TWI441346B - 第ⅱ型量子點太陽能電池 - Google Patents

第ⅱ型量子點太陽能電池 Download PDF

Info

Publication number
TWI441346B
TWI441346B TW097139136A TW97139136A TWI441346B TW I441346 B TWI441346 B TW I441346B TW 097139136 A TW097139136 A TW 097139136A TW 97139136 A TW97139136 A TW 97139136A TW I441346 B TWI441346 B TW I441346B
Authority
TW
Taiwan
Prior art keywords
semiconductor material
type
energy
layers
quantum dot
Prior art date
Application number
TW097139136A
Other languages
English (en)
Other versions
TW200937657A (en
Inventor
Stephen R Forrest
Guodan Wei
Kuen Ting Shiu
Original Assignee
Univ Michigan
Univ Princeton
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Michigan, Univ Princeton filed Critical Univ Michigan
Publication of TW200937657A publication Critical patent/TW200937657A/zh
Application granted granted Critical
Publication of TWI441346B publication Critical patent/TWI441346B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • H01L31/03845Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material comprising semiconductor nanoparticles embedded in a semiconductor matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

第II型量子點太陽能電池
本發明大致係關於感光性光電子裝置。更明確言之,本發明係針對在一無機半導體基質中具有量子點之感光性光電子裝置,其中量子點及半導體基質材料形成一具有一第II型能帶排列(band alignment)之異質接面。
本申請案主張2007年10月10日申請之名為"第II型量子點太陽能電池(Type II Quantum Dot Solar Cells)"之美國專利申請案第11/869,954號之權利,該案之內容以引用的方式全部併入本文中。
本發明係在美國能源部,國家可再生能源實驗室(U.S. Department of Energy,National Renewable Energy Laboratory)授予之合約下由美國政府支援而進行。政府對本發明具有特定權利。
本發明之部分係由代表及/或連同屬於一項大學-法人聯合研究協定之下列團體之一或多個進行:普林斯頓大學(Princeton University)、南加州大學(The University of Southern California)及全球光子能公司(Global Photonic Energy Corporation)。本發明之其餘部分係由代表及/或連同屬於一項大學-法人聯合研究協定之下列團體之一或多個進行:密西根大學(The University of Michigan)、南加州大學及全球光子能公司。該等協定係在完成本發明之各自部分之日及之前有效,且本發明係作為在該等協定範圍內所開展之活動的結果而完成。
光電子裝置依賴材料之光學及電子性質於電子性地產生或檢測電磁輻射或由周圍電磁輻射產生電力。
感光性光電子裝置將電磁輻射轉換為一電信號或電力。太陽能電池,亦稱為光伏打("PV")裝置,係特定用於產生電力的一種感光性光電子裝置。光導體電池係連同信號檢測電路一起使用的一種感光性光電子裝置,該信號檢測電路監測裝置之電阻以檢測因吸收光引起之變化。可接收施加偏壓之光檢測器係連同電流檢測電路一起使用的一種感光性光電子裝置,該電流檢測電路測量當光檢測器暴露於電磁輻射時所產生之電流。
此三類感光性光電子裝置可根據是否存在如下定義之整流接面及亦根據裝置是否係以一外部施加電壓(又稱為偏壓)操作而區分。光導體電池不具有整流接面且通常係以偏壓操作。PV裝置具有至少一個整流接面且不以偏壓操作。光檢測器具有至少一個整流接面且通常(但非始終)以偏壓操作。
如此處使用的術語"整流"係特別表示具有非對稱傳導特性之一界面,即該界面較佳地以一方向支援電荷傳輸。術語"光導性"一般係關於電磁輻射能被吸收且藉此被轉換為電荷載子之激發能,以致載子可傳導(即,傳輸)一材料中之電荷的過程。術語"光導性材料"係指基於其吸收電磁輻射以產生電荷載子之性質而利用的半導體材料。當一適當能量的電磁輻射入射於一光導性材料上時,一光子可被吸收而產生一激發態。除非明確說明第一層係與第二層"實體接觸"或"直接接觸",否則可存在介入層。
在感光性裝置之情況下,整流接面被稱為光伏打異質接面。為在佔據一實質體積之光伏打異質接面處產生內生電場,通常方法係並置具有適當選定之半傳導性質,尤其係關於其之費米能階(Fermi level)及能帶邊緣的二個材料層。
無機光伏打異質接面之類型包括形成於p-型摻雜材料與n-型摻雜材料之界面處的p-n異質接面,及形成於無機光導性材料與金屬之界面處的肖特基位障(Schottky-barrier)異質接面。
在無機光伏打異質接面中,形成異質接面之材料一般被表示為n-型或p-型。此處n-型表示多數載子類型係電子。此可被視為係具有許多以相對自由能態存在之電子的材料。p-型表示多數載子類型係電洞。該材料具有許多以相對自由能態存在的電洞。
半導體及絕緣體之一共同特徵係"能帶隙"。能帶隙係填充電子之最高能階與空缺之最低能階之間的能量差。在無機半導體或無機絕緣體中,此能量差係價帶邊緣EV (價帶頂部)與導帶邊緣EC (導帶底部)之間之差異。純材料之能帶隙缺乏電子及電洞可存在之能態。唯一可用於傳導之載子係具有足夠能量可被激發跨越能帶隙的電子及電洞。一般而言,半導體與絕緣體相比具有相對小的能帶隙。
就能帶模型而言,一價帶電子激發進入導帶產生載子;即,當在能帶隙之導帶側上時電子係電荷載子,而當在能帶隙之價帶側上時電洞係電荷載子。
如此處使用的,關於在平衡條件下在能帶圖上的能階位置,第一能階係"超過"、"大於"或"高於"第二能隙。能帶圖係半導體模型之骨幹。如關於無機材料習知的,相鄰摻雜材料之能量排列被調整為對準各自材料之費米能階(EF ),偏折摻雜-摻雜界面與摻雜-本質界面之間之真空能階。
如關於能帶圖習知的,電子移到一較低能隙在能量上係有利的,而電洞移到一較高能隙在能量上係有利的(該較高能階對於電洞而言係較低位能,但相對於能帶圖而言其係較高位能)。更簡潔言之,電子向下落而電洞向上升。
在無機半導體中,在導帶邊緣(EC )上方可有一導帶連續區,及在價帶邊緣(EV )下方可有一價帶連續區。
載子移動率係無機及有機半導體中之一重要性質。移動率測量一電荷載子可回應於一電場移動通過一導電性材料的容易度。與半導體對比,絕緣體一般提供較差之載子移動率。
本發明提供一種光電子裝置及一種製造該裝置之方法,其中該裝置包含:複數個圍籬層(fence layer),該等圍籬層基本上由安置於一p-型與n-型半導體材料之間之一堆疊中的一半導體材料所組成;及複數個層,該等層基本上由一第二半導體材料之量子點嵌入一第三半導體材料之間且與其直接接觸之交替層所組成。該等交替層係安置於在該等圍籬層之各自二個層之間且與其等直接接觸之堆疊中。每一量子點提供能量在第一半導體材料之相鄰層的導帶邊緣與價帶邊緣之間的至少一量子態。第二半導體材料之每一量子點與第三半導體材料形成一具有第II型能帶排列的異質接面。第三半導體材料可為一無機半導體基質。
在一實施例中,第一半導體材料係Alx Ga1-x As,其中x>0,第二半導體材料係GaSb及第三半導體材料係GaAs。
在另一實施例中,該裝置包括約10至約20個GaAs/GaSb之交替層。
經探究用以改良太陽能電池之效率的一種方法係使用量子點於在太陽能電池之能帶隙中建立一中間能帶。量子點在三維上將電荷載子(電子、電洞及/或激子)侷限於不連續量子能態。每一量子點之截面尺寸典型上為數百埃左右或更小。
圖1繪示一量子點太陽能電池裝置之一實例。該裝置包含一第一接點(電極)110、一第一過渡層115、嵌入一半導體整體基質材料120中之複數個量子點130、一第二過渡層150及一第二接點(電極)155。
在一由無機材料製成之裝置中,一過渡層(115、150)可為p-型,而另一過渡層為n-型。整體基質材料120及量子點130可係本質的(未摻雜)。過渡層115、150與整體基質材料120之間之界面可於裝置內提供整流、極化電流。作為一替代,電流整流可由接點(110、155)與過渡層(115、150)之間之界面提供。
圖5繪示包括一球形量子點陣列之裝置的截面。實際上,該等點之實際形狀係取決於製造技術之選擇。舉例而言,無機量子點可經形成為一膠體溶液中之半導體奈米晶體,諸如此項技術中已知之"溶膠-凝膠"方法。對於一些其他配置,即使實際點不為真正的球體,球體仍可提供一準確模型。
舉例而言,已在一無機基質中成功產生無機量子點的一磊晶方法係Stranski-Krastanow方法(在文獻中有時拼寫為Stransky-Krastanow)。此方法有效地在量子點與整體基質之間產生一晶格失配應變,同時最小化晶格損壞及缺陷。Stranski-Krastanow有時被稱為"自組式(self-assembled)量子點"(SAQD)技術。
在利用金屬-有機化學氣相沉積(MOCVD)或分子束磊晶(MBE)之晶體生長期間,自組式量子點會實質上無缺陷地自發出現。使用Stranski-Krastanow方法之生長條件,可產生同時具有高面積密度(>1011 cm2 )及光學品質的自排序極小點(~10nm)之陣列及堆疊。自排序量子點(SOQD)技術可產生由高密度之無缺陷量子點組成的三維準晶體,其中輻射復合佔優勢。
關於無機中間能帶量子點裝置及製造的額外背景,參見A. Marti等人,"量子點中間能帶太陽能電池之設計限制(Design constraints of quantum-dot intermediate band solar cell)",Physica E 14,150-157(2002);A. Luque等人,"中間能帶太陽能電池之實際實施的進展(Progress towards the practical implementation of the intermediate band solar cell)",第二十九屆IEEE光伏專家會議(IEEE Photovoltaic Specialists Conference)之會議記錄,1190-1193(2002);A. Marti等人,"太陽能電池之量子點中間能帶的部分填充(Partial Filling of a Quantum Dot Intermediate Band for Solar Cells)",IEEE電子裝置會刊(IEEE Transactions on Electron Devices),48,2394-2399(2001);Y. Ebiko等人,"InAs/GaAs自組式量子點中的島狀尺寸縮放(Island Size Scaling in InAs/GaAs Self-Assembled Quantum Dots)",物理評論快報(Physical Review Letters)80,2650-2653(1998);及發證給Petroff等人之美國專利第6,583,436 B2號(2003年6月24日);前述每一者基於其對當前最先進技術之描述而以引用之方式併入本文中。
近幾年已積極研究量子點中間能帶太陽能電池,因為據聲稱該等太陽能電池具有實現大於60%之太陽能電力轉換效率的潛力。參見A. Luque及A. Marti,Phys. Rev. Lett. 78,5014(1997)。確實,低能帶隙能量之量子點可藉由吸收單一高能光子而產生多個電子-電洞對(激子),原則上導致量子效率超過100%。參見R. D. Schaller及V. I. Klimov,Phys. Rev. Lett. 92,186601-1(2004);及G. S. Philippe,Nature Mater. 4,653(2005)。為擴大對較長波長的光譜響應,需要將窄能帶隙量子點(例如,InAs)充分緊密地填充以在主體基質材料(例如,GaAs)之帶隙中形成一中間能帶。
然而,高濃度之應變量子點在點區域中引入一高電荷密度(~1×1016 cm-3 --見R. Wetzler、A. Wacker、E. Schll、C. M. A. Kapteyn、R. Heitz及D. Bimberg,Appl. Phys. Lett. 77,1671(2000)),且光激發載子(電子及電洞)快速地被自組式量子點捕獲。因此,並未實現對量子點中間能帶太陽能電池所預測之極高效率,部分原因在於不理想之能帶結構導致電荷捕獲接著導致點中光載子之復合。相對於需要快速載子捕獲之雷射應用(參見L. V. Asryan及R. A. Suris,Semicond. Sci. Technol. 11,554(1996)),光生載子必須穿隧通過量子點或繞過量子點傳輸以避免在此等位置之捕獲及復合。
理論模型(參見V. Aroutiounian、S. Petrosyan及A. Khachatryan,Solar Energy Mater. & Solar Cells 89,165(2005))證實,對於相對短的復合時間(~2ns),量子點主要用作復合中心而不是產生中心,導致光電流隨著較大能帶隙半導體主體中量子點層數(N)的增加而減少。藉由主體之Si δ-摻雜(參見A.、N.、E.、C. Stanley、C. Farmer、L. Cuadra及A. Luque,Thin Solid Films 511,638(2006))的中間能帶太陽能電池之點區域中侷限態的部分填充展現有限的成效。雖然此等裝置已使光響應延長至更長波長,但與大能帶隙同質接面電池比較,其等亦展現一明顯減小之開路電壓(Voc)。
雖然一中間能帶之形成改良裝置性能,但結果並未達成光電流的預期理論改良。對於理想化的量子點中間能帶太陽能電池,已預測電力效率大於60%。此目標尚未被實現,部分原因在於導致量子點中之電荷捕獲接著導致光載子之復合的非理想性,及缺乏一最佳材料組合。
圖6繪示當電荷載子衰退至一激發態Ee,2 (701)或基態Ee,1 (702、703)時,一自由電子被量子點130捕獲。此去激發過程由於能量被作為聲子吸收入晶格中而減少光電流。電洞亦發生類似之載子去激發及捕獲。因此,為改良中間能帶太陽能電池之性能,需要減少因電荷捕獲所引起之電荷載子去激發。發證給Forrest等人之美國申請案第11/598,006號(該案之全文併入本文中)藉由將每一量子點密封於一薄障壁殼中以迫使載子執行量子機械穿隧進入量子點而減少去激發捕獲。若量子點係藉由上文討論之Stranski-Krastanow技術形成,則載子將穿隧通過障壁層以橫越於整體層之間。包括該系列穿隧障壁之該等裝置被稱為"圍籬中之點"(DFENCE)異質結構。
由於光伏打裝置中利用之第II型能帶排列,在不併入額外圍籬層或障壁殼於量子點周圍之情況下,本發明之太陽能電池避免電子捕獲進入量子點中及減少空間電荷累積。相對於基質材料之導帶係處於比量子點之導帶更高之一能階及基質材料之價帶係處於一更低能階的傳統第I型量子點,在具有第II型能帶排列之量子點中,量子點之導帶及價帶均處於比基質材料更高的一能階。咸信直接能帶隙材料之交錯能帶排列形成此等異質結構之獨特性質特性。此外,咸信在量子點與基質材料之界面處的二維電子及電洞之空間分離導致其光學性質之可調性。因此,交錯能帶排列可允許能量小於形成一異質接面之基質半導體之每一者之能帶隙的光學發射。
在一實施例中,該光伏打裝置包含:複數個圍籬層,該等圍籬層基本上由安置於一p-型與n-型半導體材料之間之一堆疊中的一半導體材料所組成;及複數個層,該等層基本上由一第二半導體材料之量子點嵌入一第三半導體材料之間且與其直接接觸之交替層所組成。該等交替層係安置於在第一半導體材料之該等層之各自二個層之間且與其等直接接觸之堆疊中。每一量子點提供能量在第一半導體材料之相鄰層的導帶邊緣與價帶邊緣之間的至少一量子態。第二半導體材料之每一量子點與第三半導體材料形成一具有一第II型能帶排列的異質接面。第三半導體材料可為一無機半導體基質。
較佳地,第一半導體材料係Alx Ga1-x As,其中x>0。據信,此將載子之飽和洩漏減到最小。在較佳實施例中,第二半導體材料係GaSb及第三半導體材料係GaAs。圖2a顯示具有其中p-型及n-型半導體均為GaAs之該結構的一較佳實施例。
具有交錯能帶排列之GaSb/GaAs第II型量子點已在文獻中被特徵化及報告。因為大的價帶偏移(~0.81eV),電洞被定域於GaSb點內,及因為與定域電洞的庫侖交互作用,電子在點周圍產生一淺薄量子殼,藉此形成一空間間接激子態。參見Hatami等人,Appl. Phys. Lett. 67,656(1995)。與於第I型中間能帶量子點結構之InAs/GaAs中所見的80%重疊相比,電子及電洞波函數具有約60%之重疊。參見M. Grundman等人,Phys. Rev. B 52,11969(1995);F. Hatami等人,Phys. Rev. B 57,4635(1998)。咸信第II型量子點異質結構之波函數中的重疊除取決於量子點自身大小外,還取決於使電子與電洞分離之障壁的位能高度。電子與電洞波函數之較小重疊導致第II型量子點異質結構具有較第I型量子點結構諸如InAs/GaAs(~1ns)更長之輻射壽命(~23ns)。參見H. Born等人,Phys. Status Solidi B 228,R4(2001);W. H. Chang等人,Phys. Rev. B 62,6259(2000)。在設計量子點以使其隨基質與點之間之準費米能階分裂作為產生中心而非復合中心時,降低點中之復合速率亦係一重要考慮因素。對於獲取比當前為單一同質接面光伏打電池所報告者更大的電力轉換效率,此係期望的。
當第II型GaSb量子點位於一習知p-n接面之間時,據信,子能帶隙光子之吸收將把GaSb中來自不連續電洞能階的電子直接泵吸至GaAs基質。此外,位於GaSb/GaAs界面附近之應變導致導帶偏移之下限位於0.05-0.1eV之間。參見Kapetyn等人,Phys. Rev. B,60,14265(1999)。如上文討論,GaSb量子點中之較高導帶能階可避免電子捕獲於量子點中。然而,高位能井可捕獲電洞載子,藉此增加電荷累積及與GaAs基質中之電子復合。從而,來自量子點層之暗電流可增加量子點電池之開路電壓。因此,在空乏區邊緣可添加二個Alx Ga1-x As圍籬層,如在圖2(a)之較佳實施例中顯示。據信,Alx Ga1-x As圍籬層減少來自少數載子產生及擷取及來自GaSb點之熱離子電洞電流的暗電流,而無損於子能帶隙光子吸收。
使用界面錯位(IMF)生長模式之第II型應變減輕及稠密堆疊GaSb/GaAs量子點的形成及光學特性展示極佳晶體品質及室溫電激發光。參見Tatebayashi等人,Appl. Phys. Lett. 89,203116(2006)。因大約7%晶格失配引起之GaSb量子點的整體壓縮應變可藉由減輕GaSb量子點與GaAs基質之界面處的應變而鬆弛。GaSb量子點之電子及電洞能階可自導帶中之相對小尖峰值(~0.1eV)計算出,該相對小尖峰值係源自完全鬆弛之第II型GaSb/GaAs量子點及大的價帶偏移(0.81eV),且基質元素係藉由量子點之有效質量包絡函數理論決定。例如參見Wei及Forrest,Nano. Lett. 7,218(2007)。GaAs基質中之GaSb量子點之空間分佈可被處理為一具有高度h及半徑R之圓柱的稠密、週期性配置陣列。周圍GaAs層之厚度為d及量子點"單位晶胞"之週期為L,其平行於基板表面之平面。據信,可改變量子點之高度及半徑以充分吸收子能帶隙光子。
圖1及2(a)中繪示之簡單層式結構係作為非限制性實例而提供,應瞭解本發明之實施例可連同各種各樣其他結構一起使用。所描述之特定材料及結構為例示性,可使用其他材料及結構。
應瞭解,此處描述之多種實施例僅係為了舉例,而不意味限制本發明之範疇。舉例而言,此處描述之許多材料及結構可用其他材料及結構代替,而不脫離本發明之精神。應瞭解,關於本發明為何起作用之多種理論並不意味具限制性。舉例而言,關於電荷載子之理論並不意味具限制性。
實驗
圖3顯示一具有一交錯第II型能帶排列之GaSb/GaAs量子點異質結構的基態躍遷能對量子點高度。對於量子點半徑13nm,基態光子躍遷能自1.07eV減少為0.82eV。對於2nm之點高度,基態躍遷能為約1.07eV,其接近類似之量子點大小在1.05eV光激發光譜的第一峰值。見Geller等人,Appl. Phys. Lett. 82,2706(2003)。
咸信低維(量子點或量子井)太陽能電池之裝置性能係取決於載子逸出順序。對於大多數III-IV第I型奈米結構系統,發現輕電洞最先逸出。為避免嚴重之開路電壓退化,期望電子先於重電洞逸出。若重電洞在電子之前逸出,則負電荷會累積於量子點(或井)中而加強內建電場。量子點材料中之此一大的負載子累積將局部減弱空乏區中的內建電場及對應之載子逸出可能性。據信,此將增加復合速率,導致開路電壓下降。由於具有第II型能帶排列之量子點太陽能電池的特徵在於弱電子定域化(由於與局部電洞之庫侖交互作用),因此光生電子將直接激發至GaAs基質與GaSb量子點之界面上。內建電場將使電子橫跨空乏區漂移。亦參見Tatebayashi等人,Appl. Phys. Lett. 89,203116(2006)。因此,在第II型異質結構中,咸信電子先於重電洞自量子點逸出至基質。
電洞被強烈侷限於量子點且定域能量約為450meV。見Geller等人,Appl. Phys. Lett. 82,2706(2003)。在許多粒子區中,強烈定域電洞之電洞-電洞交互作用(庫侖充電)支配電子-電子及電子-電洞交互作用。結果,電洞自GaSb量子點中之不連續能階至GaAs基質的活化能由大約450meV減少至大約140-150meV。(參見Kirsch等人,Appl. Phys. Lett. 78,1418(2001)),該減少對應於量子點之平均電洞佔位及累積電洞之間之斥力的增加。
由於量子點中之增加量的電荷,能態填充及庫侖交互作用使熱活化能(E a )降低。圖2之插圖中顯示的減少之E a 加快電洞的逸出速率。在一內建電場F 之存在下,量子點位能高度將減少qFh/2 ,其中q 表示電荷。參見C. M. A Kapteyn等人,Phys. Rev. B,60,14265(1999)。由於第II型量子點中之電子定域係可忽略,因此從GaSb量子點(EQD )與潤濕層(E wl ~1.39eV)之間之躍遷能的差異可計算出電洞能階E1 與GaSb潤濕層中之中間能階之間的定域能量。
N 個電洞充入一非意願點中所需之庫侖充電能EN 可表示為:
其中D 為點之典型直徑,co為真空介電常數,且εGaAs =13.1。
能階El中之電洞載子的熱活化能可表示為:
電洞逸出過程可被視為熱活化進入位於GaSb潤濕層中之激發能階,且隨後穿隧發射。因此,電洞發射速率可表示為:
其中,N係GaSb中電洞能態之有效密度,σ1 係能階El上之電洞的捕獲截面(σ1 =(6±3)×10-16 cm-2 ),v係GaAs緩衝區中之電洞的平均熱速度(~1.3×105 m/s)。
圖2中顯示之一熱輔助穿隧過程之計算出的電洞逸出速率從8×1012 s-1 (h =2nm)減少至2×107 s-1 (h =6nm),其後再增加至3×109 s-1 (h =11nm)。咸信此係定域能量與位障隨量子點高度降低之間的取捨結果。
據信,具有一最佳量子點半徑及高度及空乏區中之內建電場將使電洞逸出速率增加,以致其將大於輻射復合速率(~4.3×107 s-1 )。從而,光生電洞或子可促進子能帶隙光電流,而不會發生量子點中的多數復合。因此,據信,內建電場的一個重要設計考慮因素係其促進電洞穿隧通過價帶位能中之位能井的能力。
因為GaSb量子點中之額外輻射復合電流,來自中性區邊緣附近之少數載子產生及擷取對基線電池反向飽和電流的貢獻J0亦將增加。反向飽和電流J01可表示為
其中l 係量子點層數,B係輻射復合係數,N 係與n-及p-側摻雜相關的有效摻雜濃度,且μ係與電子及電洞活動性相關的有效移動率。參見Anderson及Wojtczuk,J. Appl. Phys. 79,1973(1996)。
來自電洞之熱發射的電流密度可表示為
其中N dοt 係量子點之面積密度,且L 係量子點中不連續能階之數目。
計算出的二極體反向飽和電流J 01J 02 隨著圖4中顯示之量子點層數逐漸增加(h =3nm,R =13nm)。
暗電流將隨GaAs與Alx Ga1-x As層之間之能帶隙偏移能ΔE的增加而大大減少,且可表示為
其併入產生及復合電流(J NR )。
圖4中顯示有及無二個Alx Ga1-x As圍籬層之整體電力轉換效率。無圍籬層時,(x=0),對於一具有二層量子點之裝置,電力轉換效率從22.5%(無量子點)減少至21.3%。增加量子點層數亦增加GaSb量子點之吸收效率。此促成子能帶隙光電流的增加,該增加過度補償開路電壓的微小減少。因此,在本質區中利用約10至約20層堆疊GaSb/GaAs量子點,整體效率接近24.5%之飽和極限。
GaSb量子點中產生的電子-電洞對經內建電場之有效分離(儘管在空乏區復合)增加子能帶隙光電流。如圖4中之插圖顯示,增加Alx Ga1-x As位障(x=0.1、0.2)使暗電流J01 及J02 減少之倍數。因此,當x=0.2時,具有16層量子點的電池達成34.7%之電力轉換效率,同時有0.881V之開路電壓。此可與無任何量子點或圍籬層之電池的0.903V作比較。圖4亦顯示,在一第II型異質結構中,電力轉換效率之上限可為當x=0.2時的約38.5%。
雖然本發明係就特定實例及較佳實施例來描述,但應瞭解本發明並不受限於此等實例及實施例。因此,如熟悉此項技術者瞭解的,所主張之本發明包括源自此處描述之特定實例及較佳實施例的變化。
110...第一接點(電極)
115...第一過渡層
120...半導體整體基質材料
130...量子點
150...第二過渡層
155...第二接點(電極)
701...激發態Ee,2
702...基態Ee,1
703...基態Ee,1
圖1繪示一量子點太陽能電池。
圖2(a)顯示一具有二個Alx Ga1-x As層之GaSb量子點太陽能電池的結構及2(b)顯示對應之能階圖。
圖3顯示一具有圖2中描繪之結構之量子點太陽能電池的基態躍遷能對量子點高度之曲線圖。量子點之半徑為13nm。h對應於量子點長度;d對應於周圍GaSb層之厚度;且L對應於基板表面之平面內量子點之間之距離。插圖顯示直接電洞穿隧及熱輔助電洞穿隧過程之示意圖。
圖4顯示具有堆疊GaSb量子點之太陽能電池的少數載子擴散J01 及來自GaSb量子點的暗電流J02 。插圖顯示當x自0、0.1增加至0.2時計算出的電力轉換效率對半徑為13nm之量子點層的數目。
圖5顯示大致理想化及在膠體溶液中形成的圖1中裝置中的量子點陣列之一截面。
圖6顯示一無機基質材料中的一無機量子點之一截面的能帶圖,其繪示一經過電子之去激發及捕獲。
圖中之結構不一定係按比例繪製。
110...第一接點(電極)
115...第一過渡層
120...半導體整體基質材料
130...量子點
150...第二過渡層
155...第二接點(電極)

Claims (8)

  1. 一種光伏打裝置,其包含:一第一電極及一第二電極;一層p-型半導體材料,其係安置於該第一電極與該第二電極間之堆疊中;一層n-型半導體材料,其係安置於該第一電極與該第二電極間之堆疊中;複數個圍籬層,其基本上係由安置於該p-型與n-型半導體材料間之堆疊中的第一半導體材料所組成;複數個層,其基本上係由第二半導體材料之量子點嵌入不同於該第一半導體材料之第三半導體材料之間且與其直接接觸之交替層所組成,其中該等交替層係安置於在該等圍籬層之各自二個層之間且與其等直接接觸之堆疊中,且其中每一量子點提供一能量在該第一半導體材料之相鄰層的一導帶邊緣與一價帶邊緣之間的至少一個量子態;且其中該第二半導體材料之每一量子點與該第三半導體材料形成一具有第II型能帶排列的異質接面。
  2. 如請求項1之裝置,其中:該p-型半導體材料係GaAs;該第一半導體材料係Alx Ga1-x As,其中x>0;該第二半導體材料係GaSb;且該第三半導體材料係GaAs。
  3. 如請求項2之裝置,其包含約10至約20個GaAs/GaSb之交替層。
  4. 如請求項3之裝置,其中該n-型半導體材料係GaAs。
  5. 一種製造光伏打裝置之方法,其包含:沉積一層p-型半導體材料於第一電極上;沉積基本上由一第一半導體材料組成的複數個圍籬層於該p-型半導體材料層之上;沉積基本上由第二半導體材料之量子點嵌入不同於該第一半導體材料之第三半導體材料之間且與其直接接觸之交替層所組成的複數個層,其中該等交替層係安置於在該等圍籬層之各自二個層之間且與其等直接接觸之堆疊中;且每一量子點提供一能量在該第一半導體材料之相鄰層的一導帶邊緣與一價帶邊緣之間的至少一量子態;且該第二半導體材料之每一量子點與該第三半導體材料形成一具有第II型能帶排列的異質接面;沉積一層n-型半導體材料於該等圍籬層之上;及沉積一第二電極於該n-型半導體層之上,而形成一光伏打裝置。
  6. 如請求項5之方法,其中該p-型半導體材料係GaAs;該第一半導體材料係Alx Ga1-x As,其中x>0;該第二半導體材料係GaSb;且該第三半導體材料係GaAs。
  7. 如請求項6之方法,其包含約10至約20個GaAs/GaSb之交 替層。
  8. 如請求項7之方法,其中該n-型材料係GaAs。
TW097139136A 2007-10-10 2008-10-09 第ⅱ型量子點太陽能電池 TWI441346B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/869,954 US7915521B2 (en) 2007-10-10 2007-10-10 Type II quantum dot solar cells

Publications (2)

Publication Number Publication Date
TW200937657A TW200937657A (en) 2009-09-01
TWI441346B true TWI441346B (zh) 2014-06-11

Family

ID=40533003

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097139136A TWI441346B (zh) 2007-10-10 2008-10-09 第ⅱ型量子點太陽能電池

Country Status (7)

Country Link
US (1) US7915521B2 (zh)
EP (1) EP2201608A2 (zh)
JP (1) JP2011501419A (zh)
KR (1) KR101596972B1 (zh)
CN (1) CN101933153B (zh)
TW (1) TWI441346B (zh)
WO (1) WO2009049087A2 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396294B (zh) * 2008-11-12 2013-05-11 Academia Sinica 量子點紅外線偵測器裝置
TWI419341B (zh) * 2009-05-18 2013-12-11 Ind Tech Res Inst 量子點薄膜太陽能電池
US8426728B2 (en) * 2009-06-12 2013-04-23 Honeywell International Inc. Quantum dot solar cells
US20110108102A1 (en) * 2009-11-06 2011-05-12 Honeywell International Inc. Solar cell with enhanced efficiency
JP2011176225A (ja) * 2010-02-25 2011-09-08 Seiko Epson Corp 光学変換装置及び同装置を含む電子機器
TWI420715B (zh) * 2010-03-08 2013-12-21 Academia Sinica 熱整流器及熱整流方法
CN102237202B (zh) * 2010-04-22 2014-07-02 财团法人工业技术研究院 量子点薄膜太阳能电池
GB2480265B (en) * 2010-05-10 2013-10-02 Toshiba Res Europ Ltd A semiconductor device and a method of fabricating a semiconductor device
KR101157555B1 (ko) * 2010-09-08 2012-06-18 한국해양대학교 산학협력단 Ⅱ-ⅵ족 화합물 반도체를 이용한 다중접합 고효율 태양전지용 박막의 제조방법
KR101215382B1 (ko) * 2010-11-30 2012-12-26 한국기초과학지원연구원 양자점 태양전지의 제조방법
WO2012103666A1 (en) * 2011-01-31 2012-08-09 Honeywell International Inc. Quantum dot solar cells with interface layer and manufacturing method thereof
FR2973945B1 (fr) * 2011-04-11 2013-05-10 Centre Nat Rech Scient Heterostructure semi-conductrice et cellule photovoltaïque comprenant une telle heterostructure
WO2013027717A1 (ja) 2011-08-24 2013-02-28 株式会社 村田製作所 太陽電池と該太陽電池の製造方法
KR101309110B1 (ko) * 2011-08-24 2013-09-17 삼성전자주식회사 양자점 발광 소자 및 그 제조 방법
JP5946010B2 (ja) * 2011-09-16 2016-07-05 株式会社豊田中央研究所 量子ドット太陽電池およびその製造方法
JP6115938B2 (ja) * 2012-02-28 2017-04-19 国立大学法人電気通信大学 量子ドットの形成方法および太陽電池
SG2013096607A (en) 2012-12-27 2014-07-30 Agency Science Tech & Res Vertical light emitting diode with photonic nanostructures and method of fabrication thereof
US10566491B2 (en) * 2013-02-12 2020-02-18 The George Washington University Solar cell using quantum dots and method of fabricating same
EP2802018A3 (en) 2013-05-07 2015-04-29 L-3 Communications Cincinnati Electronics Corporation Diode barrier infrared detector devices and superlattice barrier structures
US9520514B2 (en) * 2013-06-11 2016-12-13 National Taiwan University Quantum dot infrared photodetector
US9240507B2 (en) * 2014-01-28 2016-01-19 Sharp Kabushiki Kaisha Intermediate band solar cell using type I and type II quantum dot superlattices
JP2015005766A (ja) * 2014-08-20 2015-01-08 セイコーエプソン株式会社 光学変換装置及び同装置を含む電子機器
CN106298992B (zh) * 2016-09-23 2017-09-22 南京工业大学 一种太阳电池及其制备方法
US11115010B1 (en) * 2018-05-15 2021-09-07 University Of Maryland, College Park Energy loaded dielectrics, systems including energy loaded dielectrics, and methods for fabrication and use thereof
US11309447B2 (en) * 2019-12-26 2022-04-19 Globalfoundries U.S. Inc. Separate absorption charge and multiplication avalanche photodiode structure and method of making such a structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264825A (ja) * 1995-03-17 1996-10-11 Daido Steel Co Ltd 半導体光素子
CA2268997C (en) 1998-05-05 2005-03-22 National Research Council Of Canada Quantum dot infrared photodetectors (qdip) and methods of making the same
AU2002224583A1 (en) 2000-06-27 2002-02-05 The Regents Of The University Of California Strain-engineered, self-assembled, semiconductor quantum dot lattices
JP3753605B2 (ja) * 2000-11-01 2006-03-08 シャープ株式会社 太陽電池およびその製造方法
TW480591B (en) 2001-01-15 2002-03-21 Nat Science Council Manufacture method of quantum dot infrared sensor
JP4905623B2 (ja) 2004-10-18 2012-03-28 富士通株式会社 太陽電池
ES2297972A1 (es) 2005-05-30 2008-05-01 Universidad Politecnica De Madrid Fotodetector de infrarrojos de banda intermedia y puntos cuanticos.
US7750425B2 (en) * 2005-12-16 2010-07-06 The Trustees Of Princeton University Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier

Also Published As

Publication number Publication date
KR20100080607A (ko) 2010-07-09
EP2201608A2 (en) 2010-06-30
TW200937657A (en) 2009-09-01
CN101933153B (zh) 2012-04-18
US7915521B2 (en) 2011-03-29
KR101596972B1 (ko) 2016-02-23
US20090095349A1 (en) 2009-04-16
WO2009049087A2 (en) 2009-04-16
JP2011501419A (ja) 2011-01-06
WO2009049087A3 (en) 2010-04-15
CN101933153A (zh) 2010-12-29

Similar Documents

Publication Publication Date Title
TWI441346B (zh) 第ⅱ型量子點太陽能電池
KR101352654B1 (ko) 에너지 펜스 장벽내에 매립된 양자점들을 갖는 중간 대역 감광 장치
KR101335193B1 (ko) 무기 매트릭스에 임베딩된 터널링 장벽을 갖는 양자점을가진 중간대 감광성 장치
TWI666785B (zh) 太陽能電池及形成太陽能電池的方法
US20120160312A1 (en) Solar cell
JP5256268B2 (ja) 太陽電池
US20120285537A1 (en) Solar cell
Norman et al. InGaAs/GaAs QD superlattices: MOVPE growth, structural and optical characterization, and application in intermediate-band solar cells
US20140026937A1 (en) Semiconductor Heterostructure and Photovoltaic Cell Including Such A Heterostructure
Goodnick et al. Solar cells
Routray et al. Effect of nanostructure on carrier transport mechanism of III-nitride and kesterite solar cells: A computational analysis
Aly et al. Contribution of nanostructures in high performance solar cells
JP6258712B2 (ja) 受光素子および受光素子を備えた太陽電池
Oktyabrsky et al. Nanoengineered quantum dot medium for space optoelectronic devices
Aly et al. Performance evaluation of nanostructured solar cells
Karoui et al. Quantum mechanics design of two photon processes based solar cells
Labelle et al. Engineering solar cells using colloidal quantum dots
PIN A Asgari", Kh. Khalili', EAhmadi', S. Ahmadi-Kandjani'
WO2012100038A2 (en) Photovoltaic cells with quantum dots with built-in-charge and methods of making same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees