TWI446457B - 橫向擴散金氧半電晶體及其製造方法 - Google Patents

橫向擴散金氧半電晶體及其製造方法 Download PDF

Info

Publication number
TWI446457B
TWI446457B TW100101389A TW100101389A TWI446457B TW I446457 B TWI446457 B TW I446457B TW 100101389 A TW100101389 A TW 100101389A TW 100101389 A TW100101389 A TW 100101389A TW I446457 B TWI446457 B TW I446457B
Authority
TW
Taiwan
Prior art keywords
gate
laterally diffused
source
drain
germanide
Prior art date
Application number
TW100101389A
Other languages
English (en)
Other versions
TW201133649A (en
Inventor
Harry Hak-Lay Chuang
Lee-Wee Teo
Ming Zhu
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Publication of TW201133649A publication Critical patent/TW201133649A/zh
Application granted granted Critical
Publication of TWI446457B publication Critical patent/TWI446457B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28079Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a single metal, e.g. Ta, W, Mo, Al
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

橫向擴散金氧半電晶體及其製造方法
本發明係有關於積體電路裝置,且特別是有關於一種橫向擴散金氧半(LDMOS)電晶體。
目前,橫向擴散金氧半電晶體已廣泛應用於射頻(RF)/微波領域。例如,應用於功率放大器時,需要高輸出功率。因此,需要能足以承受高電壓及增大電流之橫向擴散金氧半電晶體。使用多晶矽/氮氧化矽閘極堆疊之橫向擴散金氧半電晶體,在閘極上形成矽化物時具有控制不易的問題,造成在矽化製程中形成部分矽化之閘極。因此,業界亟需一種新穎的橫向擴散金氧半電晶體及其製造方法。
本發明提供一種橫向擴散金氧半(LDMOS)電晶體之製造方法,包括:形成一虛置閘極於一基材上;形成一源極及一汲極於此基材上之此虛置閘極兩側;形成一第一矽化物於此源極上及一第二矽化物於此汲極上,且於此源極或此汲極至少其一留下與此虛置閘極相鄰之一未矽化區,以提供能足以負載應用於高電壓橫向金氧半導體所需之電壓之阻抗區(resistive region);以及對此虛置閘極進行一替換閘極製程,以形成閘極。
本發明亦提供一種橫向擴散金氧半(LDMOS)電晶體,包括:一基材;一閘極,位於此基材上;一源極及一汲極,位於此閘極兩側;一第一矽化物,位於此源極上;以及一第二矽化物,位於此汲極上,其中此源極或此汲極至少其一具有與此閘極相鄰之一未矽化區,以提供能足以負載應用於高電壓橫向擴散金氧半導體所需之電壓之阻抗區(resistive region)。
本發明更提供一種橫向擴散金氧半(LDMOS)電晶體之製造方法,包括:形成一虛置閘極於一基材上;形成一硬罩幕於此虛置閘極上;形成一第一間隔物及一第二間隔物於此虛置閘極兩側;形成一源極及一汲極於此虛置閘極兩側;形成與此第一間隔物相鄰之一第一矽化物於此源極上;形成與此第二間隔物相鄰之一第二矽化物於此汲極上,並在此第二矽化物及此第二間隔物之間之此源極或此汲極至少其一留下(leaving)一未矽化區;以及對此虛置閘極進行一閘極替換製程,以形成一高介電常數閘極介電層及一閘極。
為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下:
本發明接下來將會提供許多不同的實施例以說明本發明中不同的特徵。各特定實施例中的構成及配置將會在以下作詳細說明以闡述本發明之精神,但這些實施例並非用於限定本發明。
本發明在此提供一種橫向擴散金氧半(LDMOS)電晶體之結構。第1圖顯示為依照本發明一或多個實施例之橫向擴散金氧半電晶體。橫向擴散金氧半電晶體100包含基材102、位於基材102上之金屬閘極111、及位於基材102上之金屬閘極111兩側之源極104及汲極108。基材102可包含塊狀矽或絕緣層上覆矽。或者,基材102包含其他可或不可與矽結合之材料,例如鍺、銻化銦、碲化鉛、砷化銦、磷化銦、砷化鎵、銻化鎵或其他任意合適材料。閘極介電層116設置於基材102上之金屬閘極111與電晶體100通道222之間。間隔物118也同樣設置於金屬閘極111兩側。
第一矽化物106設置於源極104上。第二矽化物110設置於汲極108上。矽化物為矽與金屬之合金,作為製造矽裝置時的接觸材料,例如TiSi2 、CoSi2 、NiSi、其他矽化物或前述之組合。矽化物結合了金屬接觸點(例如遠低於多晶矽之阻抗)及多晶矽接觸點(例如無電遷移性)之優點。汲極108具有與金屬閘極111相鄰之未矽化區120,以提供一阻抗區,能足以負載高電壓橫向擴散金氧半導體應用所需之電壓。
例如,橫向擴散金氧半導體廣泛地用於作為基地台之功率擴大器,其需有高輸出功率,因而所對應之汲極至源極崩潰電壓常超過60 V。許多高功率射頻應用使用約20至50V之直流(DC)供應電壓。
在一實施例中,可定義未矽化區120於間隔物118與矽化物110之間。在某些實施例中,未矽化區120之長度為約0.05 μm至1μm。閘極介電層116包含高介電常數閘極介電材料,包含氧化鉿、矽氧化鉿、氧化鑭、氧化鋯、矽氧化鋯、氧化鉭、氧化鈦、鈦酸鋇鍶(barium strontium titanium oxide)、鈦酸鋇(barium titanium oxide)、鈦酸鍶鍶(barium titanium oxide)、氧化釔(yttrium oxide)、鉭酸鉛鈧(lead scandium tantalum oxide)、鈮酸鉛鋅(lead zinc niobate)或其他任意合適材料,這些材料可用於形成高介電常數閘極介電質。金屬閘極111可包含多個金屬層,例如功函數金屬層114及溝槽填充金屬材料112。溝槽填充金屬材料112可包含鎢、鋁、鈦、氮化鈦或其他任意合適材料。
表1顯示為使用多晶矽/氮氧化矽(poly/SiON)閘極堆疊之橫向擴散金氧半電晶體(LDMOS)與依照本發明一或多個實施例之使用高介電常數介電質/金屬(HK/MG)閘極堆疊之橫向擴散金氧半電晶體(LDMOS)之效能比較,其中上述兩種橫向擴散金氧半電晶體皆具有相同的等效氧化層厚度(EOT)28及閘極長度1 μm。由於使用高介電常數介電質/金屬閘極堆疊(HK/MG)之橫向擴散金氧半電晶體去除了多晶矽閘極空乏效應(poly depletion effect),具有較高的導通電流I on ,其較使用多晶矽/氮氧化矽(poly/SiON)閘極堆疊之橫向擴散金氧半電晶體的導通電流I on 增加約4%。使用高介電常數介電質/金屬閘極堆疊(HK/MG)之橫向擴散金氧半電晶體的線性區電流I d lin 亦有所增加。此外,兩種橫向擴散金氧半電晶體具有近似的線性區臨界電壓Vt lin 及飽和區臨界電壓Vt sat ,且汲極導致能障降低(DIBL)的數值也皆近似。
關於導通電阻(on-state resistance)分佈,在使用高介電常數介電質/金屬(HK/MG)閘極堆疊之橫向擴散金氧半電晶體之實施例中,源極電阻為107 ohm-cm,其為電晶體總導通電阻之約4.3%。通道電阻為1460.2 ohm-cm,其為電晶體總導通電阻之約58.7%。汲極電阻為920.4 ohm-cm,其為電晶體總導通電阻之約37%。這些值均近似於使用多晶矽(poly)/氮氧化矽(SiON)閘極堆疊之橫向擴散金氧半電晶體之導通電阻分佈。
第2-7圖顯示依照本發明一或多個實施例之橫向擴散金氧半電晶體之製造方法之各種中間階段。第2圖顯示為虛置閘極202形成於基材102上。在一實施例中,虛置閘極202可包含例如多晶矽。硬罩幕202形成於虛置閘極202上。硬罩幕204及虛置閘極202可由光學微影製程及/或蝕刻製程來作圖案化。在一實施例中,多晶矽虛置閘極202之厚度為約100至2,000。硬罩幕204可包含氮化矽、二氧化矽及/或氮氧化矽,且其厚度為約100至500
間隔物118形成於虛置閘極202兩側。間隔物118可包含例如氮化矽。在間隔物118形成後,形成源極104及汲極108於基材102上之虛置閘極202兩側。源極104及汲極108可由將離子佈植進入基材102中形成,並接著對其進行適當的退火製程。在進行離子佈植及退火步驟後,部分的源極104及汲極108可轉換成如下所述之矽化物。
在第3圖中,阻抗保護氧化層302形成於硬罩幕204、虛置閘極202、間隔物118、源極104及汲極108上。在阻抗保護氧化層302覆蓋及基材102表面上所有定義的元件區後,元件區可被區分為將用於電性接觸之矽化區及不欲被矽化之另一區域。在一實施例中,使用二氧化矽來形成阻抗保護氧化層302。
在第4圖中,將阻抗保護氧化層302(如第3圖所示)部分蝕刻,留下阻抗保護氧化層302在至少一部分的虛置閘極202上,並延伸至汲極108。元件區受阻抗保護氧化層402覆蓋之區域將不被矽化。可由進行例如氧化物濕式蝕刻,對阻抗保護氧化層302作部分蝕刻,以定義阻抗保護氧化層402。阻抗保護氧化層402保護其底下的區域不被矽化,硬罩幕204亦保護虛置閘極202不被矽化。
在第5圖中,進行矽化製程以形成第一矽化物106及第二矽化物110。第一矽化物106形成在源極104上。第二矽化物110形成在汲極108上,且在汲極108留下與虛置閘極202相鄰之未矽化區120。汲極108之未矽化區120提供一阻抗區,能足以負載高電壓橫向擴散金氧半導體應用所需之電壓。在一實施例中,未矽化區120之長度為約0.05 μm至1μm。
在第6至7圖中,對虛置閘極202(如第5圖所示)進行閘極替換製程。在第6圖中,在形成矽化區106及110於源極104及汲極108上之後,可移除阻抗保護氧化層402(如第5圖所示)並沉積介電層602於元件區上。介電層602可包含二氧化矽、低介電常數材料或其他任意材料。介電層602可摻雜磷、硼或其他元素,且可使用高密度電漿沉積製程形成。
第6圖顯示在進行閘極替換製程後,對介電層602進行研磨。可以化學機械研磨(CMP)操作來移除部分的介電層602。在暴露出硬罩幕204(如第5圖所示)後,移除部分的硬罩幕204以暴露出虛置閘極202。在某些實施例中,當研磨介電層602時,自虛置閘極202的表面研磨硬罩幕204。被間隔物118所括住(bracketed)之虛置閘極202(如第5圖所示)係被移除,以在間隔物118之間形成溝槽604。虛置閘極202可由選擇性濕式蝕刻製程移除。
在第7圖中,在移除虛置閘極116後,形成閘極介電層116於位於溝槽604底部之基材102上。溝槽604係由閘極介電層116及其上之金屬閘極111所填滿。閘極介電層116可包含任何可作為金屬閘極電晶體之閘極介電層之材料,特別是高介電常數介電材料。
可使用沉積方式形成閘極介電層116於基材102上,例如化學氣相沉積(CVD)、低壓化學氣相沉積(low pressure CVD)或物理氣相沉積(PVD)製程。在許多實施例中,高介電常數介電層之厚度可小於60。在某些實施例中,為了移除閘極介電層116中的雜質及增加介電層之含氧量,可對閘極介電層116進行濕式化學處理。
在某些實施例中,金屬閘極111可包含多個金屬層。例如,可沉積功函數金屬層114於閘極介電層116上,及可沉積溝槽填充金屬層112於功函數金屬層114上。用於NMOS電晶體之功函數金屬層114可包含鉿、鋯、鈦、鉭、鋁或前述之合金,例如含前述元素之金屬碳化物,亦即碳化鉿、碳化鋯、碳化鈦、碳化鉭、碳化鋁或其他任意合適材料。可使用化學氣相沉積(CVD)或物理氣相沉積(PVD)製程(例如濺鍍及/或原子層沉積製程)來形成功函數金屬層114於閘極介電層116上。
在某些實施例中,用於NMOS電晶體之功函數金屬層114之功函數在約3.9 eV至4.2 eV之間。如未沉積溝槽金屬材料112,功函數金屬層114可填滿(fill up)溝槽。如此,功函數金屬層114之厚度為約100至2,000。如沉積溝槽金屬112於功函數金屬層114上以填充溝槽604,溝槽填充金屬層112可包含容易研磨之材料,例如鎢、鋁、鈦、氮化鈦及/或其他任意材料。如此,功函數金屬層之厚度為約50至1,000
用於PMOS電晶體之功函數金屬層114可包含釕、鈀、鉑、鈷、鎳、導電金屬氧化物,例如氧化釕或其他任意合適材料。在某些實施例中,用於PMOS電晶體之功函數金屬層114之功函數約在4.9 eV至5.2 eV之間。
在對應於第1-7圖所示之特定實施例中,位於間隔物118外之汲極108有部分未被矽化。然而,在某些其他實施例中,位於間隔物118外之源極104有部分末被矽化,且位於間隔物118外之汲極108被完全矽化。在更另外的實施例中,位於間隔物118外之源極104汲極及108皆有部分未矽化。上述源極104及/或汲極108之未矽化區提供了一或多個高阻抗區,能同樣達到足以負載高電壓橫向擴散金氧半導體應用所需之電壓。
相較於習知多晶矽/氮氧化矽閘極堆疊,上述實施例所提供之製造方法具有較佳的製程控制,因為其無需在閘極區域形成矽化物。並且,高介電常數介電層/金屬閘極堆疊可使結構的製程變異(process variations)較少。為了減少製程之成本及複雜度,可通過謹慎的邏輯操作定義矽化物及整合現有製程。本技術領域中具有通常知識者可知本發明尚具有許多其他變化實施例。
雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100...橫向擴散金氧半電晶體
102...基材
104...源極
106...第一矽化物
108...汲極
110...第二矽化物
111...金屬閘極
112...溝槽填充金屬材料
114...功函數金屬
116...閘極介電層
118...間隔物
120...未矽化區
202...虛置閘極
204...硬罩幕
302...阻抗保護氧化層
402...圖案化之阻抗保護氧化層
602...介電層
604...溝槽
第1圖顯示為依照本發明一或多個實施例之橫向擴散金氧半電晶體。
第2至7圖顯示為依照本發明一或多個實施例之橫向擴散金氧半電晶體之製造方法之各種中間階段。
100...橫向擴散金氧半電晶體
102...基材
104...源極
106...第一矽化物
108...汲極
110...第二矽化物
111...金屬閘極
112...溝槽填充金屬材料
114...功函數金屬
116...閘極介電層
118...間隔物
120...未矽化區

Claims (10)

  1. 一種橫向擴散金氧半(LDMOS)電晶體之製造方法,包括:形成一虛置閘極於一基材上;形成一源極及一汲極於該基材上之該虛置閘極兩側;形成一第一矽化物於該源極上及一第二矽化物於該汲極上,且於該源極或該汲極其中一者留下與該虛置閘極相鄰之一未矽化區,以提供一能負載高電壓橫向金氧半導體應用所需電壓之阻抗區;以及對該虛置閘極進行一替換閘極製程,以形成閘極。
  2. 如申請專利範圍第1項所述之橫向擴散金氧半電晶體之製造方法,更包含形成一硬罩幕於該虛置閘極上。
  3. 如申請專利範圍第1項所述之橫向擴散金氧半電晶體之製造方法,更包含形成一阻抗保護氧化層於至少一部分的該虛置閘極上及該未矽化區上,以保護位於該阻抗保護氧化層底下的區域不因矽化製程形成該第一矽化物及該第二矽化物。
  4. 如申請專利範圍第1項所述之橫向擴散金氧半電晶體之製造方法,更包含形成一第一間隔物及一第二間隔物於該虛置閘極兩側,其中該未矽化區係未被該第一間隔物或一第二間隔物所覆蓋。
  5. 如申請專利範圍第1項所述之橫向擴散金氧半電晶體之製造方法,其中該閘極包含多個金屬層。
  6. 一種橫向擴散金氧半(LDMOS)電晶體,包括: 一基材;一閘極,位於該基材上;一源極及一汲極,位於該閘極兩側;一第一矽化物,位於該源極上;以及一第二矽化物,位於該汲極上,其中該源極或該汲極其中一者具有與該閘極相鄰之一未矽化區,以提供一能負載高電壓橫向擴散金氧半導體應用所需電壓之阻抗區。
  7. 如申請專利範圍第6項所述之橫向擴散金氧半電晶體,其中該未矽化區之長度為約0.05μm至1μm。
  8. 如申請專利範圍第6項所述之橫向擴散金氧半電晶體,更包含一高介電常數介電層,位於該閘極及該基材之間。
  9. 如申請專利範圍第6項所述之橫向擴散金氧半電晶體,其中該閘極包含多個金屬層。
  10. 如申請專利範圍第6項所述之橫向擴散金氧半電晶體,其中閘極包含一功函數金屬及一溝槽填充導電材料,其中該溝槽填充導電材料係擇自下列群組:鎢、鋁、鈦及氮化鈦。
TW100101389A 2010-02-08 2011-01-14 橫向擴散金氧半電晶體及其製造方法 TWI446457B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/701,824 US8349678B2 (en) 2010-02-08 2010-02-08 Laterally diffused metal oxide semiconductor transistor with partially unsilicided source/drain

Publications (2)

Publication Number Publication Date
TW201133649A TW201133649A (en) 2011-10-01
TWI446457B true TWI446457B (zh) 2014-07-21

Family

ID=44353008

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100101389A TWI446457B (zh) 2010-02-08 2011-01-14 橫向擴散金氧半電晶體及其製造方法

Country Status (3)

Country Link
US (1) US8349678B2 (zh)
CN (1) CN102148162B (zh)
TW (1) TWI446457B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8664103B2 (en) * 2011-06-07 2014-03-04 Globalfoundries Inc. Metal gate stack formation for replacement gate technology
US20130075831A1 (en) * 2011-09-24 2013-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Metal gate stack having tialn blocking/wetting layer
CN103187264A (zh) * 2011-12-28 2013-07-03 中微半导体设备(上海)有限公司 一种在等离子体刻蚀室内刻蚀氧化硅层的方法
CN103390644B (zh) * 2012-05-08 2017-07-11 中国科学院微电子研究所 半导体器件及其制造方法
US20130299920A1 (en) * 2012-05-08 2013-11-14 Haizhou Yin Semiconductor device and method for manufacturing the same
KR101909091B1 (ko) 2012-05-11 2018-10-17 삼성전자 주식회사 반도체 장치 및 그 제조 방법
CN103515233B (zh) * 2012-06-20 2016-04-06 中国科学院微电子研究所 半导体器件及其制造方法
US9799766B2 (en) * 2013-02-20 2017-10-24 Taiwan Semiconductor Manufacturing Company, Ltd. High voltage transistor structure and method
KR20140121634A (ko) 2013-04-08 2014-10-16 삼성전자주식회사 반도체 장치 및 그 제조 방법
US9660053B2 (en) * 2013-07-12 2017-05-23 Power Integrations, Inc. High-voltage field-effect transistor having multiple implanted layers
CN104377168A (zh) * 2013-08-16 2015-02-25 中国科学院微电子研究所 半导体器件制造方法
CN104576379B (zh) * 2013-10-13 2018-06-19 中国科学院微电子研究所 一种mosfet结构及其制造方法
US9396953B2 (en) * 2014-03-14 2016-07-19 Taiwan Semiconductor Manufacturing Company, Ltd. Conformity control for metal gate stack
US9171758B2 (en) 2014-03-31 2015-10-27 International Business Machines Corporation Method of forming transistor contacts
KR102235612B1 (ko) 2015-01-29 2021-04-02 삼성전자주식회사 일-함수 금속을 갖는 반도체 소자 및 그 형성 방법
KR102290685B1 (ko) 2015-06-04 2021-08-17 삼성전자주식회사 반도체 장치
US9450099B1 (en) 2015-06-18 2016-09-20 Taiwan Semiconductor Manufacturing Co., Ltd Structure and formation method of semiconductor device structure
US9614089B2 (en) 2015-06-15 2017-04-04 Taiwan Semiconductor Manufacturing Co., Ltd. Structure and formation method of semiconductor device structure
TWI618128B (zh) * 2017-03-24 2018-03-11 世界先進積體電路股份有限公司 半導體裝置及其製造方法
KR102481284B1 (ko) * 2018-04-10 2022-12-27 삼성전자주식회사 반도체 장치의 제조 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050066872A (ko) * 2003-12-27 2005-06-30 동부아남반도체 주식회사 높은 브레이크다운 전압을 갖는 고전압 반도체 소자 및 그제조 방법
US7479684B2 (en) * 2004-11-02 2009-01-20 International Business Machines Corporation Field effect transistor including damascene gate with an internal spacer structure
JP2007243105A (ja) * 2006-03-13 2007-09-20 Sony Corp 半導体装置およびその製造方法
US7671469B2 (en) * 2007-12-31 2010-03-02 Mediatek Inc. SiGe device with SiGe-embedded dummy pattern for alleviating micro-loading effect
CN101266930B (zh) 2008-04-11 2010-06-23 北京大学 一种横向双扩散场效应晶体管的制备方法
US8362557B2 (en) * 2009-12-02 2013-01-29 Fairchild Semiconductor Corporation Stepped-source LDMOS architecture

Also Published As

Publication number Publication date
US20110193162A1 (en) 2011-08-11
US8349678B2 (en) 2013-01-08
CN102148162A (zh) 2011-08-10
TW201133649A (en) 2011-10-01
CN102148162B (zh) 2013-02-20

Similar Documents

Publication Publication Date Title
TWI446457B (zh) 橫向擴散金氧半電晶體及其製造方法
US9419099B2 (en) Method of fabricating spacers in a strained semiconductor device
US9899270B2 (en) Methods for manufacturing semiconductor devices
TWI406414B (zh) 半導體裝置及其製造方法
US20070210354A1 (en) Semiconductor device and semiconductor device manufacturing method
US9136181B2 (en) Method for manufacturing semiconductor device
TWI469262B (zh) 半導體裝置之製造方法及半導體裝置
US9196706B2 (en) Method for manufacturing P-type MOSFET
US10868133B2 (en) Semiconductor device structure and method for forming the same
WO2011036841A1 (ja) 半導体装置及びその製造方法
US9252059B2 (en) Method for manufacturing semiconductor device
US9876089B2 (en) High-k and p-type work function metal first fabrication process having improved annealing process flows
US9780180B2 (en) Semiconductor device with partially unsilicided source/drain
WO2014066881A1 (en) Method to improve reliability of high-k metal gate stacks
US9029225B2 (en) Method for manufacturing N-type MOSFET
US20090057786A1 (en) Semiconductor device and method of manufacturing semiconductor device
US20150011069A1 (en) Method for manufacturing p-type mosfet
US20150325684A1 (en) Manufacturing method of n-type mosfet
JP2012186349A (ja) 半導体装置及びその製造方法
JP2012119356A (ja) 半導体装置及びその製造方法
US9449829B1 (en) Semiconductor process
TWI490949B (zh) 具有金屬閘極之電晶體及其製作方法
TW201214575A (en) Metal gate transistor and method for fabricating the same
JP2012109339A (ja) 半導体装置の製造方法