋層可能包含矽、氧、氮、碳及其組合物。可導入處理室中的適當氣體包括含矽氣體、如上所述的含氧氣體、含氮氣體以及含氮氣體。在一實施例中,覆蓋層包括矽層。在另一實施例中,覆蓋層包括氧化矽層。在又一實施例中,覆蓋層包括氮化矽層。又再一實施例中,覆蓋層包括碳化矽層。
形成覆蓋層的適當含矽氣體範例包括胺基矽烷(aminosilanes)、胺基二矽烷(aminodisilanes)、疊氮矽烷(silylazides)、矽烷基肼(silylhydrazines)及其衍生物。含矽氣體的某些特定範例包括二(第三丁基胺基)矽烷(bis(tertbutylamino)silane,BTBAS或t Bu(H)N)2 SiH2 )、六氯二矽烷(hexachlorodisilane,HCD或Si2 Cl6 )、四氯矽烷(tetrachlorosilane,SiCl4 )、二氯矽烷(dichlorosilane, H2 SiCl2 )、1,2-二乙基-四(二乙胺基)-二矽烷(1,2-diethyl-tetrakis(diethylamino)disilane,(CH2 CH3 ((CH3 CH2 )2 N)2 Si)2 )、1,2-二氯-四(二乙胺基)二矽烷(1,2-dichloro-tetrakis(diethylamino)disilane,(Cl((CH3 CH2 )2 N)2 Si)2 )、六(N-吡咯烷基)二矽烷(hexakis(N-pyrrolidinio)disilane,((C4 H9 N)3 )Si)2 )、1,1,2,2-四氯-雙(二(三甲基矽基)胺基)二矽烷(1,1,2,2-tetrachloro-bis(di(trimethylsilyl)amino)disilane,(Cl2 ((CH3 )3 Si)2 N)Si)2 )、1,1,2,2-四氯-雙(二異丙胺基)二矽烷(1,1,2,2-tetrachloro-bis(diisopropylamino)disilane,(Cl2 ((C3 H7 )2 N)Si)2 )、1,2-二甲基四(二乙胺基)二矽烷(1,2-dimethyltetrakis(diethylamino)disilane,(CH3 (CH3 CH2 N)2 Si)2 )、疊氮三(二甲胺基)矽烷(tris(dimethylamino)silane azide,((CH3 )2 N)3 SiN3 )、疊氮(三(甲胺基)矽烷(tris(methylamino)silane azide,((CH3 )(H)N)3 SiN3 )、2,2-二甲基肼基-二甲基矽烷(2,2-dimethylhydrazine-dimethylsilane,(CH3 )2 (H)Si)(H)NN(CH3 )2 )、三矽基胺(trisilylamine,(SiH3 )3 N或TSA)、六(乙胺基)二矽烷(hexakis(ethylamino)disilane,((EtHN)3 Si)2 )及其自由基、電漿、衍生物或組合物。可使用的其他適當含矽氣體包括具有一或多個Si-N鍵或Si-Cl鍵的化合物,例如二(第三丁基胺基)矽烷(BTBAS或(t Bu(H)N)2 SiH2 )或六氯已矽烷(HCD或Si2 Cl6 )。
上述具有較佳鍵結結構的含矽氣體具有下列化學式:(I) R2 NSi(R’2 )Si(R’2 )NR2 (胺基二矽烷);(II) R3 SiN3 (疊氮矽烷);或(III) R’3 SiNRNR2 (矽烷基肼)。
在上述化學式中,R與R’可以是一或多個官能基,其選自於鹵素、具有一或多個雙鍵的有機基團、具有一或多個三鍵的有機基團、脂肪族烷基、環烷基、芳香基、有機矽基、烷胺基、含有氮或矽的環狀基或上述化合物的組合。特定的官能基包括氯(-Cl)、甲基(-CH3 )、乙基(-CH2 CH3 )異丙基(-CH(CH3 )2 )、第三丁基(-C(CH3 )3 )、三甲基矽基(-Si(CH3 )3 )、吡咯啶基(pyrrolidine)或其組合物。
其他適當的含矽氣體包括具有任意R基組合的線性或環狀疊氮矽烷(silylazides,R3 .SiN3 )以及矽烷基肼類(silylhydrazine,R3 SiNRNR2 )的氣體。R基團可為氫或任何有機官能基,例如甲基、乙基、丙基、丁基(CX HY )等等。連接於Si上的R基團可選擇為另一胺基NH2 或NR2 。疊氮矽烷化合物的特定範例包括疊氮三甲基矽烷(trimethylsilylazide,(CH3 )3 SiN3 ),其可購自美國賓州布里斯多室的聯合化學科技公司(United Chemical Technologies,located in Bristol,Pennsylvania)以及疊氮三(二甲胺)矽烷(tris(dimethylamine)silylazide,((CH3 )2 N)3 SiN3 )。矽烷基肼的特定範例為1,1-二甲基-2-二甲基矽基肼(1,1-dimethyl-2-dimethylsilylhydrazine,(CH3 )2 HSiNHN(CH3 )2 )。在另一實施例中,含矽氮氣體可能 是下列至少一者:(R3 Si)3 N、(R3 Si)2 NN(SiR3 )2 與(R3 Si)NN(SiR3 ),其中各個R可個別為氫或烷基,例如甲基、乙基、丙基、丁基、苯基或其組合。含矽氮氣體的適當範例包括三矽基胺(trisilylamine,(H3 Si)3 N)、(H3 Si)2 NN(SiH3 )2 、(H3 Si)NN(SiH3 )或其衍生物。
含氮氣體的適當範例包括氨氣(NH3 )、聯胺(N2 H4 )、有機胺、有機肼類(organic hydrazines)、有機二嗪類(organic diazines,例如甲基二嗪(methyldiazine,(H3 C)NNH))、疊氮矽烷(silylazides)、矽烷基肼(silylhydrazines)、疊氮化氫(hydrogen azide,HN3 )、氰化氫(HCN)、氮原子(N)、氮氣(N2 )、苯基肼(phenylhydrazine)、偶氮第三丁烷(azotertbutane)、疊氮乙烷(ethylazide)及上述化合物之組合物或衍生物。有機胺包括化學式Rx NH3-x ,其中每個R可各自為烷基或芳香基,並且x為1、2或3。有機胺的範例包括三甲胺(trimethylamine,(CH3 )3 N)、二甲胺(dimethylamine,(CH3 )2 NH)、甲胺(methylamine,(CH3 )NH2 )、三乙胺(triethylamine,(CH3 CH2 )3 N)、二乙胺(diethylamine,(CH3 CH2 )2 NH)、乙胺(ethylamine,(CH3 CH2 )NH2 )、第三丁胺(tertbutylamine,((CH3 )3 C)NH2 )及上述化合物之衍生物或組合物。有機肼包括化學式Rx N2 H4-x ,其中每個R可各自為烷基或芳香基,並且x為1、2、3或4。有機肼的範例包括甲基肼(methylhydrazine,(CH3 )N2 H3 )、二甲基肼(dimethylhydrazine,(CH3 )2 N2 H2 )、乙基肼(ethylhydrazine,(CH3 CH2 )N2 H3 )、二乙基肼 (diethylhydrazine,(CH3 CH2 )2 N2 H2 )、第三丁基肼(tertbutylhydrazine,((CH3 )3 C)N2 H3 )、二第三丁基肼(ditertbutylhydrazine,((CH3 )3 C)2 N2 H2 )及上述化合物之自由基、電漿、衍生物或組合物。
碳來源包括乙基、丙基與丁基的有機矽烷、烷類、烯類與炔類。此類碳來源包括甲基矽烷(CH3 SiH3 )、二甲基矽烷((CH3 )2 SiH2 )、乙基矽烷(CH3 CH2 SiH3 )、甲烷(CH4 )、乙烯(C2 H4 )、乙炔(C2 H2 )、丙烷(C3 H8 )、丙烯(C3 H6 )、丁炔(C4 H6 )及其它類似物。
可將用來形成覆蓋層的氣體隨同載氣供應至處理室中。在一實施例中,使用氬氣作為載氣,並且可以約300sccm的流速來供應載氣。在化學氣相沉積過程中,可施加約200瓦至約2000瓦的RF功率。
在一實施例中,通入15sccm的矽烷氣體、約50sccm至約60sccm的氧氣、約300sccm的氬氣以及施加約200瓦的RF偏壓,可在已佈植膜層上沉積二氧化矽層。沉積反應發生約1分鐘至約2分鐘,並且沉積出厚度約50埃至約60埃的二氧化矽覆蓋層。選用性地,可在使用方法200所形成的氧化層上沉積一覆蓋層。
在步驟308,在執行進一步處理之前,先移除該覆蓋層。可在後續處理步驟中移除原位沉積的氧化層或覆蓋層,此外該氧化層或覆蓋層的厚度需夠厚而足以減少及/或避免產生有毒及/或可燃氣體。然而,氧化層或覆蓋層也必須夠薄,而能夠在無需增加額外的處理時間或不會損害 膜堆疊層的情況下,使用諸如剝除製程(stripping process)等方法輕易地將之移除。
表一顯示使用劑量為1x1016 l/cm2 的砷作為摻雜劑且佈植功率為2仟伏特對五種不同基材進行砷佈植的數據。對每種基材執行不同的暴露/覆蓋製程。
對於基材1,在佈植之後,沒有執行原位暴露製程。當砷接觸到濕氣時,形成原生氧化砷,且伴隨著生成胂氣體。第一天形成的氧化砷厚度為34.85埃,並且到第五天所形成的氧化砷厚度為42.65埃。
對於基材2,使已佈植膜層暴露在氧氣中10秒鐘但不施加電漿。所形成的氧化砷層厚度為37.38埃。到了第五天氧化砷的厚度縮減成36.75埃。並且沒有偵測到胂氣。
對於基材3,使已佈植膜層暴露在氧氣電漿中3秒鐘,但不施加偏壓。所形成的氧化砷層厚度為51.19埃。到了第五天的氧化砷層厚度增加到56.19埃。並且沒有偵測到胂氣。
對於基材4,使已佈植膜層暴露在氧氣電漿中7秒鐘,但不施加偏壓。所形成的氧化砷層厚度為47.15埃。到了第三天氧化砷層厚度增加到47.57埃,並且到了第五天氧化砷層的厚度增加到49.93埃。並且沒有偵測到胂氣。
對於基材5,藉著導入由SiH2 與O2 所形成的電漿持續3秒鐘,以在已佈植膜層上沉積二氧化矽層。該二氧化矽層的厚度為56.73埃。到了第五天,其厚度增加到59.52埃。並且沒有偵測到胂氣。
基材1-4的胂變化情形(arsine evolution)顯示於第4圖中。在第4圖中可看到,沒有原位生成氧化層的基材1除了形成氧化層之外,起初還會形成大量胂氣。另一方面,基材2-4產生的胂氣量要少得多。如上所述,基材2-4在執行膜層佈植的同一個處理室中於原位暴露在氧氣下,因此當基材接觸到濕氣時,較少的砷會形成胂氣。由於形成較少的胂氣,在操作基材2-4的過程比較安全。
原位氧化該已佈植雜劑之膜層的步驟,及/或在原位處於該已佈植摻雜劑之膜層上沉積一覆蓋層的步驟能減少當膜堆疊層接觸到濕氣時所產生的有毒及/或可燃氣體的量。並且該佈植與氧化(或覆蓋)步驟可在不同的處理室中進行,只要該佈植步驟與氧化(或覆蓋)步驟之間能使基材 保持在真空狀態下即可。
雖然本發明的多個實施例已詳述如上,然而在不偏離本本發明基本範圍的情況下,當可做出本發明的其他與進一步實施例。本發明範圍係由後附申請專利範圍所界定。
100‧‧‧電漿反應器
102‧‧‧室主體
104‧‧‧製程區域
122‧‧‧側壁
124‧‧‧底部
126‧‧‧頂部
128‧‧‧基材支撐組件
130‧‧‧氣體分配板
132‧‧‧抽吸口
134‧‧‧真空幫浦
136‧‧‧節流閥
140、140’‧‧‧導管
140a、140a’‧‧‧第一端
140b、140b’‧‧‧第二端
142、142’‧‧‧核心
144、144’‧‧‧線圈
146、146’‧‧‧功率產生器
148、148’‧‧‧匹配電路
150、150’‧‧‧輪狀環
152‧‧‧氣體源
154‧‧‧偏壓功率產生器
156‧‧‧匹配電路
190‧‧‧電漿源
192、194、196、198‧‧‧開孔
200、300‧‧‧方法
202、204、206、302、304、306、308‧‧‧步驟
為了更詳細了解本發明上述特徵,本發明係參照數個實施例詳述如上,且部分實施例繪於附圖中。然而需明白的是,該些附圖僅顯示本發明的數個典型實施例,因此不應作為本發明範圍的限制。本發明還容許其他等效實施例。
第1A-1B圖繪示適合用來實施本發明的電漿浸沒式離子佈植工具之實施例。
第2圖繪示根據本發明之形成摻雜劑氧化物的方法流程圖。
第3圖繪示根據本發明一實施例,原位覆蓋製程的方法流程圖。
第4圖顯示胂氣形成隨著時間的變化關係。
為了便於了解,盡可能地以相同元件符號來表示各圖所共有的相同元件。並且無需進一步說明就可了解到,一實施例的元件與特徵可有利地併入另一實施例中。
然而須注意的是,附圖僅出示本發明的數個示範性實施例,不應用來限制本發明範圍。本發明尚容許其他等效實施例。
300‧‧‧方法
302、304‧‧‧步驟
306、308‧‧‧步驟

Claims (14)

  1. 一種基材處理方法,其包含:藉由將一摻雜劑佈植至一基材上之一膜層內以形成一已佈植膜層,該基板係置於一處理室中;在該已佈植膜層暴露於大氣中的氧氣下之前,先將該已佈植膜層暴露於一含氧電漿中,以在該已佈植膜層上形成一氧化層而將該摻雜劑留在該已佈植膜層內,其中該摻雜劑選自於由砷、磷、硼及其組合物所構成之群組中;以及在該佈植步驟之後及該暴露於一含氧電漿的步驟之前蝕刻該膜層,其中該蝕刻步驟包括使該已佈植膜層暴露於由三氟化氮(NF3 )所形成的電漿中。
  2. 如申請專利範圍第1項所述之方法,其中該含氧電漿是由氧氣所形成。
  3. 如申請專利範圍第2項所述之方法,其中該佈植步驟與暴露步驟在同一處理室中執行。
  4. 如申請專利範圍第3項所述之方法,其中該電漿係藉由一電容耦合來源所產生。
  5. 如申請專利範圍第4項所述之方法,其中該電漿係除了 該電容耦合來源之外,還藉著一感應耦合來源而生成。
  6. 如申請專利範圍第3項所述之方法,其中該電漿係藉著一感應耦合來源所產生。
  7. 如申請專利範圍第1項所述之方法,更包括在該含氧電漿以外,使該已佈植膜層獨立地暴露於一含氫電漿中。
  8. 如申請專利範圍第7項所述之方法,其中使該已佈植膜層暴露於一含氫電漿中的步驟係發生在該佈植步驟之後及該暴露於一含氧電漿的步驟之前。
  9. 如申請專利範圍第8項所述之方法,其中該暴露於一含氫電漿的步驟以及該暴露於一含氧電漿的步驟係執行多次。
  10. 如申請專利範圍第7項所述之方法,其中使該已佈植膜層暴露於一含氫電漿中的步驟係發生在該佈植步驟之後及該暴露於一含氧電漿的步驟之後。
  11. 如申請專利範圍第10項所述之方法,其中該暴露於一含氫電漿的步驟以及該暴露於一含氧電漿的步驟係執行多次。
  12. 如申請專利範圍第1項所述之方法,更包括在該氧化層上沉積一覆蓋層,其中該覆蓋層選自於由碳層、矽層、氧化矽層、氮化矽層、碳化矽層、有機層及其組合物所構成之群組中。
  13. 一種基材處理方法,包括:藉由在一處理室中將一摻雜劑佈植至一基材上的一膜層內以形成一已佈植膜層,其中該摻雜劑選自於由砷、磷、硼及其組合物所構成之群組中;在該已佈植膜層暴露於大氣中的氧氣下之前,先在該已佈植摻雜劑的膜層上沉積一覆蓋層,其中該覆蓋層選自於由碳層、矽層、氧化矽層、氮化矽層、碳化矽層、有機層及其組合物所構成之群組中;以及在該佈植步驟之後及該沉積步驟之前蝕刻該膜層,其中該蝕刻步驟包括使該已佈植膜層暴露於由三氟化氮(NF3 )所形成的電漿中。
  14. 如申請專利範圍第13項所述之方法,其中該佈植步驟與該沉積步驟係在同一處理室中執行。
TW096148507A 2006-12-18 2007-12-18 低能量、高劑量砷、磷與硼植入晶圓的安全處理 TWI508142B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US87057506P 2006-12-18 2006-12-18

Publications (2)

Publication Number Publication Date
TW200834681A TW200834681A (en) 2008-08-16
TWI508142B true TWI508142B (zh) 2015-11-11

Family

ID=39537046

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096148507A TWI508142B (zh) 2006-12-18 2007-12-18 低能量、高劑量砷、磷與硼植入晶圓的安全處理

Country Status (6)

Country Link
US (3) US20080153271A1 (zh)
JP (1) JP5383501B2 (zh)
KR (1) KR101369993B1 (zh)
CN (1) CN101548190A (zh)
TW (1) TWI508142B (zh)
WO (1) WO2008077020A2 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8118946B2 (en) * 2007-11-30 2012-02-21 Wesley George Lau Cleaning process residues from substrate processing chamber components
US8288257B2 (en) * 2008-10-31 2012-10-16 Applied Materials, Inc. Doping profile modification in P3I process
US7858503B2 (en) * 2009-02-06 2010-12-28 Applied Materials, Inc. Ion implanted substrate having capping layer and method
JP2013534712A (ja) * 2010-06-23 2013-09-05 東京エレクトロン株式会社 プラズマドーピング装置、プラズマドーピング方法、半導体素子の製造方法、および半導体素子
US8501605B2 (en) * 2011-03-14 2013-08-06 Applied Materials, Inc. Methods and apparatus for conformal doping
US20120289036A1 (en) * 2011-05-11 2012-11-15 Applied Materials, Inc. Surface dose retention of dopants by pre-amorphization and post implant passivation treatments
JPWO2013164940A1 (ja) * 2012-05-01 2015-12-24 東京エレクトロン株式会社 被処理基体にドーパントを注入する方法、及びプラズマドーピング装置
KR102199525B1 (ko) 2014-05-30 2021-01-08 디디피 스페셜티 일렉트로닉 머티리얼즈 유에스 9 엘엘씨 다이아이소프로필아미노-다이실란의 합성 공정
FR3033079B1 (fr) * 2015-02-19 2018-04-27 Ion Beam Services Procede de passivation d'un substrat et machine pour la mise en oeuvre de ce procede
WO2018052471A1 (en) 2016-09-14 2018-03-22 Applied Materials, Inc. A degassing chamber for arsenic related processes
US11501972B2 (en) 2020-07-22 2022-11-15 Applied Materials, Inc. Sacrificial capping layer for passivation using plasma-based implant process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196370A (en) * 1990-11-08 1993-03-23 Matsushita Electronics Corporation Method of manufacturing an arsenic-including compound semiconductor device
US6039851A (en) * 1995-03-22 2000-03-21 Micron Technology, Inc. Reactive sputter faceting of silicon dioxide to enhance gap fill of spaces between metal lines
US6274512B1 (en) * 1999-09-10 2001-08-14 Kabushiki Kaisha Toshiba Method for manufacturing a semiconductor device
US6344884B1 (en) * 1997-11-28 2002-02-05 Lg.Philips Lcd Co., Ltd. Liquid crystal display device substrate and method for manufacturing thereof
US20030047028A1 (en) * 2001-08-08 2003-03-13 Toyoki Kunitake Nanomaterials of composite metal oxides
US20060040484A1 (en) * 2004-08-20 2006-02-23 International Business Machines Corporation Apparatus and method for staircase raised source/drain structure
US20060205192A1 (en) * 2005-03-09 2006-09-14 Varian Semiconductor Equipment Associates, Inc. Shallow-junction fabrication in semiconductor devices via plasma implantation and deposition

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226667A (en) * 1978-10-31 1980-10-07 Bell Telephone Laboratories, Incorporated Oxide masking of gallium arsenide
JP3103629B2 (ja) * 1990-11-08 2000-10-30 松下電子工業株式会社 砒化化合物半導体装置の製造方法
JPH1131665A (ja) * 1997-07-11 1999-02-02 Hitachi Ltd 半導体集積回路装置の製造方法
EP0932191A1 (en) * 1997-12-30 1999-07-28 International Business Machines Corporation Method of plasma etching doped polysilicon layers with uniform etch rates
US6376285B1 (en) * 1998-05-28 2002-04-23 Texas Instruments Incorporated Annealed porous silicon with epitaxial layer for SOI
US6239034B1 (en) * 1998-11-02 2001-05-29 Vanguard International Semiconductor Corporation Method of manufacturing inter-metal dielectric layers for semiconductor devices
US20020033233A1 (en) * 1999-06-08 2002-03-21 Stephen E. Savas Icp reactor having a conically-shaped plasma-generating section
US6586318B1 (en) * 1999-12-28 2003-07-01 Xerox Corporation Thin phosphorus nitride film as an N-type doping source used in laser doping technology
US7037813B2 (en) * 2000-08-11 2006-05-02 Applied Materials, Inc. Plasma immersion ion implantation process using a capacitively coupled plasma source having low dissociation and low minimum plasma voltage
US7064399B2 (en) * 2000-09-15 2006-06-20 Texas Instruments Incorporated Advanced CMOS using super steep retrograde wells
US6613695B2 (en) * 2000-11-24 2003-09-02 Asm America, Inc. Surface preparation prior to deposition
US6566283B1 (en) * 2001-02-15 2003-05-20 Advanced Micro Devices, Inc. Silane treatment of low dielectric constant materials in semiconductor device manufacturing
US6855436B2 (en) * 2003-05-30 2005-02-15 International Business Machines Corporation Formation of silicon-germanium-on-insulator (SGOI) by an integral high temperature SIMOX-Ge interdiffusion anneal
KR100428769B1 (ko) * 2001-06-22 2004-04-28 삼성전자주식회사 반도체 롬 장치 형성 방법
US7003111B2 (en) * 2001-10-11 2006-02-21 International Business Machines Corporation Method, system, and program, for encoding and decoding input data
JP3578345B2 (ja) * 2002-03-27 2004-10-20 株式会社半導体先端テクノロジーズ 半導体装置の製造方法および半導体装置
JP4001498B2 (ja) * 2002-03-29 2007-10-31 東京エレクトロン株式会社 絶縁膜の形成方法及び絶縁膜の形成システム
US6743651B2 (en) * 2002-04-23 2004-06-01 International Business Machines Corporation Method of forming a SiGe-on-insulator substrate using separation by implantation of oxygen
US20040072446A1 (en) * 2002-07-02 2004-04-15 Applied Materials, Inc. Method for fabricating an ultra shallow junction of a field effect transistor
US6841457B2 (en) * 2002-07-16 2005-01-11 International Business Machines Corporation Use of hydrogen implantation to improve material properties of silicon-germanium-on-insulator material made by thermal diffusion
US20050205986A1 (en) * 2004-03-18 2005-09-22 Ikuroh Ichitsubo Module with integrated active substrate and passive substrate
US20060011906A1 (en) * 2004-07-14 2006-01-19 International Business Machines Corporation Ion implantation for suppression of defects in annealed SiGe layers
US7141457B2 (en) * 2004-11-18 2006-11-28 International Business Machines Corporation Method to form Si-containing SOI and underlying substrate with different orientations
US7504314B2 (en) * 2005-04-06 2009-03-17 International Business Machines Corporation Method for fabricating oxygen-implanted silicon on insulation type semiconductor and semiconductor formed therefrom

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196370A (en) * 1990-11-08 1993-03-23 Matsushita Electronics Corporation Method of manufacturing an arsenic-including compound semiconductor device
US6039851A (en) * 1995-03-22 2000-03-21 Micron Technology, Inc. Reactive sputter faceting of silicon dioxide to enhance gap fill of spaces between metal lines
US6344884B1 (en) * 1997-11-28 2002-02-05 Lg.Philips Lcd Co., Ltd. Liquid crystal display device substrate and method for manufacturing thereof
US6274512B1 (en) * 1999-09-10 2001-08-14 Kabushiki Kaisha Toshiba Method for manufacturing a semiconductor device
US20030047028A1 (en) * 2001-08-08 2003-03-13 Toyoki Kunitake Nanomaterials of composite metal oxides
US20060040484A1 (en) * 2004-08-20 2006-02-23 International Business Machines Corporation Apparatus and method for staircase raised source/drain structure
US20060205192A1 (en) * 2005-03-09 2006-09-14 Varian Semiconductor Equipment Associates, Inc. Shallow-junction fabrication in semiconductor devices via plasma implantation and deposition

Also Published As

Publication number Publication date
US20080153271A1 (en) 2008-06-26
CN101548190A (zh) 2009-09-30
WO2008077020A3 (en) 2008-08-28
TW200834681A (en) 2008-08-16
US20100173484A1 (en) 2010-07-08
US8927400B2 (en) 2015-01-06
WO2008077020A2 (en) 2008-06-26
KR20090100421A (ko) 2009-09-23
KR101369993B1 (ko) 2014-03-06
US20140248759A1 (en) 2014-09-04
JP2010514166A (ja) 2010-04-30
JP5383501B2 (ja) 2014-01-08

Similar Documents

Publication Publication Date Title
TWI508142B (zh) 低能量、高劑量砷、磷與硼植入晶圓的安全處理
US10008428B2 (en) Methods for depositing films on sensitive substrates
US10707116B2 (en) Cyclic flowable deposition and high-density plasma treatment processes for high quality gap fill solutions
US9214333B1 (en) Methods and apparatuses for uniform reduction of the in-feature wet etch rate of a silicon nitride film formed by ALD
KR102443554B1 (ko) 실리콘 옥사이드를 증착하기 위한 방법들
US9478415B2 (en) Method for forming film having low resistance and shallow junction depth
US9076646B2 (en) Plasma enhanced atomic layer deposition with pulsed plasma exposure
CN104831254B (zh) 氮化硅膜的沉积方法
TWI541376B (zh) 共形的氮碳化矽及氮化矽薄膜之低溫電漿輔助化學氣相沉積
KR101853802B1 (ko) 라디칼­성분 cvd에 의한 컨포멀 층들
KR20180073483A (ko) 기판 상의 구조물 형성 방법
KR101327923B1 (ko) 보론 니트라이드 및 보론 니트라이드-유도된 물질 증착 방법
US20140273530A1 (en) Post-Deposition Treatment Methods For Silicon Nitride
CN100561708C (zh) 制造受应力电晶体结构的集成制程
JP2017531920A (ja) 高温酸化ケイ素原子層堆積技術
US20160329206A1 (en) Methods of modulating residual stress in thin films
KR20180058232A (ko) SiO 및 SiN을 포함하는 유동성 막들을 증착시키는 방법들
KR20150037662A (ko) 복합 peald 및 pecvd 방법을 사용하여 가변 애스팩트 비 피처들의 갭충진
US20140273524A1 (en) Plasma Doping Of Silicon-Containing Films
CN102437053A (zh) 增加pecvd氮化硅膜层的压缩应力的方法
CN107406983B (zh) 通过沉积调整来解决fcvd的线条弯曲
US11107674B2 (en) Methods for depositing silicon nitride
WO2015116350A1 (en) Low temperature cure modulus enhancement
CN112640063B (zh) 基板处理装置、半导体装置的制造方法、存储介质及等离子体单元
JP2022534801A (ja) 高エネルギー低線量プラズマを用いた窒化ケイ素ベースの誘電体膜の後処理の方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees