TWI502742B - 形成在具有基板頂面之半導體基板上之半導體元件及其製備方法 - Google Patents

形成在具有基板頂面之半導體基板上之半導體元件及其製備方法 Download PDF

Info

Publication number
TWI502742B
TWI502742B TW101102713A TW101102713A TWI502742B TW I502742 B TWI502742 B TW I502742B TW 101102713 A TW101102713 A TW 101102713A TW 101102713 A TW101102713 A TW 101102713A TW I502742 B TWI502742 B TW I502742B
Authority
TW
Taiwan
Prior art keywords
gate
trench
source region
contact
dielectric material
Prior art date
Application number
TW101102713A
Other languages
English (en)
Other versions
TW201232782A (en
Inventor
John Chen
Original Assignee
Alpha & Omega Semiconductor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/016,804 external-priority patent/US8618601B2/en
Application filed by Alpha & Omega Semiconductor filed Critical Alpha & Omega Semiconductor
Publication of TW201232782A publication Critical patent/TW201232782A/zh
Application granted granted Critical
Publication of TWI502742B publication Critical patent/TWI502742B/zh

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

形成在具有基板頂面之半導體基板上之半導體元件及其製備方法
本發明是有關於一種形成在具有基板頂面之半導體基板上之半導體元件及其製備方法。
當今的許多電子電路設計對於開關性能以及導通狀態電阻等元件性能參數,具有嚴格的要求。功率MOS元件就經常用於這種電路。遮罩柵極溝槽金屬氧化物半導體場效應電晶體(MOSFET)是一種功率MOS元件,具有良好的高頻開關性能以及很低的導通狀態電阻。遮罩柵極MOSFET現有的製備技術非常複雜而且昂貴,在處理過程中通常需要使用六個或六個以上的掩膜。現有的技術也有很高的不良率。製成的元件通常具有很高的接觸電阻,暫態特性極不穩定。
本案是於2009年8月14日申請,發明名稱為《遮罩柵極溝槽MOSFET元件及其製備方法》的美國專利申請號12/583,192的部分連續申請案之對應案,特此引用,以作參考。
本發明提供了一種帶有增強型源極-金屬接頭的遮罩柵極溝槽金屬氧化物半導體場效應管,適用於較大的源極-金屬接觸區以及較低的接觸電阻,更加可靠,具有更穩定的暫態響應。
為實現上述目的,本發明提供了一種形成在具有基板頂面之半導體基板上之半導體元件,其包含:一從基板頂面延伸到半導體基板中之柵極溝槽;一在柵極溝槽中之柵極電極;一沉積在柵極電極上方之柵極頂部電介質材料;一在柵極溝槽附近之本體區;一嵌在本體區中之源極區,至少一部分之源極區延伸到柵極頂部電介質材料上方;一使源極區和本體區之間接觸之接觸溝槽;以及一沉積在至少一部分之柵極溝槽開口、至少一部分之源極區以及至少一部分之接觸溝槽上方之金屬層。
較佳地,金屬層覆蓋了柵極電極上方之柵極頂部電介質材料,並且接觸柵極頂部電介質材料對面之源極區之側壁。
較佳地,本發明之半導體元件還包含一形成在柵極溝槽內之遮罩電極,其中柵極電極和遮罩電極被一電極間電介質材料分開。
較佳地,源極區具有一基本垂直的表面,至少一部分之基本垂直的表面與金屬層直接接觸。
較佳地,柵極溝槽具有一至少部分彎曲之溝槽側壁。
較佳地,源極區至少一部分之表面符合溝槽側壁之彎曲部分。
較佳地,金屬層在多個邊緣上與源極區相接觸。
較佳地,在接觸溝槽對面之源極區的一個邊緣上,以及柵極頂部電介質材料對面之源極區的一個邊緣上,金屬層與源極區相接觸。
較佳地,柵極頂部電介質材料的頂面,在源極區的頂部下方凹陷。
較佳地,用一導電插頭之至少部分填充接觸溝槽。
根據本發明之目的,更提出一種用於製備半導體元件之方法,該方法包含:製備一柵極溝槽;在柵極溝槽內製備一柵極電極;在柵極電極頂部上方製備一柵極頂部電介質材料;製備一本體區和一源極區;製備一接觸溝槽;回刻柵極頂部電介質材料,使至少一部分之源極區延伸到柵極頂部電介質材料上方;在至少一部分之柵極溝槽開口、至少一部分之源極區以及至少一部分之接觸溝槽之上方沉積一金屬層。
較佳地,該方法更包含下列步驟:在製備柵極電極之前,先在柵 極溝槽中製備一遮罩電極。
較佳地,該方法更包含下列步驟:在遮罩電極和柵極電極之間,製備一電極間電介質。
較佳地,回刻柵極頂部電介質材料,並沉積金屬層,使金屬層覆蓋柵極電極上方之柵極頂部電介質材料,並且接觸柵極頂部電介質材料對面之源極區的一個側壁。
較佳地,柵極頂部電介質材料的頂面,在該源極區的頂部下方凹陷。
較佳地,源極區具有一基本垂直之表面,至少一部分之基本垂直之表面與金屬層直接接觸。
較佳地,柵極溝槽具有一至少部分彎曲之溝槽側壁。
較佳地,源極區至少一部分之表面符合溝槽側壁之彎曲部分。
較佳地,金屬層在多個邊緣上與源極區相接觸。
較佳地,在接觸溝槽對面之源極區的一個邊緣上,以及柵極頂部電介質材料對面之源極區的一個邊緣上,金屬層與源極區相接觸。
較佳地,該方法更包含下列步驟:沉積一導電插頭之至少部分在接觸溝槽內。
較佳地,金屬層構成一至少部分在接觸溝槽內之導電插頭。
本發明帶有增強型源極-金屬接頭的遮罩柵極溝槽金屬氧化物半導體場效應管和現有技術相比,其優點在於,本發明適用於較大 的源極-金屬接觸區以及較低的接觸電阻,更加可靠,具有更穩定的暫態響應。
102~116‧‧‧步驟
602‧‧‧N型基板
604‧‧‧矽氧化層
606、900‧‧‧氮化層
701‧‧‧PR層
702‧‧‧溝槽開口
1000‧‧‧氮化物墊片
1506、2704、3309‧‧‧氧化物
1908、3324、3326‧‧‧氧化層
2004、2006‧‧‧有源溝槽側壁
2104、2106‧‧‧柵極多晶矽電極
2112、2114‧‧‧多晶矽化物
2304、3348‧‧‧本體區
2402、3332‧‧‧源極區
2702‧‧‧接觸溝槽
3002、3330、3330’‧‧‧導電插頭
3302、3304、3306‧‧‧源極區表面
3312‧‧‧柵極電極
3320‧‧‧多晶矽
3334‧‧‧源極金屬層
3340‧‧‧多晶矽化物層
3346‧‧‧植入區
第1圖 所示的流程圖表示遮罩柵極MOSFET製備技術的實施例。
第2至26C圖所示的示意圖表示元件製備技術的實施例。
本發明可以各種不同的方式實現,包含製程、裝置、系統或物質成分。在一些實施例中,本發明可以通過嵌在可讀的存儲介質和/或處理器中的電腦程式來控制,例如配置處理器,以執行存儲在和/或耦合到處理器上的記憶體中的命令。在本說明中,這些工具,或本發明可以採用的其他任何形式,都稱為技術。一般來說,所屬製程步驟的順序可以在本發明的範圍內變動。除非特別聲明,否則上述用於執行任務的處理器或記憶體等元件,可以作為一種通用元件,在某一時刻執行任務時臨時配置,或者是作為一種專用元件,專為執行任務而製備。此處所用的名詞“處理器”指的是一個或多個元件、電路和/或用於處理資料(例如電腦程式指令)的處理內核。
通過以下圖式表示了本發明的原理,以及本發明的一個或多個實施例的詳細說明。所述的本發明與這些實施例有關,但本發明並不局限於任一實施例。本發明的範圍僅由權利要求書所決定,並且本發明含有各種變化、修正和等效內容。在以下說明中所提到的各種具體細節,是為了全面理解本發明。這些細節只用於舉例說明,無需某些或全部的具體細節,就可以依據權利要求書實施本發明。為清晰起見,關於本發明的技術領域中已知的技術材料 並沒有詳細說明,以免產生不必要的誤解。
本發明提出了遮罩柵極MOSFET元件和製備技術的實施例。製備技術利用氮化物墊片,採用自對準的接觸系統。製成的遮罩柵極MOSFET元件具有凹陷的柵極電介質,適用於較大的源極-金屬接觸區以及較低的接觸電阻。這種元件更加可靠,具有更穩定的暫態響應。
第1圖所示之流程圖,表示遮罩柵極MOSFET製備技術的實施例。步驟102,一個或多個柵極接觸開口至少部分形成在半導體基板上。步驟104,氮化物墊片形成在柵極溝槽開口內部。可以蝕刻柵極溝槽,使其自對準到氮化物墊片。在後續的處理過程中,墊片防止基板被蝕刻,形成自對準的接觸溝槽。步驟106,遮罩電極和柵極電極形成在溝槽內。電介質材料填充了至少一部分的溝槽,並將遮罩電極和柵極電極分開。遮罩電極保護柵極電極不受高壓的影響。步驟108,在基板中植入用於製備本體和源極區的摻雜物。步驟110,以自對準的方式形成接觸溝槽,無需任何額外的掩膜。步驟112,導電插頭沉積在接觸溝槽內。步驟114,回刻柵極溝槽中的電介質材料,使至少一部分的源極區延伸到電介質材料上方。步驟116,金屬層沉積在至少一部分柵極溝槽開口、至少一部分源極區以及至少一部分接觸溝槽上方。金屬層在源極和柵極金屬中形成圖案。在一些實施例中,源極金屬可以含有一個頂部金屬層以及一個或多個接觸溝槽插頭,在多重邊緣上與源極區接觸,從而降低接觸電阻,使元件更加可靠。
第2至26圖所示的技術圖,表示元件製備技術的實施例。在以下討論中,舉例說明用的是N型元件。也可以利用類似的技術製備P 型元件。
第2至5圖表示製備柵極溝槽的初始步驟。
在第2圖中,利用N型基板602作為元件的漏極。在本例中,N型基板是一種N+矽晶圓,N-外延層生長在晶圓表面上。在一些實施例中,外延層的摻雜濃度約為3E16-1E17摻雜物/cm3,厚度為2-4um,基板電阻率為0.5-3mohm*cm。
矽氧化層604通過沉積或熱氧化,形成在基板上。氮化層606沉積在矽氧化層上方。在一些實施例中,矽氧化層的厚度約為500~1500Å,氮化層的厚度約為1500Å。
然後,在氮化層上方使用一個光致抗蝕劑(PR)層,並利用第一掩膜(也稱為溝槽掩膜)形成圖案。在以下討論中,為便於說明,假設使用的是正PR,從而保留未裸露的區域,除去裸露的區域。也可以使用負PR,只需相應地修改一下掩膜即可。掩膜限定了有源柵溝槽。掩膜也可以限定其他溝槽,例如源極多晶矽吸引溝槽以及柵極滑道/截止溝槽,這些溝槽在本圖中沒有表示出。在某些實施例中,有源溝槽的寬度約為0.6um。可以使用臨界尺寸為0.35um等低檔的掩膜製備元件,從而降低所需掩膜的成本。
在第3圖中,殘留的PR層701限定了有源柵極溝槽開口702。在一些實施例中,可以製備源極多晶矽吸引溝槽和柵極滑道/截止溝槽等額外的溝槽,但本圖中沒有表示出。
然後,利用硬掩膜(HM)蝕刻,蝕刻掉氮化層和矽氧化層的裸露部分。蝕刻終止在矽表面上。然後除去剩餘的PR。在第4圖中,在裸露的區域中形成溝槽開口,同時通過剩餘的氮化物-氧化物 部分,形成硬掩膜。
緊接著進行溝槽蝕刻,在溝槽開口中蝕刻到半導體材料602中。根據蝕刻方法,溝槽側壁基本上可以是直的(如第5A圖所示)或彎的(如第5B圖所示)。在一些實施例中,溝槽的目標深度約為0.3um~0.5um。
在溝槽開口中,沉積或熱生長一個很薄的氧化層,佈滿溝槽底部和溝槽側壁。在一些實施例中,氧化層的厚度約為200Å。氧化層一旦形成,就可以沉積一個額外的氮化層900。在氮化物下面僅僅需要一個很薄的氧化層,因此在圖中沒有分別表示出。在一些實施例中,額外的氮化層厚度約為1500Å-2200Å。在一些實施例中,氮化層的厚度約為1500Å。如第6圖所示,氮化層900佈滿溝槽,並且覆蓋了其餘的裸露區域。
如第7圖所示,全面的各向異性回刻後,氮化物墊片1000等會沿溝槽的側壁形成。初始的氮化層606部分也保留下來。
然後,除去溝槽開口底部中裸露的內襯氧化層,利用全面的矽蝕刻技術,進一步加深第8圖中氮化物墊片之間的溝槽。根據元件的用途,所製成的溝槽深度大約在1.5um~2.5um,溝槽側壁的傾斜角約為87°~88°。氮化物墊片使自對準的蝕刻技術不需要多餘的對準掩膜等額外的對準步驟,從而實現了溝槽的傾斜蝕刻。溝槽的深度範圍從幾百埃至幾微米。利用250Å~500Å的圓孔(R/H)蝕刻,使溝槽的拐角更加圓滑,以避免因銳角造成的高電場。
在第9圖中,沉積或熱生長一個或多個氧化層。在一些實施例中 ,可以選擇生長一個大約500Å的犧牲氧化層,並除去,以改善矽表面。作為示例,可以在溝槽中生長一個大約250Å的氧化層,然後沉積一層大約900Å的高溫氧化物(HTO)。
如第10圖所示,沉積多晶矽。在一些實施例中,多晶矽的厚度約為12000Å,比元件中最寬溝槽(沒有表示出最寬的溝槽)的寬度的一半還要大。因此,側壁上的多晶矽層結合在一起,完全填滿了溝槽。這層多晶矽有時稱為源極多晶矽、遮罩多晶矽或多晶矽1。
然後如第11圖所示,利用幹蝕刻,回刻源極多晶矽。在本例中,在有源柵極溝槽中,剩餘的多晶矽厚度約為6000Å。
然後,沉積高密度等離子(HDP)氧化物1506並緻密化。在一些實施例中,緻密化要在大約1150℃的溫度下持續進行大約30秒鐘。如第12圖所示,氧化物1506的厚度大於有源溝槽寬度的一半(在一些實施例中,氧化層的厚度約為2000Å~4000Å),從而完全填充了有源溝槽。
進行氧化物化學機械拋光(CMP)。如第13圖所示,利用CMP技術拋光氧化物,直到氧化物的頂面與氮化物表面相平為止,以此作為蝕刻的終點。
第14圖表示添加另一個氧化層。在一些實施例中,氧化層的厚度約為1000Å~2000Å。該氧化層的厚度可以控制第二掩膜下濕蝕刻切口的角度。該氧化物薄膜也保護元件所有的非有源區中的氮化物。受保護的氮化物可稍後進行Si的無掩膜全面蝕刻。
在一些實施例中,在結構的表面上旋塗一層光致抗蝕劑,並利用 第二掩膜(也稱為多晶矽覆蓋掩膜)形成PR圖案。被PR覆蓋的區域(例如截止溝槽,在圖中沒有表示出)不受氧化物濕蝕刻的影響。在所示的實施例中,沒有被PR覆蓋的有源溝槽區域易受氧化物濕蝕刻的影響。
然後,進行濕蝕刻。濕蝕刻的結果表示在第15圖中。未被PR覆蓋的區域中的氧化物被除去了,使剩餘的氧化物處於所需的高度上。多晶矽上方的氧化層,例如氧化層1908,稱為多晶矽間電介質(IPD),其範圍可以從幾百埃至幾千埃。
在一些實施例中,形成的是不對稱的氧化物截止/柵極滑道溝槽,對於這些實施例,第13至15圖所示的步驟是可選的。還可選擇,直接回刻第12圖中的氧化物1506,以形成第13圖所示的IPD(氧化層)1908。
如果使用了PR,之後要將它除去,並且沉積或熱生長一層柵極氧化物。在一些實施例中,附加的氧化層厚度約為450Å。因此,在第16圖中,柵極氧化物佈滿了有源溝槽側壁2004和2006等。
進行另一個多晶矽沉積並回刻。結果如第17圖所示。沉積多晶矽填充溝槽。在一些實施例中,大約0.5-1um的多晶矽沉積在溝槽中。回刻所沉積的多晶矽,形成柵極多晶矽電極2104和2106。柵極多晶矽的頂部至少碰到源極的底部,在一些情況下,還與源極的底部重疊,從而可以形成一個通道。在一些實施例中,多晶矽表面在氮化物墊片的底部下方大約500-5000Å。可選擇,沉積一層鈦或鈷等金屬,並退火。在金屬與多晶矽接觸的地方,形成一個多晶矽化層。氧化物或氮化物上方的金屬鈦或鈷不會形成矽化 物/多晶矽化物,可以除去。如圖所示,多晶矽化物2112及2114形成在柵極多晶矽電極2104和2106上方處。
第18A圖中,例如通過濕蝕刻技術,除去有源柵極溝槽附近裸露的氮化物墊片,以及氧化物硬掩膜上方的氮化層。
在一些實施例中,各種之前的熱處理技術(例如氧化物沉積、HDP氧化物緻密)使得介面區域中的矽氧化,而相同區域中的氮化物氧化的程度較輕。由於矽製程的局部氧化(LOCOS),使氮化物墊片下面的基板表面發生變化,變成彎曲的。這種現象在本領域中眾所周知,稱為“鳥嘴效應”。此外,各種之前的蝕刻技術使氮化物墊片在特定區域中被侵蝕,進一步暴露出氮化物-矽交界面使其氧化。因此,如第18B圖所示,當通過濕蝕刻技術除去氮化物墊片和其他裸露的氮化物材料時,剩餘的溝槽側壁就可以具有曲率。
植入元件的本體和源極。植入元件的本體和源極不需要額外的掩膜。確切地說,在第19A圖和第19B圖中,進行本體植入。用帶有角度的摻雜離子轟擊元件。可以用氮化物保護元件的特定區域(圖中沒有表示出)。在未被氮化物保護的有源區中,植入形成本體區2304。在一些實施例中,在60KeV~180KeV下,利用摻雜水準約為1.8e13的硼離子,製備N-通道元件。也可以使用其他類型的離子。例如,利用亞磷離子製備P-通道元件。
在第20A圖和第20B圖中,用零傾斜角進行源極植入。再次用摻雜離子轟擊元件。在一些實施例中,在40KeV~80KeV下,使用的是摻雜水準為4e15的砷離子。在本體區2304內形成源極區2402。在 第20B圖中,源極區的表面與溝槽側壁的彎曲形狀一致。
在第21A圖和第21B圖中,沉積電介質層(例如氧化層),填充溝槽開口,並分離源極和柵極多晶矽區域。在不同的實施例中,氧化層的厚度範圍在5000Å~8000Å之間。在一些實施例中,利用化學氣相沉積(CVD)技術,沉積厚度約為5000Å的低溫氧化物(LTO)和含有硼酸的矽玻璃(BPSG)。
在第22A圖和第22B圖中,通過幹蝕刻技術回刻氧化物。在本例中,向下蝕刻氧化物,使氧化物的頂面低於基板頂面500Å~1000Å左右。在第2至4圖中形成的氧化物硬掩膜也可以通過該技術除去。
還可選擇,(例如通過化學機械拋光(CMP)技術)平整氧化物,使氧化物的頂面與基板頂面相平。第22C圖表示的是這種可選方案。
在第23A圖和第23B圖中,蝕刻基板,形成接觸溝槽2702。根據元件的用途,蝕刻深度約在0.6um~0.9um之間。蝕刻裸露的基板區域,未被氧化物保護的區域不蝕刻。由於蝕刻技術不需要額外的掩膜,因此也稱為自對準的接觸技術。在這種情況下,接觸溝槽自對準到氧化物2704的剩餘部分。如第23B圖所示,在蝕刻接觸溝槽之後,可以選擇在接觸溝槽的底部,製備(例如植入)一個重摻雜的P+本體接觸區。
在第24A圖和第24B圖中,可以選擇沉積Ti和TiN等勢壘金屬(沒有特別表示出),然後通過RTP,在接觸區附近形成Ti矽化物。在一些實施例中,所用的Ti和TiN的厚度分別為300Å和1000Å。 然後,沉積鎢(W)等導電插頭材料。在一些實施例中,沉積4000Å~6000Å的W。回刻沉積的W,一直到基板表面,以形成單獨的導電(W)插頭3002。
在第25A圖和第25B圖中,進行氧化物蝕刻。回刻氧化層。蝕刻技術除去了源極和有源柵極溝槽開口上方的氧化層,以及柵極溝槽內的一部分氧化層,使柵極溝槽內剩餘的氧化層凹向源極的頂面。換言之,所製成的氧化層的頂面低於源極的頂面。在一些實施例中,氧化層的頂面大約比源極區的頂面低500-1000Å。下文還將討論,為了源極-金屬接觸,蝕刻技術使更多的源極區裸露出來。
還可選擇,在第23A圖和第23B圖中的接觸溝槽2702之後,以及製備導電插頭3002之前,進行這種氧化物回刻技術。在一個可選實施例中,第24C圖和第24D圖表示類似於第25A圖和第25B圖的氧化物回刻技術,但是在製備導電插頭3002之前進行。在這個可選實施例中,製備第24C圖和第24D圖所示的結構之後,沉積導電插頭,以形成第25A圖和第25B圖所示的結構。
在第26A圖和第26B圖中,沉積一個金屬層。在一些實施例中,利用AlCu製備一個大約3um~6um厚的金屬層。然後,在450℃下對金屬退火大約30分鐘。在一些實施例中,形成金屬的圖案,製備源極和柵極金屬,通過附加的溝槽(圖中沒有表示出)連接到源極和柵極區。形成最終元件的頂部。儘管沒有表示出,但是通常在背部研磨技術後,就可以在基板的底部形成一個金屬層。
在製成的元件中,每個有源柵極溝槽都含有一個頂部多晶矽電極 (例如多晶矽3312),由於它起柵極的作用,因此也稱為柵極多晶矽或柵極電極,或者由於它在製備過程中形成於第二多晶矽沉積技術,因此也稱為多晶矽2。每個頂部多晶矽電極還包含一個沉積在柵極電極頂面上的多晶矽化物層3340,以改善沿柵極的導電性。每個溝槽還包含一個底部多晶矽電極(例如多晶矽3320),由於它連接到源極上,因此也稱為源極多晶矽或源極電極,或者由於它在製備過程中形成於第一多晶矽沉積技術,因此也稱為多晶矽1,或者由於它遮罩柵極多晶矽不受高電壓的影響,因此也稱為遮罩多晶矽或遮罩電極。由氧化物製成的多晶矽間電介質區,將源極多晶矽與柵極多晶矽分離。在本例所示的有源柵極溝槽中,包圍著柵極多晶矽,並且內襯著溝槽頂部側壁的氧化層(例如氧化層3324),比包圍著源極/遮罩多晶矽,並且內襯著溝槽底部側壁的氧化層(例如氧化層3326)更薄。在有源區中,源極金屬3334通過氧化物3309等電介質層,與3312等柵極電極絕緣。源極金屬層3334通過鎢插頭等導電插頭3330,電連接到源極區3332和本體區3348上,導電插頭3330填充源極本體接觸開口,並且從源極金屬開始延伸到本體區中。本體接觸植入區3346增強了本體區和導電插頭3330之間的歐姆接觸。
上述製程製備了一種帶有增強的源極-金屬接觸區的MOSFET元件。確切地說,由於源極區在柵極氧化物頂面上延伸,因此一個單獨的源極區就有多個與頂部金屬(例如源極金屬層3334和導電插頭3330)相接觸的表面。例如,頂部金屬連接到源極區,在接觸溝槽對面的源極區表面3302上,在凹陷的氧化物3309對面的源極區表面3306上,以及在源極區表面3304上。柵極區上方凹陷的氧 化物3309使金屬連接到凹陷氧化物對面的源極側壁3306。增強的源極-金屬接觸區降低了接觸電阻,並使暫態響應更加穩定。而且,增強區意味著接觸存在缺陷的可能性極小,因此元件更加可靠,產量更高。在一些實施例中,導電插頭3330’是由和源極金屬層3334相同的材料製成的,如第26C圖所示。在這種情況下,可以和其餘的源極金屬層3334同時製備/填充導電插頭3330’。
上述示例多數都是用N-通道元件進行說明。只要將各種摻雜物的極性變換一下,上述製程就可以適用於P-通道元件。
儘管為了便於理解,給出了上述實施例的具體細節,但是本發明並不局限於這些細節。本發明還有許多可選的實施方法。所述的實施例用於解釋說明,不用於局限。
3302、3304、3306‧‧‧源極區表面
3309‧‧‧氧化物
3312‧‧‧柵極電極
3320‧‧‧多晶矽
3324、3326‧‧‧氧化層
3330‧‧‧導電插頭
3332‧‧‧源極區
3334‧‧‧源極金屬層
3340‧‧‧多晶矽化物層
3346‧‧‧植入區
3348‧‧‧本體區

Claims (22)

  1. 一種形成在具有基板頂面之半導體基板上之半導體元件,其包含;一從該基板頂面延伸到該半導體基板中之柵極溝槽;一在該柵極溝槽中之柵極電極;一沉積在該柵極電極上方之柵極頂部電介質材料;一在該柵極溝槽附近之本體區;一嵌在該本體區中之源極區,至少一部分之該源極區延伸到該柵極頂部電介質材料上方;以及一沉積在至少一部分之該柵極溝槽開口、至少一部分之該源極區上方之金屬層;其中該源極區包含一彎曲側壁部分,其相鄰於該柵極溝槽,並且延伸至該柵極頂部電介質材料的上方。
  2. 如申請專利範圍第1項所述之半導體元件,其中該金屬層覆蓋了該柵極電極上方之該柵極頂部電介質材料,並且接觸該柵極頂部電介質材料對面之該源極區之側壁。
  3. 如申請專利範圍第1項所述之半導體元件,其更包含一形成在該柵極溝槽內之遮罩電極,其中該柵極電極和該遮罩電極被一電極間電介質材料分開。
  4. 如申請專利範圍第1項所述之半導體元件,更包含一使該源極區和該本體區之間接觸之接觸溝槽,其中該源極區具有一基本垂直之表面,至少一部分之基本垂直之表面與該金屬層直接接觸。
  5. 如申請專利範圍第1項所述之半導體元件,其中該柵極溝槽具有一至少部分彎曲之溝槽側壁。
  6. 如申請專利範圍第5項所述之半導體元件,其中該源極區至少一部分之表面符合該溝槽側壁之彎曲部分。
  7. 如申請專利範圍第1項所述之半導體元件,其中該金屬層在多個邊緣上與該源極區相接觸。
  8. 如申請專利範圍第1項所述之半導體元件,更包含一使該源極區和該本體區之間接觸之接觸溝槽,其中在該接觸溝槽對面之該源極區的一個邊緣上,以及該柵極頂部電介質材料對面之該源極區的一個邊緣上,該金屬層與該源極區相接觸。
  9. 如申請專利範圍第1項所述之半導體元件,其中該柵極頂部電介質材料的頂面,在該源極區的頂部下方凹陷。
  10. 如申請專利範圍第1項所述之半導體元件,更包含一使該源極區和該本體區之間接觸之接觸溝槽,其中用一導電插頭之至少部分填充該接觸溝槽。
  11. 一種用於製備半導體元件之方法,該方法包含:製備一柵極溝槽;在該柵極溝槽內製備一柵極電極;在該柵極電極頂部上方製備一柵極頂部電介質材料;製備一本體區和一源極區;回刻該柵極頂部電介質材料;以及在至少一部分之該柵極溝槽開口、至少一部分之該源極區的上方沉積一金屬層;其中該源極區包含一彎曲側壁部分,其相鄰於該柵極溝槽,並且延伸至該柵極頂部電介質材料的上方。
  12. 如申請專利範圍第11項所述之方法,其更包含下列步驟:在製備該柵極電極之前,先在該柵極溝槽中製備一遮罩電極。
  13. 如申請專利範圍第12項所述之方法,其更包含下列步驟:在該遮罩電極和該柵極電極之間,製備一電極間電介質。
  14. 如申請專利範圍第11項所述之方法,其中回刻該柵極頂部電介質材料,並沉積該金屬層,使該金屬層覆蓋該柵極電極上方之該柵極頂部電介質材料,並且接觸該柵極頂部電介質材料對面之該源極區的一個側壁。
  15. 如申請專利範圍第11項所述之方法,其中該柵極頂部電介質材料的頂面,在該源極區的頂部下方凹陷。
  16. 如申請專利範圍第11項所述之方法,更包含製備一接觸溝槽,其中該源極區具有一基本垂直之表面,至少一部分之基本垂直之表面與該金屬層直接接觸。
  17. 如申請專利範圍第11項所述之方法,其中該柵極溝槽具有一至少部分彎曲之溝槽側壁。
  18. 如申請專利範圍第17項所述之方法,其中該彎曲側壁部分之至少一部分符合該溝槽側壁之彎曲部分。
  19. 如申請專利範圍第11項所述之方法,更包含製備一接觸溝槽,其中該金屬層在多個邊緣上與該源極區相接觸。
  20. 如申請專利範圍第11項所述之方法,更包含製備一接觸溝槽,其中在該接觸溝槽對面之該源極區的一個邊緣上,以及該柵極頂部電介質材料對面之該源極區的一個邊緣上,該金屬層與該源極區相接觸。
  21. 如申請專利範圍第11項所述之方法,其更包含下列步驟:製備一接觸溝槽; 沉積一導電插頭之至少部分在該接觸溝槽內。
  22. 如申請專利範圍第11項所述之方法,更包含製備一接觸溝槽,其中該金屬層構成一至少部分在該接觸溝槽內之導電插頭。
TW101102713A 2011-01-28 2012-01-20 形成在具有基板頂面之半導體基板上之半導體元件及其製備方法 TWI502742B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/016,804 US8618601B2 (en) 2009-08-14 2011-01-28 Shielded gate trench MOSFET with increased source-metal contact

Publications (2)

Publication Number Publication Date
TW201232782A TW201232782A (en) 2012-08-01
TWI502742B true TWI502742B (zh) 2015-10-01

Family

ID=46563300

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101102713A TWI502742B (zh) 2011-01-28 2012-01-20 形成在具有基板頂面之半導體基板上之半導體元件及其製備方法

Country Status (2)

Country Link
CN (1) CN102623501B (zh)
TW (1) TWI502742B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105713B2 (en) 2012-11-09 2015-08-11 Infineon Technologies Austria Ag Semiconductor device with metal-filled groove in polysilicon gate electrode
US8999783B2 (en) * 2013-02-06 2015-04-07 Infineon Technologies Austria Ag Method for producing a semiconductor device with a vertical dielectric layer
US9196701B2 (en) * 2013-03-11 2015-11-24 Alpha And Omega Semiconductor Incorporated High density MOSFET array with self-aligned contacts enhancement plug and method
US9209305B1 (en) * 2014-06-06 2015-12-08 Stmicroelectronics, Inc. Backside source-drain contact for integrated circuit transistor devices and method of making same
CN104769723B (zh) * 2014-12-04 2018-10-23 冯淑华 沟槽栅功率半导体场效应晶体管
JP6514519B2 (ja) * 2015-02-16 2019-05-15 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
CN110896053B (zh) * 2019-12-06 2022-04-29 绍兴中芯集成电路制造股份有限公司 屏蔽栅场效应晶体管及其形成方法
CN113241374B (zh) * 2021-05-19 2023-07-14 深圳真茂佳半导体有限公司 功率晶体管结构及其制造方法
CN113241372B (zh) * 2021-05-19 2022-09-06 深圳真茂佳半导体有限公司 自对准功率场效应管的制备方法与结构
CN113284953B (zh) * 2021-07-21 2021-11-26 江苏长晶科技有限公司 一种屏蔽栅沟槽型mosfet结构及其制造方法
CN117393501B (zh) * 2023-12-07 2024-03-19 合肥晶合集成电路股份有限公司 一种半导体结构及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040169220A1 (en) * 2001-11-30 2004-09-02 Toshiyuki Takemori Semiconductor device and manufacturing method thereof
US20060046397A1 (en) * 2004-08-26 2006-03-02 Mosel Vitelic, Inc. Method for manufacturing trench MOSFET
US20060081918A1 (en) * 2004-10-18 2006-04-20 Hsu Hsiu-Wen Trench power moset and method for fabricating the same
US20100006928A1 (en) * 2008-07-09 2010-01-14 James Pan Structure and Method for Forming a Shielded Gate Trench FET with an Inter-electrode Dielectric Having a Low-k Dielectric Therein

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100514672C (zh) * 2002-08-23 2009-07-15 快捷半导体有限公司 用于改进mos栅控从而降低米勒电容和开关损失的方法和装置
US7033891B2 (en) * 2002-10-03 2006-04-25 Fairchild Semiconductor Corporation Trench gate laterally diffused MOSFET devices and methods for making such devices
US7385248B2 (en) * 2005-08-09 2008-06-10 Fairchild Semiconductor Corporation Shielded gate field effect transistor with improved inter-poly dielectric
US7633119B2 (en) * 2006-02-17 2009-12-15 Alpha & Omega Semiconductor, Ltd Shielded gate trench (SGT) MOSFET devices and manufacturing processes
US8278702B2 (en) * 2008-09-16 2012-10-02 Fairchild Semiconductor Corporation High density trench field effect transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040169220A1 (en) * 2001-11-30 2004-09-02 Toshiyuki Takemori Semiconductor device and manufacturing method thereof
US20060046397A1 (en) * 2004-08-26 2006-03-02 Mosel Vitelic, Inc. Method for manufacturing trench MOSFET
US20060081918A1 (en) * 2004-10-18 2006-04-20 Hsu Hsiu-Wen Trench power moset and method for fabricating the same
US20100006928A1 (en) * 2008-07-09 2010-01-14 James Pan Structure and Method for Forming a Shielded Gate Trench FET with an Inter-electrode Dielectric Having a Low-k Dielectric Therein

Also Published As

Publication number Publication date
CN102623501A (zh) 2012-08-01
TW201232782A (en) 2012-08-01
CN102623501B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
TWI502742B (zh) 形成在具有基板頂面之半導體基板上之半導體元件及其製備方法
US10411104B2 (en) Fabrication of shielded gate trench MOSFET with increased source-metal contact
TWI538063B (zh) 使用氧化物填充溝槽之雙氧化物溝槽閘極功率mosfet
US8193580B2 (en) Shielded gate trench MOSFET device and fabrication
US8236651B2 (en) Shielded gate trench MOSFET device and fabrication
TWI593108B (zh) 帶有保護遮罩氧化物的分裂柵溝槽功率金屬氧化物半導體場效應電晶體
US9252265B2 (en) Shielded gate trench MOS with improved source pickup layout
JP3851776B2 (ja) パワーmos素子及びmos素子の製造方法
TWI542009B (zh) 用於功率mosfet應用的端接溝槽及其製備方法
JP5932651B2 (ja) 曲線状のゲート酸化物プロファイルを有するスプリットゲート半導体素子
US9595587B2 (en) Split poly connection via through-poly-contact (TPC) in split-gate based power MOSFETs
US8643092B2 (en) Shielded trench MOSFET with multiple trenched floating gates as termination
KR100970282B1 (ko) 트렌치 mosfet 및 그 제조방법
JP2008098593A (ja) 半導体装置及びその製造方法
US20170213906A1 (en) Trench power transistor
US20160276464A1 (en) Power mos transistor and manufacturing method therefor
CN107403721B (zh) 功率金氧半导体场效晶体管的制造方法
US20210020778A1 (en) Shield gate mosfet and method for fabricating the same
US8492221B2 (en) Method for fabricating power semiconductor device with super junction structure
TWI601295B (zh) 斷閘極金氧半場效電晶體
TWI492380B (zh) 遮蔽閘極溝道金屬氧化物半導體場效應電晶體裝置及其製備方法
TWI476932B (zh) 溝槽式閘極接面型場效電晶體及其製作方法
KR20050069582A (ko) 이중 게이트 스페이서 및 이중 접합 영역을 갖는 반도체소자 및 그 제조 방법