TWI437076B - 太陽電池用波長轉換性樹脂組成物以及太陽電池模組 - Google Patents

太陽電池用波長轉換性樹脂組成物以及太陽電池模組 Download PDF

Info

Publication number
TWI437076B
TWI437076B TW100112216A TW100112216A TWI437076B TW I437076 B TWI437076 B TW I437076B TW 100112216 A TW100112216 A TW 100112216A TW 100112216 A TW100112216 A TW 100112216A TW I437076 B TWI437076 B TW I437076B
Authority
TW
Taiwan
Prior art keywords
resin composition
wavelength
resin
wavelength conversion
solar cell
Prior art date
Application number
TW100112216A
Other languages
English (en)
Other versions
TW201202387A (en
Inventor
Kaoru Okaniwa
Takeshi Yamashita
Taku Sawaki
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of TW201202387A publication Critical patent/TW201202387A/zh
Application granted granted Critical
Publication of TWI437076B publication Critical patent/TWI437076B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

太陽電池用波長轉換性樹脂組成物以及太陽電池模組
本發明是有關於一種太陽電池用波長轉換性樹脂組成物以及太陽電池模組。
於先前的矽結晶系太陽電池模組中,表面的保護玻璃(亦稱為蓋玻璃)注重耐衝擊性而使用強化玻璃,為了使該強化玻璃與密封材料(通常為以乙烯-乙酸乙烯酯共聚物為主成分的樹脂,亦稱為填充材料)的密著性良好,而對單面施予藉由壓紋加工的凹凸花紋。另外,該凹凸花紋形成於內側,太陽電池模組的表面平滑(為了提高太陽光的導入效率,亦有對外側亦實施凹凸形狀的情況)。另外,於保護玻璃的下側設置有太陽電池單元、用以將標記線保護密封的密封材料以及背膜。
但是,為了提高太陽電池的發電效率而形成有各種提案。例如,日本專利特開2000-328053號公報、日本專利特開2001-352091號公報等中,提出有將藉由使用螢光物質,對太陽光光譜中對發電的幫助少的紫外區域或者紅外區域的光進行波長轉換,而發出對發電的幫助大的波長區域的光的層設置於太陽電池受光面側的方法。
日本專利特開2000-328053號公報以及日本專利特開2001-352091號公報中記載的將對發電的幫助少的波長區域的光進行波長轉換成對發電的幫助大的波長區域的光的提案中,雖於波長轉換層中含有螢光物質,但該螢光物質 通常折射率大,另外,就其形狀而言,當所入射的太陽光通過波長轉換膜時,存在散射而未充分到達太陽電池單元,對發電並無幫助的比例增加的情況。
本發明的課題在於提供一種可構成發電效率優異的太陽電池模組的波長轉換性樹脂組成物以及包括包含該波長轉換性樹脂組成物的透光層的太陽電池模組。
本發明者們為了解決上述課題而積極研究,結果獲得如下發現:先前的波長轉換層中,由於折射率與媒質不同且粒徑大的螢光物質分散於透明分散介質樹脂中,故而發生光的散射,即便在波長轉換層中將紫外區域的光轉換成可見區域的光,亦存在所發電的電力相對於所入射的太陽光的比例(發電效率)不提高的情況。進而獲得如下發現:相反,即便毫無可見光的散射等的光損失,若紫外區域的光可產生散射,則亦甚至存在波長轉換功能對太陽電池的轉換效率發揮負作用的情況。基於該些發現,發現將所入射的太陽光中對太陽光發電的幫助少的波長區域的光轉換成對太陽光發電的幫助大的波長的光的波長轉換性樹脂組成物中,成為散射光的情況少而可效率良好地導入太陽電池單元中的判斷基準的方法,從而完成本發明。
即,本發明為如下所述。
〈1〉一種太陽電池用波長轉換性樹脂組成物,其是包含吸光度光譜中的極大吸收波長為λmax(nm)的螢光物質、樹脂粒子、及分散介質樹脂的樹脂組成物,並且於將 使波長λ(nm)下的光強度為I0(λ)的入射光向由上述樹脂組成物所形成的厚度為t(μm)的樹脂膜的厚度方向入射而得的透射光的強度設為I(λ),且將使上述入射光向厚度為tref(μm)的參照用樹脂膜的厚度方向入射而得的透射光的強度設為Iref(λ),其中上述參照用樹脂膜是由自上述樹脂組成物中去除上述螢光物質以及樹脂粒子的參照用樹脂組成物所形成時,下述式1所表示的A1(λ)的值在上述極大吸收波長λmax(nm)下為3.0×10-4(O.D./μm)以下:式1:A1(λ)={log(I0(λ)/I(λ))}/t-{log(I0(λ)/Iref(λ))}/tref
〈2〉如上述〈1〉所述的太陽電池用波長轉換性樹脂組成物,其中上述螢光物質內包於上述樹脂粒子中。
〈3〉如上述〈1〉或〈2〉所述的太陽電池用波長轉換性樹脂組成物,其中上述螢光物質為包含有機配位子的稀土金屬錯合物。
〈4〉一種太陽電池模組,包括包含如上述〈1〉~〈3〉中任一項所述的太陽電池用波長轉換性樹脂組成物的透光性層。
〈5〉一種太陽電池用波長轉換性樹脂組成物的評價方法,該太陽電池用波長轉換性樹脂組成物包含吸光度光譜中的極大吸收波長為λmax(nm)的螢光物質、及分散介質 樹脂,並且於將波長λ(nm)下的光強度為I0(λ)的入射光向由上述樹脂組成物所形成的厚度為t(μm)的樹脂膜的厚度方向入射而得的透射光的強度設為I(λ),且將使上述入射光向厚度為tref(μm)的參照用樹脂膜的厚度方向入射而得的透射光的強度設為Iref(λ),其中上述參照用樹脂膜是由自上述樹脂組成物中去除上述螢光物質的參照用樹脂組成物所形成時,基於上述極大吸收波長λmax(nm)下的下述式1所表示的A1(λ)的值,來評價波長轉換效率:式1:A1(λ)={log(I0(λ)/I(λ))}/t-{log(I0(λ)/Iref(λ))}/tref
依據本發明,可提供一種可構成發電效率優異的太陽電池模組的波長轉換性樹脂組成物以及包括包含該波長轉換性樹脂組成物的透光層的太陽電池模組。
為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。
本說明書中「~」是表示包括其前後所記載的數值分別作為最小值及最大值的範圍。
〈太陽電池用波長轉換性樹脂組成物〉
本發明的太陽電池用波長轉換性樹脂組成物包含吸光度光譜中的極大吸收波長為λmax(nm)的螢光物質、樹脂粒子、及分散介質樹脂。另外,當將使波長λ(nm)下的光強度為I0(λ)的入射光向由上述樹脂組成物所形成的厚度為t(μm)的樹脂膜的厚度方向入射而得的透射光的強度設為I(λ),且將使上述入射光向由自上述樹脂組成物中去除上述螢光物質以及樹脂粒子的參照用樹脂組成物所形成的厚度為tref(μm)的參照用樹脂膜的厚度方向入射而得的透射光的強度設為Iref(λ)的情況,下述式1所表示的A1(λ)的值在上述極大吸收波長λmax(nm)下為0.0003(O.D./μm)以下。
式1:A1(λ)={log(I0(λ)/I(λ))}/t-log{(I0(λ)/Iref(λ))}/tref
藉由以在吸光度光譜的極大吸收波長λmax(nm)下,上述式1所表示的A1(λ)值成為3.0×10-4(O.D./μm)以下的方式來構成包含螢光物質、樹脂粒子、以及分散介質樹脂的太陽電池用波長轉換性樹脂組成物,則包括由該波長轉換性樹脂組成物所形成的透光性樹脂層的太陽電池的發電效率提高。另一方面,若在吸光度光譜的極大吸收波長λmax(nm)下,上述式1所表示的A1(λ)值超過3.0×10-4(O.D./μm),則不僅發電效率不提高,而且有發電效率下降的情況。
上述情況可認為是由於如下原因:例如,於將入射至太陽電池的太陽光中對太陽光發電的幫助少的波長區域的光轉換成對發電的幫助大的波長區域的光的同時,不僅抑制太陽光的散射,而可效率良好且穩定地將太陽光用於發電。
本發明中,A1(λ)值在波長λmax下為3.0×10-4(O.D./μm)以下,就太陽電池的轉換效率的觀點而言,較佳為2.5×10-4以下,更佳為2.0×10-4以下。
本發明中,A1(λ)值是使用英弘精機(股)製造的太陽模擬器用繞射光柵型分光放射計LS-100、及Wacom Electric(股)製造的太陽模擬器WXS-155S-10,AM1.5G來測定。
具體而言,於繞射光柵型分光放射計LS-100的檢測部上載置評價用樣本,使用Wacom Electric(股)製造的太陽模擬器WXS-155S-10,AM1.5G來照射光,獲得強度光譜I(λ)。另外,於上述LS-100的檢測部上不放置任何樣本而獲得空白的強度光譜I0(λ)。進而將參照用樣本放置於上述LS-100的檢測部上,獲得參照樣本的強度光譜Iref(λ)。使用以上述方式測定的強度光譜,依據式1來算出A1(λ)值。
螢光物質的吸光度光譜可使用分光光度計(例如Hitachi High-Technology(股)製造的U-3310、日本分光(股)製造的V-570等),利用通常的方法來測定。
另外,樹脂膜的厚度是使用數位式測微計來測定。
本發明中,基於對太陽光發電的幫助少的波長區域的光的散射的程度,來評價波長轉換性樹脂組成物中的太陽電池的發電效率,因此亦可代替上述λmax下的A1(λ)值,而以與其相關的值來評價。具體而言,例如可列舉以下方法。
另外,本發明中,A1(λ)值亦可代替λmax下的A1(λ)值而使用包括λmax的特定波長範圍中的A1(λ)值的平均值,來評價構成太陽電池時的轉換效率。此時的特定波長範圍例如較佳為設為300nm以上、且吸光度光譜的上升(吸收臨界值)的波長範圍,更佳為設為波長λ為λmax以上、且{log(I0(λ)/I(λ))}/t的值(單位膜厚的吸光度)為0.0001(O.D./μm)以上的波長λ的範圍。
另外,於將A1(λ)值作為特定波長範圍的平均值來評價的情況,較佳為A1(λ)值成為小於1.5×10-4,更佳為成為1.2×10-4以下,尤佳為成為1.0×10-4以下。
進而,本發明中,亦可代替λmax下的A1(λ)值而使用包括λmax的特定波長範圍下的A1(λ)的積分值,來評價構成太陽電池時的轉換效率。作為A1(λ)的積分值來評價時的特定波長範圍與上述相同。
另外,於作為特定波長範圍下的A1(λ)的積分值來評價的情況,特定波長範圍下的A1(λ)的積分值較佳為成為7.0×10-3以下,更佳為成為6.0×10-3以下,尤佳為成為5.0×10-3以下。
另外,本發明中,亦較佳為代替上述式1所表示的A1 (λ)值而使用下述式2所表示的A2(λ)值來評價。通常,A1(λ)值與A2(λ)值在理論上等價,可根據可利用的測定裝置而適當選擇A1(λ)值或者A2(λ)值來評價。
式2:A2(λ)=a(λ)/t-aref(λ)/tref
式2中,a(λ)是將波長為波長λ(nm)的入射光向由上述樹脂組成物所形成的厚度為t(μm)的樹脂膜的厚度方向入射而得的上述樹脂膜的吸光度,aref(λ)是將上述入射光向由自上述樹脂組成物中去除上述螢光物質以及樹脂粒子的參照用樹脂組成物所形成的厚度tref(μm)的參照用樹脂膜的厚度方向入射而得的上述參照用樹脂膜的吸光度。
本發明中,就太陽電池的轉換效率的觀點而言,A2(λ)值在波長λmax下較佳為3.0×10-4(O.D./μm)以下,更佳為2.5×10-4以下,尤佳為2.0×10-4以下。
另外,本發明中,A2(λ)值亦可視需要,代替λmax下的A2(λ)值而作為包括λmax的特定波長範圍下的A2(λ)值的平均值來評價。此時的特定波長範圍例如較佳為設為λmax以上、且吸光度光譜的上升(吸收臨界值)的波長範圍,更佳為設為波長λ為λmax以上、且a(λ)/t的值為0.0001(O.D./μm)以上的波長λ的範圍。
本發明的波長轉換性樹脂組成物中,以A1(λ)值(或A2(λ)值)成為預定範圍的方式構成的具體方法例如可 列舉:將使螢光物質內包於樹脂粒子中的樹脂組成物分散於可將其分散的分散介質樹脂中,來構成波長轉換性樹脂組成物的方法;將以使用高分子分散劑對螢光物質進行分散處理而獲得的高分子分散劑所包覆的螢光物質分散於可將其分散的透明分散介質樹脂中而構成的方法;以及僅降低螢光物質的含有率的方法等。本發明中,就發電效率的觀點而言,較佳為使用使螢光物質內包於樹脂粒子中的樹脂組成物、或者以高分子分散劑包覆的螢光物質的方法。
此外,下文對該些方法的詳細情況進行說明。
(螢光物質)
本發明中使用的螢光物質只要是可將通常的太陽電池中可利用的波長區域外的光轉換成太陽電池中可利用的波長區域的化合物,則並無特別限制。例如可列舉:無機螢光體、有機螢光體、包含有機配位子的稀土金屬錯合物等。
上述無機螢光體例如可列舉:Y2O2S:Eu,Mg,Ti的螢光粒子、含有Er3+離子的氧化氟化物系結晶化玻璃、於包含氧化鍶及氧化鋁的化合物中添加有稀土元素銪(Eu)及鏑(Dy)的SrAl2O4:Eu,Dy、或Sr4Al14O25:Eu,Dy、或CaAl2O4:Eu,Dy、或ZnS:Cu等無機螢光材料。
另外,上述有機螢光體例如可列舉:花青(cyanine)系色素、吡啶(pyridine)系色素、玫紅(rhodamine)系色素等有機色素,BASF公司製造的Lumogen F Violet 570、Lumogen F Yellow 083、Lumogen F Orange 240、Lumogen F Red 300,田岡化學工業(股)製造的鹼性染料 Rhodamine B,Sumika Fine Chemicals(股)製造的Sumiplast Yellow FL7G,Bayer公司製造的MACROLEX Fluorescent Red G、MACROLEX Fluorescent Yellow 10GN等有機螢光體。
就波長轉換效率的觀點而言,本發明中的螢光物質較佳為包含有機配位子的稀土金屬錯合物,即稀土金屬的有機錯合物。其中,就波長轉換效率的觀點而言,較佳為銪錯合物以及釤錯合物的至少1種。
另外,構成有機錯合物的配位子並無特別限制,可根據所使用的金屬來適當選擇。其中,較佳為可與銪及釤的至少1種形成錯合物的配位子。
本發明中,並不限定配位子,但較佳為作為中性配位子的選自羧酸、含氮有機化合物、含氮芳香族雜環式化合物、β-二酮類、以及氧化膦(phosphine oxide)中的至少1種。
另外,稀土金屬錯合物的配位子可含有通式R1COCHR2COR3(式中,R1表示芳基、烷基、環烷基、環烷基烷基、芳烷基或者該些基團的取代體,R2表示氫原子、烷基、環烷基、環烷基烷基、芳烷基或者芳基,R3表示芳基、烷基、環烷基、環烷基烷基、芳烷基或者該些基團的取代體)所表示的β-二酮類。
β-二酮類具體可列舉:乙醯基丙酮(acetylacetone)、全氟乙醯基丙酮(perfluoroacetylacetone)、苯甲醯基-2-呋喃甲醯基甲烷(benzoyl-2-furanoyl methane)、1,3-二(3-吡 啶基)-1,3-丙二酮(1,3-di(3-pyridyl)-1,3-propanedione)、苯甲醯基三氟丙酮(benzoyl trifluoroacetone)、苯甲醯基丙酮(benzoyl acetone)、5-氯磺醯基-2-噻吩甲醯基三氟丙酮(5-chlorosulfonyl-2-thenoyltrifluoroacetone)、雙(4-溴苯甲醯基)甲烷(bis(4-bromobenzoyl)methane)、二苯甲醯基甲烷(dibenzoyl methane)、d,d-二樟腦基甲烷(d,d-dicamphoryl methane)、1,3-二氰基-1,3-丙二酮(1,3-dicyano-1,3-propanedione)、對雙(4,4,5,5,6,6,6-七氟-1,3-己二醯基)苯(p-bis(4,4,5,5,6,6,6-heptafluoro-1,3-hexanedioyl)benzene)、4,4'-二甲氧基二苯甲醯基甲烷(4,4'-dimethoxy dibenzoyl methane)、2,6-二甲基-3,5-庚二酮(2,6-dimethyl-3,5-heptanedione)、二萘甲醯基甲烷(dinaphthoyl methane)、二特戊醯基甲烷(dipivaloyl methane)、雙(全氟-2-丙氧基丙醯基)甲烷(bis(perfluoro-2-propoxy propionyl)methane)、1,3-二(2-噻吩基)-1,3-丙二酮(1,3-di(2-thienyl)-1,3-propanedione)、3-(三氟乙醯基)-d-樟腦(3-(trifluoroacetyl)-d-camphor)、6,6,6-三氟-2,2-二甲基-3,5-己二酮(6,6,6-trifluoro-2,2-dimethyl-3,5-hexanedione)、1,1,1,2,2,6,6,7,7,7-十氟-3,5-庚二酮(1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione)、6,6,7,7,8,8,8-七氟-2,2-二甲基-3,5-辛二酮(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione)、 2-呋喃基三氟丙酮(2-furyl trifluoroacetone)、六氟乙醯基丙酮(hexafluoroacetyl acetone)、3-(七氟丁醯基)-d-樟腦(3-(heptafluorobutyryl)-d-camphor)、4,4,5,5,6,6,6-七氟-1-(2-噻吩基)-1,3-己二酮(4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)-1,3-hexanedione)、4-甲氧基二苯甲醯基甲烷(4-methoxy dibenzoyl methane)、4-甲氧基苯甲醯基-2-呋喃甲醯基甲烷(4-methoxy benzoyl-2-furanoyl methane)、6-甲基-2,4-庚二酮(6-methyl-2,4-heptanedione)、2-萘甲醯基三氟丙酮(2-naphthoyl trifluoroacetone)、2-(2-吡啶基)苯并咪唑(2-(2-pyridyl)benzimidazole)、5,6-二羥基-1,10-啡啉(5,6-dihydroxy-1,10-phenanthroline)、1-苯基-3-甲基-4-苯甲醯基-5-吡唑(1-phenyl-3-methyl-4-benzoyl-5-pyrazole)、1-苯基-3-甲基-4-(4-丁基苯甲醯基)-5-吡唑(1-phenyl-3-methyl-4-(4-butylbenzoyl)-5-pyrazole)、1-苯基-3-甲基-4-異丁醯基-5-吡唑(1-phenyl-3-methyl-4-isobutyryl-5-pyrazole)、1-苯基-3-甲基-4-三氟乙醯基-5-吡唑(1-phenyl-3-methyl-4-trifluoroacetyl-5-pyrazole)、3-(5-苯基-1,3,4-噁二唑-2-基)-2,4-戊二酮(3-(5-phenyl-1,3,4-oxadiazol-2-yl)-2,4-pentanedione)、3-苯基-2,4-戊二酮(3-phenyl-2,4-pentanedione)、3-[3',5'-雙(苯基甲氧基)苯基]-1-(9-菲基)-1-丙烷-1,3-二酮(3-[3',5'-bis(phenylmethoxy)phenyl]-1-(9-phenanthryl)-1-pr opane-1,3-dione)、5,5-二甲基-1,1,1-三氟-2,4-己二酮(5,5-dimethyl-1,1,1-trifluoro-2,4-hexanedione)、1-苯基-3-(2-噻吩基)-1,3-丙二酮(1-phenyl-3-(2-thienyl)-1,3-propanedione)、3-(第三丁基羥基亞甲基)-d-樟腦(3-(t-butyl hydroxymethylene)-d-camphor)、1,1,1-三氟-2,4-戊二酮(1,1,1-trifluoro-2,4-pentanedione)、1,1,1,2,2,3,3,7,7,8,8,9,9,9-十四氟-4,6-壬二酮(1,1,1,2,2,3,3,7,7,8,8,9,9,9-tetradecafluoro-4,6-nonanedione)、2,2,6,6-四甲基-3,5-庚二酮(2,2,6,6-tetramethyl-3,5-heptanedione)、4,4,4-三氟-1-(2-萘基)-1,3-丁二酮(4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione)、1,1,1-三氟-5,5-二甲基-2,4-己二酮(1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione)、2,2,6,6-四甲基-3,5-庚二酮(2,2,6,6-tetramethyl-3,5-heptanedione)、2,2,6,6-四甲基-3,5-辛二酮(2,2,6,6-tetramethyl-3,5-octanedione)、2,2,6-三甲基-3,5-庚二酮(2,2,6-trimethyl-3,5-heptanedione)、2,2,7-三甲基-3,5-辛二酮(2,2,7-trimethyl-3,5-octanedione)、4,4,4-三氟-1-(噻吩基)-1,3-丁二酮(4,4,4-trifluoro-1-(thienyl)-1,3-butanedione,TTA)、1-(對第三丁基苯基)-3-(N-甲基-3-吡咯)-1,3-丙二酮(1-(p-t-butylphenyl)-3-(N-methyl-3-pyrrole)-1,3-propanedi one,BMPP)、1-(對第三丁基苯基)-3-(對甲氧基苯基)-1,3-丙二酮(1-(p-t-butylphenyl)-3-(p-methoxyphenyl)-1,3-propanedione,BMDBM)、1,3-二苯基-1,3-丙二酮(1,3-diphenyl-1,3-propanedione)、苯甲醯基丙酮(benzoyl acetone)、二苯甲醯基丙酮(dibenzoyl acetone)、二異丁醯基甲烷(diisobutyroyl methane)、二三甲基乙醯基甲烷、3-甲基戊烷-2,4-二酮(3-methylpentane-2,4-dione)、2,2-二甲基戊烷-3,5-二酮(2,2-dimethylpentane-3,5-dione)、2-甲基-1,3-丁二酮(2-methyl-1,3-butanedione)、1,3-丁二酮(1,3-butanedione)、3-苯基-2,4-戊二酮(3-phenyl-2,4-pentanedione)、1,1,1-三氟-2,4-戊二酮(1,1,1-trifluoro-2,4-pentanedione)、1,1,1-三氟-5,5-二甲基-2,4-己二酮(1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione)、2,2,6,6-四甲基-3,5-庚二酮(2,2,6,6-tetramethyl-3,5-heptanedione)、3-甲基-2,4-戊二酮(3-methyl-2,4-pentanedione)、2-乙醯基環戊酮(2-acetyl cyclopentanone)、2-乙醯基環己酮(2-acetyl cyclohexanone)、1-七氟丙基-3-第三丁基-1,3-丙二酮(1-heptafluoropropyl-3-t-butyl-1,3-propanedione)、1,3-二苯基-2-甲基-1,3-丙二酮(1,3-diphenyl-2-methyl-1,3-propanedione)、或者1-乙氧基-1,3-丁二酮(1-ethoxy-1,3-butanedione)等。
稀土金屬錯合物的中性配位子的含氮有機化合物、含 氮芳香族雜環式化合物、氧化膦例如可列舉:1,10-啡啉(1,10-phenanthroline)、2-2'-聯吡啶(2-2'-bipyridyl)、2-2'-6,2"-三聯吡啶(2-2'-6,2"-terpyridyl)、4,7-二苯基-1,10-啡啉、2-(2-吡啶基)苯并咪唑、三苯基氧化膦、三-正丁基氧化膦、三-正辛基氧化膦、磷酸三-正丁酯等。
其中,就波長轉換效率的觀點而言,具有如上所述的配位子的稀土金屬錯合物例如較佳為可利用Eu(TTA)3Phen、Eu(BMPP)3Phen、Eu(BMDBM)3Phen等。
Eu(TTA)3Phen等的製造法例如可參照Masaya Mitsuishi,Shinji Kikuchi,Tokuji Miyashita,Yutaka Amano,J.Mater.Chem.2003,13,285-2879中揭示的方法。
本發明中,藉由尤其使用銪錯合物作為螢光物質,可構成具有高發電效率的太陽電池模組。銪錯合物以高波長轉換效率將紫外線區域的光轉換成紅色的波長區域的光,該經轉換的光有助於太陽電池單元的發電。
波長轉換性樹脂組成物中的螢光物質的含有率可根據所使用的螢光物質以及樹脂粒子來適當選擇。例如,可相對於波長轉換性樹脂組成物的不揮發成分總量(總固體成分含量)而設為0.0001重量百分比(wt%)~1wt%,較佳為0.0001wt%~0.1wt%,更佳為0.0001wt%~0.02wt%。
藉由設為0.0001wt%以上,發光效率進一步提高。另外,藉由為1wt%以下,可抑制由濃度消光或散射引起的發光效率的下降,另外,可抑制由入射光的散射引起的發 電效率的下降。
進而,本發明中較佳為,螢光物質為選自Eu(TTA)3Phen、Eu(TTA)3Bpy、Eu(TTA)3(TPPO)2、Eu(BMPP)3Phen及Eu(BMDBM)3Phen中的至少1種,且其含有率相對於波長轉換性樹脂組成物的總固體成分含量為0.0001wt%~1wt%。
本發明中,上述螢光物質較佳為用作螢光物質內包於後述樹脂粒子中的波長轉換用螢光材料、或者螢光物質以高分子分散劑包覆的波長轉換用螢光材料。藉此,可更有效果地抑制對太陽光發電幫助少的波長區域的光的散射。
可認為其原因在於,例如藉由與分散介質樹脂相比折射率大的螢光物質內包或包覆於表現出與分散介質樹脂相同程度的折射率的高分子化合物(樹脂粒子、高分子分散劑),而更有效果地抑制光的散射。
(樹脂粒子)
本發明的波長轉換性樹脂組成物包含樹脂粒子的至少1種。上述樹脂粒子較佳為可內包上述螢光物質的樹脂粒子。
就光利用效率提高的觀點而言,上述樹脂粒子的一次粒徑較佳為1μm~1000μm,更佳為10μm~500μm。
波長轉換用螢光材料的一次粒徑的測定可使用雷射繞射散射粒度分布測定裝置(例如Beckman Coulter公司製造,LS13320)來進行。
另外,構成上述樹脂粒子的單體並無特別限制,可為 加成聚合性單體,亦可為縮聚合性單體。本發明中,就螢光物質(較佳為具有有機配位子的稀土金屬錯合物)的穩定性及發電效率的觀點而言,較佳為加成聚合性乙烯基化合物。
-乙烯基化合物-
本發明中,所謂乙烯基化合物,只要是具有至少1個乙烯性不飽和鍵的化合物,則並無特別限制,在聚合反應時可無特別限制地使用可形成乙烯基樹脂、尤其是丙烯酸系樹脂或甲基丙烯酸系樹脂的丙烯酸系單體、甲基丙烯酸系單體、丙烯酸系寡聚物、甲基丙烯酸系寡聚物等。本發明中較佳為可列舉丙烯酸系單體、及甲基丙烯酸系單體等。
丙烯酸系單體、及甲基丙烯酸系單體例如可列舉丙烯酸、甲基丙烯酸、該些酸的烷基酯,另外,亦可併用可與上述單體共聚合的其他乙烯基化合物,可單獨使用1種,亦可將2種以上組合使用。
丙烯酸烷基酯、及甲基丙烯酸烷基酯例如可列舉:丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸丁酯、丙烯酸2-乙基己酯、甲基丙烯酸2-乙基己酯等丙烯酸未經取代的烷基酯及甲基丙烯酸未經取代的烷基酯;(甲基)丙烯酸二環戊烯酯(dicyclopentenyl(meth)acrylate);(甲基)丙烯酸四氫糠酯(tetrahydrofurfuryl(meth)acrylate);(甲基)丙烯酸苄酯(benzyl(meth)acrylate);使α,β-不飽和羧酸與多元醇反應而獲得的化合物(例如聚乙二醇二(甲基)丙烯酸酯 (polyethylene glycol di(meth)acrylate)(伸乙基的數量為2~14的化合物)、三羥甲基丙烷二(甲基)丙烯酸酯(trimethylolpropane di(meth)acrylate)、三羥甲基丙烷三(甲基)丙烯酸酯、三羥甲基丙烷乙氧基三(甲基)丙烯酸酯、三羥甲基丙烷丙氧基三(甲基)丙烯酸酯、四羥甲基甲烷三(甲基)丙烯酸酯、四羥甲基甲烷四(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯(伸丙基的數量為2~14的化合物)、二季戊四醇五(甲基)丙烯酸酯(dipentaerythritol penta(meth)acrylate)、二季戊四醇六(甲基)丙烯酸酯、雙酚A聚氧乙烯二(甲基)丙烯酸酯(bisphenol A polyoxyethylene di(meth)acrylate)、雙酚A二氧乙烯二(甲基)丙烯酸酯、雙酚A三氧乙烯二(甲基)丙烯酸酯、雙酚A十氧乙烯二(甲基)丙烯酸酯等);在含有縮水甘油基的化合物上加成α,β-不飽和羧酸而獲得的化合物(例如三羥甲基丙烷三縮水甘油醚三丙烯酸酯(trimethylolpropane triglycidyl ether triacrylate)、雙酚A二縮水甘油醚二丙烯酸酯等);多元羧酸(例如鄰苯二甲酸酐(phthalic anhydride))與具有羥基及乙烯性不飽和基的物質(例如(甲基)丙烯酸β-羥基乙酯)的酯化物;胺基甲酸酯(甲基)丙烯酸酯(urethane(meth)acrylate)(例如甲苯二異氰酸酯(tolylene diisocyanate)與(甲基)丙烯酸2-羥基乙酯的反應物,三甲基六亞甲基二異氰酸酯(trimethyl hexamethylene diisocyanate)、環己烷二甲醇(cyclohexane dimethanol)與(甲基)丙烯酸2-羥基乙酯的反應物等);於該些化合物的烷 基上取代有羥基、環氧基、鹵素基等的丙烯酸經取代的烷基酯或甲基丙烯酸經取代的烷基酯等。
另外,可與丙烯酸、甲基丙烯酸、丙烯酸烷基酯或甲基丙烯酸烷基酯共聚合的其他乙烯基化合物可列舉丙烯醯胺、丙烯腈、二丙酮丙烯醯胺、苯乙烯、乙烯基甲苯等。該些乙烯基單體可單獨使用1種,亦可將2種以上組合使用。
本發明中的乙烯基化合物較佳為以所形成的樹脂粒子的折射率成為所需值的方式來適當選擇,較佳為使用選自丙烯酸烷基酯及甲基丙烯酸烷基酯中的至少1種。
(自由基聚合起始劑)
本發明中,為了使乙烯基化合物聚合,較佳為使用自由基聚合起始劑。自由基聚合起始劑並無特別限制,可使用通常所使用的自由基聚合起始劑。例如,較佳為列舉過氧化物等。具體而言,較佳為藉由熱而產生游離自由基的有機過氧化物或偶氮系自由基起始劑。
有機化氧化物例如可使用:異丁基過氧化物(isobutyl peroxide)、α,α'-雙(新癸醯基過氧化)二異丙基苯(α,α'-bis(neodecanoylperoxy)diisopropylbenzene)、過氧化新癸酸枯基酯(cumyl peroxyneodecanoate)、過氧化二碳酸雙-正丙酯(bis-n-propyl peroxydicarbonate)、過氧化二碳酸雙-第二丁酯(bis-s-butyl peroxydicarbonate)、新癸酸1,1,3,3-四甲基丁酯(1,1,3,3-tetramethylbutyl neodecanoate)、過氧化二碳酸雙(4-第三丁基環己基)酯 (bis(4-t-butyl cyclohexyl)peroxydicarbonate)、過氧化新癸酸1-環己基-1-甲基乙酯(1-cylcohexyl-1-methyl ethyl peroxyneodecanoate)、過氧化二碳酸雙-2-乙氧基乙酯(bis-2-ethoxy ethyl peroxydicarbonate)、過氧化二碳酸雙(乙基己基)酯(bis(ethyl hexyl peroxy)dicarbonate)、新癸酸第三己酯(t-hexyl neodecanoate)、過氧化二碳酸雙甲氧基丁酯(bismethoxy butyl peroxydicarbonate)、過氧化二碳酸雙(3-甲基-3-甲氧基丁基)酯(bis(3-methyl-3-methoxy butyl peroxy)dicarbonate)、過氧化新癸酸第三丁酯、過氧化特戊酸第三己酯(t-hexyl peroxypivalate)、3,5,5-三甲基己醯基過氧化物(3,5,5-trimethyl hexanoyl peroxide)、辛醯基過氧化物(octanoyl peroxide)、月桂醯基過氧化物(lauroyl peroxide)、硬脂醯基過氧化物(stearoyl peroxide)、過氧化-2-乙基己酸1,1,3,3-四甲基丁酯(1,1,3,3-tetramethyl butyl peroxy-2-ethyl hexanoate)、過氧化琥珀醯(succinic peroxide)、2,5-二甲基-2,5-雙(2-乙基己醯基)己烷、過氧化-2-乙基己酸1-環己基-1-甲基乙酯、過氧化-2-乙基己酸第三己酯、4-甲基苯甲醯基過氧化物、過氧化-2-乙基己酸第三丁酯、間甲苯甲醯基苯甲醯基過氧化物、苯甲醯基過氧化物、過氧化異丁酸第三丁酯、1,1-雙(第三丁基過氧化)2-甲基環己烷、1,1-雙(第三己基過氧化)-3,3,5-三甲基環己烷、1,1-雙(第三己基過氧化)環己烷、1,1-雙(第三丁基過氧化)-3,3,5-三甲基環己烷、1,1-雙(第三丁基過氧化)環己酮、2,2-雙(4,4-二丁基過氧化環己基)丙 烷、1,1-雙(第三丁基過氧化)環十二烷、過氧化異丙基單碳酸第三己酯(t-hexyl peroxyisopropyl monocarbonate)、第三丁基過氧化順丁烯二酸、過氧化-3,5,5-三甲基己酸第三丁酯(t-butyl peroxy-3,5,5-trimethyl hexanoate)、過氧化月桂酸第三丁酯、2,5-二甲基-2,5-雙(間甲苯甲醯基過氧化)己烷、過氧化異丙基單碳酸第三丁酯、過氧化-2-乙基己基單碳酸第三丁酯、過氧化苯甲酸第三己酯、2,5-二甲基-2,5-雙(苯甲醯基過氧化)己烷、過氧化乙酸第三丁酯、2,2-雙(第三丁基過氧化)丁烷、過氧化苯甲酸第三丁酯、4,4-雙(第三丁基過氧化)戊酸正丁酯、過氧化間苯二甲酸二-第三丁酯、α,α'-雙(第三丁基過氧化)二異丙基苯、二枯基過氧化物、2,5-二甲基-2,5-雙(第三丁基過氧化)己烷、第三丁基枯基過氧化物、二-第三丁基過氧化-對薄荷烷氫過氧化物(di-t-butylperoxy-p-menthane hydroperoxide)、2,5-二甲基-2,5-雙(第三丁基過氧化)己炔、二異丙基苯氫過氧化物、第三丁基三甲基矽烷基過氧化物、1,1,3,3-四甲基丁基氫過氧化物、異丙苯氫過氧化物、第三己基氫過氧化物、第三丁基氫過氧化物、2,3-二甲基-2,3-二苯基丁烷等。
偶氮系自由基起始劑例如可列舉:偶氮雙異丁腈(azobisisobutyronitrile,AIBN,V-60(商品名,和光純藥公司製造))、2,2'-偶氮雙(2-甲基異丁腈)(V-59(商品名,和光純藥公司製造))、2,2'-偶氮雙(2,4-二甲基戊腈)(V-65(商品名,和光純藥公司製造))、二甲基-2,2'-偶氮雙(異丁酸酯)(V-601(商品名,和光純藥公司製造))、2,2'-偶氮 雙(4-甲氧基-2,4-二甲基戊腈)(V-70(商品名,和光純藥公司製造))等。
自由基聚合起始劑的使用量可根據上述乙烯基化合物的種類或所形成的樹脂粒子的折射率等來適當選擇,以通常所使用的使用量來使用。具體而言,例如可相對於乙烯基化合物而使用0.01wt%~2wt%,較佳為使用0.1wt%~1wt%。
(波長轉換用螢光材料)
本發明的波長轉換用材料為內包有螢光物質的樹脂粒子、或者以高分子分散劑包覆的螢光物質。
該些材料例如可藉由製備構成上述螢光物質與樹脂粒子的單體化合物的混合物,使其聚合而製備。具體而言,例如可藉由製備包含螢光物質及乙烯基化合物的混合物,使用自由基聚合起始劑將乙烯基化合物聚合,而構成內包有螢光物質的樹脂粒子的波長轉換用螢光材料。
另外,例如可藉由使用水不溶性高分子分散劑,將螢光物質於水系介質中進行分散處理,而構成以高分子分散劑包覆上述螢光物質的波長轉換用螢光材料。
具體而言,例如可藉由將使乙烯基化合物聚合而得的含有親水性構成單元及疏水性構成單元的水不溶性乙烯基系高分子分散劑、及上述螢光物質於水系介質中進行分散處理,而構成波長轉換用螢光材料作為以乙烯基系高分子分散劑包覆的螢光物質。上述分散處理的方法並無特別限制,可採用公知的分散處理方法。
以下,作為本發明的波長轉換用螢光材料的製造方法的一例,對螢光物質內包於樹脂粒子中的波長轉換用螢光材料的製造方法進行說明。
上述波長轉換用螢光材料是藉由將上述螢光物質及乙烯基化合物、視需要的過氧化物等自由基聚合起始劑等混合,將螢光物質溶解或分散於乙烯基化合物中,使其聚合而獲得。混合的方法並無特別限制,例如只要藉由攪拌來進行即可。
螢光物質的較佳含量只要相對於乙烯基化合物的含有比率含有0.001wt%~10wt%即可。尤佳為0.01wt%~1.0wt%。藉由含量為該範圍,螢光物質在乙烯基化合物中成為溶解狀態,可構成透光性更優異的波長轉換用螢光材料。
本發明中,構成波長轉換用螢光材料的乙烯基化合物較佳為以當將聚合後的波長轉換用螢光材料分散於分散介質樹脂中時,波長轉換用螢光材料對透明分散介質樹脂的分散性變得良好的方式來適當選定。
具體而言,所謂分散性良好的狀態,是指由本發明的波長轉換性樹脂組成物所形成的波長轉換層中成為光損失的原因的散射得到充分抑制的狀態。此種分散性良好的狀態(光散射得到抑制的狀態)例如可利用以下的方法來達成。
波長轉換用螢光材料的樹脂組成是選擇在與分散介質樹脂的組成的關係中,分散性良好且不產生相分離等的相互組成。其例如可藉由以濁度為指標來選擇各樹脂組成而 達成。
另外,為了獲得光散射小的狀態,聚合前後的波長轉換用螢光材料中,只要選擇螢光物質不析出的乙烯基化合物及螢光物質即可。例如,螢光物質中,可藉由在稀土金屬錯合物中變更配位子而避免乙烯基化合物中的螢光物質的析出,獲得良好的混合狀態(較佳為溶解狀態)。
進而,藉由降低成為光散射原因的物質的濃度,可減少光散射。例如,於螢光物質的析出為原因的情況,只要降低波長轉換用螢光材料中的螢光物質的濃度即可,於透明分散介質樹脂中的波長轉換用螢光材料為原因的情況,只要降低該螢光材料的濃度即可。
本發明的波長轉換性樹脂組成物中的上述波長轉換用螢光材料的較佳含有率相對於波長轉換性樹脂組成物的不揮發成分總量,以稀土金屬的有機錯合物(較佳為銪錯合物)的重量濃度計較佳為0.0001wt%~1wt%,更佳為0.0005wt%~0.01wt%。
藉由將上述含有率設為0.0001wt%以上,則發光效率進一步提高。另外,藉由使上述含有率為1wt%以下,可抑制由濃度消光引起的發光效率的下降,另外,可抑制由入射光的散射引起的發電效率的下降。
(分散介質樹脂)
構成本發明的波長轉換性樹脂組成物的分散介質樹脂只要是可分散上述波長轉換用螢光材料的透明樹脂,則並無特別限制,例如較佳為使用光硬化性樹脂、熱硬化性樹 脂、熱塑性樹脂等。
其中,較佳為通常用作太陽電池用密封劑樹脂的經賦予熱硬化性的包含乙烯-乙酸乙烯酯共聚物(亦稱為「EVA」)的樹脂。
此外,本發明中,並非將兼作分散介質的透明密封樹脂僅限定於EVA,亦可更包含熱塑性樹脂、熱硬化性樹脂、及光硬化性樹脂等EVA以外的樹脂。
於包含光硬化性樹脂來構成分散介質樹脂的情況,光硬化性樹脂的樹脂構成或光硬化方法並無特別限制。例如,利用光自由基聚合起始劑的光硬化方法中,波長轉換性樹脂組成物除了包含上述波長轉換用螢光材料以外,亦可包含(A)黏合劑樹脂、(B)交聯性單體以及(C)藉由光或熱而生成游離自由基的光聚合起始劑等來構成。
(A)黏合劑樹脂可使用以丙烯酸、甲基丙烯酸、將該些酸的烷基酯作為構成單體的均聚物,以及將可與該些均聚物共聚合的其他乙烯基單體作為構成單體進行共聚合而成的共聚物。另外,該些共聚物可單獨使用,亦可將2種以上組合使用。
丙烯酸烷基酯、甲基丙烯酸烷基酯例如可列舉:丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸丁酯、丙烯酸2-乙基己酯、甲基丙烯酸2-乙基己酯等丙烯酸未經取代的烷基酯或甲基丙烯酸未經取代的烷基酯;於該些化合物的烷基上取代有羥基、環氧基、鹵素基等的丙烯酸經取代的烷基酯及甲基丙 烯酸經取代的烷基酯等。
另外,可與丙烯酸、甲基丙烯酸、丙烯酸烷基酯、甲基丙烯酸烷基酯共聚合的其他乙烯基單體可列舉:丙烯醯胺、丙烯腈、二丙酮丙烯醯胺、苯乙烯、乙烯基甲苯等。該些乙烯基單體可單獨或者將2種以上組合使用。另外,就塗膜性及塗膜強度方面而言,構成分散介質樹脂的(A)黏合劑樹脂的重量平均分子量較佳為10,000~300,000。
(B)交聯性單體例如可列舉:使α,β-不飽和羧酸與多元醇反應而獲得的化合物(例如聚乙二醇二(甲基)丙烯酸酯(乙烯氧基的數量為2~14的化合物)、三羥甲基丙烷二(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、三羥甲基丙烷乙氧基三(甲基)丙烯酸酯、三羥甲基丙烷丙氧基三(甲基)丙烯酸酯、四羥甲基甲烷三(甲基)丙烯酸酯、四羥甲基甲烷四(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯(丙烯氧基的數量為2~14的化合物)、二季戊四醇五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、雙酚A聚氧乙烯二(甲基)丙烯酸酯、雙酚A二氧乙烯二(甲基)丙烯酸酯、雙酚A三氧乙烯二(甲基)丙烯酸酯、雙酚A十氧乙烯二(甲基)丙烯酸酯等);在含有縮水甘油基的化合物上加成α,β-不飽和羧酸而獲得的化合物(例如三羥甲基丙烷三縮水甘油醚三丙烯酸酯、雙酚A二縮水甘油醚二丙烯酸酯等);多元羧酸(例如鄰苯二甲酸酐)與具有羥基及乙烯性不飽和基的物質(例如(甲基)丙烯酸β-羥基乙酯)的酯化物;胺基甲酸酯(甲基)丙烯酸酯(例如甲苯二異氰酸酯與 (甲基)丙烯酸2-羥基乙酯的反應物,三甲基六亞甲基二異氰酸酯、環己烷二甲醇與(甲基)丙烯酸2-羥基乙酯的反應物等)等。
在容易控制交聯密度或反應性的意義上,特佳的(B)交聯性單體可列舉:三羥甲基丙烷三(甲基)丙烯酸酯、二季戊四醇四(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、雙酚A聚氧乙烯二甲基丙烯酸酯。此外,上述化合物可單獨使用,亦可將2種以上組合使用。
尤其於提高波長轉換性樹脂組成物的折射率的情況,有利的是(A)黏合劑樹脂及(B)交聯性單體的至少1種中含有溴、硫原子。含溴單體的例子可列舉第一工業製藥(股)製造的New Frontier BR-31、New Frontier BR-30、New Frontier BR-42M等。含硫單體組成物可列舉三菱瓦斯化學(股)製造的IU-L2000、IU-L3000、IU-MS1010。其中,本發明中使用的含溴、硫原子的單體(包含該單體的聚合物)並不限定於此處所列舉的單體。
(C)光聚合起始劑較佳為利用紫外線或可見光線而生成游離自由基的光聚合起始劑,例如可列舉:安息香甲醚(benzoin methyl ether)、安息香乙醚、安息香丙醚、安息香異丁醚、安息香苯醚等的安息香醚類;二苯甲酮(benzophenone)、N,N'-四甲基-4,4'-二胺基二苯甲酮(米其勒酮(Michler's ketone))、N,N'-四乙基-4,4'-二胺基二苯甲酮等二苯甲酮類;苄基二甲基縮酮(benzyl dimethyl ketal)(BASF日本公司製造,IRGACURE 651)、苄基二乙 基縮酮等苄基縮酮類;2,2-二甲氧基-2-苯基苯乙酮(2,2-dimethoxy-2-phenyl acetophenone)、對第三丁基二氯苯乙酮、對二甲基胺基苯乙酮等苯乙酮類;2,4-二甲基噻噸酮(2,4-dimethyl thioxanthone)、2,4-二異丙基噻噸酮等氧葱酮(xanthone)類;或者羥基環己基苯基酮(BASF日本公司製造,IRGACURE 184)、1-(4-異丙基苯基)-2-羥基-2-甲基丙-1-酮(BASF日本公司製造,Darocure 1116)、2-羥基-2-甲基-1-苯基丙-1-酮(BASF日本公司製造,Darocure 1173)等,該些光聚合起始劑是單獨或者將2種以上組合使用。
另外,可用作(C)光聚合起始劑的光聚合起始劑例如亦可列舉2,4,5-三烯丙基咪唑(2,4,5-triallyl imidazole)二聚物與2-巰基苯并噁唑(2-mercaptobenzoxazole)、隱色結晶紫(leuco crystal violet)、三(4-二乙基胺基-2-甲基苯基)甲烷等的組合。另外,可使用其自身並無光起始性,但可藉由與上述物質組合使用而使整體成為光起始性能更良好的增感劑系的添加劑,例如針對二苯甲酮的三乙醇胺等三級胺。
另外,本發明中,亦可代替光硬化性樹脂而使用熱硬化性樹脂來作為分散介質樹脂。熱硬化性樹脂可使用在已說明的光硬化性樹脂的構成中,將上述(C)光聚合起始劑變更為熱聚合起始劑的樹脂。
(C)熱聚合起始劑較佳為藉由熱而產生游離自由基的有機過氧化物,例如可使用:異丁基過氧化物、α,α'-雙(新 癸醯基過氧化)二異丙基苯、過氧化新癸酸異丙苯酯、過氧化二碳酸雙-正丙酯、過氧化二碳酸雙-第二丁酯、新癸酸1,1,3,3-四甲基丁酯、過氧化二碳酸雙(4-第三丁基環己基)酯、過氧化新癸酸1-環己基-1-甲基乙酯、過氧化二碳酸二-2-乙氧基乙酯、過氧化二碳酸雙(乙基己基)酯、新癸酸第三己酯、過氧化二碳酸雙甲氧基丁酯、過氧化二碳酸雙(3-甲基-3-甲氧基丁基)酯、過氧化新癸酸第三丁酯、過氧化特戊酸第三己酯、3,5,5-三甲基己醯基過氧化物、辛醯基過氧化物、月桂醯基過氧化物、硬脂醯基過氧化物、過氧化-2-乙基己酸1,1,3,3-四甲基丁酯、過氧化琥珀醯、2,5-二甲基-2,5-雙(2-乙基己醯基)己烷、過氧化-2-乙基己酸1-環己基-1-甲基乙酯、過氧化-2-乙基己酸第三己酯、4-甲基苯甲醯基過氧化物、過氧化-2-乙基己酸第三丁酯、間甲苯甲醯基苯甲醯基過氧化物、苯甲醯基過氧化物、過氧化異丁酸第三丁酯、1,1-雙(第三丁基過氧化)2-甲基環己烷、1,1-雙(第三己基過氧化)-3,3,5-三甲基環己烷、1,1-雙(第三己基過氧化)環己烷、1,1-雙(第三丁基過氧化)-3,3,5-三甲基環己烷、1,1-雙(第三丁基過氧化)環己酮、2,2-雙(4,4-二丁基過氧化環己基)丙烷、1,1-雙(第三丁基過氧化)環十二烷、過氧化異丙基單碳酸第三己酯、第三丁基過氧化順丁烯二酸、過氧化-3,5,5-三甲基己酸第三丁酯、過氧化月桂酸第三丁酯、2,5-二甲基-2,5-雙(間甲苯甲醯基過氧化)己烷、過氧化異丙基單碳酸第三丁酯、過氧化-2-乙基己基單碳酸第三丁酯、過氧化苯甲酸第三己酯、2,5-二甲基-2,5-雙(苯甲 醯基過氧化)己烷、過氧化乙酸第三丁酯、2,2-雙(第三丁基過氧化)丁烷、過氧化苯甲酸第三丁酯、4,4-雙(第三丁基過氧化)戊酸正丁酯、過氧化間苯二甲酸二-第三丁酯、α,α'-雙(第三丁基過氧化)二異丙基苯、二枯基過氧化物、2,5-二甲基-2,5-雙(第三丁基過氧化)己烷、第三丁基枯基過氧化物、雙-第三丁基過氧化-對薄荷烷氫過氧化物、2,5-二甲基-2,5-雙(第三丁基過氧化)己炔、二異丙基苯氫過氧化物、第三丁基三甲基矽烷基過氧化物、1,1,3,3-四甲基丁基氫過氧化物、異丙苯氫過氧化物、第三己基氫過氧化物、第三丁基氫過氧化物、2,3-二甲基-2,3-二苯基丁烷等。
本發明的波長轉換性樹脂組成物的透明分散介質樹脂可使用藉由加熱或者加壓而流動的熱塑性樹脂。熱塑性樹脂例如可列舉:天然橡膠、聚乙烯(polyethylene)、聚丙烯(polypropylene)、聚乙酸乙烯酯(polyvinyl acetate)、聚異戊二烯(polyisoprene)、聚-1,2-丁二烯(poly-1,2-butadiene)、聚異丁烯(polyisobutene)、聚丁烯(polybutene)、聚-2-庚基-1,3-丁二烯(poly-2-heptyl-1,3-butadiene)、聚-2-第三丁基-1,3-丁二烯、聚-1,3-丁二烯等(二)烯類、聚氧乙烯、聚氧丙烯、聚乙烯基乙醚、聚乙烯基己醚、聚乙烯基丁醚等聚醚類;聚乙酸乙烯酯、聚丙酸乙烯酯等聚酯類;聚胺基甲酸酯、乙基纖維素、聚氯乙烯、聚丙烯腈、聚甲基丙烯腈、聚碸、苯氧基樹脂、聚丙烯酸乙酯、聚丙烯酸丁酯、聚-丙烯酸2-乙基己酯、聚-丙烯酸第三丁酯、聚-丙烯酸3-乙氧基丙 酯、聚氧羰基四甲基丙烯酸酯、聚丙烯酸甲酯、聚甲基丙烯酸異丙酯、聚甲基丙烯酸十二烷基酯、聚甲基丙烯酸十四烷基酯、聚-甲基丙烯酸正丙酯、聚-甲基丙烯酸3,3,5-三甲基環己酯、聚甲基丙烯酸乙酯、聚-甲基丙烯酸2-硝基-2-甲基丙酯、聚-甲基丙烯酸1,1-二乙基丙酯、聚甲基丙烯酸甲酯等聚(甲基)丙烯酸酯。
該些熱塑性樹脂可為視需要將2種以上的單體共聚合而獲得的樹脂,亦可將2種以上的熱塑性樹脂摻雜而使用。
進而,上述熱塑性樹脂可為包含來自環氧丙烯酸酯、胺基甲酸酯丙烯酸酯、聚醚丙烯酸酯、聚酯丙烯酸酯等單體的結構單元的共聚合樹脂。尤其就接著性方面而言,較佳為包含來自胺基甲酸酯丙烯酸酯、環氧丙烯酸酯、聚醚丙烯酸酯的結構單元的共聚合樹脂。
環氧丙烯酸酯可列舉:1,6-己二醇二縮水甘油醚(1,6-hexanediol diglycidyl ether)、新戊二醇二縮水甘油醚(neopentylglycol diglycidyl ether)、烯丙醇二縮水甘油醚(allylalcohol diglycidyl ether)、間苯二酚二縮水甘油醚(resorcinol diglycidyl ether)、己二酸二縮水甘油酯(adipic acid diglycidyl ester)、鄰苯二甲酸二縮水甘油酯、聚乙二醇二縮水甘油醚、三羥甲基丙烷三縮水甘油醚、甘油三縮水甘油醚、季戊四醇四縮水甘油醚、山梨糖醇四縮水甘油醚(sorbitol tetraglycidyl ether)等(甲基)丙烯酸加成物。
如環氧丙烯酸酯等般分子內具有羥基的聚合物對接著性提高而言有效。該些共聚合樹脂可視需要而併用2種以 上。就操作性而言,該些樹脂的軟化溫度較佳為150℃以下,尤佳為100℃以下。若考慮到太陽電池單元的使用環境溫度通常為80℃以下的情況以及加工性,則上述樹脂的軟化溫度特佳為80℃~120℃。
將熱塑性樹脂用作透明分散介質樹脂的情況的波長轉換性樹脂組成物的其他構成只要含有本發明的波長轉換用螢光材料,則並無特別限制,但可更包含通常使用的成分,例如塑化劑、難燃劑、穩定劑等。
本發明的波長轉換性樹脂組成物的透明分散介質樹脂如上所述,並不對樹脂特別限定光硬化性、熱硬化性、熱塑性,特佳的樹脂可列舉在作為先前的太陽電池用透明分散介質樹脂而廣泛利用的乙烯-乙酸乙烯酯共聚物(EVA)中調配有熱自由基聚合起始劑,視需要的交聯助劑、接著助劑、紫外線吸收劑、穩定化材料等的組成。
本發明的波長轉換性樹脂組成物藉由使用上述波長轉換用螢光材料,而耐濕性優異,另外,波長轉換用螢光材料在透明分散介質樹脂中具有良好的分散性,因此光的散射得到抑制,可將光效率良好地導入太陽電池單元中。
此外,本發明中所謂「波長轉換用螢光材料在透明分散介質樹脂中具有分散性」,是指當將波長轉換用螢光材料分散、混合於透明分散介質樹脂中時,以目視無法確認粒子或混濁的狀態,更具體而言是指下述狀態。
首先,使波長轉換用螢光材料以含有螢光物質的乙烯基化合物聚合的方式進行反應。該反應條件可根據所使用 的乙烯基化合物來適當決定。
將波長轉換用螢光材料以預定的濃度混合於透明分散介質樹脂中而獲得波長轉換性樹脂組成物,使透明分散介質樹脂硬化。硬化條件可根據所使用的透明分散介質樹脂來適當選擇。
對經硬化的波長轉換性樹脂組成物,使用濁度計(日本電色工業(股)製造,NDH-2000)來測定濁度,當該濁度為5%以下時,成為「波長轉換用螢光材料在透明分散介質樹脂中具有分散性」。
本發明中最重要的方面在於發現,不僅是如上所述可使用濁度計來測定的可見光區域的「濁度」,而且對太陽光發電的幫助少的波長區域,例如螢光物質的吸光度光譜中的極大吸收波長下的吸收、散射所引起的光損失亦大幅影響波長轉換性樹脂組成物的矽結晶太陽電池模組的性能,進而發現其測定方法。以下對其測定方法進行詳細敍述。
(測定樣本的製備)
作為本發明的波長轉換性樹脂組成物的一例,對將太陽電池模組中廣泛使用的EVA用作分散介質樹脂的情況進行敍述,但本發明中並不限定於此。
調配100重量份的EVA樹脂(例如Tosoh(股)製造的EVA樹脂,NM30PW)、2重量份的異三聚氰酸三烯丙酯(triallyl isocyanurate,TAIC,日本化成(股)製造)、1.3重量份的Luperox 101(2,5-二甲基-2,5-(第三丁基過氧化)己烷,Arkema Yoshitomi(股)製造)、0.5重量份的矽 烷偶合劑SZ6030(甲基丙烯醯氧基丙基三甲氧基矽烷,Dow Corning Toray(股)製造)、以及預定量(例如相對於波長轉換性樹脂組成物的總不揮發成分總量為2wt%)的波長轉換用螢光材料,將該些材料利用經調整為90℃的輥混合機進行混練。
利用經調整為90℃的熱壓製機,將所得的混練物製成厚度200μm~1000μm的片材狀樹脂組成物。將該片材狀樹脂組成物裁斷為適當大小,將單面以載玻片、另一面以PET膜夾持,使用真空加壓層壓機進行層壓而獲得測定樣本。此外,層壓機的條件是以熱板150℃、壓力100kPa、真空時間10分鐘、加壓時間15分鐘來進行。
另一方面,將除了不調配波長轉換用螢光材料以外,以與上述相同的方式獲得的樣本作為參照用樣本。
(測定波長區域的確認)
本發明中,可利用吸光度光譜來決定測定波長區域。吸光度光譜可使用分光光度計(例如Hitachi High-Technology(股)製造的U-3310、日本分光(股)製造的V-570等),利用通常的方法來測定。其中,於此時除了依賴於螢光物質的本來的吸收以外,利用上述測定樣本製備方法來製備的測定樣本的情況,由於亦有成為基材的玻璃或PET的吸收,故而必需注意。
進而,螢光物質的本質特性中,存在上述螢光的激發光譜、與吸光度光譜的峰值波長相互不一致的情況,但本發明中採用吸光度光譜的峰值波長(極大吸收波長)。
另外,本發明中,於在包括吸光度光譜的峰值波長(極大吸收波長)的波長範圍進行測定的情況,例如可將極大吸收波長以上、且至吸光度光譜的上升(吸收臨界值)的波長範圍為止作為測定範圍。成為吸光度光譜的上升的波長是設為吸光度成為0.0001(O.D./μm)以上的波長。
(測定波長區域的光損失測定)
測定波長區域的光損失測定存在以下情況:對試料照射單色光,使用可自動進行演算的市售分光光度計(例如Hitachi High-Technology(股)製造的U-3310、日本分光(股)製造的V-570等)的情況;對試料照射全波長的光,以手動操作進行演算的情況(例如使用Wacom Electric(股)製造的太陽模擬器WXS-155S-10、AM1.5G等作為光源,利用英弘精機(股)製造的太陽模擬器用繞射光柵型分光放射計LS-100等來測定分光放射強度)。前者的優點為可進行簡便的測定及評價,後者可同時亦計測發光強度。
本發明中,以後者測定的極大吸收波長下的上述A1(λ)值為3.0×10-4(O.D./μm)以下,亦可視需要利用以前者測定的極大吸收波長下的上述A2(λ)值來評價。
〈波長轉換性樹脂組成物的製造方法〉
作為本發明的波長轉換性樹脂組成物的製造方法,例如可利用包括以下步驟的製造方法來製造:獲得包含螢光物質及乙烯基化合物(較佳為丙烯酸系單體及甲基丙烯酸系單體的至少1種)的混合物後,將上述混合物中的乙烯 基單體聚合而獲得波長轉換用螢光材料的步驟;以及將上述波長轉換用螢光材料混合於透明分散介質樹脂中而獲得波長轉換性樹脂組成物的步驟。
(獲得波長轉換用螢光材料的步驟)
包含螢光物質及乙烯基化合物的混合物是藉由除了螢光物質及乙烯基化合物以外,混合過氧化物等自由基聚合起始劑、鏈轉移劑等而獲得。混合的方法並無特別限制,例如只要藉由以超音波混合、混合轉子、磁力攪拌器、攪拌葉片加以攪拌來進行即可。
可藉由使所得混合物中的乙烯基化合物聚合而獲得波長轉換用螢光材料。聚合條件可根據所使用的乙烯基化合物、自由基聚合起始劑來適當選擇,只要以通常的聚合條件為參考來適當調整即可。
所生成的聚合物(波長轉換用螢光材料)可根據其玻璃轉移溫度來選擇其狀態。玻璃轉移溫度高的例如甲基丙烯酸甲酯等中,可藉由向保持為預定溫度的水中添加界面活性劑,使混合有螢光物質、自由基聚合起始劑的溶液懸浮於上述水中而獲得粒子狀聚合物(懸浮聚合)。另外,亦可藉由適當變更界面活性劑的種類,使其更微細地懸浮,而獲得更微細的粒子(乳化聚合)。
另外,玻璃轉移點低於室溫的例如丙烯酸丁酯等可使混合有螢光物質、自由基聚合起始劑的溶液直接在燒瓶等容器內聚合,而獲得黏度高的聚合物。
自由基聚合起始劑較佳為例如月桂醯基過氧化物等有 機過氧化物,於月桂醯基過氧化物的情況,宜於50℃~60℃下聚合。
(獲得波長轉換性樹脂組成物的步驟)
藉由將所得的波長轉換用螢光材料混合於透明分散介質樹脂中,可製造波長轉換性樹脂組成物。
混合條件可根據波長轉換用螢光材料及透明分散介質樹脂來適當選擇。例如於使用乙烯-乙酸乙烯酯共聚物作為透明分散介質樹脂的情況,可使用輥研磨機。具體而言,藉由在經調整為90℃的輥中,向顆粒狀或者粉末狀乙烯-乙酸乙烯酯共聚物中添加波長轉換用螢光材料及視需要的自由基聚合起始劑、矽烷偶合劑、其他的添加劑,進行混練而獲得。
以上述方式獲得的本發明的波長轉換性樹脂組成物可用作太陽電池模組的透光性層。波長轉換性樹脂組成物的形態並無特別限制,但就使用的容易度方面而言,較佳為形成片材狀。為了形成片材狀,可利用經調整為90℃的壓製機經由間隔片而形成。藉由將間隔片的厚度設為0.4mm~1.0mm左右,而獲得容易使用的片材狀波長轉換性樹脂組成物。
另外,亦可對片材表面實施壓紋加工。藉由實施壓紋加工,可於製作太陽電池模組的步驟中減少氣泡的捲入。
另外,以上述方式獲得的波長轉換性樹脂組成物亦可形成澆鑄膜狀而貼附於太陽電池單元或者保護玻璃的內側,構成太陽電池模組的透光性層的至少一層。
用以用於澆鑄膜的波長轉換性樹脂組成物是藉由向在甲苯等溶液中聚合的丙烯酸系樹脂中適當調配交聯性單體、光或熱聚合起始劑,再向其中混合上述波長轉換用螢光材料而獲得。
使用敷料器等,將該波長轉換性樹脂組成物的混合液塗佈於成為基材的膜(例如PET膜)上,使溶劑乾燥而獲得澆鑄膜。
本發明的波長轉換性樹脂組成物可用作具有多個透光性層的太陽電池模組的一個透光性層。
太陽電池模組例如是由抗反射膜、保護玻璃、密封材料、太陽電池單元、背膜、單元電極、標記線等必要構件所構成。該些構件中,具有透光性的透光性層可列舉抗反射膜、保護玻璃、密封材料、太陽電池的SiNx:H層以及Si層等。
本發明的波長轉換性樹脂組成物較佳為在上述透光性層中亦用作密封材料。另外,亦可於保護玻璃與密封材料之間、或者密封材料與太陽電池單元之間作為波長轉換用膜來配置。
於將波長轉換性樹脂組成物用作透光性層的情況,透明分散介質樹脂較佳為至少與其入射側的層相比為相同程度或者高折射。
詳細而言,較佳為當將上述多個透光性層自光入射側起設為層1、層2、......、層m,另外將該些層的折射率設為n1、n2、......、nm時,n1≦n2≦......≦nm成立。
本發明中,上述所列舉的透光性層的積層順序通常自太陽電池模組的受光面起依序成為視需要形成的抗反射膜、保護玻璃、密封材料、太陽電池單元的SiNx:H層、Si層。
即,於將本發明的波長轉換性樹脂組成物用作密封材料的情況,為了使自受光面進入的外部光的反射損失少而效率良好地導入至太陽電池單元內,較佳為波長轉換性樹脂組成物的折射率高於較該波長轉換性樹脂組成物配置於更光入射側的透光性層,即抗反射膜、保護玻璃等的折射率,且低於配置於包含本發明的波長轉換性樹脂組成物的密封材料的反光入射側的透光性層,即太陽電池單元的SiNx:H層(亦稱為「單元反射防止膜」)以及Si層等的折射率。
於將本發明的波長轉換性樹脂組成物用作密封材料的情況,配置於太陽電池單元的受光面上。藉由上述方式,可無間隙地追隨太陽電池單元受光表面的包括紋理結構、單元電極、標記線等的凹凸形狀。
〈太陽電池模組〉
本發明的太陽電池模組的特徵在於包括包含上述波長轉換性樹脂組成物的透光層。藉此,可達成優異的轉換效率。
可使用利用本發明的波長轉換性樹脂組成物而獲得的片材狀樹脂組成物層,作為太陽電池單元與保護玻璃之間的例如波長轉換型密封材料,來製造太陽電池模組。
具體而言,可依據通常的矽結晶系太陽電池模組的製造方法來構成太陽電池模組,藉由代替通常的密封材料片材而使用包含上述波長轉換性樹脂組成物的層(特佳為片材狀),可製造本發明的太陽電池模組。
通常,矽結晶系太陽電池模組首先於作為受光面的蓋玻璃上載置片材狀密封材料(大多為以熱自由基聚合起始劑使乙烯-乙酸乙烯酯共聚物形成熱硬化型的材料)。本發明中,此處所使用的密封材料是使用本發明的波長轉換性樹脂組成物。接著,載置以標記線連接的單元,進而載置片材狀密封材料(其中,本發明中,僅於受光面側使用波長轉換性樹脂組成物即可,關於其背面,亦可為先前的材料),進而載置背面片材,使用太陽電池模組專用的真空加壓層壓機來形成模組。
