TWI477645B - 具高溫氣體注入之化學氣相沈積法 - Google Patents

具高溫氣體注入之化學氣相沈積法 Download PDF

Info

Publication number
TWI477645B
TWI477645B TW098137821A TW98137821A TWI477645B TW I477645 B TWI477645 B TW I477645B TW 098137821 A TW098137821 A TW 098137821A TW 98137821 A TW98137821 A TW 98137821A TW I477645 B TWI477645 B TW I477645B
Authority
TW
Taiwan
Prior art keywords
carrier
gas
chamber
temperature
substrate
Prior art date
Application number
TW098137821A
Other languages
English (en)
Other versions
TW201022470A (en
Inventor
Alex Gurary
Mikhail Belousov
Bojan Mitrovic
Original Assignee
Veeco Instr Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veeco Instr Inc filed Critical Veeco Instr Inc
Publication of TW201022470A publication Critical patent/TW201022470A/zh
Application granted granted Critical
Publication of TWI477645B publication Critical patent/TWI477645B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45504Laminar flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Vapour Deposition (AREA)

Description

具高溫氣體注入之化學氣相沈積法
本發明大致上係關於化學氣相沈積法及裝置。
化學氣相沈積包括將一或多種含有化學物之氣體引導至一基板之一表面上,使得反應物發生反應並在該表面上形成一沈積物。例如,可藉由在一基板上磊晶生長一半導體材料而形成化合物半導體。該基板通常係一呈圓盤形式之晶體材料,通常稱為「晶圓」。化合物半導體(例如III-V半導體)通常係藉由使用一III族金屬源及一V族元素源在一晶圓上生長化合物半導體層而形成。在一方法中(有時稱為「氯化物」方法),以揮發性金屬鹵化物提供III族金屬,最常使用氯化物(例如GaCl2 ),而以V族元素氫化物提供V族元素。在另一方法中(通常稱為金屬有機化學氣相沈積法或「MOCVD」),化學物包含一或多種金屬有機化合物,例如III族金屬鎵、銦及鋁之烷基化合物,且亦包含一V族元素源,例如一或多種V族元素之一或多種氫化物,例如NH3 、AsH3 、PH3 及銻之氫化物。在此等方法中,該等氣體在一晶圓(例如藍寶石、Si、GaAs、InP、InAs或GaP之晶圓)之表面相互反應而形成通式InX GaY AlZ NA AsB PC SbD 之III-V族化合物,其中X+Y+Z=約1,且A+B+C+D=約1,且X、Y、Z、A、B、C及D之每一者可為介於0至1之間。在一些實例中,可用鉍代替一些或所有其他III族金屬。
在任一方法中,使晶圓在一反應腔室中維持於一高溫下。將反應氣體(通常係與惰性載氣混合)引導入該反應腔室中。通常,該等氣體在被引導入該反應腔室時係處於一相對低之溫度下,例如,約50-60℃或更低。隨著該等氣體到達該熱晶圓,其等之溫度及(因此)其等之可用於反應之能量增加。
在化學氣相沈積中廣泛使用之裝置之一形式包含一圓盤狀晶圓載體,其係安裝於該反應腔室內以繞一垂直軸旋轉。該等晶圓係經固持於該載體中,使得該等晶圓之表面在該腔室內面朝上。在繞該軸旋轉該載體時,從該載體上方之一氣流進口元件將該等反應氣體引入該腔室中。該等流動氣體朝向該載體及晶圓向下流動,宜以一層狀塞流形式。隨著該等氣體接近該旋轉之載體,黏滯曳力推動其等繞該軸旋轉,使得在該載體表面附近之一邊界區域內,該等氣體圍繞該軸並朝著該載體之周邊向外流動。當該等氣體流過該載體之外緣時,其等朝著設置於該載體下方之排出口向下流動。此方法最常使用一系列不同的氣體組合物及(在一些情況下)不同的晶圓溫度執行,以視需要沈積複數個具有不同組合物之半導體層,而形成一所要之半導體器件。僅作為實例,在形成發光二極體(「LED」)及二極體雷射時,可藉由使用不同比例之Ga及In沈積III-V半導體層,而形成一多量子井(「MQW」)結構。每一層之厚度可為數十埃左右,即幾個原子層。
此類裝置可提供反應氣體在該載體之表面上方及該晶圓之表面上方之穩定及有序的氣流,使得該載體上之所有晶圓及每一晶圓之所有區域被暴露於大體上均勻之條件。此接著促進材料在該等晶圓上之均勻沈積。此均勻度係重要的,因為即便是一晶圓上所沈積之材料層之組合物及厚度的微小差別,亦可影響所得器件之性質。
晶圓溫度一般係經設定以使所要沈積反應最佳化;其通常為高於400℃,且最普遍為約700-1100℃。一般希望使此類設備於能提供可接受條件之最高腔室壓力、最低轉速及最低氣體流速下操作。通常使用10至1000Torr左右的壓力,且最普遍為約100至約750Torr。需要較低的流速以使昂貴、高純度反應物的浪費最小化,且亦使廢氣處理之需要最小化。較低的轉速使晶圓上諸如離心力及振動之效應最小化。此外,轉速與流速之間通常存在一直接關係;在給定壓力及晶圓溫度條件下,維持穩定、有序氣流及均勻反應條件所需之流速隨著轉速增加而增加。
然而,在本發明之前,可使用之操作條件受到極大的限制。需要在仍保持穩定氣流類型的同時,允許較低轉速及氣體流動、較高操作壓力、或兩者。
本發明之一態樣提供化學氣相沈積法。根據本發明之此態樣之方法宜包含下列步驟:將一或多個基板支撐於一反應腔室內之一載體上,使得該等基板之表面在該腔室內面朝上,同時繞一垂直軸旋轉該載體並使該等基板維持於一400℃或更高之基板溫度(通常為500℃或更高)。本方法宜亦包含從設置於該等基板上方之一進口元件將氣體(最佳為包含一III族金屬源及一V族化合物之氣體)引導入該腔室之步驟。該等氣體在該等基板表面上方朝著該等基板向下並遠離該軸向外流動,且發生反應而在該等基板上形成一沈積物(例如一III-V半導體)。在該等氣體被引入該腔室時,其等進口溫度最佳為高於約75℃,例如約75℃至約350℃,且更佳為高於約100℃,例如約100℃至約250℃。較佳地,該腔室之壁係維持於進口溫度之約50℃內之一溫度下。
根據本發明之此態樣之較佳方法可提供操作範圍的顯著改進。特定言之,根據本發明之此態樣之該等較佳方法可在與使用較低氣體進口溫度之類似方法相比較低的轉速、較低的氣體流速及較高的壓力下操作。
本發明之進一步態樣提供一種化學氣相沈積反應器。根據本發明之此態樣之反應器宜為一旋轉圓盤反應器,且宜包含一氣流進口溫度控制機構,該機構係經配置以使該反應器之該氣流進口元件維持於一如上文關於本方法所論述之進口溫度下。最佳地,該反應器亦包含一腔室溫度控制機構,該機構係經配置以使該腔室之壁維持於一如上文所述之壁溫下。
本發明之又一進一步態樣提供化學氣相沈積裝置及方法,其等使用一比基板溫度低的氣體進口溫度,且此等溫度之間之溫差ΔT為至少約200℃。在此揭示內容中,此等裝置及方法係稱為「冷壁」裝置及方法。通常,冷壁裝置及方法中之ΔT係大於200℃,例如約400℃或更高或約500℃或更高。根據本發明之此等態樣,氣體進口溫度係高於約75℃,且宜高於約100℃。該反應器之該等壁宜維持於一壁溫,該壁溫亦係高於約75℃,且宜高於約100℃。該等冷壁裝置及方法係普遍應用於其中之一或多種反應氣體-包含一有機或金屬有機化合物的化學氣相沈積系統中。
根據本發明之一實施例之裝置(圖1)包含一反應腔室10,其具有一中心軸12。在此實施例中,如正向重力參考框所示,軸12大體上為垂直。腔室10之該等內壁大致上係呈繞軸12旋轉之表面之形式。在該腔室頂部之一氣流區域14中,該內壁16大體上為一圓柱形式,該圓柱具有與該軸同軸之直徑dFR 。一區域18,本文稱為「載體區域」,具有一圓柱形內壁20,該內壁大致上亦為一圓柱形式,該圓柱與軸12同軸且具有比dFR 大的直徑dCR 。該腔室在該氣流區域與載體區域之接合處具有一面朝下之過渡表面22。該腔室亦具有一出口區域24,該出口區域係設置於該載體區域下方。該等腔室壁具有26所示意指示之用於如下文所述使一溫度控制流體通過的通道。雖然在圖1中該腔室之壁被描繪為單一元件,但在實務中,此等壁可由多個元件形成。該等壁亦可包含可移動部分,例如界定用於將晶圓運入及運出該腔室之門之部分。僅作為實例,該載體區域之部分或所有內壁可由一環狀閘門界定,該閘門可在軸向上移動,如美國專利第6,902,623號所顯示,該專利之揭示內容以引用方式併入本文中。除非另行指示,否則應理解該裝置之該腔室及其他元件之描述係參考該裝置在可用於沈積材料之操作條件中之組態。
該裝置具有一晶圓載體驅動機構,其包含一延伸入腔室10中之心軸28。該心軸係與軸12同軸,且可繞該軸旋轉。該晶圓載體驅動機構亦包含一旋轉驅動機構30,例如一連接至該心軸之電動馬達。該裝置亦包含習知元件,例如軸承及真空密閉旋轉密封(未顯示)。
一晶圓載體32安裝於該心軸上。此實施例中之該晶圓載體係一由一耐火、惰性材料(例如鉬、石墨或碳化矽)形成之圓盤狀主體。該載體具有一大體上平坦之頂部表面34及形成於該頂部表面中之凹部36。該等凹部係經配置以固持複數個晶圓38,使得該等晶圓之表面40經暴露且與該載體之該頂部表面34共面或接近共面。在所顯示之操作條件中,該晶圓載體係與心軸28相接合。該心軸在該腔室之該載體區域18內支撐該載體,該頂部表面34及晶圓表面面朝上,朝向該腔室之頂部,此等表面大體上與軸12垂直。載體32之直徑dC 係小於該載體區域18之直徑dCR ,使得該載體之周邊與該載體區域之該內壁20界定一環狀間隙41,該間隙圍繞該載體並與該腔室之該出口區域24連通。例如,在一具有一直徑dC 約12.5英寸(31.75cm)之晶圓載體之系統中,dCR 可為約15.5英寸(39.4cm)。在此實施例中,該內徑dFR 係大約等於該晶圓載體之直徑dC 或稍微大於dC 。通常該晶圓載體係可拆卸地安裝於該心軸上,從而可藉由將該晶圓載體從該心軸移除並更換另一承載新晶圓之載體而重新裝載該裝置。
一加熱器42(例如一電阻加熱元件)設置於該反應腔室中用於加熱該基板載體32。一排氣系統44連接於該腔室之該出口區域24。該排氣系統係經配置以將氣體從該腔室內部排出。該排氣系統宜包含一可控制元件(例如一變速泵或節流閥) 45,其可經調整以在該腔室內維持一所要壓力。一氣流進口元件46安裝至該腔室之該氣流區域14,並形成該腔室之頂壁。該氣流進口元件係設置於該載體區域18上方及該晶圓載體32上方。該氣流進口元件係連接至製程中所使用之該等氣體之源55及56。該氣流進口元件將各種氣流引導入該反應腔室並朝著該晶圓載體及基板向下導入。如下文進一步討論,該等氣流在該腔室之氣流區域14內形成一大體層狀的塞流。通常,該氣流進口元件係經配置以將該等氣體排出於該氣流區域之整個橫截面積上。換言之,該塞狀層流之橫截面積(在與軸12垂直的水平面內觀察)宜具有一接近該氣流區域之內徑dF之直徑。在此橫截面內所見之該氣流直徑宜大約等於或稍微大於載體32之直徑dC 。通常,該氣流進口元件具有分佈於其面朝下之底部表面48上之開口,此等開口係連接至該等氣體源。僅作為實例,該氣流進口元件可如圖2所示配置,其中第一進口係經設置而在該氣流進口底部表面48之諸區域(例如扇形區50)上以陣列分佈,且第二進口係以放射狀延伸之列52分佈。該等第一進口通常係連接至一V族元素(例如氫化物)之源54(圖1),而該等第二進口通常係連接至一III族元素(例如金屬有機物)之源56(圖1)。此等氣體源一般係經配置以提供與例如N2或H2之載氣(該載氣並不參與沈積反應)混合的活性試劑。該氣流進口元件亦可在其底部表面具有用於排放一無活性試劑之載氣的額外開口,該載氣係由一獨立的源55供應。例如,如美國公開專利申請案第20060021574號(該申請案之揭示內容在此以引用方式併入)所揭示,該載氣可在V族與III族元素之氣流之間排放,以在該氣流進口元件附近抑制此等氣流之混合及非所要之反應。亦如(例如)美國公開專利申請案第20070134419號(該申請案之揭示內容在此以引用方式併入)所揭示,可選擇各種氣體流之流速及組合物,以在各種氣流中提供類似的氣體密度及流速。氣流進口元件46具有58所示意指示之供一溫度控制流體流過之溫度控制流體通道。
該裝置之上述特徵可與美國紐約州普萊恩維爾市(Plainview) Veeco Instruments,Inc.以註冊商標TURBODISC銷售的反應器中所使用的裝置特徵類似。
該氣流進口元件46之該等溫度控制流體通道58係連接至一氣流進口溫度控制機構60。圖3描繪一控制機構之一實例。此控制機構包含一泵62,該泵係用於使一流體(最佳為一液體,例如水、乙二醇、烴油或合成有機傳熱液體,例如以註冊商標DOWTHERM銷售的產品)循環穿過該流體進口元件之該等溫度控制流體通道58。該控制機構亦包含一或更多個用於監控該氣流進口元件、從該氣流進口元件排出之氣體或該循環流體之至少一溫度之感測器64。該控制機構宜亦包含一例如散熱器65之結構,其係經配置以將熱從循環流體發散至環境中,且亦可包含一加熱器,例如一電阻加熱器66或其他元件,其係經配置以向循環流體供應額外之熱。該溫度控制機構宜進一步包含一控制電路68,其係連接至一或多個感測器64並經配置以控制該等吸熱及施熱元件之操作。在所描繪之特定實施例中,該控制電路可藉由控制一旁通閥70以將部分或所有循環流體轉離該散熱器而改變從流體中所吸取之熱量,且可藉由控制一連接至該電阻加熱器之電源72之操作而改變供應至流體之熱量。可應用許多其他熱傳元件之配置,且此等配置無需包含一循環流體。例如,該氣流進口元件可具有將熱直接發散至大氣中的散熱片且具有嵌入其結構中的電熱器。在此一配置中,可藉由改變該等散熱片上方之氣流、藉由控制該等電阻加熱器之操作或兩者而控制該氣流進口元件之溫度。亦可藉由冷卻或加熱進入該氣流進口元件之氣體而控制該氣流進口元件及從該氣流進口元件排出之氣體之溫度。在操作期間,熱亦從該晶圓載體及該等晶圓傳遞至該氣流進口元件。因此,該氣流進口溫度控制裝置60並非一定要包含一供熱器件,例如電阻加熱器66。該進口溫度控制裝置60可經配置以分別控制該氣流進口元件之不同區域之溫度。例如,該等溫度控制流體通道58可包含用於該氣流進口元件之不同區域之個別氣流迴路,且該溫度控制裝置可包含與各該迴路相關聯之個別子系統。
該氣流進口元件48宜由金屬或其他具有實質導熱性之材 料所形成,且該氣流進口元件中之該等氣體通道(未顯示)宜與通道58中之流動流體密切接觸,使得從該氣流進口元件中排出之氣體之溫度及該氣流進口元件本身之溫度接近於該熱傳流體之溫度。該氣流進口溫度控制裝置60係經配置以使該氣流進口元件及從該氣流進口元件進入該反應腔室之氣體維持於一進口溫度,該進口溫度係高於約75℃,約75℃至約350℃,更佳為高於約100℃,例如通常約100℃至約250℃,且最普遍為100℃至250℃。
該裝置亦包含一壁溫控制裝置74(圖1)。該壁溫控制裝置可連接至腔室10之該等壁中之該等溫度控制流體通道26,且可包含與該進口溫度控制裝置60中之元件類似之元件。該壁溫控制裝置宜經配置以使氣流區域14中(且宜亦使該載體區域18中)之該等腔室壁維持於一在以上關於進口溫度所論述之範圍內之壁溫。該壁溫較佳係接近於該進口溫度,例如在該進口溫度之約50℃內,且更佳在約25℃內。該壁溫控制裝置74可包含多個用於個別控制該腔室壁之個別區域之溫度之元件。
在根據本發明之一實施例之一製程方法中,該等氣體源54-56係經致動以朝向該晶圓載體32及晶圓38以一層狀、向下塞流形式供應氣體(包含III族及V族元素,且通常亦包含一載氣)之一氣流。如於與軸12垂直之一水平面中所見,該氣體流速通常為每平方釐米該塞流之橫截面積每分鐘約25至約250標準毫升。因為如於此平面中所見之該塞流之面積係接近於該晶圓載體頂部表面34及晶圓頂部表面 40之暴露面積,因此基於該載體及晶圓面積所計算之氣體流速通常係大致相同,即每平方釐米面積每分鐘約25至約250標準毫升。例如,在一具有一直徑約12.5英寸(31.75cm)之晶圓載體之系統中,流速通常為每分鐘約50-300標準公升,即每平方釐米該晶圓載體及該等晶圓之暴露表面積每分鐘約60-400標準毫升。有關本揭示內容中所使用之一氣體之「標準」公升或毫升係指氣體在25℃(298°K)及1atm絕對壓力下之體積。該排氣系統44係經控制以在該反應腔室中維持一所要壓力,例如高於約10Torr,更佳為高於約100Torr,且通常為約250Torr至約1000Torr,最通常為約250Torr至約750Torr。該旋轉驅動器30係經致動以使該心軸28,且因此使晶圓載體32,以一所要轉速(通常高於每分鐘約25轉且更普遍為每分鐘約100至約1500轉)繞該軸12轉動。加熱器42係經致動以使該晶圓載體及基板維持於一所要基板溫度,通常係高於約400℃,更普遍為約700℃-1100℃。通常選擇該基板溫度以使沈積反應之動力最佳化。
隨著該晶圓載體18的快速旋轉,該晶圓載體之表面及該等晶圓之表面也快速移動。該晶圓載體及該等晶圓之快速運動導致氣體繞軸12旋轉運動,及遠離軸12之徑向流動,並引起各種氣流中的氣體在圖1所示的邊界層內穿越該晶圓載體之該頂部表面34及穿越該等晶圓之該等暴露表面40向外流動。當然在實務中,在該氣流區域14中由箭頭所指示之大致朝下之流態與該邊界層76中之氣流之 間存在一漸進過渡。然而,該邊界層可被視為其中氣體流大體上與該等晶圓表面平行之區域。在典型的操作條件下,該邊界層之厚度T約為1cm左右。相比之下,從氣流進口元件之朝下面至該等晶圓之該等表面40之間之垂直距離通常為約5-8cm。
該晶圓載體之旋轉運動將氣體繞著該晶圓載體之該等周邊邊緣向外抽送,且因此氣體流過該晶圓載體之邊緣上方,並向下穿過該晶圓載體與該載體區域之內壁20之間之間隙41。流過該間隙之氣體流入排氣系統44。通常在該內壁20與面朝下之壁22附近形成一渦流80。若此渦流保持遠離該晶圓載體及該等晶圓,則其並不會擾亂該等晶圓表面上方之平穩、均勻氣體流。大致而言,該渦流傾向於隨該晶圓載體之轉速增加而增強。然而,若該載體之轉速太低,則在中心軸12附近發生再循環。此再循環係由對流引起;經該熱晶圓載體及晶圓加熱之氣體變得密度較低且易於上升。此性質的再循環亦將擾亂該等晶圓表面上方之平穩氣流。此兩問題傾向於隨該反應器內壓力的增加而變得更嚴重。當內壁20附近之渦流未延伸至該晶圓載體上方,且當該中心軸12附近未發生再循環時,產生所要之操作條件(本文稱為「非再循環」操作)發生。
圖4繪示此等效應。圖4展示由一在一氣體流速、氣體組合物、基板溫度及氣體進口溫度下操作之特定反應器之計算流體力學所得之結果(顯示於壓力及轉速曲線圖上)。圖4中實線曲線下方之壓力及轉速代表非再循環操作,而實線曲線上方之壓力及轉速則代表非所要條件。可在一給定壓力下使用之最小轉速係由對流再循環所主宰。例如,在一300Torr壓力(實線水平線)下,最小可用轉速為約260rpm;低於該速度,則由於對流而在該軸附近存在再循環。可在一給定壓力下使用之最大轉速受限於該晶圓載體邊緣處之渦流。在300Torr時,最大轉速為約700rpm。在更高壓力下,最小速度升高,且最大速度降低,使得在約480Torr之壓力下,最小及最大速度相等。此意味著不存在使此系統在給定氣體流速、氣體組合物、基板溫度及氣體進口溫度下能夠在一約480Torr或更高壓力下以一非再循環流態操作之轉速。
雖然本發明並不受限於任何操作理論,但可藉由考慮特定的無因次數及其之比值而理解圖4之曲線形狀。由下式1定義之雷諾(Reynolds)數Re提供一強制對流之顯著性之量度。
由下式2定義之旋轉雷諾數Reω 提供一由於該晶圓載體旋轉所產生之強制對流之顯著性之量度。
由下式3定義之格拉曉夫(Grashof)數Gr 提供一自然對流之顯著性之量度。
在式1-3之每一者中:ρ mix 、μ mix 、ν mix 分別代表氣體混合物之密度、黏度及速度。
ω係該晶圓載體之角速度。
d 係該晶圓載體之直徑。
H 係該氣流進口元件與該晶圓載體頂部表面之間之垂直距離。
t s 係基板溫度。
t w 係反應器壁溫度,其係假定為與該進口溫度t i 相同。
非再循環操作之標準係由如下式4所示之Re、Reω 及Gr之特定無因次比率之臨界值所定義。此等比率代表該反應器中不同力之相對強度之比率。
在非常低的轉速下,對流效應僅受到塞流的抗衡,且大體上不受該晶圓載體之旋轉的影響。因此,只要滿足常數C2 之不等式,該軸附近由於對流所引起之再循環就不會發生。此在圖4中藉由水平虛線顯示。在較高的轉速下,旋轉效應變得顯著,且若滿足常數C1 之不等式,則發生無由於對流所引起之再循環之操作。此在圖4中藉由向上傾斜之虛線表示。在該晶圓載體外側之渦流被較高的轉速提高但受到更大的向外氣流抑制。如圖4中之彎曲虛線所示,若滿足常數C3 之不等式,則發生無渦流擴展至該載體邊緣上方之操作。
圖5顯示氣體進口溫度之效應。圖5中各曲線係與圖4之實線曲線類似。在此氣體流速、氣體組合物及基板溫度再次係固定的,且不同實線代表不同氣體進口溫度之計算結果。對各曲線而言,氣體進口溫度ti與壁溫tw係彼此相等。提高進口溫度將加寬非再循環條件盛行之操作範圍。此效應在ti高於約75℃(尤其是約100℃或更高)時尤為明顯。與ti為25℃及50℃的曲線相比,ti為100℃及200℃的曲線在大體上更高的壓力下顯現非再循環操作。此外,在ti為25℃或50℃時可發生非再循環操作之操作壓力下,在ti為100℃或200℃時之最小轉速大體上降低。例如,在400Torr時,需要幾近400rpm之最小轉速來維持ti為25℃時之非再循環操作,而為維持ti為200℃時之非再循環操作之最小轉速係僅約120rpm。因此,藉由提高進口溫度,且宜亦提高壁溫,可提高操作壓力,降低轉速,或兩者。此外,穩定操作之最小流速與轉速直接相關。隨著ti 增加及轉速降低,穿過該反應器之氣體之所要流速大體上降低。對於再更高的ti,此等效應將繼續。然而,使用習知試劑(例如III族金屬烷基化合物及V族氫化物)時,通常需要使ti 維持低於約250℃以限制非所要之副反應,例如在該氣流進口元件上形成固體沈積物。當可以其他方式抑制此等非所要反應時,可使用大於250℃之ti
某種程度上,可定性地理解此等效應。氣體隨溫度之升高而膨脹。因此,對於一給定的氣體組合物及給定的流速(以標準公升/每分鐘表示),體積流速(以公升/每分鐘表示)隨進口溫度之增加而提高。較高的體積流速接著意味著向下塞流中之氣體速度更大。此傾向於抗衡對流效應。更大的體積流速亦意味氣體遠離該軸徑向向外移動之速度亦增加。此傾向於阻止渦流靠近該晶圓載體。
可使用上述特徵之許多變化及組合。例如,可改變反應器之大小及反應器壁之組態。此外,雖然前文討論係參照III-V半導體之沈積,但亦可將本發明應用於其他材料之化學氣相沈積,尤其是需要高基板溫度來進行沈積及習知使用低氣體進口溫度及壁溫之材料。使用低於基板溫度之氣體進口溫度及此等溫度之間之溫差ΔT為至少約200℃之化學氣相沈積裝置及方法在本揭示內容中稱為「冷壁」裝置及方法。通常,在冷壁裝置及方法中,ΔT係高於200℃,例如,約400℃或更高或約500℃或更高。例如,冷壁裝置及方法通常係用於其中一或更多種反應氣體包含一有機或金屬有機化合物的化學氣相沈積系統中。特定冷壁沈積裝置包含一旋轉載體。例如,此類冷壁系統可用於從包含矽烷及一低碳烷基(例如丙烷)之反應氣體中形成碳化矽。其他實例包含鑽石、類鑽碳、除上述III族氮化物半導體之外之氮化物及其他碳化物之化學氣相沈積。本發明亦可應用於此等系統。
10...反應腔室
12...中心軸
14...氣流區域
16...內壁
18...載體區域
20...內壁
22...面朝下之過渡表面
24...出口區域
26...通道
28...心軸
30...旋轉驅動機構
32...晶圓載體
34...頂部表面
36...凹部
38...晶圓
40...晶圓之表面
41...環狀間隙
42...加熱器
44...排氣系統
45...可控制元件
46...氣流進口元件
48...底部表面
50...扇形區
52...列
54...氣體源
55...氣體源
56...氣體源
58...溫度控制流體通道
60...氣流進口溫度控制機構
62...泵
64...感測器
65...散熱器
66...電阻加熱器
68...控制電路
70...旁通閥
72...電源
74...壁溫控制裝置
dc ...載體32之直徑c
dcr ...內壁20之直徑cr
dfr ...內壁16之直徑fr
圖1係根據本發明之一實施例之一反應器之示意圖;
圖2係描繪圖1所顯示之該反應器之一組件之概略橫截面圖;
圖3係圖1所顯示之該反應器之另一組件之示意圖;及
圖4及圖5係描繪特定操作條件之曲線圖。
10...反應腔室
12...中心軸
14...氣流區域
16...內壁
18...載體區域
20...內壁
22...面朝下之過渡表面
24...出口區域
26...通道
28...心軸
30...旋轉驅動機構
32...晶圓載體
34...頂部表面
36...凹部
38...晶圓
40...晶圓之表面
41...環狀間隙
42...加熱器
44...排氣系統
45...可控制元件
46...氣流進口元件
48...底部表面
54...氣體源
55...氣體源
56...氣體源
58...溫度控制流體通道
60...氣流進口溫度控制機構
74...壁溫控制裝置
dc ...載體32之直徑c
dcr ...內壁20之直徑cr
dfr ...內壁16之直徑fr

Claims (36)

  1. 一種化學氣相沈積方法,其包括:(a)在一反應腔室內於一載體上支撐一或多個基板,使得該等基板之表面在該腔室內面朝上,同時繞一垂直軸旋轉該載體並使該等基板維持於一400℃或更高之基板溫度;及(b)從設置於該等基板上方之一進口元件將包含一III族金屬有機化合物及一V族氫化物之氣體引導入該腔室,使得該III族金屬有機化合物及該V族氫化物在該等基板之該等表面上方在自該進口元件向下延伸之氣流區域中為實質上分離之流,而朝著該等基板向下流動,並接著在介於該氣流區域及該基板間之邊界區域中遠離該軸向外流動,且發生反應而在該基板上形成III-V族化合物,以及該氣體流進非再循環操作,該等氣體在被引入該腔室時係處於一高於約75℃之進口溫度下。
  2. 如請求項1之方法,其進一步包括使該腔室之壁維持於一介於75℃與350℃之間之壁溫。
  3. 如請求項1之方法,其進一步包括使該腔室之壁維持於該進口溫度之約50℃內之壁溫。
  4. 如請求項1之方法,其中該進口溫度係自75℃至350℃。
  5. 如請求項1之方法,其進一步包括使該腔室內之壓力維持於約10Torr或更高之步驟。
  6. 如請求項5之方法,其中該壓力為約100Torr或更高。
  7. 如請求項6之方法,其中該壓力係約200Torr至約750 Torr。
  8. 如請求項1之方法,其中該載體係以每分鐘約25轉或更高之一速度旋轉。
  9. 如請求項1之方法,其中該載體係以每分鐘約100至約1500轉之一速度旋轉。
  10. 如請求項1之方法,其中執行該引導氣體之步驟,使得該等氣體從該進口元件以一層狀塞流平行於該軸向下流動。
  11. 如請求項10之方法,其中該層狀塞流具有一在一水平面中之橫截面積,該面積係大約等於或大於該載體及該等基板在一水平面中之一面積。
  12. 如請求項10之方法,其中該層狀塞流提供每平方釐米該載體及該等基板之面積每分鐘約25至約250標準毫升。
  13. 如請求項1之方法,其進一步包括將氣體於該載體下方從該腔室內排出,使得遠離該軸向外流動之氣體大致在該載體之一外緣與該腔室之該壁之間向下移動。
  14. 如請求項1之方法,其中該等氣體包含一或多種載氣。
  15. 一種化學氣相沈積反應器,其包括:(a)一腔室,其具有一或多個壁;(b)一晶圓載體,其係設置於該腔室內且經配置以固持一或多個基板,使得該等基板之表面在該腔室內面朝上;(c)一晶圓載體驅動機構,其係經調適以繞一大體上垂直的軸旋轉該晶圓載體; (d)一加熱器,其係經調適以使該等基板維持於一400℃或更高之基板溫度;(e)一或多個氣體源,其等係經配置以供應包含反應氣體之氣體,其中該一或多個氣體源係可操作以供應包含一III族金屬有機化合物及一V族氫化物之氣體;(f)一氣流進口元件,其係在該載體高度上方與該腔室連通,該氣流進口元件係經配置以將該III族金屬有機化合物及該V族氫化物之氣體朝著該等基板向下引導,在自該進口元件向下延伸之氣流區域中為實質上分離之流;及(g)一氣流進口溫度控制機構,其係經配置以使該氣流進口維持於一高於約75℃但低於該基板溫度之進口溫度下,使得該進口溫度與該基板溫度之間存在一至少約200℃之溫差。
  16. 如請求項15之反應器,其進一步包括一腔室溫度控制機構,該腔室溫度控制機構係經配置以使該腔室之壁維持於一高於約75℃之壁溫。
  17. 如請求項15之反應器,其中該腔室之壁具有一或多個大體上呈繞該軸旋轉之表面形式之內表面。
  18. 如請求項17之反應器,其中該晶圓載體係呈一圓盤形式,該圓盤具有一大致上水平之上表面及在該上表面中用於固持該等基板之凹部,該圓盤具有一外徑,該反應腔室之該等內表面界定一載體區域,該載體區域具有大於該晶圓載體之直徑,該晶圓載體係設置於該反應區域 中,使得在該圓盤與該腔室之該內表面之間存在一間隙,該腔室具有一或多個在該晶圓載體下方與該腔室連通之排出口。
  19. 如請求項18之反應器,其中該反應腔室之該等內表面界定該氣流區域,該氣流區域具有一小於該載體區域之該直徑之直徑,該氣流區域從該氣流進口元件向下延伸至該載體區域。
  20. 如請求項19之反應器,其中該反應腔室之該等內表面界定該氣流區域與該載體區域之接合處之直徑之一陡增。
  21. 如請求項15之反應器,其中該氣流進口元件係經配置成以一層狀塞流引導該等氣體,該塞流具有一在一水平面上之橫截面積,該橫截面積係大約等於或大於該載體及該等基板在一水平面上之一面積。
  22. 如請求項1之方法,其中該進口溫度係低於該基板溫度,使得該進口溫度與該基板溫度之間存在一至少約200℃之溫差。
  23. 如請求項22之方法,其中該溫差為至少約400℃。
  24. 如請求項22之方法,其中該等氣體包含一或多種選自由有機及金屬有機化合物組成之群之化合物。
  25. 如請求項22之方法,其進一步包括使該腔室之壁維持於該進口溫度之約50℃內之一壁溫下。
  26. 如請求項1之方法,其中氣體進口溫度、腔室內壓力、氣體流速以及載體轉速,係使得當在相同腔室中以相同操作及除了氣體進口溫度低於60℃外所有其他操作條件 皆相同時,可產生再循環操作。
  27. 如請求項1之方法,其中該基板溫度係自700℃至1100℃;該腔室係經維持在約100Torr或更高之壓力;及該載體係以每分鐘約100至約1500轉之速度旋轉。
  28. 如請求項27之方法,其中執行該引導氣體之步驟,使得該等氣體以一層狀塞流在該氣流區域中平行於該軸向下流動,該層狀塞流具有一在一水平面中之橫截面積,該面積係大約等於或大於該載體及該等基板在一水平面中之一面積,及其中該層狀塞流提供每平方釐米該載體及該等基板之面積每分鐘約25至約400標準毫升。
  29. 如請求項28之方法,其中該進口溫度係自100℃至250℃,以及該壓力係自250Torr至1000Torr。
  30. 如請求項1之方法,其中該氣體主要由該III族金屬有機化合物及該V族氫化物,以及或無一或多種載氣所組成。
  31. 如請求項1之方法,其中該氣流進口元件與該載體及基板距離至少5cm。
  32. 如請求項1之方法,其中該氣流進口元件與該載體及基板距離5cm至8cm。
  33. 如請求項1之方法,其中該III族金屬有機化合物包含一鎵金屬有機化合物,該V族氫化物包含氨,以及該III-V族化合物包含氮化鎵。
  34. 如請求項1之方法,其中該III族金屬有機化合物包含一鎵金屬烷基化合物,該V族氫化物包含氨,以及該III-V 族化合物包含氮化鎵。
  35. 如請求項34之方法,其中該進口溫度係自100℃至250℃。
  36. 如請求項34之方法,其中該進口溫度係200℃。
TW098137821A 2008-11-06 2009-11-06 具高溫氣體注入之化學氣相沈積法 TWI477645B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/291,350 US8895107B2 (en) 2008-11-06 2008-11-06 Chemical vapor deposition with elevated temperature gas injection

Publications (2)

Publication Number Publication Date
TW201022470A TW201022470A (en) 2010-06-16
TWI477645B true TWI477645B (zh) 2015-03-21

Family

ID=42131767

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098137821A TWI477645B (zh) 2008-11-06 2009-11-06 具高溫氣體注入之化學氣相沈積法

Country Status (7)

Country Link
US (4) US8895107B2 (zh)
EP (1) EP2356671A4 (zh)
JP (1) JP5567582B2 (zh)
KR (1) KR20110084285A (zh)
CN (1) CN102272892B (zh)
TW (1) TWI477645B (zh)
WO (1) WO2010054184A2 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008088743A1 (en) * 2007-01-12 2008-07-24 Veeco Instruments Inc. Gas treatment systems
WO2009049020A2 (en) 2007-10-11 2009-04-16 Valence Process Equipment, Inc. Chemical vapor deposition reactor
JP5083193B2 (ja) * 2008-12-12 2012-11-28 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
US8367562B2 (en) * 2009-03-16 2013-02-05 Globalfoundries Inc. Method for uniform nanoscale film deposition
US8888919B2 (en) * 2010-03-03 2014-11-18 Veeco Instruments Inc. Wafer carrier with sloped edge
US20130171350A1 (en) * 2011-12-29 2013-07-04 Intermolecular Inc. High Throughput Processing Using Metal Organic Chemical Vapor Deposition
AU2013289866B2 (en) * 2012-07-13 2015-04-02 Gallium Enterprises Pty Ltd Apparatus and method for film formation
US20140120735A1 (en) * 2012-10-31 2014-05-01 Macronix International Co., Ltd. Semiconductor process gas flow control apparatus
US20140124788A1 (en) * 2012-11-06 2014-05-08 Intermolecular, Inc. Chemical Vapor Deposition System
WO2014103728A1 (ja) * 2012-12-27 2014-07-03 昭和電工株式会社 成膜装置
US20160194753A1 (en) * 2012-12-27 2016-07-07 Showa Denko K.K. SiC-FILM FORMATION DEVICE AND METHOD FOR PRODUCING SiC FILM
KR102350588B1 (ko) * 2015-07-07 2022-01-14 삼성전자 주식회사 인젝터를 갖는 박막 형성 장치
US9748113B2 (en) 2015-07-30 2017-08-29 Veeco Intruments Inc. Method and apparatus for controlled dopant incorporation and activation in a chemical vapor deposition system
EP3338299A4 (en) * 2015-08-18 2019-05-15 Veeco Instruments Inc. TREATMENT-SPECIFIC SEMICONDUCTOR WAFER SUPPORT CORRECTION FOR ENHANCED THERMAL UNIFORMITY IN CHEMICAL VAPOR DEPOSITION SYSTEMS AND METHODS
CA2974387A1 (en) * 2016-08-30 2018-02-28 Rolls-Royce Corporation Swirled flow chemical vapor deposition
IT201800021040A1 (it) * 2018-12-24 2020-06-24 Danilo Vuono Supporto solido, sistema, e procedimenti
WO2023027707A1 (en) * 2021-08-25 2023-03-02 Applied Materials, Inc. Process gas containment using elastic objects mated with reactor interfaces
CN116288279B (zh) * 2023-05-23 2023-08-18 中微半导体设备(上海)股份有限公司 一种气相沉积装置及基片处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902623B2 (en) * 2001-06-07 2005-06-07 Veeco Instruments Inc. Reactor having a movable shutter
US20080173735A1 (en) * 2007-01-12 2008-07-24 Veeco Instruments Inc. Gas treatment systems
US9218280B2 (en) * 2013-02-05 2015-12-22 Via Technologies, Inc. Non-volatile memory apparatus and operating method thereof

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0377384A (ja) 1989-08-19 1991-04-02 Semiconductor Energy Lab Co Ltd 窒化ホウ素を用いた電子装置
JP2556211B2 (ja) 1991-03-13 1996-11-20 日亜化学工業株式会社 半導体結晶層の成長装置とその成長方法
US5320680A (en) 1991-04-25 1994-06-14 Silicon Valley Group, Inc. Primary flow CVD apparatus comprising gas preheater and means for substantially eddy-free gas flow
US5336324A (en) 1991-12-04 1994-08-09 Emcore Corporation Apparatus for depositing a coating on a substrate
JP2773849B2 (ja) * 1992-02-12 1998-07-09 シャープ株式会社 気相の成長方法及び光励起気相成長装置
US5370739A (en) 1992-06-15 1994-12-06 Materials Research Corporation Rotating susceptor semiconductor wafer processing cluster tool module useful for tungsten CVD
US5975912A (en) 1994-06-03 1999-11-02 Materials Research Corporation Low temperature plasma-enhanced formation of integrated circuits
KR100492258B1 (ko) 1996-10-11 2005-09-02 가부시키가이샤 에바라 세이사꾸쇼 반응가스분출헤드
EP0854210B1 (en) * 1996-12-19 2002-03-27 Toshiba Ceramics Co., Ltd. Vapor deposition apparatus for forming thin film
US6232196B1 (en) 1998-03-06 2001-05-15 Asm America, Inc. Method of depositing silicon with high step coverage
WO1999066565A1 (en) 1998-06-18 1999-12-23 University Of Florida Method and apparatus for producing group-iii nitrides
US6289842B1 (en) 1998-06-22 2001-09-18 Structured Materials Industries Inc. Plasma enhanced chemical vapor deposition system
US6066196A (en) 1998-09-18 2000-05-23 Gelest, Inc. Method for the chemical vapor deposition of copper-based films and copper source precursors for the same
DE19855637A1 (de) 1998-12-02 2000-06-15 Aixtron Ag Verfahren und System zur Halbleiterkristallherstellung mit Temperaturverwaltung
KR100428521B1 (ko) * 1999-04-20 2004-04-29 도쿄 엘렉트론 가부시키가이샤 IC 제조에서의 PECVD-Ti 및 CVD-TiN 막의 단일 챔버 처리 방법
US6331212B1 (en) 2000-04-17 2001-12-18 Avansys, Llc Methods and apparatus for thermally processing wafers
US6451692B1 (en) 2000-08-18 2002-09-17 Micron Technology, Inc. Preheating of chemical vapor deposition precursors
DE10133914A1 (de) 2001-07-12 2003-01-23 Aixtron Ag Prozesskammer mit abschnittsweise unterschiedlich drehangetriebenem Boden und Schichtabscheideverfahren in einer derartigen Prozesskammer
JP2004031874A (ja) 2002-06-28 2004-01-29 Toshiba Ceramics Co Ltd 半導体のエピタキシャル成長装置
JP3803788B2 (ja) * 2002-04-09 2006-08-02 農工大ティー・エル・オー株式会社 Al系III−V族化合物半導体の気相成長方法、Al系III−V族化合物半導体の製造方法ならびに製造装置
US20040050325A1 (en) 2002-09-12 2004-03-18 Samoilov Arkadii V. Apparatus and method for delivering process gas to a substrate processing system
US20070071896A1 (en) 2003-08-20 2007-03-29 Veeco Instruments Inc. Alkyl push flow for vertical flow rotating disk reactors
JP2005226257A (ja) 2004-02-10 2005-08-25 Panahome Corp 通気構造
KR101309334B1 (ko) 2004-08-02 2013-09-16 비코 인스트루먼츠 인코포레이티드 화학적 기상 증착 반응기용 멀티 가스 분배 인젝터
JP4603370B2 (ja) 2005-01-18 2010-12-22 創世理工株式会社 基板上に作製された半導体光デバイスおよびその作製方法
US7674352B2 (en) * 2006-11-28 2010-03-09 Applied Materials, Inc. System and method for depositing a gaseous mixture onto a substrate surface using a showerhead apparatus
US7901508B2 (en) 2007-01-24 2011-03-08 Widetronix, Inc. Method, system, and apparatus for the growth of SiC and related or similar material, by chemical vapor deposition, using precursors in modified cold-wall reactor
US20080173239A1 (en) 2007-01-24 2008-07-24 Yuri Makarov Method, system, and apparatus for the growth of SiC and related or similar material, by chemical vapor deposition, using precursors in modified cold-wall reactor
WO2009049020A2 (en) * 2007-10-11 2009-04-16 Valence Process Equipment, Inc. Chemical vapor deposition reactor
US7976631B2 (en) * 2007-10-16 2011-07-12 Applied Materials, Inc. Multi-gas straight channel showerhead
US20100006023A1 (en) 2008-07-11 2010-01-14 Palo Alto Research Center Incorporated Method For Preparing Films And Devices Under High Nitrogen Chemical Potential

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902623B2 (en) * 2001-06-07 2005-06-07 Veeco Instruments Inc. Reactor having a movable shutter
US20080173735A1 (en) * 2007-01-12 2008-07-24 Veeco Instruments Inc. Gas treatment systems
US9218280B2 (en) * 2013-02-05 2015-12-22 Via Technologies, Inc. Non-volatile memory apparatus and operating method thereof

Also Published As

Publication number Publication date
US20140352619A1 (en) 2014-12-04
US20100112216A1 (en) 2010-05-06
WO2010054184A3 (en) 2010-07-22
EP2356671A4 (en) 2013-07-17
EP2356671A2 (en) 2011-08-17
US20150056790A1 (en) 2015-02-26
CN102272892A (zh) 2011-12-07
US8937000B2 (en) 2015-01-20
US20120040514A1 (en) 2012-02-16
JP5567582B2 (ja) 2014-08-06
CN102272892B (zh) 2014-07-23
US9053935B2 (en) 2015-06-09
WO2010054184A2 (en) 2010-05-14
JP2012508469A (ja) 2012-04-05
KR20110084285A (ko) 2011-07-21
US8895107B2 (en) 2014-11-25
TW201022470A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
TWI477645B (zh) 具高溫氣體注入之化學氣相沈積法
TWI432598B (zh) Cvd反應器之排氣裝置
CN103502508B (zh) 使用承载器扩展的晶圆加工
US20150187620A1 (en) Water Carrier Having Thermal Cover for Chemical Vapor Deposition Systems
JP2016184742A (ja) 傾斜縁を有するウエハキャリア
KR20160003441U (ko) 31 포켓 구성을 갖는 웨이퍼 캐리어
JP2008028270A (ja) 結晶成長方法及び結晶成長装置
JP6101591B2 (ja) エピタキシャルウェハの製造装置および製造方法
KR20160003442U (ko) 14 포켓 구성을 갖는 웨이퍼 캐리어
TWI810333B (zh) 氣相成長裝置
CN210030883U (zh) 具有多区域引射器块的化学气相沉积设备
US20190032244A1 (en) Chemical vapor deposition system
TW201606120A (zh) 用於化學氣相沈積之旋轉盤反應器之氣體流軸盤
TWI745354B (zh) 周邊清洗遮板及流量控制系統及方法
JP2020161544A (ja) 成膜装置および成膜方法
JP2021005589A (ja) 成膜装置および成膜方法
TWM538237U (zh) 具有31個容置區的排列組態之晶圓載具

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees