TW201232782A - Semiconductor device formed on semiconductor substrate having substrate top surface and preparation method thereof - Google Patents

Semiconductor device formed on semiconductor substrate having substrate top surface and preparation method thereof Download PDF

Info

Publication number
TW201232782A
TW201232782A TW101102713A TW101102713A TW201232782A TW 201232782 A TW201232782 A TW 201232782A TW 101102713 A TW101102713 A TW 101102713A TW 101102713 A TW101102713 A TW 101102713A TW 201232782 A TW201232782 A TW 201232782A
Authority
TW
Taiwan
Prior art keywords
gate
trench
source region
contact
dielectric material
Prior art date
Application number
TW101102713A
Other languages
Chinese (zh)
Other versions
TWI502742B (en
Inventor
John Chen
Original Assignee
Alpha & Omega Semiconductor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/016,804 external-priority patent/US8618601B2/en
Application filed by Alpha & Omega Semiconductor filed Critical Alpha & Omega Semiconductor
Publication of TW201232782A publication Critical patent/TW201232782A/en
Application granted granted Critical
Publication of TWI502742B publication Critical patent/TWI502742B/en

Links

Abstract

The present invention discloses a semiconductor device formed on a semiconductor substrate having a substrate top surface, includes: a gate trench extending from the substrate top surface into the semiconductor substrate; a gate electrode in the gate trench; a dielectric material disposed over the gate electrode; a body region adjacent to the gate trench; a source region embedded in the body region, at least a portion of the source region extending above the dielectric material; a contact trench that allows contact such as electrical contact between the source region and the body region; and a metal layer disposed over at least a portion of a gate trench opening, at least a portion of the source region, and at least a portion of the contact trench.

Description

201232782 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明是有關於一種形成在具有基板頂面之半導體基板 上之半導體元件及其製備方法。 【先前技術】 [0002] 當今的許多電子電路設計對於開關性能以及導通狀態電 阻等元件性能參數,具有嚴格的要求。功率MOS元件就經 常用於這種電路。遮罩柵極溝槽金屬氧化物半導體場效 應電晶體(MOSFET)是一種功率MOS元件,具有良好的 高頻開關性能以及很低的導通狀態電阻。遮罩柵極 MOSFET現有的製備技術非常複雜而且昂貴,在處理過程 中通常需要使用六個或六個以上的掩膜。現有的技術也 有很高的不良率。製成的元件通常具有很高的接觸電阻 ,暫態特性極不穩定。 【發明内容】 [0003] 本案是於2009年8月14曰申請,發明名稱為《遮罩柵極溝 槽MOSFET元件及其製備方法》的美國專利申請號 12/583, 1 92的部分連續申請案之對應案,特此引用,以 作參考。 [0004] 本發明提供了 一種帶有增強型源極-金屬接頭的遮罩柵極 溝槽金屬氧化物半導體場效應管,適用於較大的源極-金 屬接觸區以及較低的接觸電阻,更加可靠,具有更穩定 的暫態響應。 [0005] 為實現上述目的,本發明提供了一種形成在具有基板頂 面之半導體基板上之半導體元件,其包含: 10110271^ WA〇101 第4頁/共43頁 1012004880-0 201232782 [0006] 一從基板頂面延伸到半導體基板中之柵極溝槽; [0007] 一在栅極溝槽中之柵極電極; [0008] 一沉積在栅極電極上方之柵極頂部電介質材料; [0009] 一在棚極溝槽附近之本體區; [0010] » 一嵌在本體區中之源極區,至少一部分之源極區延伸到 柵極頂部電介質材料上方; [0011] 一使源極區和本體區之間接觸之接觸溝槽;以及 f) 1 [0012] 一沉積在至少一部分之柵極溝槽開口、至少一部分之源 極區以及至少一部分之接觸溝槽上方之金屬層。 [0013] 較佳地,金屬層覆蓋了柵極電極上方之柵極頂部電介質 材料’並且接觸棚極頂部電介質材料對面之源極區之侧 壁。 [0014] ❹ 較佳地,本發明之半導體元件還包含一形成在柵極溝槽 内之遮罩電極,其申栅極電極和遮罩電極被一電極間電 介質材料分開。 [0015] 較佳地,源極區具有一基本垂直的表面,至少一部分之 基本垂直的表面與金屬層直接接觸。 [0016] 較佳地,柵極溝槽具有一至少部分彎曲之溝槽側壁。 [0017] 較佳地,源極區至少一部分之表面符合溝槽側壁之彎曲 部分。 [0018] 較佳地,金屬層在多個邊緣上與源極區相接觸。 10110271#^ A〇101 第5頁/共43頁 1012004880-0 201232782 [0019] 較佳地,在接觸溝槽對面之源極區的一個邊緣上,以及 栅極頂部電介質材料對面之源極區的一個邊緣上,金屬 層與源極區相接觸。 [0020] 較佳地,栅極頂部電介質材料的頂面,在源極區的頂部 下方凹陷。 [0021] 較佳地,用一導電插頭之至少部分填充接觸溝槽。 [0022] 根據本發明之目的,更提出一種用於製備半導體元件之 方法,該方法包含: [0023] 製備一栅極溝槽; [0024] 在柵極溝槽内製備一柵極電極; [0025] 在柵極電極頂部上方製備一栅極頂部電介質材料; [0026] 製備一本體區和一源極區; [0027] 製備一接觸溝槽; [0028] 回刻柵極頂部電介質材料,使至少一部分之源極區延伸 到柵極頂部電介質材料上方; [0029] 在至少一部分之柵極溝槽開口、至少一部分之源極區以 及至少一部分之接觸溝槽之上方沉積一金屬層。 [0030] 較佳地,該方法更包含下列步驟:在製備柵極電極之前 ,先在栅極溝槽中製備一遮罩電極。 [0031] 較佳地,該方法更包含下列步驟:在遮罩電極和柵極電 極之間,製備一電極間電介質。 10110271#單編號 A〇101 第6頁/共43頁 1012004880-0 201232782 [0032] 較佳地,回刻栅極頂部電介質材料,並沉積金屬層,使 金屬層覆蓋柵極電極上方之柵極頂部電介質材料,並且 接觸柵極頂部電介質材料對面之源極區的一個側壁。 [0033] 較佳地,栅極頂部電介質材料的頂面,在該源極區的頂 部下方凹陷。 [0034] 較佳地,源極區具有一基本垂直之表面,至少一部分之 基本垂直之表面與金屬層直接接觸。 [0035] 較佳地,柵極溝槽具有一至少部分彎曲之溝槽側壁。201232782 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a semiconductor element formed on a semiconductor substrate having a top surface of a substrate and a method of fabricating the same. [Prior Art] [0002] Many of today's electronic circuit designs have stringent requirements for component performance parameters such as switching performance and on-state resistance. Power MOS components are commonly used in such circuits. The mask gate trench metal oxide semiconductor field effect transistor (MOSFET) is a power MOS device with good high frequency switching performance and very low on-state resistance. Mask Gates MOSFET's existing fabrication techniques are complex and expensive, requiring six or more masks to be used during processing. Existing technologies also have high defect rates. The fabricated components typically have high contact resistance and transient characteristics are extremely unstable. SUMMARY OF THE INVENTION [0003] This application is a continuation-in-part application of U.S. Patent Application Serial No. 12/583, filed on Jan. The corresponding case of the case is hereby incorporated by reference. The present invention provides a mask gate trench metal-oxide-semiconductor field effect transistor with an enhanced source-metal joint suitable for larger source-metal contact regions and lower contact resistance. More reliable and more stable transient response. [0005] In order to achieve the above object, the present invention provides a semiconductor device formed on a semiconductor substrate having a top surface of a substrate, comprising: 10110271^WA〇101 4th page/total 43 page 1012004880-0 201232782 [0006] a gate trench extending from a top surface of the substrate to the semiconductor substrate; [0007] a gate electrode in the gate trench; [0008] a gate top dielectric material deposited over the gate electrode; [0009] a body region adjacent the trench of the gate; [0010] a source region embedded in the body region, at least a portion of the source region extending over the top dielectric material of the gate; [0011] a source region and Contact trenches in contact between the body regions; and f) 1 [0012] a metal layer deposited over at least a portion of the gate trench openings, at least a portion of the source regions, and at least a portion of the contact trenches. Preferably, the metal layer covers the gate top dielectric material 'over the gate electrode and contacts the sidewall of the source region opposite the gate dielectric material. [0014] Preferably, the semiconductor device of the present invention further comprises a mask electrode formed in the gate trench, the gate electrode and the mask electrode being separated by an inter-electrode dielectric material. Preferably, the source region has a substantially vertical surface with at least a portion of the substantially vertical surface in direct contact with the metal layer. [0016] Preferably, the gate trench has an at least partially curved trench sidewall. [0017] Preferably, at least a portion of the surface of the source region conforms to a curved portion of the sidewall of the trench. [0018] Preferably, the metal layer is in contact with the source region on a plurality of edges. 10110271#^ A〇101 Page 5 of 431012004880-0 201232782 [0019] Preferably, on one edge of the source region opposite the contact trench, and the source region opposite the gate top dielectric material On one edge, the metal layer is in contact with the source region. [0020] Preferably, the top surface of the gate top dielectric material is recessed below the top of the source region. [0021] Preferably, the contact trench is filled with at least a portion of a conductive plug. [0022] According to the purpose of the present invention, a method for fabricating a semiconductor device is further provided, the method comprising: [0023] preparing a gate trench; [0024] preparing a gate electrode in the gate trench; Preparing a gate top dielectric material over the top of the gate electrode; [0026] preparing a body region and a source region; [0027] preparing a contact trench; [0028] etching the gate top dielectric material to At least a portion of the source region extends over the gate top dielectric material; [0029] depositing a metal layer over at least a portion of the gate trench opening, at least a portion of the source region, and at least a portion of the contact trench. Preferably, the method further comprises the step of preparing a mask electrode in the gate trench before preparing the gate electrode. Preferably, the method further comprises the step of preparing an interelectrode dielectric between the mask electrode and the gate electrode. 10110271#单编号A〇101 Page 6 of 431012004880-0 201232782 [0032] Preferably, the gate top dielectric material is etched back and a metal layer is deposited such that the metal layer covers the top of the gate above the gate electrode a dielectric material and contacting a sidewall of the source region opposite the gate top dielectric material. [0033] Preferably, the top surface of the gate top dielectric material is recessed below the top of the source region. Preferably, the source region has a substantially vertical surface with at least a portion of the substantially vertical surface in direct contact with the metal layer. [0035] Preferably, the gate trench has an at least partially curved trench sidewall.

DD

[0036] 較佳地,源極區至少一部分之表面符合溝槽側壁之彎曲 部分。 [0037] 較佳地,金屬層在多個邊緣上與源極區相接觸。 [0038] 較佳地,在接觸溝槽對面之源極區的一個邊緣上,以及 栅極頂部電介質材料對面之源極區的一個邊緣上,金屬 層與源極區相接觸。 q [〇〇39] 較佳地,該方法更包含下列步驟:沉積一導電插頭之至 少部分在接觸溝槽内。 [〇〇4〇] 較佳地,金屬層構成一至少部分在接觸溝槽内之導電插 頭。 [〇〇41] 本發明帶有增強型源極-金屬接頭的遮罩柵極溝槽金屬氧 化物半導體場效應管和現有技術相比,其優點在於,本 發明適用於較大的源極-金屬接觸區以及較低的接觸電阻 ,更加可靠,具有更穩定的暫態響應。 【實施方式】 1012004880-0 1()11()271f單編號A0101 第7頁/共43頁 201232782 [0042] [0043] [0044][0036] Preferably, at least a portion of the surface of the source region conforms to a curved portion of the sidewall of the trench. [0037] Preferably, the metal layer is in contact with the source region on a plurality of edges. Preferably, the metal layer is in contact with the source region on one edge of the source region opposite the contact trench and on one edge of the source region opposite the gate dielectric material. q [〇〇39] Preferably, the method further comprises the step of depositing at least a portion of a conductive plug within the contact trench. Preferably, the metal layer forms a conductive plug at least partially within the contact trench. [〇〇41] The present invention has an advantage that the masked gate trench metal-oxide-semiconductor field effect transistor with the enhanced source-metal joint is superior to the prior art in that the present invention is applicable to a larger source - The metal contact area and low contact resistance are more reliable and have a more stable transient response. [Embodiment] 1012004880-0 1 () 11 () 271f single number A0101 page 7 / total 43 pages 201232782 [0043] [0044]

本發明可以各種不同的方式實現,包含製程裝置系 統:物質成分。在—些實施例中’本發明可以通過戴在 可讀的存儲介質和/或處理H中的電腦程式來控制,例如 配置處理11 ’輯行存儲在和/餘合到處理器上的士己奪 體中的命令。在核明巾,這些H本發明可以= 用的其他任何形式,都稱為技術。—般來說所屬製程 步驟的順序可以在本發明的範圍内變動。除非特別聲二 ,否則上述用於執行任務的處理器或記憶體等元件,可 以作為-種件,在某—時賴行任務時臨時配置 ,或者是作為_種專用元件,專為執行任務而製備。此 處所用的名詞“處理器”指的是_個❹個元件、電路 和/或用於處理資料(例如電腦程式指令)的處理内核。 通過以下圖式表示了本發明的原理,以及本發明的—個 或多個實_的詳細說t所述的本發明與這些實施例 有關,但本發明並不局限於任—實施例。本發明的範圍 僅由權利要求書所蚊,並且本㈣含有各種變化、^ 正和等效内容。在以下說明中所提到的各種具體細節: 是為了全面理解本發明。這些細節只用於舉例說明1 需某些或全部的具體細節,就可以依據權利要求書實》 本發明。為清晰起見,關於本發,技術領域^知& 技術材料並沒有詳細說明,以免產生不必要的誤解。 本發明提出了料栅極刪FET元件和製備技㈣實施例 。製備技術氮化物墊片,採用自對準的接觸系统。 製成的遮罩柵極MGSFET元件具有凹陷的栅極電介質,適 用於較大的源極-金屬接觸區以及較低的接觸電阻。這種 第8頁/共43頁 ⑻麵产單編號_ 1012004880-0 201232782 [0045] Ο ο [0046] [0047] 元件更加·5τ 土 罪’具有更穩定的暫態響應。 "圖所不之流程圖’表示遮罩柵極MOSFET製備技術的實 施例。步凝Μ η 〇 、 ,一個或多個柵極接觸開口至少部分形成 在半導體其4c u 土板上。步驟104,氮化物墊片形成在柵極溝槽開口内部 。。可以餘刻柵極溝槽,使其自對準到氮化物墊 自在後續的處理過程中,塾片防止基板独刻,形成 對準的接觸溝槽。步驟106,遮罩電極和栅極電極形成 在溝样内 3 。電介質材料填充了至少一部分的溝槽,並將遮罩· Φ 4^ ^ 一 和柵極電極分開。遮罩電極保護柵極電極不受 南壓的*彡鄕 . 。知響。步驟108,在基板中植入用於製備本體和源 品的摻雜物。步驟丨,以自對準的方式形成接觸溝槽 ,無需任何額外的掩膜。步驟112,導電插頭沉積在接觸 溝槽内。步驟114,回刻柵極溝槽中的電介質材料,使至 少一部分的源極區延伸到電介質材料上方。步驟116,金 屬層沉積在至少一部分柵極溝槽開口、至少一部分源極 區以及至少一部分接觸溝槽上方。金屬層在源極和栅極 金屬中形成圖案。在一些實施例中,源極金屬可以含有 一個頂部金屬層以及一個或多個接觸溝槽插頭,在多重 邊緣上與源極區接觸,從而降低接觸電阻,使元件更加 可靠。 第2至26圖所示的技術圖,表示元件製備技術的實施例。 在以下討論中,舉例說明用的是N型元件。也可以利用類 似的技術製備P型元件。 第2至5圖表示製備柵極溝槽的初始步驟。 10110271#單編號 A0101 第9頁/共43頁 1012004880-0 201232782 [0048] 在第2圖中,利用N型基板602作為元件的漏極。在本例中 ,N型基板是一種N +石夕晶圓,N -外延層生長在晶圓表面上 。在一些實施例中,外延層的摻雜濃度約為3E16 -1E17摻雜物/cm3,厚度為2-4um,基板電阻率為0. 5 - 3 mohm*cm ° [0049] 矽氧化層604通過沉積或熱氧化,形成在基板上。氮化層 606沉積在矽氧化層上方。在一些實施例中,矽氧化層的 厚度約為500〜1500 A,氮化層的厚度約為1500A。 [0050] 然後,在氮化層上方使用一個光致抗蝕劑(PR)層,並 利用第一掩膜(也稱為溝槽掩膜)形成圖案。在以下討 論中,為便於說明,假設使用的是正PR,從而保留未裸 露的區域,除去裸露的區域。也可以使用負PR,只需相 應地修改一下掩膜即可。掩膜限定了有源栅溝槽。掩膜 也可以限定其他溝槽,例如源極多晶矽吸引溝槽以及柵 極滑道/截止溝槽,這些溝槽在本圖中沒有表示出。在某 些實施例中,有源溝槽的寬度約為0. 6 um。可以使用臨 界尺寸為0.35 um等低檔的掩膜製備元件,從而降低所需 掩膜的成本。 [0051] 在第3圖中,殘留的PR層701限定了有源柵極溝槽開口 702。在一些實施例中,可以製備源極多晶矽吸引溝槽和 栅極滑道/截止溝槽等額外的溝槽,但本圖中沒有表示出 〇 [0052] 然後,利用硬掩膜(HM)蝕刻,蝕刻掉氮化層和矽氧化 層的裸露部分。蝕刻終止在矽表面上。然後除去剩餘的 10110271#早編號 A0101 第10頁/共43頁 1012004880-0 201232782 [0053] [0054] Ο [0055]The invention can be implemented in a variety of different ways, including a process system: material composition. In some embodiments, the present invention can be controlled by a computer program worn on a readable storage medium and/or processing H, such as configuration processing 11 'storing stored and/or remaining on the processor. Command in the body. In the nuclear towel, these H can be used in any other form, which is called technology. In general, the order of the process steps may vary within the scope of the invention. Unless otherwise specified, the above-mentioned components such as the processor or the memory used to perform the task may be temporarily configured as a component, or as a special component for performing tasks. preparation. The term "processor" as used herein refers to a component, circuit, and/or processing core for processing data, such as computer program instructions. The present invention is shown by the following figures, and the invention described in detail above or in detail of the invention is related to these embodiments, but the invention is not limited to the embodiments. The scope of the present invention is only the claims of the present invention, and the present invention contains various changes, equivalents, and equivalents. The specific details mentioned in the following description are for the purpose of understanding the invention. These details are only used to exemplify the specific details of some or all of the invention, and may be based on the claims. For the sake of clarity, the technical field of the prior art is not described in detail in order to avoid unnecessary misunderstanding. The present invention proposes a material gate FET component and a fabrication technique (4) embodiment. Preparation Techniques Nitride spacers use a self-aligned contact system. The resulting mask gate MGSFET device has a recessed gate dielectric suitable for larger source-to-metal contact regions and lower contact resistance. This is the eighth page of the total number of pages (8), the number of the production order number _ 1012004880-0 201232782 [0045] [0047] [0047] The component is more · 5τ soil crime has a more stable transient response. "Flowchart not shown" represents an embodiment of a mask gate MOSFET fabrication technique. Step Μ η 、 , , one or more gate contact openings are formed at least partially on the semiconductor 4 c u earth plate. In step 104, a nitride spacer is formed inside the gate trench opening. . The gate trench can be left to self-align to the nitride pad. During subsequent processing, the die prevents the substrate from becoming singular and forms an aligned contact trench. In step 106, the mask electrode and the gate electrode are formed in the trench pattern 3 . The dielectric material fills at least a portion of the trench and separates the mask Φ 4^ ^ from the gate electrode. The mask electrode protects the gate electrode from the south voltage*彡鄕. Know the sound. In step 108, dopants for preparing the body and the source are implanted in the substrate. Step 丨, the contact trenches are formed in a self-aligned manner without any additional mask. In step 112, a conductive plug is deposited in the contact trench. Step 114, etching back the dielectric material in the gate trench such that at least a portion of the source region extends over the dielectric material. Step 116, depositing a metal layer over at least a portion of the gate trench opening, at least a portion of the source region, and at least a portion of the contact trench. The metal layer forms a pattern in the source and gate metal. In some embodiments, the source metal can include a top metal layer and one or more contact trench plugs that contact the source regions on multiple edges to reduce contact resistance and make the components more reliable. The technical diagrams shown in Figs. 2 to 26 show an embodiment of the component preparation technique. In the following discussion, an N-type component is illustrated by way of example. P-type components can also be fabricated using similar techniques. Figures 2 through 5 show the initial steps in preparing the gate trenches. 10110271#单编号 A0101 Page 9 of 43 1012004880-0 201232782 [0048] In FIG. 2, an N-type substrate 602 is used as the drain of the element. In this example, the N-type substrate is an N + day wafer, and the N- epitaxial layer is grown on the surface of the wafer. In some embodiments, the doping concentration of the epitaxial layer is about 3E16 -1E17 dopant / cm3, the thickness is 2-4 um, and the substrate resistivity is 0. 5 - 3 mohm * cm ° [0049] Deposition or thermal oxidation is formed on the substrate. A nitride layer 606 is deposited over the tantalum oxide layer. In some embodiments, the tantalum oxide layer has a thickness of about 500 to 1500 Å and the nitride layer has a thickness of about 1500 Å. [0050] A photoresist (PR) layer is then applied over the nitride layer and patterned using a first mask (also referred to as a trench mask). In the following discussion, for the sake of explanation, it is assumed that a positive PR is used, thereby leaving the unexposed area and removing the bare area. You can also use a negative PR, just modify the mask accordingly. The mask defines an active gate trench. The mask can also define other trenches, such as source polysilicon attracting trenches and gate/cutoff trenches, which are not shown in this figure. 6 um。 In some embodiments, the width of the active trench is about 0. 6 um. Components can be prepared using a low profile mask with a critical dimension of 0.35 um to reduce the cost of the mask required. [0051] In FIG. 3, the residual PR layer 701 defines an active gate trench opening 702. In some embodiments, additional trenches such as source polysilicon attracting trenches and gate runners/cutoff trenches may be prepared, but germanium is not shown in this figure [0052] and then etched using a hard mask (HM) The exposed portions of the nitride layer and the tantalum oxide layer are etched away. The etching terminates on the surface of the crucible. Then remove the remaining 10110271# early number A0101 page 10 / total 43 pages 1012004880-0 201232782 [0054] [0055]

[0056] PR。在第4圖中,在裸露的區域中形成溝槽開口,同時通 過剩餘的氮化物-氧化物部分,形成硬掩膜。 緊接著進行溝槽蝕刻,在溝槽開口中蝕刻到半導體材料 602中。根據蝕刻方法,溝槽側壁基本上可以是直的(如 第5A圖所示)或彎的(如第5B圖所示)。在一些實施例 中,溝槽的目標深度約為0.3 um~0.5 um。 在溝槽開口中,沉積或熱生長一個很薄的氧化層,佈滿 溝槽底部和溝槽側壁。在一些實施例中,氧化層的厚度 約為200 A。氧化層一旦形成,就可以沉積一個額外的氮 化層900。在氮化物下面僅僅需要一個很薄的氧化層,因 此在圖中沒有分別表示出。在一些實施例中,額外的氮 化層厚度約為1500 A-2200 A。在一些實施例中,氮化 層的厚度約為1500 A。如第6圖所示,氮化層900佈滿溝 槽,並且覆蓋了其餘的裸露區域。 如第7圖所示,全面的各向異性回刻後,氮化物墊片100 0 等會沿溝槽的側壁形成。初始的氮化層606部分也保留下 來。 然後,除去溝槽開口底部中裸露的内襯氧化層,利用全 面的矽蝕刻技術,進一步加深第8圖中氮化物墊片之間的 溝槽。根據元件的用_,所製成的溝槽深度大約在1. 5 ura〜2. 5 um,溝槽側壁的傾斜角約為87° ~ 88°。氮化 物墊片使自對準的蝕刻技術不需要多餘的對準掩膜等額 外的對準步驟,從而實現了溝槽的傾斜蝕刻。溝槽的深 度範圍從幾百埃至幾微米。利用250 A〜500 A的圓孔 10110271#單編號崖01 第11頁/共43頁 1012004880-0 201232782 (R/Η )姓刻’使溝槽的拐角更加圓滑,以避免因銳角造 成的南電場。 [0057] 在第9圖中,沉積或熱生長一個或多個氧化層。在一些實 施例中,可以選擇生長一個大約5〇〇 A的犧牲氧化層,並 除去,以改善矽表面。作為示例,可以在溝槽中生長一 個大約250 A的氧化層,然後沉積一層大約900 A的高溫 氧化物(ΗΤ0)。 [0058] 如第1〇圖所示,沉積多晶矽。在一些實施例中,多晶矽 的厚度約為1 2000 A,比元件中最寬溝槽(沒有表示出最 寬的溝槽)的寬度的一半還要大。因此,側壁上的多晶 矽層結合在一起,完全填滿了溝槽。這層多晶矽有時稱 為源極多晶石夕、遮罩多晶石夕或多晶石夕1。 [0059] 然後如第11圖所示,利用幹蝕刻,回刻源極多晶矽。在 本例中,在有源拇極溝槽中,剩餘的多晶碎厚度約為 6000 A 。 C〇〇6〇]然後,沉積高密度等離子(HDP)氧化物1 506並緻密化。 在一些實施例中,緻密化要在大約115{rc的溫度下持續 進行大約30秒鐘。如第12圖所示,氧化物15〇6的厚度大 於有源溝槽寬度的一半(在一些實施例中,氧化層的厚 度约為2000 A〜4000 A),從而完全填充了有源溝槽。 [0061]進行氧化物化學機械拋光(CMP)。如第13圖所示’利用 CMP技術拋光氧化物,直到氧化物的頂面與氮化物表面相 平為止,以此作為餘刻的終點。 [0062]第14圖表示添加另一個氧化層。在一些實施例中,氧化 10110271#軍編號A01〇l 第12頁/共43頁 1012004880-0 201232782 層的厚度約為100〇 A-2000 A。該氧化層的厚度可以控 制第二掩膜下濕蝕刻切口的角度。該氧化物薄膜也保護 兀件所有的非有源區中的氮化物。受保護的氮化物可稍 後進行Si的無掩膜全面钱刻。 [0063]纟-些實施例中,在結構的表面上旋塗一|光致抗姓劑 ,並利用第二掩膜(也稱為多晶矽覆蓋掩膜)形成PR圖 案。被PR覆蓋的區域(例如截止溝槽,在圖中沒有表示 出)不受氧化物濕餘刻的影響。在所示的實施例中,沒 有被PR覆蓋的有源溝槽區域易受氧化物濕蝕刻的影響。 [刪]然後,進行濕蝕刻。濕蝕刻的結果表示在第15圖中。未 被PR覆蓋的區域中的氧化物被除去了,使剩餘的氧化物 處於所需的高度上。多晶石夕上方的氧化層,例如氧化層 1908稱為多晶石夕間電介質(ipd),其範圍可以從幾百 埃至幾千埃。 [0065] 在一些實施例中’形成的是不對稱的氧化物截止/栅極滑 道溝槽’對於這些實施例,第13至15圖所示的步驟是可 選的。還可選擇,直接回刻第12圖中的氧化物1506,以 形成第13圖所示的IPD(氧化層)1908。 [0066] 如果使用了 PR,之後要將它除去,並且沉積或熱生長一 層柵極氣化物。在一些實施例中,附加的氧化層厚度約 為450 A。因此,在第16圖中,栅極氧化物佈滿了有源溝 槽側壁2004和2006等。 [0067] 進行另一個多晶矽沉積並回刻。結果如第1 7圖所示。沉 積多晶矽填充溝槽。在一些實施例中,大約〇. 5-1 uin的 1011027#單編號 A_ 第丨3頁/共43頁 1012004880-0 201232782 多晶石夕沉積在溝槽中。回刻所沉積的多晶矽,形成柵極 多晶矽電極2104和2106。栅極多晶矽的頂部至少碰到源 極的底部’在一些情況下,還與源極的底部重疊,從而 可以形成一個通道。在一些實施例中,多晶矽表面在氮 化物墊片的底部下方大約500-5000 A。可選擇,沉積一 層鈦或姑等金屬,並退火。在金屬與多晶矽接觸的地方 形成一個多晶碎化層。氧化物或氮化物上方的金屬鈦 或銘不會形成矽化物/多晶矽化物’可以除去。如圖所示 ,多晶石夕化物2112及2114形成在柵極多晶石夕電極21〇4和 21 06上方處。 : [0068]第18A圖中,例如通過濕蝕刻技術,除去有源栅極溝槽附 近裸露的氮化物墊片,以及氧化物硬掩膜上方的氮化層 〇 [〇〇69]在—些實施例中,各種之前的熱處理技術(例如氧化物 沉積、HDP氧化物緻密)使得介面區域中的矽氧化,而相 同區域中的氮化物氧化的程度較輕。由於矽製程的局部 氡化(LOCOS) ’使氮化物墊片丁面的基板表面發生變化 % 變成彎曲的。這種現象在本領域中眾所周知稱為“ 鳥嘴效應”。此外,各種之前的餘刻技術使氮化物墊片 在特定區域中被侵蝕,進一步暴露出氮化物—矽交界面使 其礼化。因此,如第18B圖所示,當通過濕飯刻技術除去 氮化物塾片和其他裸露的氮化物材料時,剩餘的溝槽側 壁就可以具有曲率。 〇]植入元件的本體和源極。植入元件的本體和源極不需要 ^ 額外的掩膜。確切地說,在第19A圖和第ι9Β圖中,進行 10110271产單編說_1 第14頁/共43頁 1012004880-0 201232782 [0071] ❹ [0072] Ο [0073] [0074] 本體植入。用帶有角度的摻雜離子轟擊元件。可以用氮 化物保護元件的特定區域(圖中沒有表示出)。在未被 氮化物保護的有源區中,植入形成本體區2304。在一些 實施例中,在60 KeV,180 KeV下,利用摻雜水準約為 1.8el3的棚離子,製備N-通道元件。也可以使用其他類 型的離子。例如,利用亞磷離子製備p_通道元件。 在第20A圖和第20B圖中’用零傾斜角進行源極植入。再 次用摻雜離子轟擊元件。在一些實施例中,在4〇j(eV~ 80KeV下,使用的是摻雜水準為4e丨5的砷離子。在本體 區2304内形成源極區2402。在第2〇B圖中,源極區的表 面與溝槽側壁的彎曲形狀一致。 在第21A圖和第21B圖中,沉積電介質層(例如氧化層) ,填充溝槽開口,並分離源極和栅極多晶矽區域。在不 同的實施例中,氧化層的厚度範圍在5〇〇〇 A ~ 8〇〇() A 之間。在一些實施例中,利用化學氣相沉積(CVD)技術 ,沉積厚度約為5000 A的低溫氧化物(LTO)和含有硼 酸的矽玻璃(BPSG)。 在第22A圖和第22B圖中,通過幹蝕刻技術回刻氧化物。 在本例中,向下蝕刻氧化物,使氧化物的頂面低於基板 頂面500 A ~ 1〇〇〇 a左右。在第2至4圖中形成的氧化 物硬掩膜也可以通過該技術除去。 還可選擇’(例如通過化學機械拋光(cMp)技術)平整 氧化物,使氧化物的頂面與基板頂面相平。第22C圖表示 的是這種可選方案。 1Q11Q2^料號麵1 第15頁/共43頁 1012004880-0 201232782 [0075] 在第23A圖和第23B圖中,蝕刻基板,形成接觸溝槽2702 。根據元件的用途,蝕刻深度約在0.6 um ~ 0.9 um之 間。蝕刻裸露的基板區域,未被氧化物保護的區域不蝕 刻。由於蝕刻技術不需要額外的掩膜,因此也稱為自對 準的接觸技術。在這種情況下,接觸溝槽自對準到氧化 物2704的剩餘部分。如第23B圖所示,在蝕刻接觸溝槽之 後,可以選擇在接觸溝槽的底部,製備(例如植入)一 個重摻雜的P +本體接觸區。 [0076] 在第24A圖和第24B圖中,可以選擇沉積Ti和TiN等勢壘 金屬(沒有特別表示出),然後通過RTP,在接觸區附近 形成Ti矽化物。在一些實施例中,所用的Ti和TiN的厚度 分別為300 A和1 000 A。然後,沉積鎢(W)等導電插頭 材料。在一些實施例中,沉積4000 A ~6000 A的W。回 刻沉積的W,一直到基板表面,以形成單獨的導電(W ) 插頭3002。 [0077] 在第25A圖和第25B圖中,進行氧化物蝕刻。回刻氧化層 。蝕刻技術除去了源極和有源柵極溝槽開口上方的氧化 層,以及柵極溝槽内的一部分氧化層,使柵極溝槽内剩 餘的氧化層凹向源極的頂面。換言之,所製成的氧化層 的頂面低於源極的頂面。在一些實施例中,氧化層的頂 面大約比源極區的頂面低500-1000 A。下文還將討論, 為了源極-金屬接觸,蝕刻技術使更多的源極區裸露出來 〇 [0078] 還可選擇,在第23A圖和第23B圖中的接觸溝槽2702之後 ,以及製備導電插頭3 0 0 2之前,進行這種氧化物回刻技 1011027#^ A〇101 第16頁/共43頁 1012004880-0 201232782 術。在-個可選實施射,第24C圖和第24])圖表示_ 於第25A圖和第25B圖的氧化物回刻技術,但是在製備導 電插頭3002之前進行。在這個可選實施例中,製備第24c 圖和第24D圖所示的結構之後,沉積導電插頭,以形成第 25A圖和第25B圖所示的結構。 [0079] 在第26A圖和第26B圖中 例中,利用AlCu製備一個大約3 um 沉積一個金屬層。在一些實施 um厚的金屬層 Ο 。然後,在45(TC下對金屬退火大約3〇分鐘。在一些實施 例中,形成金屬的圖案,製備源極和栅極金屬,通過附 加的溝槽(圖中沒有表示出)連接到源極和栅極區。形 成最終元件的頂部。儘管沒有表示出,但是通常在背部 研磨技術後’就可以在基板的底部形成一個金屬層。 [0080][0056] PR. In Fig. 4, a trench opening is formed in the exposed region while a hard mask is formed through the remaining nitride-oxide portion. A trench etch is then performed to etch into the semiconductor material 602 in the trench opening. Depending on the etching method, the trench sidewalls may be substantially straight (as shown in Figure 5A) or curved (as shown in Figure 5B). In some embodiments, the target depth of the trench is about 0.3 um to 0.5 um. In the trench opening, a very thin oxide layer is deposited or thermally grown to fill the trench bottom and trench sidewalls. In some embodiments, the oxide layer has a thickness of about 200 Å. Once the oxide layer is formed, an additional nitride layer 900 can be deposited. Only a very thin oxide layer is required under the nitride and is therefore not shown separately in the figure. In some embodiments, the additional nitride layer has a thickness of between about 1500 A and 2200 A. In some embodiments, the nitride layer has a thickness of about 1500 Å. As shown in Fig. 6, the nitride layer 900 is filled with trenches and covers the remaining bare regions. As shown in Fig. 7, after the full anisotropic etchback, the nitride spacer 100 and the like are formed along the sidewall of the trench. The initial nitride layer 606 portion is also retained. Then, the exposed liner oxide layer in the bottom of the trench opening is removed, and the trench between the nitride spacers in Fig. 8 is further deepened by a full-surface germanium etching technique. According to the _ of the component, the groove depth is about 1.5 ura~2. 5 um, and the inclination angle of the sidewall of the groove is about 87° to 88°. Nitride spacers allow the self-aligned etch technique to eliminate the need for an additional alignment step such as an alignment mask, thereby enabling oblique etch of the trench. The depth of the trench ranges from a few hundred angstroms to a few microns. Use 250 A~500 A round hole 10110271#单号崖01 Page 11/43 page 1012004880-0 201232782 (R/Η) Surname engraved to make the corner of the groove more rounded to avoid the south electric field caused by the acute angle . [0057] In FIG. 9, one or more oxide layers are deposited or thermally grown. In some embodiments, a sacrificial oxide layer of about 5 Å A can be grown and removed to improve the ruthenium surface. As an example, an oxide layer of about 250 A can be grown in the trench and then a high temperature oxide (?0) of about 900 A can be deposited. [0058] As shown in FIG. 1, polycrystalline germanium is deposited. In some embodiments, the polysilicon has a thickness of about 1 2000 A, which is greater than half the width of the widest trench in the component (not showing the widest trench). Therefore, the polycrystalline germanium layers on the sidewalls are bonded together to completely fill the trenches. This layer of polycrystalline germanium is sometimes referred to as source polycrystalline litter, masked polycrystalline litura or polycrystalline lit. [0059] Then, as shown in FIG. 11, the source polysilicon is etched back by dry etching. In this example, the remaining polycrystalline shreds are approximately 6000 A in the active thumb-channel. C〇〇6〇] Then, a high density plasma (HDP) oxide 1 506 is deposited and densified. In some embodiments, the densification is continued for about 30 seconds at a temperature of about 115 {rc. As shown in FIG. 12, the thickness of the oxide 15〇6 is greater than half the width of the active trench (in some embodiments, the thickness of the oxide layer is about 2000 A to 4000 A), thereby completely filling the active trench. . [0061] Oxidation chemical mechanical polishing (CMP) is performed. As shown in Fig. 13, the oxide is polished by the CMP technique until the top surface of the oxide is level with the nitride surface, thereby serving as the end point of the remainder. [0062] Figure 14 shows the addition of another oxide layer. In some embodiments, the oxidation is 10110271 #军号 A01〇l Page 12 of 43 1012004880-0 201232782 The thickness of the layer is about 100 〇 A-2000 A. The thickness of the oxide layer controls the angle of the wet etched undercut of the second mask. The oxide film also protects the nitride in all of the non-active regions of the element. The protected nitride can be subsequently subjected to a maskless full-scale engraving of Si. [0063] In some embodiments, a photo-resistance agent is spin-coated on the surface of the structure and a PR pattern is formed using a second mask (also known as a polysilicon overlay mask). The area covered by the PR (e.g., the cut-off trench, not shown in the figure) is not affected by the wet residual of the oxide. In the illustrated embodiment, active trench regions that are not covered by PR are susceptible to wet etching of the oxide. [Delete] Then, wet etching is performed. The results of the wet etching are shown in Fig. 15. The oxide in the area not covered by the PR is removed, leaving the remaining oxide at the desired height. The oxide layer above the polycrystalline stone, such as the oxide layer 1908, is referred to as a polycrystalline interstellar dielectric (ipd), which may range from a few hundred angstroms to several thousand angstroms. [0065] In some embodiments, 'asymmetric oxide cut-off/gate chute trenches' are formed. For these embodiments, the steps shown in Figures 13 through 15 are optional. Alternatively, the oxide 1506 in Fig. 12 can be directly etched back to form an IPD (Oxide Layer) 1908 as shown in Fig. 13. [0066] If PR is used, it is then removed and a layer of gate vapor is deposited or thermally grown. In some embodiments, the additional oxide layer has a thickness of about 450 Å. Therefore, in Fig. 16, the gate oxide is filled with active trench sidewalls 2004 and 2006 and the like. [0067] Another polycrystalline germanium deposition was performed and etched back. The result is shown in Figure 17. The polycrystalline germanium is deposited to fill the trench. In some embodiments, approximately 〇. 5-1 uin of 1011027# single number A_ page 3 of 43 1012004880-0 201232782 polycrystalline stone deposited in the trench. The deposited polysilicon is etched back to form gate polysilicon electrodes 2104 and 2106. The top of the gate polysilicon at least hits the bottom of the source. In some cases, it also overlaps the bottom of the source, so that a channel can be formed. In some embodiments, the polysilicon surface is about 500-5000 A below the bottom of the nitride pad. Alternatively, deposit a layer of titanium or a noble metal and anneal. A polycrystalline fragmentation layer is formed where the metal is in contact with the polysilicon. The metal titanium or the imide/polycrystalline telluride above the oxide or nitride can be removed. As shown, polycrystalline lithidies 2112 and 2114 are formed over the gate polycrystalline iridium electrodes 21〇4 and 216. [0068] In FIG. 18A, the exposed nitride pad near the active gate trench is removed, for example, by a wet etching technique, and the nitride layer 上方 [〇〇69] above the oxide hard mask is In the examples, various prior heat treatment techniques (e.g., oxide deposition, HDP oxide densification) cause ruthenium oxidation in the interface region, while nitrides in the same region are less oxidized. Due to the localized deuteration (LOCOS) of the tantalum process, the surface of the substrate of the nitride spacer is changed to become curved. This phenomenon is well known in the art as the "bird's beak effect." In addition, various prior art techniques have caused the nitride spacer to be eroded in a specific area, further exposing the nitride-ruthenium interface to ritualize it. Therefore, as shown in Fig. 18B, when the nitride crucible and other bare nitride materials are removed by the wet rice engraving technique, the remaining trench side walls may have a curvature. 〇] implant the body and source of the component. The body and source of the implanted component do not require an additional mask. Specifically, in the 19th and 11th drawings, the 10110271 production order description _1 the 14th page/the 43rd page 1012004880-0 201232782 [0071] ❹ [0072] Ο [0073] [0074] . The element is bombarded with an angled dopant ion. Nitrogen can be used to protect specific areas of the element (not shown). In the active region that is not protected by nitride, the implant forms body region 2304. In some embodiments, an N-channel component is fabricated using a shed ion having a doping level of about 1.8 el3 at 60 KeV, 180 KeV. Other types of ions can also be used. For example, a p-channel element is prepared using phosphorous ions. Source implantation is performed with a zero tilt angle in Figs. 20A and 20B. The element is again bombarded with dopant ions. In some embodiments, at 4 〇j (eV~80KeV, an arsenic ion having a doping level of 4e 丨 5 is used. A source region 2402 is formed in the body region 2304. In the second 〇B diagram, the source The surface of the polar region conforms to the curved shape of the sidewall of the trench. In FIGS. 21A and 21B, a dielectric layer (eg, an oxide layer) is deposited, filling the trench opening, and separating the source and gate polysilicon regions. In embodiments, the thickness of the oxide layer ranges from 5 〇〇〇A to 8 Å () A. In some embodiments, low temperature oxidation of about 5000 A is deposited using chemical vapor deposition (CVD) techniques. (LTO) and neodymium glass (BPSG) containing boric acid. In layers 22A and 22B, the oxide is etched back by dry etching. In this example, the oxide is etched down to top the oxide. It is lower than 500 A ~ 1〇〇〇a of the top surface of the substrate. The oxide hard mask formed in Figures 2 to 4 can also be removed by this technique. It can also be selected (for example, by chemical mechanical polishing (cMp) technology Flattening the oxide so that the top surface of the oxide is level with the top surface of the substrate. Figure 22C shows This is an alternative. 1Q11Q2^Material No. 1 Page 15 of 43 1012004880-0 201232782 [0075] In FIGS. 23A and 23B, the substrate is etched to form a contact trench 2702. According to the use of the component The etch depth is between 0.6 um and 0.9 um. The exposed substrate area is etched, and the area not protected by the oxide is not etched. Since the etching technique does not require an additional mask, it is also referred to as a self-aligned contact technique. In this case, the contact trench is self-aligned to the remaining portion of the oxide 2704. As shown in Fig. 23B, after etching the contact trench, a bottom (at the implant) can be selected (e.g., implanted) at the bottom of the contact trench. Heavyly doped P + body contact region. [0076] In FIGS. 24A and 24B, it is possible to selectively deposit barrier metals such as Ti and TiN (not specifically shown), and then form Ti near the contact region by RTP. Telluride. In some embodiments, the Ti and TiN used have thicknesses of 300 A and 1000 A, respectively. Then, a conductive plug material such as tungsten (W) is deposited. In some embodiments, 4000 A to 6000 A is deposited. W. Back to the deposited W, up to the base The surface of the board is formed to form a separate conductive (W) plug 3002. [0077] In the 25A and 25B, oxide etching is performed. The oxide layer is etched back. The etching technique removes the source and active gate trenches. An oxide layer above the opening, and a portion of the oxide layer in the gate trench, causes the remaining oxide layer in the gate trench to be recessed toward the top surface of the source. In other words, the top surface of the formed oxide layer is lower than the source The top surface. In some embodiments, the top surface of the oxide layer is approximately 500-1000 A lower than the top surface of the source region. As will be discussed below, for source-to-metal contact, the etch technique exposes more source regions. [0078] Alternatively, after contact trenches 2702 in FIGS. 23A and 23B, and to prepare conductive Prior to the plug 3 0 0 2, this oxide etchback technique was performed 1011027#^ A〇101 page 16 of 43 pages 1012004880-0 201232782. In an optional implementation, the 24C and 24] diagrams show the oxide etchback techniques of Figures 25A and 25B, but before the fabrication of the conductive plug 3002. In this alternative embodiment, after the structures shown in Figs. 24c and 24D are prepared, a conductive plug is deposited to form the structures shown in Figs. 25A and 25B. In the examples of FIGS. 26A and 26B, a metal layer is deposited by using AlCu to form a layer of about 3 um. In some implementations um thick metal layer Ο. The metal is then annealed at 45 (TC for about 3 minutes. In some embodiments, a pattern of metal is formed, the source and gate metal are prepared, and connected to the source through additional trenches (not shown) And the gate region. The top of the final element is formed. Although not shown, a metal layer can be formed at the bottom of the substrate, usually after the back grinding technique.

在製成的元件中,每個有源栅極溝槽都含有一個頂部多 晶矽電極(例如多晶矽3312),由於它起栅極的作用, 因此也稱為樹極多晶碎或拇極電極,或者击於它在製備 過程中形成於第二多晶矽沉積技術,因此也稱為多晶矽2 。每個頂部多晶矽電極還包含一個沉積在柵極電極頂面 上的多晶矽化物層3340 ’以改善沿柵極的導電性。每個 溝槽還包含一個底部多晶矽電極(例如多晶矽332〇 ), 由於它連接到源極上,因此也稱為源極多晶矽或源極電 極,或者由於它在製備過程中形成於第一多晶矽沉積技 術’因此也稱為多晶矽1,或者由於它遮罩栅極多晶矽不 受高電壓的影響’因此也稱為遮罩多晶矽或遮罩電極。 由氧化物製成的多晶矽間電介質區’將源極多晶矽與栅 極多晶矽分離。在本例所示的有源柵極溝槽中,包圍著 10110271^^ A〇101 第17頁/共43頁 1012004880-0 201232782 拇極多晶石夕’並且内襯著溝槽頂部側壁的氧化層(例如 乳化層3324 ),比包圍著源極/遮罩多晶矽,並且内襯著 溝槽底部側壁的氧化層(例如氧化層3326 )更薄。在有 源區中,源極金屬3334通過氡化物33〇9等電介質層,與 3312等柵極電極絕緣。源極金屬層3334通過鎢插頭等導 電插頭3330 ’電連接到源極區3332和本體區3348上,導 電插頭3330填充源極本體接觸開口,並且從源極金屬開 始延伸到本體區中。本體接觸植入區3346增強了本體區 和導電插頭3330之間的歐姆接觸。 [0081]上述製程製備了一種帶有增強的源極一金屬接觸區的 MOSFET元件。確切地說,由於源極區在柵極氧化物頂面 上延伸,因此一個單獨的源極區就有多個與頂部金屬( 例如源極金屬層3334和導電插頭3330 )相接觸的表面。 例如,頂部金屬連接到源極區,在接觸溝槽對面的源極 區表面3302上,在凹陷的氧化物33〇9對面的源極區表面 3306上,以及在源極區表面3304上。栅極區上方凹陷的 氧化物330 9使金屬連接到凹陷氧化物對面的源極側壁 3306。增強的源極-金屬接觸區降低了接觸電阻,並使暫 態響應更加穩定。而且,增強區意味著接觸存在缺陷的 可能性極小,因此元件更加可靠,產量更高。在一些實 施例中,導電插頭3330是由和源極金屬層3334相同的 材料製成的,如第26C圖所示。在這種情況下,可以和其 餘的源極金屬層3334同時製備/填充導電插頭333〇,。 [〇〇82]上述示例多數都是用N-通道元件進行說明。只要將各種 摻雜物的極性變換一下,上述製程就可以適用於p_通道 1(3110271#單編號A0101 第18頁/共43頁 1012004880-0 201232782 元件。 [0083] 儘管為了便於理解,給出了上述實施例的具體細節,但 是本發明並不局限於這些細節。本發明還有許多可選的 實施方法。所述的實施例用於解釋說明,不用於局限。 【圖式簡單說明】 [0084] 第1圖所示的流程圖表示遮罩柵極MOSFET製備技術的實施 例0 第2至26C圖所示的示意圖表示元件製備技術的實施例。 〇 【主要元件符號說明】 [0085] 102~116 :步驟 602 : N型基板 604 :矽氧化層 606、900 :氮化層In the fabricated device, each active gate trench contains a top polysilicon electrode (eg, polysilicon 3312), which is also referred to as a tree polymorph or a thumb electrode because it acts as a gate, or It is formed in the second polycrystalline germanium deposition technique during preparation, and is therefore also referred to as polycrystalline germanium. Each top poly germanium electrode also includes a polycrystalline germanide layer 3340' deposited on the top surface of the gate electrode to improve conductivity along the gate. Each trench also includes a bottom polysilicon electrode (eg, polysilicon 332 〇), which is also referred to as a source polysilicon or source electrode due to its connection to the source, or because it is formed in the first polysilicon during fabrication. The deposition technique 'is therefore also referred to as polysilicon 1 or because it masks the gate polysilicon from high voltages' is therefore also referred to as a mask polysilicon or a mask electrode. A polycrystalline inter-turn dielectric region made of an oxide separates the source polysilicon from the gate polysilicon. In the active gate trench shown in this example, it is surrounded by 10110271^^ A〇101, page 17/43, 1012004880-0 201232782, and the oxidation of the top sidewall of the trench. The layer (e.g., emulsion layer 3324) is thinner than the oxide layer (e.g., oxide layer 3326) that surrounds the source/mask polysilicon and is lined with the sidewalls of the bottom of the trench. In the active region, the source metal 3334 is insulated from the gate electrode such as 3312 by a dielectric layer such as a germanide 33〇9. The source metal layer 3334 is electrically connected to the source region 3332 and the body region 3348 through a conductive plug 3330' such as a tungsten plug, and the conductive plug 3330 fills the source body contact opening and extends from the source metal into the body region. The body contact implant region 3346 enhances the ohmic contact between the body region and the conductive plug 3330. [0081] The above process produces a MOSFET component with an enhanced source-metal contact region. Specifically, since the source region extends over the top surface of the gate oxide, a single source region has a plurality of surfaces in contact with the top metal (e.g., source metal layer 3334 and conductive plug 3330). For example, the top metal is connected to the source region, on the source region surface 3302 opposite the contact trench, on the source region surface 3306 opposite the recessed oxide 33〇9, and on the source region surface 3304. An oxide 330 9 recessed over the gate region connects the metal to the source sidewall 3306 opposite the recessed oxide. The enhanced source-metal contact area reduces contact resistance and makes the transient response more stable. Moreover, the enhancement zone means that there is very little chance of contact with defects, so the components are more reliable and the yield is higher. In some embodiments, the conductive plug 3330 is made of the same material as the source metal layer 3334, as shown in Figure 26C. In this case, the conductive plug 333A can be prepared/filled simultaneously with the remaining source metal layer 3334. [〇〇82] Most of the above examples are described using N-channel components. As long as the polarity of various dopants is changed, the above process can be applied to p_channel 1 (3110271#single number A0101 page 18/total 43 page 1012004880-0 201232782 components. [0083] Although for ease of understanding, The specific details of the above embodiments are not limited to the details. The present invention has many alternative implementation methods. The embodiments are for explanation and are not intended to be limited. [Simplified illustration] 0084] The flowchart shown in FIG. 1 shows an embodiment of the mask fabrication technique of the mask gate MOSFET. The schematic diagrams shown in FIGS. 2 to 26C show an embodiment of the component fabrication technique. 〇 [Main component symbol description] [0085] ~116: Step 602: N-type substrate 604: germanium oxide layer 606, 900: nitride layer

701 : PM 702 :溝槽開口 1 000 :氮化物墊片 ❹ 1 506、2704、3309 :氧化物 1908、3324 ' 3326 :氧化層 2004、2006 :有源溝槽側壁 21 0 4、210 6 :柵極多晶矽電極 2112、2114 :多晶石夕化物 2304、3348 :本體區 2402、3332 :源極區 2702 :接觸溝槽 3002、3330、3330’ :導電插頭 10110271,單編號删1 第 19 頁 / 共 43 f 1012004880-0 201232782 3302、3304、3306 :源極區表面 3312 :柵極電極 3 3 2 0 :多晶矽 3334 :源極金屬層 3340 :多晶矽化物層 3346 :植入區 10110271^·單編號 A〇101 1012004880-0 第20頁/共43頁701 : PM 702 : trench opening 1 000 : nitride spacer ❹ 1 506, 2704, 3309 : oxide 1908, 3324 ' 3326 : oxide layer 2004, 2006 : active trench sidewall 21 0 4, 210 6 : gate Very polycrystalline germanium electrodes 2112, 2114: polycrystalline lithiate 2304, 3348: body region 2402, 3332: source region 2702: contact trenches 3002, 3330, 3330': conductive plug 10110271, single number deletion 1 page 19 / total 43 f 1012004880-0 201232782 3302, 3304, 3306: source region surface 3312: gate electrode 3 3 2 0 : polysilicon 3334: source metal layer 3340: polycrystalline germanide layer 3346: implant region 10110271^·single number A〇 101 1012004880-0 Page 20 of 43

Claims (1)

201232782 七、申請專利範圍: 1 . 一種形成在具有基板頂面之半導體基板上之半導體元件, 其包含: 一從該基板頂面延伸到該半導體基板中之柵極溝槽; 一在該栅極溝槽中之柵極電極; 一沉積在該柵極電極上方之柵極頂部電介質材料; 一在該桃極溝槽附近之本體區, 一嵌在該本體區中之源極區,至少一部分之該源極區延伸 到該柵極頂部電介質材料上方; 一使該源極區和該本體區之間接觸之接觸溝槽;以及 一沉積在至少一部分之該栅極溝槽開口、至少一部分之該 源極區以及至少一部分之該接觸溝槽上方之金屬層。 2. 如申請專利範圍第1項所述之半導體元件,其中該金屬層 覆蓋了該柵極電極上方之該柵極頂部電介質材料,並且接 觸該柵極頂部電介質材料對面之該源極區之側壁。 3. 如申請專利範圍第1項所述之半導體元件,其更包含一形 0 成在該柵極溝槽内之遮罩電極,其中該栅極電極和該遮罩 電極被一電極間電介質材料分開。 4 .如申請專利範圍第1項所述之半導體元件,其中該源極區 具有一基本垂直之表面,至少一部分之基本垂直之表面與 該金屬層直接接觸。 5 .如申請專利範圍第1項所述之半導體元件,其中該柵極溝 槽具有一至少部分彎曲之溝槽側壁。 6 .如申請專利範圍第5項所述之半導體元件,其中該源極區 至少一部分之表面符合該溝槽側壁之彎曲部分。 1011027#單編號 A0101 第21頁/共43頁 1012004880-0 201232782 •如申請專利範圍第1項所述之半導體元件,其中該金屬層 在多個邊緣上與該源極區相接觸。 8 .如申請專利範圍第1項所述之半導體元件,其令在該接觸 溝槽對面之該源極區的一個邊緣上,以及該柵極頂部電介 質材料對面之該源極區的一個邊緣上,該金屬層與該源極 區相接觸。 9 申請專利範圍第1項所述之半導體元件,其中該播極頂 邛電介質材料的頂面,在該源極區的頂部下方凹陷。 1〇.如申請專利範圍第1項所述之半導體元件,其中用一導電 插碩之至少部分填充該接觸溝槽。 11 .種用於製備半導體元件之方法,該方法包含: 製備一柵極溝槽; 在該柵極溝槽内製備一栅極電極; 在4栅極電極頂部上方製傷一栅極頂部電介質材料; ▲備—本體區和一源極區; 製備一接觸溝槽; 回刻該柵極頂部電介質材料,使至少一部分之該源極區延 伸到該柵極頂部電介質材料上方;以及 在至少一部分之該栅極溝槽開口至少一部分之該源極區 以及至少一部分之該接觸溝槽的上方沉積一金屬層。 12 .如申請專利範圍第u項所述之方法,其更包含下列步驟. 在製備該柵極電極之前,先在該柵極溝槽中製備— 如甲請專利範圍 1 ό 万’奢’其更包含下列步驟. 在該遮革電極和該柵極電極之間,製備一電極間電介拼· 14 · ”請專利範圍第_所述之方法,= 10110271#單編號Α_ 第22頁/共43頁 桎頂°丨 1012004880-0 201232782 電介質材料,並沉㈣金制,使該金屬層覆蓋該概極電 極上方之該栅極頂部電介質材料,並且接觸該栅極頂部電 介質材料對面之該源極區的一個侧壁。 15 .如申請專利範圍第n項所述之方法,其中該拇極頂部電介 質材料的頂面,在該源極區的頂部下方凹陷。 16 .如申請專利範圍第n項所述之方法,其中該源極區具有— 基本垂直之表面,至少一部分之基本垂直之表面與該金屬 層直接接觸。201232782 VII. Patent application scope: 1. A semiconductor device formed on a semiconductor substrate having a top surface of a substrate, comprising: a gate trench extending from a top surface of the substrate into the semiconductor substrate; a gate electrode in the trench; a gate top dielectric material deposited over the gate electrode; a body region adjacent the stem trench, a source region embedded in the body region, at least a portion The source region extends above the gate top dielectric material; a contact trench that contacts the source region and the body region; and a portion of the gate trench opening that is deposited in at least a portion of the gate trench opening a source region and at least a portion of the metal layer over the contact trench. 2. The semiconductor device of claim 1, wherein the metal layer covers the gate top dielectric material over the gate electrode and contacts a sidewall of the source region opposite the gate top dielectric material . 3. The semiconductor device of claim 1, further comprising a mask electrode in the gate trench, wherein the gate electrode and the mask electrode are separated by an inter-electrode dielectric material separate. 4. The semiconductor component of claim 1, wherein the source region has a substantially vertical surface, at least a portion of the substantially vertical surface being in direct contact with the metal layer. 5. The semiconductor component of claim 1, wherein the gate trench has an at least partially curved trench sidewall. 6. The semiconductor device of claim 5, wherein at least a portion of the surface of the source region conforms to a curved portion of the sidewall of the trench. The semiconductor element of claim 1, wherein the metal layer is in contact with the source region on a plurality of edges. The semiconductor device of claim 1 is as claimed in claim 1 . 8. The semiconductor device of claim 1, wherein an edge of the source region opposite the contact trench and an edge of the source region opposite the gate top dielectric material The metal layer is in contact with the source region. The semiconductor component of claim 1, wherein the top surface of the dielectric material is recessed below the top of the source region. The semiconductor device of claim 1, wherein the contact trench is at least partially filled with a conductive plug. 11. A method for fabricating a semiconductor device, the method comprising: preparing a gate trench; preparing a gate electrode in the gate trench; and injecting a gate top dielectric material over the top of the 4 gate electrode ▲ a body region and a source region; preparing a contact trench; etching the gate top dielectric material such that at least a portion of the source region extends above the gate top dielectric material; and at least a portion A source layer is deposited on at least a portion of the source region of the gate trench opening and at least a portion of the contact trench. 12. The method of claim 5, further comprising the steps of: preparing the gate electrode in the gate trench before preparing the gate electrode - such as a patent range of 1 million ' 'luxury' Further, the following steps are included. Between the opaque electrode and the gate electrode, an interelectrode dielectric splicer is prepared. The method described in the patent scope _ _ 10110271#单号Α_第22页/ 43 桎 丨 1012004880-0 201232782 dielectric material, and (4) gold, such that the metal layer covers the gate top dielectric material above the electrode and contacts the source opposite the gate dielectric material The method of claim n, wherein the top surface of the thumb top dielectric material is recessed below the top of the source region. 16 . The method wherein the source region has a substantially vertical surface and at least a portion of the substantially vertical surface is in direct contact with the metal layer. Η .如申請專利範圍第n項所述之方法,其中該拇極溝槽具有 一至少部分彎曲之溝槽側壁。 18 . 2申請專利範圍第17項所述之方法,其中該源極區之至少 —部分之表面符合該溝槽側壁之彎曲部分。 19. Μ料職圍川項所述之方法,其中齡屬層在多個 邊緣上與該源極區相接觸。 20 22 如申請專職圍第11項所述之方法,其中在該接觸溝槽對 面之該源純的—個魏上,以及__ «介質材料 ^之該祕㈣-個邊緣上,該金制錢源極區相接 觸0 21 .如 .申請專利範圍第U項所述之方法,其更包含下列步驟: "積—導電插頭之至少部分在該接觸溝槽内。 如申請專職圍第11項我之方法,其巾該 至少部分在該制溝_之導電插頭。 曰 第23頁/共43頁 1〇Π0271^Α〇101 1012004880-0The method of claim n, wherein the thumb-pole groove has an at least partially curved trench sidewall. The method of claim 17, wherein at least a portion of the surface of the source region conforms to a curved portion of the sidewall of the trench. 19. The method of claim 3, wherein the aged layer is in contact with the source region on a plurality of edges. 20 22 If applying for the method described in item 11 of the full-time, in which the source is pure on the opposite side of the contact groove, and on the edge of the __ «media material ^ (4) - the gold The method of claim 2, wherein the method of claim U further comprises the following steps: "product-at least one portion of the conductive plug is in the contact trench. For example, if I apply for the full-scale 11th item, the towel should be at least partially in the groove.曰 Page 23 of 43 1〇Π0271^Α〇101 1012004880-0
TW101102713A 2011-01-28 2012-01-20 Semiconductor device formed on semiconductor substrate having substrate top surface and preparation method thereof TWI502742B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/016,804 US8618601B2 (en) 2009-08-14 2011-01-28 Shielded gate trench MOSFET with increased source-metal contact

Publications (2)

Publication Number Publication Date
TW201232782A true TW201232782A (en) 2012-08-01
TWI502742B TWI502742B (en) 2015-10-01

Family

ID=46563300

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101102713A TWI502742B (en) 2011-01-28 2012-01-20 Semiconductor device formed on semiconductor substrate having substrate top surface and preparation method thereof

Country Status (2)

Country Link
CN (1) CN102623501B (en)
TW (1) TWI502742B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI560872B (en) * 2014-03-05 2016-12-01 Alpha & Omega Semiconductor High density trench gate mosfet array with self-aligned contacts enhancement plug and method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105713B2 (en) 2012-11-09 2015-08-11 Infineon Technologies Austria Ag Semiconductor device with metal-filled groove in polysilicon gate electrode
US8999783B2 (en) * 2013-02-06 2015-04-07 Infineon Technologies Austria Ag Method for producing a semiconductor device with a vertical dielectric layer
US9209305B1 (en) * 2014-06-06 2015-12-08 Stmicroelectronics, Inc. Backside source-drain contact for integrated circuit transistor devices and method of making same
CN104769723B (en) * 2014-12-04 2018-10-23 冯淑华 Groove power semiconductor field-effect transistor
JP6514519B2 (en) * 2015-02-16 2019-05-15 ルネサスエレクトロニクス株式会社 Semiconductor device manufacturing method
CN110896053B (en) * 2019-12-06 2022-04-29 绍兴中芯集成电路制造股份有限公司 Shielded gate field effect transistor and method of forming the same
CN113241372B (en) * 2021-05-19 2022-09-06 深圳真茂佳半导体有限公司 Preparation method and structure of self-aligned power field effect transistor
CN113241374B (en) * 2021-05-19 2023-07-14 深圳真茂佳半导体有限公司 Power transistor structure and manufacturing method thereof
CN113284953B (en) * 2021-07-21 2021-11-26 江苏长晶科技有限公司 Shielding gate groove type MOSFET structure and manufacturing method thereof
CN117393501B (en) * 2023-12-07 2024-03-19 合肥晶合集成电路股份有限公司 Semiconductor structure and manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003046999A1 (en) * 2001-11-30 2003-06-05 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
CN100514672C (en) * 2002-08-23 2009-07-15 快捷半导体有限公司 Method and apparatus for improved MOS gating to reduce miller capacitance and switching losses
US7033891B2 (en) * 2002-10-03 2006-04-25 Fairchild Semiconductor Corporation Trench gate laterally diffused MOSFET devices and methods for making such devices
TWI237348B (en) * 2004-08-26 2005-08-01 Mosel Vitelic Inc Method of manufacturing trench metal oxide semiconductor field effect transistor
TWI236090B (en) * 2004-10-18 2005-07-11 Episil Technologies Inc Trench power MOSFET and method for fabricating the same
US7385248B2 (en) * 2005-08-09 2008-06-10 Fairchild Semiconductor Corporation Shielded gate field effect transistor with improved inter-poly dielectric
US7633119B2 (en) * 2006-02-17 2009-12-15 Alpha & Omega Semiconductor, Ltd Shielded gate trench (SGT) MOSFET devices and manufacturing processes
US7936009B2 (en) * 2008-07-09 2011-05-03 Fairchild Semiconductor Corporation Shielded gate trench FET with an inter-electrode dielectric having a low-k dielectric therein
US8278702B2 (en) * 2008-09-16 2012-10-02 Fairchild Semiconductor Corporation High density trench field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI560872B (en) * 2014-03-05 2016-12-01 Alpha & Omega Semiconductor High density trench gate mosfet array with self-aligned contacts enhancement plug and method

Also Published As

Publication number Publication date
CN102623501A (en) 2012-08-01
CN102623501B (en) 2015-06-03
TWI502742B (en) 2015-10-01

Similar Documents

Publication Publication Date Title
TW201232782A (en) Semiconductor device formed on semiconductor substrate having substrate top surface and preparation method thereof
TWI538063B (en) Dual oxide trench gate power mosfet using oxide filled trench
US10411104B2 (en) Fabrication of shielded gate trench MOSFET with increased source-metal contact
TW408424B (en) Semiconductor device with silicon replacing structure on the insulated layer and the manufacture method thereof
TWI683439B (en) Semiconductor devices in semiconductor substrate and fabrication method thereof
TWI459476B (en) Fabrication of trench dmos device having thick bottom shielding oxide
TWI542009B (en) Termination trench for power mosfet applications and manufacturing method thereof
JP3851776B2 (en) Power MOS device and method for manufacturing MOS device
TWI541902B (en) Transistor device and ?the method of making the transistor device
TWI333242B (en) Field effect transistors with vertically oriented gate electrodes and methods for fabricating the same
US8034686B2 (en) Method of manufacturing a trench MOSFET having trench contacts integrated with trench Schottky rectifiers having planar contacts
US6437404B1 (en) Semiconductor-on-insulator transistor with recessed source and drain
TW201140703A (en) Shielded gate trench MOS with improved source pickup layout
TW201246390A (en) Semiconductor device and manufacturing method thereof
JP2005510088A (en) Trench metal oxide semiconductor field effect transistor device with polycrystalline silicon source contact structure
TW200945580A (en) Trench MOSFET and manufacturing method thereof
JP2007005575A (en) Semiconductor device and its manufacturing method
JP2005327799A (en) Method of manufacturing semiconductor device
JP2008085205A (en) Semiconductor device and its manufacturing method
TW201037788A (en) Semiconductor component and method of manufacture
KR100563095B1 (en) Method for fabricating silicide of semiconductor device
TW518710B (en) Semiconductor integrated circuit device and its manufacture method
KR100617051B1 (en) method for manufacturing of semiconductor device
TW501280B (en) Semiconductor device, and manufacture thereof
TW449837B (en) Method for manufacturing metal gate transistor