此時,層壓機的熱板溫度成為對密封材料軟化、熔融,包入單元,進而硬化而言所必需的溫度,通常為120℃~180℃,多為140℃~160℃,以產生該些物理變化、化學變化的方式來設計。
本發明的波長轉換性樹脂組成物是製成太陽電池模組之前的狀態的樹脂組成物,具體而言,於使用硬化性樹脂的情況,稱為半硬化狀態。此外,包含半硬化狀態的波長轉換性樹脂組成物的層,與硬化後(太陽模組化後)的層的折射率並無大的變化。
另外,於將波長轉換性樹脂組成物製成澆鑄膜狀來使用的情況,首先於保護玻璃的反光入射面、或者太陽電池 單元的光入射面上使用真空層壓機進行層壓,去除基材膜。若為光硬化性,則藉由光照射而使其硬化。若為熱硬化性,則施加熱而使其硬化,亦可於層壓時施加熱而同時硬化。後續步驟可依據通常的太陽電池模組的製造方法來進行。
〈波長轉換性樹脂組成物的評價方法〉
本發明的太陽電池用波長轉換性樹脂組成物包含吸光度光譜中的極大吸收波長為λmax(nm)的螢光物質、及分散介質樹脂,該太陽電池用波長轉換性樹脂組成物的評價方法包括:於將使波長λ(nm)下的光強度為I0(λ)的入射光向由上述樹脂組成物所形成的厚度為t(μm)的樹脂膜的厚度方向入射而得的透射光的強度設為I(λ),且將使上述入射光向由自上述樹脂組成物中去除上述螢光物質的參照用樹脂組成物所形成的厚度為tref(μm)的參照用樹脂膜的厚度方向入射而得的透射光的強度設為Iref(λ)的情況,基於上述極大吸收波長λmax(nm)下的下述式1所表示的A1(λ)的值,來評價波長轉換效率。
式1:A1(λ)={log(I0(λ)/I(λ))}/t-{log(I0(λ)/Iref(λ))}/tref
本發明中,太陽電池用波長轉換性樹脂組成物的波長轉換效率是基於上述A1(λ)的值來評價。具體而言,於將預定的基準值與上述A1(λ)相比較,上述A1(λ)低 於上述基準值的情況,判斷為波長轉換效率優異。本發明中上述基準值例如可設為3.0×10-4(O.D./μm),較佳為2.5×10-4(O.D./μm),更佳為2.0×10-4(O.D./μm)。
藉由利用上述評價方法來評價太陽電池用波長轉換性樹脂組成物的波長轉換效率,無需實際上構成太陽電池單元,可篩選出轉換效率優異的太陽電池用波長轉換性樹脂組成物。
此外,關於上述A1(λ)的詳細情況如上所述。
日本專利申請2010-090350的揭示是藉由參照而將其整體併入本說明書中。
本說明書所記載的所有文獻、專利申請、以及技術規格是與具體且分別記載將各文獻、專利申請、以及技術規格藉由參照而併入的情況相同程度地,藉由參照而併入本說明書中。
[實例]
以下,利用實例對本發明進行具體說明,但本發明並不限定於該些實例。此外,只要無特別說明,則「份」及「%」為重量基準。
〈螢光物質的合成〉
將200mg的4,4,4-三氟-1-(噻吩基)-1,3-丁二酮(TTA)溶解於7ml的乙醇中,向其中添加1.1ml的1M氫氧化鈉並混合,獲得混合溶液。接著將溶解於7ml乙醇中的6.2mg的1,10-啡啉添加於先前的混合溶液中,攪拌1小時後,添加將103mg的EuCl3.6H2O溶解於3.5ml的水中而 成的水溶液,獲得沈澱物。然後將所得的沈澱物過濾分離,以乙醇清洗,加以乾燥而獲得螢光物質Eu(TTA)3Phen。
〈波長轉換用螢光材料的製作1~懸浮聚合~〉
使用0.5份作為螢光物質的上述所得的Eu(TTA)3Phen、100份作為乙烯基化合物的甲基丙烯酸甲酯、0.2份作為自由基聚合起始劑的月桂醯基過氧化物、0.1份作為鏈轉移劑的正辛硫醇,將該些材料混合攪拌來準備單體混合液。
另外,於500份的離子交換水中添加0.036份作為界面活性劑的聚乙烯醇,向其中添加上述單體混合液,利用均質機激烈攪拌。然後將該懸浮液使用回流管、氮氣流下的燒瓶,一邊攪拌一邊保持在60℃,進行懸浮聚合,最後升溫至90℃,結束聚合反應。
此處所得的波長轉換用螢光材料成為平均徑為100μm左右的粒子狀,將其過濾分離,加以乾燥,視需要進行篩分,從而獲得波長轉換用螢光材料。
此外,波長轉換用螢光材料的平均徑是以水為分散介質,使用Beckman Coulter公司製造的LS13320作為粒度分布計,作為體積平均粒徑而測定。
〈波長轉換用螢光材料的製作2~乳化聚合~〉
使用0.3份作為螢光物質的上述所得的Eu(TTA)3Phen、60份作為乙烯基化合物的甲基丙烯酸甲酯、0.012份作為鏈轉移劑的正辛硫醇,將該些材料混合攪拌來準備單體混合液。
另外,於離子交換水300重量份中添加3.65份作為界面活性劑的烷基苯磺酸鈉(G-15,花王(股)製造)。向其中添加上述單體混合液,使用回流管、氮氣流下的燒瓶,一邊攪拌一邊保持在60℃,添加0.03重量份作為自由基聚合起始劑的過硫酸鉀,進行4小時乳化聚合,最後升溫至90℃,結束聚合反應。
此處所得的波長轉換用螢光材料成為一次粒徑為100nm左右的粒子狀,以異丙醇等適當進行後處理,將其過濾分離,加以乾燥,視需要進行篩分,從而獲得波長轉換用螢光材料。
(實例1~實例22)
〈波長轉換性樹脂組成物的製備〉
將100份作為透明分散介質樹脂的乙烯-乙酸乙烯酯樹脂:NM30PW(Tosoh(股)製造)、1.5份的過氧化物熱自由基聚合起始劑:Luperox 101(Arkema Yoshitomi(股)製造,此時亦作為交聯劑而發揮作用)、0.5份的矽烷偶合劑:SZ6030(Dow Corning Toray(股)製造),以及將上述所得的聚合後的波長轉換用螢光材料的種類及量適當變更為如表1所示(關於波長轉換用螢光材料1份為螢光物質,相當於0.005份),以90℃的輥研磨機進行混練,分別獲得波長轉換用樹脂組成物。
〈使用波長轉換用樹脂組成物的波長轉換型密封材料片材的製作〉
將上述所得的波長轉換用樹脂組成物夾持於脫模片材 中,使用不鏽鋼製間隔片,且使用將熱板調整為90℃的壓製機,製成片材狀而獲得適當變更厚度的波長轉換型密封材料片材。
〈評價用樣本的製作〉
將上述所得的波長轉換型密封材料片材放置於玻璃板上,再於其上載置PET膜,使用太陽電池用真空加壓層壓機(NCP(股),LM-50x50-S),以熱板150℃、真空10分鐘、加壓15分鐘的條件製作評價用樣本。
〈激發波長區域光損失的評價1〉
於英弘精機(股)製造的太陽模擬器用繞射光柵型分光放射計LS-100的檢測部上,載置上述所得的評價用樣本,由Wacom Electric(股)製造的太陽模擬器WXS-155S-10,AM1.5G來照射光,獲得強度光譜I(λ)。
另外,於上述LS-100的檢測部上不放置任何樣本而獲得空白的強度光譜I0(λ)。進而將上述評價用樣本的製作中不使用波長轉換用螢光材料而製作的參照樣本放置於上述LS-100的檢測部上,獲得參照樣本的強度光譜Iref(λ)。
另外,對評價用樣本及參照用樣本的最厚部分,使用數位式測微計來計測厚度,減去玻璃、PET膜的厚度,而獲得各自的厚度t及tref。利用下式獲得A1(λ)的光譜。將所得的A1(λ)的光譜的一例示於圖2及圖3。此外,圖3是將圖2的一部分放大而得的圖。
A1(λ)={log(I0(λ)/I(λ))}/t-{log(I0(λ)/Iref (λ))}/tref
〈激發波長區域的確認〉
對將上述所得的螢光物質溶解於異丙醇中而成的螢光物質溶液,使用分光螢光光度計、Hitachi High-Technology(股)製造的F-4500,測定激發光譜。將激發光譜的一例示於圖4。
另外,對包含螢光物質的波長轉換型密封材料片材,使用日本分光(股)製造的分光光度計V-570,測定吸光度光譜。將吸光度光譜的一例示於圖5。
該些圖中,激發峰值波長在390nm附近,吸收峰值波長偏離為350nm,因此本實例、比較例中,利用作為極大吸收波長的350nm下的上述A1(λ)來評價。
另外,吸光度光譜中的每單位膜厚的吸光度成為1.0×10-4(O.D./μm)以下的吸收臨界值為400nm左右,因此亦一併對350nm~400nm的A1(λ)的平均值進行評價。
將A1(350nm)、A1(350nm~400nm)的平均值示於表1。
〈太陽電池模組的評價〉
於矽結晶系太陽電池單元中使用日立化成工業(股)製造的太陽電池用導電膜、CF-105,利用專用的壓接裝置來連接表2根、背2根的標記線(厚度0.14mm,寬度2mm,經鍍鋅的標記線),進而將該些表背分別使用橫標記線(日立電線(股)製造,A-TPS 0.23x6.0),作為外部取 出線。對其使用Wacom Electric(股)製造的太陽模擬器WXS-155S-10,AM1.5G、英弘精機(股)製造的太陽模擬器用I-V曲線描繪儀MP-160,依據JIS-C-8914而獲得太陽電池I-V特性。
進而使用該標記線連接的矽結晶系太陽電池單元,自下而上以蓋玻璃(旭硝子(股)製造)、上述〈使用波長轉換用樹脂組成物的波長轉換型密封材料片材的製作〉中所得的波長轉換型密封材料(EVA)片材、上述太陽電池單元、背面用EVA片材(不含螢光材料)、PET膜(東洋紡績(股)製造的Toyobo Ester Film A4300)的順序載置,使用太陽電池用真空加壓層壓機(NCP(股),LM-50x50-S),以熱板150℃、真空10分鐘、加壓15分鐘的條件來製作評價用太陽電池模組。對所得的評價用太陽電池模組,以與上述相同的方法獲得太陽電池I-V特性。將所得的結果歸納於表1中。
各種測定值中,關於Jsc(短路電流密度),使用以下式算出的△Jsc來對評價用太陽電池模組進行評價。
△Jsc=Jsc(模組)-Jsc(單元)
其中,此處的評價中,不使用太陽模擬器的UV過濾器而測定。
另外,將該△Jsc與A1(350nm)的關係示於圖1。根據該些圖可知,若A1max)的值變大,則太陽電池中的 波長轉換效果消失。
進而,將該△Jsc與A1(350nm~400nm)的平均值的關係示於圖6。根據該些圖可知,若A1(350nm~400nm)的平均值變大,則太陽電池中的波長轉換效果消失。
(比較例1~比較例3)
實例1~實例22的〈波長轉換用樹脂組成物的製備〉中,除了代替使用波長轉換用螢光材料,而將上述所得的螢光物質本身以成為表1所示含量的方式適當變更添加量以外,以與上述相同的方式獲得波長轉換用樹脂組成物。
對所得的波長轉換用樹脂組成物,以與上述相同的方式算出A1(λ)值。
進而以與上述相同的方式製作評價用太陽電池模組來評價其性能。將評價結果示於表1中。
〈可見區域的直線透射率的評價〉
對上述所得的實例以及比較例的評價用樣本,使用濁度計(日本電色工業(股)製造,NDH-2000),來測定可見區域的直線透射率(PT),將該直線透射率的常用對數除以評價用樣本的厚度(t),獲得以膜厚規格化的指標log10PT/t。
將該結果歸納於圖7中。根據圖7可知,在指標log10PT/t與△Jsc之間未特別發現相關,就可見光的透射率而言,對表現太陽電池的波長轉換效果而言並不充分。
〈發光強度的評價〉
對上述所得的實例以及比較例的評價用樣本,使用發光量子效率測定裝置(Systems Engineering(股)製造,QEMS-2000),測定積分發光強度。
將該結果歸納於圖8中。根據圖8可知,未於積分發光強度與△Jsc之間特別發現相關,積分發光強度下,對表現太陽電池的波長轉換效果而言並不充分。
[產業上之可利用性]
依據本發明,可提供一種波長轉換用樹脂組成物,當將波長轉換型用螢光材料以及波長轉換用樹脂組成物應用於太陽電池模組時,可於將所入射的太陽光中對太陽光發電的幫助少的光轉換成對發電的幫助大的波長的同時,不劣化而效率良好且穩定地利用太陽光。
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
圖1是表示本發明的波長350nm下的A1(λ)值與太陽電池的發電效率的關係的一例的圖表。
圖2是表示本發明的實例及比較例的波長轉換性樹脂組成物中的入射光波長與A1(λ)值的關係的一例的圖表。
圖3是表示本發明的實例及比較例的波長轉換性樹脂組成物中的入射光波長與A1(λ)值的關係的一例的圖表。
圖4是表示本發明的實例的螢光物質的激發光譜以及發光光譜的一例的圖表。
圖5是表示本發明的實例的分散於分散介質樹脂中的螢光物質的吸光度光譜的一例的圖表。
圖6是表示本發明的實例的波長350nm~400nm下的A1(λ)值的平均值、與太陽電池的發電效率的關係的一例的圖表。
圖7是表示本發明的比較例的可見區域的直線透射率、與太陽電池的發電效率的關係的一例的圖表。
圖8是表示本發明的比較例的積分發光強度、與太陽電池的發電效率的關係的一例的圖表。

Claims (5)

  1. 一種太陽電池用波長轉換性樹脂組成物,其是包含吸光度光譜中的極大吸收波長為λmax(nm)的螢光物質、樹脂粒子、及分散介質樹脂的樹脂組成物,並且於將使波長λ(nm)下的光強度為I0(λ)的入射光向由上述樹脂組成物所形成的厚度為t(μm)的樹脂膜的厚度方向入射而得的透射光的強度設為I(λ),且將使上述入射光向厚度為tref(μm)的參照用樹脂膜的厚度方向入射而得的透射光的強度設為Iref(λ),其中上述參照用樹脂膜是由自上述樹脂組成物中去除上述螢光物質及上述樹脂粒子的參照用樹脂組成物所形成時,下述式1所表示的A1(λ)的值在上述極大吸收波長λmax(nm)下為3.0×10-4(O.D./μm)以下:式1:A1(λ)={log(I0(λ)/I(λ))}/t-{log(I0(λ)/Iref(λ))}/tref
  2. 如申請專利範圍第1項所述之太陽電池用波長轉換性樹脂組成物,其中上述螢光物質內包於上述樹脂粒子中。
  3. 如申請專利範圍第1項所述之太陽電池用波長轉換性樹脂組成物,其中上述螢光物質為包含有機配位子的稀土金屬錯合物。
  4. 一種太陽電池模組,包括包含如申請專利範圍第1項至第3項中任一項所述之太陽電池用波長轉換性樹脂組 成物的透光性層。
  5. 一種太陽電池用波長轉換性樹脂組成物的評價方法,該太陽電池用波長轉換性樹脂組成物包含吸光度光譜中的極大吸收波長為λmax(nm)的螢光物質、及分散介質樹脂,並且於將使波長λ(nm)下的光強度為I0(λ)的入射光向由上述樹脂組成物所形成的厚度為t(μm)的樹脂膜的厚度方向入射而得的透射光的強度設為I(λ),且將使上述入射光向厚度為tref(μm)的參照用樹脂膜的厚度方向入射而得的透射光的強度設為Iref(λ),其中上述參照用樹脂膜是由自上述樹脂組成物中去除上述螢光物質的參照用樹脂組成物所形成時,基於上述極大吸收波長λmax(nm)下的下述式1所表示的A1(λ)的值,來評價波長轉換效率:式1:A1(λ)={log(I0(λ)/I(λ))}/t-{log(I0(λ)/Iref(λ))}/tref
TW100112216A 2010-04-09 2011-04-08 太陽電池用波長轉換性樹脂組成物以及太陽電池模組 TWI437076B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010090350A JP5752362B2 (ja) 2010-04-09 2010-04-09 太陽電池用波長変換性樹脂組成物および太陽電池モジュール

Publications (2)

Publication Number Publication Date
TW201202387A TW201202387A (en) 2012-01-16
TWI437076B true TWI437076B (zh) 2014-05-11

Family

ID=44763051

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100112216A TWI437076B (zh) 2010-04-09 2011-04-08 太陽電池用波長轉換性樹脂組成物以及太陽電池模組

Country Status (8)

Country Link
US (1) US20130080116A1 (zh)
EP (1) EP2557600A4 (zh)
JP (1) JP5752362B2 (zh)
KR (1) KR101383532B1 (zh)
CN (2) CN105441061B (zh)
SG (1) SG184488A1 (zh)
TW (1) TWI437076B (zh)
WO (1) WO2011126117A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201321846A (zh) * 2011-11-17 2013-06-01 Au Optronics Corp 具有彩色濾光陣列之畫素陣列基板及顯示面板
WO2013171275A2 (en) * 2012-05-16 2013-11-21 Novopolymers N.V. Polymer sheet
JP2015138829A (ja) * 2014-01-21 2015-07-30 長州産業株式会社 太陽電池モジュール
WO2015194096A1 (ja) * 2014-06-20 2015-12-23 パナソニックIpマネジメント株式会社 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2019510839A (ja) * 2016-01-26 2019-04-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 組成物、色変換シートおよび発光ダイオードデバイス
JP6828479B2 (ja) * 2017-02-06 2021-02-10 昭和電工マテリアルズ株式会社 色相調整用樹脂組成物及び色相調整用シート
CN106960891A (zh) * 2017-03-09 2017-07-18 杭州福斯特应用材料股份有限公司 一种光伏用透明复合膜及其制备方法与应用
TW202128785A (zh) * 2019-07-31 2021-08-01 日商積水保力馬科技股份有限公司 光硬化性的樹脂組合物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452720A (en) * 1980-06-04 1984-06-05 Teijin Limited Fluorescent composition having the ability to change wavelengths of light, shaped article of said composition as a light wavelength converting element and device for converting optical energy to electrical energy using said element
JPH07202243A (ja) * 1993-12-28 1995-08-04 Bridgestone Corp 太陽電池モジュール
JP2000328053A (ja) 1999-05-21 2000-11-28 Daicel Chem Ind Ltd 希土類錯体を含む複合薄膜およびその製造方法および複合薄膜を用いた光学材料
JP2001094128A (ja) * 1999-09-22 2001-04-06 Sharp Corp 太陽電池モジュール及びその製造方法
JP2001352091A (ja) 2000-04-06 2001-12-21 Sumitomo Chem Co Ltd 太陽電池カバー用シート
JP2006190867A (ja) 2005-01-07 2006-07-20 Du Pont Mitsui Polychem Co Ltd 太陽電池封止材
US20080149164A1 (en) * 2006-12-22 2008-06-26 General Electric Company Luminescent thermoplastic compositions and articles with enhanced edge emission
JP2008311604A (ja) * 2007-02-06 2008-12-25 Hitachi Chem Co Ltd 太陽電池モジュール及び太陽電池モジュール用波長変換型集光フィルム
EP2130233A1 (en) * 2007-03-13 2009-12-09 Basf Se Photovoltaic modules with improved quantum efficiency
JP4466758B2 (ja) * 2008-04-03 2010-05-26 三菱化学株式会社 蛍光体及びその製造方法、蛍光体含有組成物、発光装置、照明装置並びに画像表示装置
WO2009125701A1 (ja) * 2008-04-08 2009-10-15 東レ株式会社 太陽電池用熱可塑性樹脂シートおよびその製造方法、太陽電池
JP2010034502A (ja) * 2008-06-30 2010-02-12 Hitachi Chem Co Ltd 波長変換フィルム、これを用いた太陽電池モジュール及びこれらの製造方法
US8304645B2 (en) * 2008-08-19 2012-11-06 Sabic Innovative Plastics Ip B.V. Luminescent solar collector
JP2010090350A (ja) 2008-10-10 2010-04-22 Jsr Corp レーザー焼結積層造形用樹脂粉末

Also Published As

Publication number Publication date
KR101383532B1 (ko) 2014-04-09
WO2011126117A1 (ja) 2011-10-13
CN105441061A (zh) 2016-03-30
JP5752362B2 (ja) 2015-07-22
SG184488A1 (en) 2012-11-29
US20130080116A1 (en) 2013-03-28
CN105441061B (zh) 2017-10-17
CN102834931B (zh) 2016-02-10
CN102834931A (zh) 2012-12-19
WO2011126117A9 (ja) 2012-05-18
EP2557600A4 (en) 2014-04-30
KR20120130257A (ko) 2012-11-29
JP2011222748A (ja) 2011-11-04
TW201202387A (en) 2012-01-16
EP2557600A1 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
TWI438259B (zh) 球狀螢光體、波長轉換型太陽電池封裝材料、太陽電池模組及它們的製造方法
TWI431789B (zh) 波長變換型太陽電池封裝材料、及使用其的太陽電池模組
TWI437076B (zh) 太陽電池用波長轉換性樹脂組成物以及太陽電池模組
TWI591152B (zh) 球狀螢光體、波長變換型太陽電池密封材、太陽電池模組及其製造方法
TWI491703B (zh) 波長轉換用螢光材料、含有其之波長轉換用樹脂組成物、使用其之太陽電池模組、波長轉換用樹脂組成物的製造方法及太陽電池模組的製造方法
TWI474490B (zh) 波長變換型太陽電池密封片及太陽電池模組
TWI542024B (zh) 波長轉換型光電電池封裝材料以及光電電池模組
JP5716319B2 (ja) 波長変換型太陽電池用球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JP2013087243A (ja) 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JP5712550B2 (ja) 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JP5799487B2 (ja) 波長変換型太陽電池封止材用球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JP2013087242A (ja) 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JP2013087241A (ja) 被覆蛍光材料、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JP5935869B2 (ja) 球状蛍光体の製造方法、波長変換型太陽電池封止材の製造方法、及び太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees