TWI453804B - 形成半導體元件的金屬閘極堆疊的方法 - Google Patents

形成半導體元件的金屬閘極堆疊的方法 Download PDF

Info

Publication number
TWI453804B
TWI453804B TW098126154A TW98126154A TWI453804B TW I453804 B TWI453804 B TW I453804B TW 098126154 A TW098126154 A TW 098126154A TW 98126154 A TW98126154 A TW 98126154A TW I453804 B TWI453804 B TW I453804B
Authority
TW
Taiwan
Prior art keywords
metal gate
layer
forming
semiconductor device
semiconductor substrate
Prior art date
Application number
TW098126154A
Other languages
English (en)
Other versions
TW201009905A (en
Inventor
Jr Jung Lin
Yih Ann Lin
Ryan Chia Jen Chen
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Publication of TW201009905A publication Critical patent/TW201009905A/zh
Application granted granted Critical
Publication of TWI453804B publication Critical patent/TWI453804B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02071Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a delineation, e.g. RIE, of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • H01L21/31122Etching inorganic layers by chemical means by dry-etching of layers not containing Si, e.g. PZT, Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

形成半導體元件的金屬閘極堆疊的方法
本發明係有關於半導體元件的製造方法,特別係關於半導體元件的金屬閘極堆疊的製造方法。
當例如金屬氧化半導體場效應電晶體(metal-oxide-semiconductor field-effect transistor;MOSFET)的半導體元件隨著各種技術節點(technology node)的改變而微縮化時,高介電常數(high k)介電材料及金屬被用來形成閘極堆疊(gate stack)。於一形成金屬閘極堆疊(metal gate stack)的方法中,需進行多個乾蝕刻步驟及溼蝕刻步驟。舉例而言,當蓋層設置於high k介電材料層及金屬閘極層之間時,需要在兩個乾蝕刻步驟之間進行一溼蝕刻步驟以移除蓋層,並減少嚴重影響產品特性的殘餘物。因此,為形成金屬閘極堆疊,需要進行多重蝕刻步驟且應用多個蝕刻裝置。於此例子中,蝕刻方法包括一乾蝕刻步驟、一溼蝕刻步驟、以及一第二乾蝕刻步驟。然而,如此金屬閘極蝕刻方法具有製程複雜及製造週期時間長的缺點,且提高了製造成本。
本發明提供一種形成半導體元件的金屬閘極堆疊的方法,包括下列步驟:於一蝕刻腔室內,藉由一圖案化罩幕的定義閘極區的開口對一半導體基底進行一第一乾蝕刻步驟,以移除位於該半導體基底上的一多晶矽層及一金屬閘極層;於該蝕刻腔室內提供一水蒸氣至該半導體基底,以移除位於該半導體基底上的一蓋層;以及於該蝕刻腔室內對該半導體基底進行一第二乾蝕刻步驟,以移除一高介電常數(high k)介電材料層。
本發明也提供一種形成半導體元件的金屬閘極堆疊的方法,包括下列步驟:於一蝕刻腔室內,藉由一圖案化罩幕的定義閘極區的開口對一半導體基底進行一第一乾蝕刻步驟,以移除位於該半導體基底上的一閘極金屬層;於該蝕刻腔室內提供一氧電漿及氬電漿中的至少一個至該半導體基底,以移除一蓋層;於該蝕刻腔室內對該半導體基底進行一第二乾蝕刻步驟,以移除一high k介電材料層;以及對該半導體基底進行一濕蝕刻步驟以移除一聚合殘餘物。
本發明還提供一種形成半導體元件的方法,包括下列步驟:於一蝕刻腔室內對一半導體基底進行一第一乾蝕刻步驟以移除位一金屬閘極層;於該蝕刻腔室內提供一水蒸氣、氧電漿、及氬電漿中的至少一個至該半導體基底以移除一蓋層;以及於該蝕刻腔室內對該半導體基底進行一第二乾蝕刻步驟以移除一high k介電材料層,藉此形成一閘極堆疊。
有關各實施例之製造和使用方式係如以下所詳述。然而,值得注意的是,本發明所提供之各種可應用的發明概念係依具體內文的各種變化據以實施,且在此所討論的具體實施例僅是用來顯示具體使用和製造本發明的方法,而不用以限制本發明的範圍。以下係透過各種圖示及例式說明本發明較佳實施例的製造過程。在本發明各種不同之各種實施例和圖示中,相同的符號代表相同或類似的元件。此外,當一層材料層是位於另一材料層或基板之上時,其可以是直接位於其表面上或另外插入有其他中介層。
第1圖為根據本發明概念所構成的一實施例的方法100的流程圖,用以形成具有金屬閘極堆疊(metal gate stack)的半導體元件。第2圖為一實施例所形成的具有金屬閘極堆疊的半導體結構200的剖面圖。半導體元件的形成方法100係參照第1圖及第2圖作說明。
方法100起始於步驟102,提供一半導體基底210。半導體基底210包括矽。半導體基底210也可包括鍺(germanium)或矽鍺(silicon germanium)。於其他實施例中,可使用其他半導體材料用作半導體基底210,例如鑽石(diamond)、碳化矽(silicon carbide;SiC)、砷化鎵(gallium arsenic;GaAs)、磷砷化鎵(gallium arsenic phosphorous;GaAsP)、砷化鋁銦(aluminum indium arsenic;AlInAs)、砷化鋁鎵(aluminum gallium arsenic;AlGaAs)、磷化鎵銦(gallium indium phosphorus;GaInP)、或其其他適合的組合。
方法100進行至步驟104,於半導體基底210上形成多個金屬閘極堆疊材料層(metal-gate-stack material layers)。於一實施例中,高介電常數(high k)介電材料層形成於半導體基底上。金屬閘極層形成於high k介電材料層上。此外,蓋層更插介於high k介電材料層及金屬閘極層之間。high k介電材料層是以適當的方法形成,例如原子層沉積法(atomic layer deposition;ALD)。其他形成high k介電材料層的方法包括金屬有機化學氣相沉積法(metal organic chemical vapor deposition;MOCVD)、物理氣相沉積法(physical vapor deposition;PVD)、紫外光臭氧氧化法(ultraviolet UV-Ozone Oxidation)、及分子束磊晶法(molecular beam epitaxy;MBE)。於一實施例中,high k介電材料包括氧化鉿(hafnium oxide;HfO2 )。於其他實施例中,high k介電材料包括氧化鋁(aluminum oxide;Al2 O3 )。或者是,high k介電材料包括金屬氮化物(metal nitride)、金屬矽化物(metal silicate)、或其他金屬氧化物(metal oxide)。
金屬閘極層是以PVD法或其他適合的方法形成。金屬閘極層包括氮化鈦(titanium nitride)。於其他實施例中,金屬閘極層包括氮化鉭(tantalum nitride)、氮化鉬(molybdenum nitride)、或氮化鋁鈦(titanium aluminum nitride)。蓋層插介於high k介電材料層及金屬閘極層之間。蓋層包括氧化鑭(lanthanum oxide;LaO)。蓋層也可包括其他適合的材料。
第2圖顯示一實施例的金屬閘極層,並敘述如下。薄熱氧化矽層212形成於矽基底210上。以ALD法或其他適合的方法於熱氧化矽層212上形成high k介電材料層214。high k介電材料包括氧化鉿(HfO2 )或其他適合的材料。蓋層216形成於high k介電材料層214上。蓋層包括氧化鑭或其他適合的材料。以PVD法或其他適合的方法於蓋層216上形成金屬閘極層218。金屬閘極層包括氮化鈦或其他前述適合的材料。以CVD法或其他適合的方法於金屬閘極層218上形成多晶矽層220。
方法100進行至步驟106,於一乾蝕刻裝置中,尤其是於一乾蝕刻腔室中,利用具有多個開口的圖案化罩幕222進行第一乾蝕刻步驟,以圖案化多晶矽層220及金屬閘極層218。第一乾蝕刻步驟移除位於圖案化罩幕的開口內的多晶矽層及金屬閘極層。於一實施例中,第一乾蝕刻步驟利用含氟電漿(fluorine-containing plasma)移除多晶矽層及金屬閘極層。尤其是,第一乾蝕刻步驟是使用氟碳電漿(fluorocarbon plasma)。於一實施例中,蝕刻氣體包括CF4。於其他實施例中,是分開進行兩個具有不同蝕刻氣體的蝕刻步驟,以分別蝕刻多晶矽層及金屬閘極層。舉例而言,蝕刻多晶矽的氣體可包括Cl2 、HBr、O2 、或其組合。
圖案化罩幕222形成於多層的金屬閘極堆疊層(multiple metal-gate-stack layers)上。於一實施例中,圖案化罩幕222形成於多晶矽層220上,如第2圖所示。於一實施例中,圖案化罩幕層222包括以微影(photolithography)步驟所形成的圖案化光阻層。微影步驟可包括光阻層塗佈、軟烤(soft baking)、遮罩對準、曝光、曝光後烘烤(post-exposure baking)、顯影(developing photoresist)及硬烤(hard baking)步驟。也可以例如無光罩微影(maskless photolithography)、電子束刻寫(electron-beam writing)、離子束刻寫(ion-beam writing)及分子轉印(molecular imprint)的其他適合的方法進行或取代微影曝光步驟。
於其他實施例中,圖案化罩幕層222包括圖案化硬罩幕層。於一實施例中,圖案化罩幕層222包括氮化矽。於形成圖案化氮化矽硬罩幕的例子中,係以低壓化學氣相沉積法(low pressure chemical vapor deposition;LPCVD)於多晶矽層上形成氮化矽層。在以CVD法形成氮化矽層的步驟中,所使用的前驅物包括二氯矽烷(dichlorosilane;DCS或SiH2 Cl2 )、雙叔丁基氨基矽烷(bis(TertiaryButylAmino)Silane;BTBAS或C8 H22 N2 Si)、及二矽烷disilane(DS或Si2 H6 )。接著利用微影步驟將光阻層圖案化,並進行蝕刻步驟蝕刻位於圖案化光阻層的開口內的氮化矽以進一步圖案化氮化矽層。或者,可利用其他介電材料作為圖案化硬罩幕。舉例而言,可以氮氧化矽(silicon oxynitride)用作硬罩幕。
方法100進行至步驟108,於相同的乾蝕刻裝置中提供水蒸氣(H2 O steam)至半導體結構200以圖案化蓋層216。於一實施例中,步驟108係於進行第一乾蝕刻步驟的相同蝕刻腔室中進行。位於圖案化罩幕層222的開口內的蓋層216係於此步驟中以水蒸氣移除。優點是,於先前蝕刻步驟所形成的聚合殘餘物(polymeric residue)可實質上同樣地以水蒸氣移除。鑭/氧化鑭可與水蒸氣反應且藉此移除。可於低壓環境下自蝕刻腔室將排氣(exhaustive gas)抽出。
除了水蒸氣,方法100亦可於相同的乾蝕刻裝置內,特別係於相同的乾蝕刻腔室內,使用氧電漿或氬電漿圖案化半導體結構200的蓋層216。位於圖案化罩幕層的開口內的蓋層216是藉由氧電漿或氬電漿予以移除。類似先前所述的,聚合殘餘物實質上也同樣地藉由氧電漿或氬電漿予以移除。氧電漿或氬電漿係於室溫下供至半導體結構200。或者,氧電漿或氬電漿可於介於約20℃至50℃的溫度下供至半導體結構200。
方法100進行至步驟110,於相同的乾蝕刻裝置內,特別係於相同的乾蝕刻腔室內,進行第二乾蝕刻步驟以圖案化high k介電材料層214。第二乾蝕刻步驟係調整蝕刻劑及蝕刻環境以有效的移除high k介電材料層。位於圖案化罩幕的開口內的high k介電材料層實質上係藉由第二乾蝕刻步驟予以移除。於一實施例中,第二乾蝕刻步驟是利用含氟電漿移除high k介電材料層。於其他實施例中,第二乾蝕刻步驟是利用含有氟、氯及惰性氣體中的至少一個氣體移除high k介電材料層。
方法100進行至步驟112,進行濕蝕刻步驟以移除位於基底及/或金屬閘極堆疊的側壁上的聚合殘餘物或其他殘餘物。此濕蝕刻步驟係設計用以有效的移除聚合殘餘物或其他污染物。舉例而言,此濕蝕刻步驟係使用含有氫氧化銨(ammonium hydroxide;NH4 OH)及過氧化氫(peroxide;H2 O2 )的SCl溶液。於其他實施例中,此濕蝕刻步驟可使用一含有硫酸(sulfuric acid;H2 SO4 )及過氧化氫(peroxide;H2 O2 )的溶液。濕蝕刻步驟可於一濕蝕刻裝置內進行。
於此方法中,用以移除金屬閘極層的第一乾蝕刻步驟、用以移除high k介電材料層的第二乾蝕刻步驟、及以水蒸氣或氧/氬電漿移除蓋層的蝕刻步驟係整合於相同蝕刻裝置,特別係相同蝕刻腔室內進行,因此簡化了製程且縮短週期時間,此外,更降低了製造成本。所述方法利用水蒸氣或氧/氬電漿施於半導體結構以有效移除例如LaO的蓋層及聚合殘餘物。應了解的是,於此所討論的實施例包括幾種不同的實施例,而並非所有的實施例都具有特別的優點。
雖然未顯示出,本發明實施例亦可包含其他步驟以形成多個摻雜區域,例如源極及汲極區,或形成例如多重內連線(multilayer interconnection;MLI)的元件。於一實施例中,輕摻雜汲極(lightly doped drain;LDD)區係於閘極堆疊形成之後形成。閘極間隙壁(gate spacer)可形成於金屬閘極堆疊的側壁上。接著,源極及汲極區實質上對準於間隙壁的外側邊緣形成。閘間隙壁可具有多層結構,且可包含氧化矽、氮化矽、氮氧化矽或其他介電材料。具有n型摻雜質或p型摻雜質的摻雜源極及汲極區域及LDD區係利用例如離子植入的一般摻雜方式形成。用以形成相關的摻雜區域的N型摻雜質可包括磷、砷及/或其他材料。P型摻雜質可包括硼、銦及/或其他材料。
接著形成多重內連線。多重內連線包括垂直的內連線,例如一般的介層窗(via)或接觸窗(contact),並包括水平的內連線,例如金屬線(metal lines)。可使用包括銅、鎢及金屬矽化物(silicide)的導電材料形成各種內連線元件。於一實施例中,係利用鑲嵌法(damascene)形成銅相關的多重內連線結構。於其他實施例中,係利用鎢於接觸洞內形成鎢插塞(plug)。
半導體結構可更包含額外的隔離元件以將每個元件互相隔離。隔離元件可包括不同的結構,並可利用不同的製造技術予以形成。舉例而言,隔離元件可包括淺溝槽隔離(shallow trench isolation;STI)元件。STI的形成步驟可包括於基底內蝕刻出溝槽,以及以例如氧化矽、氮化矽或氮氧化矽的絕緣材料填充溝槽。所填充的溝槽可具有多層結構,例如具有熱氧化襯層並以氮化矽填充溝槽。於一實施例中,STI結構可利用一連續的步驟形成,例如:成長墊氧化物(pad oxide)、以低壓化學氣相沉積法(LPCVD)形成氮化層、利用光阻及罩幕圖案化STI開口、於基底內蝕刻出溝槽、選擇性的成長熱氧化溝槽襯墊層(thermal oxide trench liner)以增進溝槽介面(trench interface)特性、以CVD法形成氧化物以填充溝槽、利用化學機械研磨法(chemical mechanical planarization;CMP)進行回蝕刻步驟、及利用氮化物剝離法(nitride stripping)法留下STI結構。
半導體結構200僅為可利用方法100中的各種概念的元件中的其中一個例子。半導體結構200及其製造方法100可應用於其他具有high k及金屬閘極元件的半導體元件,例如應變半導體基底(strained semiconductor substrate)、異半導體元件(hetero-semiconductor device)、或無應力絕緣結構(stress-free isolation structure)。
本發明並非限於包括MOS電晶體的半導體結構的應用,而更可延伸至其他具有金屬閘極堆疊的積體電路。舉例而言,半導體結構200可包括動態隨機存取記憶體(dynamic random access memory;DRAM)單元、單電子電晶體(single electron transistor;SET)、及/或其他微電子元件(microelectronic device)(於此統稱為微電子元件)。於其他實施例中,半導體結構200包括鰭式場效電晶體(FinFET transistor)。當然,本發明的概念亦可應用於可取得的其他類型的電晶體,包括單閘極電晶體(single-gate transistor)、雙閘極電晶體(double-gate transistor)及其他多閘極電晶體(multiple-gate transistor),且可使用於不同的應用中,包括感測單元(sensor cell)、記憶體單元(memory cell)、邏輯單元(logic cell)及其他的應用。
雖然本發明的實施例揭露如上,然其並非用以限定本發明,任何熟悉此項技藝者,在不脫離本發明之精神和範圍內,當可做些許更動與潤飾。於一實施例中,係利用本發明的方法形成n型金屬氧化半導體場效電晶體(metal-oxide-semiconductor field-effect-transistor;NMOSFET)。於其他實施例中,係於先形成閘極的方法(gate-first process)中利用本發明的方法形成金屬閘極堆疊,其中係以方法100形成金屬閘極堆疊,且其保留於最終的結構中。於其他實施例中,係於混成方法(hybrid process)中利用本發明的方法形成金屬閘極堆疊,其中係以方法100形成第一型金屬閘極堆疊(例如NOMOS金屬閘極堆疊),且其保留於最終的結構中。所形成的第二型金屬閘極堆疊(例如POMOS金屬閘極堆疊)係視為虛置閘極結構(dummy gate structure),因此能進行源/汲極離子摻雜步驟及退火步驟。接著,移除部份的虛置閘極結構,並以適合的材料再填充(refill)虛置閘極溝槽(dummy gate trench)。舉例而言,將PMOS區域內的多晶矽層及金屬層移除後,以p金屬再填充並更以例如銅的另一金屬填充以形成PMOS金屬閘極堆疊。
於其他實施例中,半導體基底可包括磊晶層。舉例而言,基底可具有覆蓋塊半導體(bulk semiconductor)的磊晶層。再者,可對基底施予應力以增強性能。舉例而言,磊晶層可包括相異於塊半導體的半導體材料,例如,以鍺化矽(silicon germanium)覆蓋塊矽(bulk silicon),或者是,矽層覆蓋以包含選擇性磊晶成長(SEG)的步驟所形成的塊鍺化矽(bulk silicon germanium)。再者,基底可包括例如埋藏介電層的絕緣層上覆半導體(semiconductor-on-insulator;SOI)結構。或者是,基底可包括例如埋藏氧化層(buried oxide;BOX)的埋藏介電層,其可藉由被稱為埋藏氧化層氧植入隔離(separation by implantation of oxygen;SIMOX)的方法、晶圓接合法(wafer bonding)、選擇性磊晶成長法(selective epitaxial growth;SEG)或其他合適的方法所形成。
因此,本發明提供形成半導體元件的金屬閘極堆疊的方法。本發明的方法包括在一蝕刻腔室內,藉由一圖案化罩幕用以定義閘極區的開口對一半導體基底進行一第一乾蝕刻步驟,以移除位於該半導體基底上的一多晶矽層及金屬閘極層;於該蝕刻腔室內提供一水蒸氣至該半導體基底,以移除位於該半導體基底上的一蓋層;以及於該蝕刻腔室內對該半導體基底進行一第二乾蝕刻步驟,以移除一high k介電材料層。
所述方法更包括在進行該第二乾蝕刻步驟後,對該半導體基底進行一濕蝕刻步驟以移除聚合殘留物。於一實施例中,該蓋層包括氧化鑭(Lanthanum oxide;LaO)。該提供水蒸氣的步驟可提供水至該蓋層,且蝕刻速率大於約30埃/每分鐘(angstrom per minute)。於一實施例中,該半導體元件係一N型金屬氧化半導體場效應電晶體(NMOSFET)。該金屬閘極層可包括氮化鈦(titanium nitride)。該金屬閘極層可包括一擇自由氮化鉭(tantalum nitride)、氮化鉬(molybdenum nitride)、及鈦鋁氮化物(titanium aluminum nitride)所構成之群組的導電材料。該提供水蒸氣的步驟可包括提供該半導體基底於一高於約100℃的溫度。該圖案化硬罩幕可包括氮化矽。
本發明亦提供形成半導體元件的金屬閘極堆疊的另一實施例。所述方法包括在一蝕刻腔室內,藉由一圖案化罩幕用以定義閘極區的開口對一半導體基底進行一第一乾蝕刻步驟,以移除位於該半導體基底上的一閘極金屬層;於該蝕刻腔室內提供氧電漿或氬電漿中的至少一個至該半導體基底,以移除位一蓋層;於該蝕刻腔室內對該半導體基底進行一第二乾蝕刻步驟,以移除一high k介電材料層;以及對該半導體基底進行一濕蝕刻步驟以移除聚合殘留物。
於上述方法的多個實施例中,該蓋層可包括氧化鑭。該金屬閘極層可包括可包括一擇自由氮化鉭、氮化鉬、及鈦鋁氮化物所構成之群組的導電材料。該第一乾蝕刻步驟可包括進行該第一乾蝕刻步驟以更移除位於該金屬閘極層上的一多晶矽層。
本發明還提供形成半導體元件的另一實施例。上述方法包括在一蝕刻腔室內,對一半導體基底進行一第一乾蝕刻步驟,以移除一金屬閘極層;於該蝕刻腔室內提供水蒸氣、氧電漿及氬電漿中的至少一個至該半導體基底,以移除位一蓋層;以及於該蝕刻腔室內對該半導體基底進行一第二乾蝕刻步驟以移除一high k介電材料層,藉此形成一金屬閘極堆疊。
上述方法可更包括於進行該第一乾蝕刻步驟前,圖案化位於該金屬閘極層上的一罩幕層以定義一圖案區域。上述方法可更包括在進行該第二乾蝕刻步驟後,於一溼蝕刻裝置內對該半導體基底進行一溼蝕刻步驟以移除聚合殘餘物。蓋層可包括氧化鑭。該第一乾蝕刻步驟可包括對位於該金屬閘極層上的一多晶矽層進行該第一乾蝕刻步驟。於一實施例中,該金屬閘極堆疊係NMOSFET的金屬閘極結構。該金屬閘極層可包括氮化鈦。
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟悉此項技藝者,在不脫離本發明之精神和範圍內,當可做些許更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
210...基底
212...氧化矽層
214...高介電常數介電材料層
216...蓋層
218...金屬閘極層
220...多晶矽層
222...圖案化罩幕
第1圖為根據本發明概念所構成的一實施例的方法100的流程圖,用以形成具有金屬閘極堆疊的半導體元件。
第2圖為根據本發明概念的一實施例,其所形成的具有金屬閘極堆疊的半導體結構的剖面圖。
210...基底
212...氧化矽層
214...高介電常數介電材料層
216...蓋層
218...金屬閘極層
220...多晶矽層
222...圖案化罩幕

Claims (16)

  1. 一種形成半導體元件的金屬閘極堆疊的方法,包括下列步驟:於一蝕刻腔室內,藉由一圖案化罩幕的定義閘極區的開口對一半導體基底進行一第一乾蝕刻步驟,以移除位於該半導體基底上的一多晶矽層及一金屬閘極層;於該蝕刻腔室內提供一水蒸氣至該半導體基底,以移除位於該半導體基底上的一蓋層;以及於該蝕刻腔室內對該半導體基底進行一第二乾蝕刻步驟,以移除一高介電常數(high k)介電材料層。
  2. 如申請專利範圍第1項所述之形成半導體元件的金屬閘極堆疊的方法,更包括於進行該第二乾蝕刻步驟後,對該半導體基底進行一濕蝕刻步驟以移除一聚合殘餘物。
  3. 如申請專利範圍第1項所述之形成半導體元件的金屬閘極堆疊的方法,其中該蓋層包括氧化鑭。
  4. 如申請專利範圍第1項所述之形成半導體元件的金屬閘極堆疊的方法,其中該提供水蒸氣的步驟包括提供水至該蓋層,且具有大於約30埃/每分鐘(angstrom per minute)的蝕刻速率。
  5. 如申請專利範圍第1項所述之形成半導體元件的金屬閘極堆疊的方法,其中該半導體元件係一N型金屬氧化半導體場效應電晶體。
  6. 如申請專利範圍第1項所述之形成半導體元件的金屬閘極堆疊的方法,其中該金屬閘極層包括氮化鈦。
  7. 如申請專利範圍第1項所述之形成半導體元件的金屬閘極堆疊的方法,其中該金屬閘極層包括一擇自由氮化鉭(tantalum nitride)、氮化鉬(molybdenum nitride)、及鈦鋁氮化物(titanium aluminum nitride)所構成之群組的導電材料。
  8. 如申請專利範圍第1項所述之形成半導體元件的金屬閘極堆疊的方法,其中該提供水蒸氣的步驟包括使該半導體基底的溫度高於約100℃。
  9. 如申請專利範圍第1項所述之形成半導體元件的金屬閘極堆疊的方法,其中該圖案化硬罩幕包括氮化矽。
  10. 一種形成半導體元件的方法,包括下列步驟:於一蝕刻腔室內對一半導體基底進行一第一乾蝕刻步驟以移除位一金屬閘極層;於該蝕刻腔室內提供一水蒸氣、氧電漿、及氬電漿中的至少一個至該半導體基底以移除一蓋層;以及於該蝕刻腔室內對該半導體基底進行一第二乾蝕刻步驟以移除一high k介電材料層,藉此形成一閘極堆疊。
  11. 如申請專利範圍第10項所述之形成半導體元件的方法,更包括於進行該第一乾蝕刻步驟前,圖案化位於該金屬閘極層上的一罩幕層以定義一閘極區。
  12. 如申請專利範圍第10項所述之形成半導體元件的方法,更包括於該第二乾蝕刻步驟後,於一濕蝕刻裝置中對該半導體基底進行一濕蝕刻步驟,以移除一聚合殘餘物。
  13. 如申請專利範圍第10項所述之形成半導體元件 的方法,其中該蓋層包括氧化鑭。
  14. 如申請專利範圍第10項所述之形成半導體元件的方法,其中該第一乾蝕刻步驟包括對位於該金屬閘極層上的一多晶矽層進行該第一乾蝕刻步驟。
  15. 如申請專利範圍第10項所述之形成半導體元件的方法,其中該閘極堆疊係一N型金屬氧化半導體場效應電晶體的一閘極結構。
  16. 如申請專利範圍第10項所述之形成半導體元件的方法,其中該金屬閘極層包括氮化鈦。
TW098126154A 2008-08-18 2009-08-04 形成半導體元件的金屬閘極堆疊的方法 TWI453804B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8976208P 2008-08-18 2008-08-18
US12/367,399 US8304349B2 (en) 2008-08-18 2009-02-06 Method to integrate gate etching as all-in-one process for high K metal gate

Publications (2)

Publication Number Publication Date
TW201009905A TW201009905A (en) 2010-03-01
TWI453804B true TWI453804B (zh) 2014-09-21

Family

ID=41681555

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098126154A TWI453804B (zh) 2008-08-18 2009-08-04 形成半導體元件的金屬閘極堆疊的方法

Country Status (3)

Country Link
US (1) US8304349B2 (zh)
CN (1) CN101656206B (zh)
TW (1) TWI453804B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9337103B2 (en) 2012-12-07 2016-05-10 Taiwan Semiconductor Manufacturing Co., Ltd. Method for removing hard mask oxide and making gate structure of semiconductor devices
US8871107B2 (en) * 2013-03-15 2014-10-28 International Business Machines Corporation Subtractive plasma etching of a blanket layer of metal or metal alloy
JP6163446B2 (ja) * 2014-03-27 2017-07-12 株式会社東芝 半導体装置の製造方法
US10079283B2 (en) 2014-07-17 2018-09-18 E Ink Holdings Inc. Manufacturing method of a transistor
US10177041B2 (en) 2017-03-10 2019-01-08 Globalfoundries Inc. Fin-type field effect transistors (FINFETS) with replacement metal gates and methods
JP6980406B2 (ja) * 2017-04-25 2021-12-15 株式会社日立ハイテク 半導体製造装置及び半導体装置の製造方法
CN111837221B (zh) 2019-02-14 2024-03-05 株式会社日立高新技术 半导体制造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998250A (en) * 1996-04-23 1999-12-07 International Business Machines Corporation Compound electrode stack capacitor
US6025223A (en) * 1995-11-29 2000-02-15 Samsung Electronics Co., Ltd. Methods of forming high dielectric capacitors
US6218296B1 (en) * 1998-07-03 2001-04-17 Samsung Electronics Co., Ltd. Semiconductor device with pillar-shaped capacitor storage node and method of fabricating the same
US20030121527A1 (en) * 2001-12-27 2003-07-03 Seo Bo Min Method for cleaning a semiconductor device
US20070001241A1 (en) * 2005-06-30 2007-01-04 Samsung Electronics Co., Ltd. Semiconductor devices having nitrogen-incorporated active region and methods of fabricating the same

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4241165A (en) * 1978-09-05 1980-12-23 Motorola, Inc. Plasma development process for photoresist
US4659426A (en) * 1985-05-03 1987-04-21 Texas Instruments Incorporated Plasma etching of refractory metals and their silicides
US5346586A (en) * 1992-12-23 1994-09-13 Micron Semiconductor, Inc. Method for selectively etching polysilicon to gate oxide using an insitu ozone photoresist strip
US5656097A (en) 1993-10-20 1997-08-12 Verteq, Inc. Semiconductor wafer cleaning system
US6099662A (en) 1999-02-11 2000-08-08 Taiwan Semiconductor Manufacturing Company Process for cleaning a semiconductor substrate after chemical-mechanical polishing
US6562726B1 (en) 1999-06-29 2003-05-13 Micron Technology, Inc. Acid blend for removing etch residue
US7456113B2 (en) 2000-06-26 2008-11-25 Applied Materials, Inc. Cleaning method and solution for cleaning a wafer in a single wafer process
DE10039411A1 (de) * 2000-08-11 2002-02-28 Infineon Technologies Ag Strukturierung ferroelektrischer Schichten
US6451647B1 (en) * 2002-03-18 2002-09-17 Advanced Micro Devices, Inc. Integrated plasma etch of gate and gate dielectric and low power plasma post gate etch removal of high-K residual
US7320942B2 (en) 2002-05-21 2008-01-22 Applied Materials, Inc. Method for removal of metallic residue after plasma etching of a metal layer
KR100493018B1 (ko) 2002-06-12 2005-06-07 삼성전자주식회사 반도체 장치의 제조방법
US6746925B1 (en) * 2003-03-25 2004-06-08 Lsi Logic Corporation High-k dielectric bird's beak optimizations using in-situ O2 plasma oxidation
US7153784B2 (en) 2004-04-20 2006-12-26 Intel Corporation Method for making a semiconductor device having a high-k gate dielectric layer and a metal gate electrode
US7126199B2 (en) 2004-09-27 2006-10-24 Intel Corporation Multilayer metal gate electrode
US7323403B2 (en) 2004-11-29 2008-01-29 Texas Instruments Incroporated Multi-step process for patterning a metal gate electrode
US7531404B2 (en) 2005-08-30 2009-05-12 Intel Corporation Semiconductor device having a metal gate electrode formed on an annealed high-k gate dielectric layer
KR100734274B1 (ko) 2005-09-05 2007-07-02 삼성전자주식회사 기판 세정용 조성물을 이용한 게이트 형성 방법
JP2007201215A (ja) * 2006-01-27 2007-08-09 Toshiba Corp プラズマエッチング装置、プラズマエッチング方法及び半導体装置の製造方法
US20070190795A1 (en) 2006-02-13 2007-08-16 Haoren Zhuang Method for fabricating a semiconductor device with a high-K dielectric
US7488687B2 (en) 2006-09-12 2009-02-10 Samsung Electronics Co., Ltd. Methods of forming electrical interconnect structures using polymer residues to increase etching selectivity through dielectric layers
US7820552B2 (en) 2007-03-13 2010-10-26 International Business Machines Corporation Advanced high-k gate stack patterning and structure containing a patterned high-k gate stack
JP2009021584A (ja) 2007-06-27 2009-01-29 Applied Materials Inc 高k材料ゲート構造の高温エッチング方法
US7846834B2 (en) 2008-02-04 2010-12-07 International Business Machines Corporation Interconnect structure and method for Cu/ultra low k integration
US8101525B2 (en) * 2009-02-13 2012-01-24 Applied Materials, Inc. Method for fabricating a semiconductor device having a lanthanum-family-based oxide layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025223A (en) * 1995-11-29 2000-02-15 Samsung Electronics Co., Ltd. Methods of forming high dielectric capacitors
US5998250A (en) * 1996-04-23 1999-12-07 International Business Machines Corporation Compound electrode stack capacitor
US6218296B1 (en) * 1998-07-03 2001-04-17 Samsung Electronics Co., Ltd. Semiconductor device with pillar-shaped capacitor storage node and method of fabricating the same
US20030121527A1 (en) * 2001-12-27 2003-07-03 Seo Bo Min Method for cleaning a semiconductor device
US20070001241A1 (en) * 2005-06-30 2007-01-04 Samsung Electronics Co., Ltd. Semiconductor devices having nitrogen-incorporated active region and methods of fabricating the same

Also Published As

Publication number Publication date
TW201009905A (en) 2010-03-01
CN101656206A (zh) 2010-02-24
US20100041236A1 (en) 2010-02-18
CN101656206B (zh) 2011-11-02
US8304349B2 (en) 2012-11-06

Similar Documents

Publication Publication Date Title
TWI399798B (zh) 具有金屬閘極堆疊的半導體裝置之製造方法
US9859427B2 (en) Semiconductor Fin FET device with epitaxial source/drain
TWI478218B (zh) 半導體裝置及製作具有金屬閘極堆疊的半導體裝置的方法
US8754487B2 (en) Semiconductor device with metal gate
US8900956B2 (en) Method of dual EPI process for semiconductor device
TWI415263B (zh) 半導體裝置及其製造方法
US7776755B2 (en) Solution for polymer and capping layer removing with wet dipping in HK metal gate etching process
US8980706B2 (en) Double treatment on hard mask for gate N/P patterning
US8791001B2 (en) N2 based plasma treatment and ash for HK metal gate protection
US20130299876A1 (en) Method For Improving Selectivity Of EPI Process
KR20130108025A (ko) 반도체 소자의 접촉 구조
TWI453804B (zh) 形成半導體元件的金屬閘極堆疊的方法
TWI679685B (zh) 半導體裝置及其製造方法
KR102530213B1 (ko) 반도체 디바이스 및 방법
US7851328B2 (en) STI stress modulation with additional implantation and natural pad sin mask
TW201427019A (zh) 半導體結構及積體電路之製造方法