TWI400340B - 鎂基儲氫材料奈米化方法 - Google Patents
鎂基儲氫材料奈米化方法 Download PDFInfo
- Publication number
- TWI400340B TWI400340B TW097132385A TW97132385A TWI400340B TW I400340 B TWI400340 B TW I400340B TW 097132385 A TW097132385 A TW 097132385A TW 97132385 A TW97132385 A TW 97132385A TW I400340 B TWI400340 B TW I400340B
- Authority
- TW
- Taiwan
- Prior art keywords
- magnesium
- hydrogen storage
- storage material
- based hydrogen
- nanocrystallization
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C17/00—Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
- B02C17/18—Details
- B02C17/183—Feeding or discharging devices
- B02C17/186—Adding fluid, other than for crushing by fluid energy
- B02C17/1875—Adding fluid, other than for crushing by fluid energy passing gas through crushing zone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
- B01J20/205—Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
- B01J20/28007—Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3021—Milling, crushing or grinding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C23/00—Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
- B02C23/06—Selection or use of additives to aid disintegrating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C23/00—Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
- B02C23/18—Adding fluid, other than for crushing or disintegrating by fluid energy
- B02C23/24—Passing gas through crushing or disintegrating zone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0021—Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0026—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof of one single metal or a rare earth metal; Treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0031—Intermetallic compounds; Metal alloys; Treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F5/00—Compounds of magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1084—Alloys containing non-metals by mechanical alloying (blending, milling)
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C26/00—Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C26/00—Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
- C22C2026/002—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/04—Hydrogen absorbing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Food Science & Technology (AREA)
- Combustion & Propulsion (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Powder Metallurgy (AREA)
- Carbon And Carbon Compounds (AREA)
Description
本發明係關於一種鎂基儲氫材料,更特別關於奈米化鎂基化合物的方法。
在儲氫材料的研究中,為提高有效儲氫量、加速吸放氫速率、及降低吸放氫溫度,材料奈米化(nanotization)為新研究方向。目前以機械方式奈米化具有延展性的材料如鎂基化合物或添加之高硬度材料有其困難,原因在於磨球尺寸不是奈米尺度且與研磨材料的相對尺寸過大,因此難以施加奈米級的應力於上述材料。對於延展性材料而言,球磨雖可破壞材料,但破壞後之材料易於再結晶成更大尺寸,因此無法有效將其晶體尺寸縮小至奈米級。為避免再結晶現象,習知方法係利用液態氮降低延展性材料如鋁基化合物之延展性,但上述低溫研磨製程將會增加成本。
綜上所述,目前仍需新的研磨方法以形成奈米級儲氫材料。
本發明提供一種鎂基儲氫材料奈米化方法,包括將鎂基化合物與奈米碳材於鈍氣氛圍下混合研磨,形成奈米級鎂基儲氫材料;其中奈米級鎂基儲氫材料之尺寸小於100奈米。
本發明提供一種鎂基儲氫材料奈米化方法,包括將鎂基化合物與奈米碳材於鈍氣氛圍下混合研磨,形成奈米級鎂基儲氫材料。奈米級鎂基儲氫材料的定義為尺寸小於100奈米。
上述之鎂基化合物為鎂或鎂為主之合金如Mg1-x
Ax
,A係Li、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Al、Y、Zr、Nb、Mo、In、Sn、O、Si、B、C、F、或Be,且0<x0.3。
合適之奈米碳材可為碳奈米管、碳奈米粉體、或上述之混合物。碳奈米管可為單層或多層碳奈米管,其管徑約介於12至15nm之間。在本發明一實施例中,碳奈米管係購自aldrich。碳奈米粉體之粒徑約介於10nm至30nm之間。在本發明一實施例中,碳奈米粉體係購自aldrich。
在本發明一實施例中,鎂基化合物與奈米碳材之重量比介於100:0.5至100:1之間。過多之鎂基化合物會造成儲氫材料吸氫溫度上升及晶界尺寸過大的現象,而過多之奈米碳材會造成吸氫重量比的下降。
將上述之鎂基化合物與奈米碳材混合後,於惰性氣體如氮氣、氬氣下進行球磨。球磨製程的研磨珠為直徑8~10mm鎢鋼球,溫度為27℃至40℃之間,壓力為1.0atm至2.0atm之間,時間為6至12hr之間。當研磨時間大於12hr時,將會造成晶粒過度成長,但小於6hr時,將無法將晶粒磨到奈米級。
經上述研磨製程後,即形成所謂的奈米級鎂基儲氫材料。由於本發明以更小、更硬、及更高剛性之碳奈米管作為研磨漿,研磨珠可將研磨應力集中於奈米尺度。高內部應力可使破壞面迅速延伸至鎂基化合物內部,將其破壞至奈米尺寸,並在材料內部引進大量的晶體內部應力與高角度晶界。如此一來,奈米級鎂基儲氫材料的結構具有很多的晶界缺陷,可作為氫原子擴散的快速通道,有助於儲氫材料快速儲存或釋放氫原子。在應用方面,可使有效儲氫量逼近理論最大儲氫量,加速吸放氫速率,及降低吸放氫溫度。在本發明一實施例中,奈米級鎂基儲氫材料在150℃至300℃之間的吸放氫速率大於0.0073 L/s。在本發明另一實施例中,奈米級鎂基儲氫材料在室溫(25℃)的吸放氫速率介於0.0051L/s至0.0073 L/s之間。
在本發明另一實施例中,可添加高強度且非延展性之高硬度材料至上述之研磨製程。研磨順序並無限制,可先研磨高硬度材料與奈米碳材之混合物後,再加入鎂基化合物進行研磨。亦可先研磨鎂基化合物與碳奈米材之混合物後,再加入高硬度材料進行研磨。亦可同時研磨鎂基化合物、高硬度材料、與奈米碳材之混合物。經研磨後,高硬度材料之尺寸將奈米化至小於100nm,且奈米化之高硬度材料會均勻分散於奈米級鎂基儲氫材料中。導入高硬度材料之目的在於增加儲氫材料之機械強度。高硬度材料可為V、Ti、Fe、Co、Nb、Ca、Cs、Mn、Ni、Ca、Ce、Y、La、Pd、Hf、K、Rb、Rh、Ru、Zr、Be、Cr、Ge、Si、Li、上
述之混合物、或上述之合金。當上述之高硬度材料為鐵、鈦、或鎳時,可進一步具有觸媒的作用加速將氫分子轉化成氫原子並快速儲存氫原子。鎂基化合物與高硬度材料之重量比介於100:5至100:30之間,若超過這個比例,則過多之高硬度材料將會降低儲氫材料之性能。
為使本技藝人士更清楚本發明之特徵,特舉例於下述之實施例。
取0.7g之鎂(偉斯企業股份有限公司)、0.3g之FeTi(昇美達國際開發股份有限公司)、及0.01g之碳奈米管(aldrich)於氬氣下進行球磨製程。球磨製程的研磨珠為鎢鋼,溫度為27℃,壓力為1atm,時間為6小時。由XRD繞射結果及穿透式電子顯微鏡圖像分析可知,球磨後之Mg與的平均晶體小於100nm。另一方面,測量壓力、氫氣濃度、以及溫度(Pressure-Concentration-Temperature)等參數推算其儲氫速率,結果如第1圖所示。
與實施例1大致相同,唯一的差別在於未添加碳奈米管作為研磨漿。由XRD繞射結果及穿透式電子顯微鏡圖像分析可知,球磨後之Mg與的平均晶體大於100nm。另一方面,測量壓力、氫氣濃度、以及溫度(Pressure-Concentration-Temperature)等參數推算其儲氫速率,結果如第1圖所示。
由第1圖之儲氫速率比較可知,有添加碳奈米管之奈
米化製程所形成之儲氫材料(實施例1),明顯優於未添加碳奈米管之奈米化製程所形成之儲氫材料(比較實施例1)。
雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
第1圖係本發明中實施例1及比較實施例1之儲氫速率比較圖。
Claims (10)
- 一種鎂基儲氫材料奈米化方法,包括:將一鎂為主之合金與一奈米碳材於一鈍氣氛圍下混合研磨,形成一奈米級鎂基儲氫材料;其中該奈米級鎂基儲氫材料之尺寸小於100奈米,且該鎂為主之合金直接接觸該奈米碳材。
- 如申請專利範圍第1項所述之鎂基儲氫材料奈米化方法,其中該奈米碳材包括碳奈米管、碳奈米粉體、或上述之組合。
- 如申請專利範圍第1項所述之鎂基儲氫材料奈米化方法,其中該鈍氣氛圍包括氮氣或氬氣。
- 如申請專利範圍第1項所述之鎂基儲氫材料奈米化方法,其中該鎂為主之合金與該奈米碳材之重量比介於100:0.5至100:1之間。
- 如申請專利範圍第1項所述之鎂基儲氫材料奈米化方法,其中該混合研磨的時間介於6hr至12hr之間,溫度介於27℃至40℃之間,且壓力介於1 atm至2 atm之間。
- 如申請專利範圍第1項所述之鎂基儲氫材料奈米化方法,其中該奈米級鎂基儲氫材料在100℃至200℃之間,其吸放氫速率大於0.0073 L/s。
- 如申請專利範圍第1項所述之鎂基儲氫材料奈米化方法,其中該奈米級鎂基儲氫材料於室溫下的吸放氫速率介於0.0051L/s至0.0073L/s之間。
- 如申請專利範圍第1項所述之鎂基儲氫材料奈米化 方法,更包括加入另一高硬度材料進行混合研磨,形成一奈米級高硬度材料與該奈米級鎂基儲氫材料均勻混合,且該奈米級高硬度材料之尺寸小於100nm。
- 如申請專利範圍第8項所述之鎂基儲氫材料奈米化方法,其中該高硬度材料係V、Ti、Fe、Co、Nb、Ca、Cs、Mn、Ni、Ca、Ce、Y、La、Pd、Hf、K、Rb、Rh、Ru、Zr、Be、Cr、Ge、Si、Li、上述之混合物、或上述之合金。
- 如申請專利範圍第8項所述之鎂基儲氫材料奈米化方法,其中該鎂為主之合金與該高硬度材料之重量比介於100:5至100:30之間。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW097132385A TWI400340B (zh) | 2008-08-25 | 2008-08-25 | 鎂基儲氫材料奈米化方法 |
US12/488,165 US8056840B2 (en) | 2008-08-25 | 2009-06-19 | Nanotization of magnesium-based hydrogen storage material |
SG200904340-7A SG159438A1 (en) | 2008-08-25 | 2009-06-24 | Nanotization of magnesium-based hydrogen storage material |
JP2009152428A JP5164935B2 (ja) | 2008-08-25 | 2009-06-26 | マグネシウム系水素吸蔵材料のナノ化方法 |
KR1020090060483A KR101106508B1 (ko) | 2008-08-25 | 2009-07-03 | 마그네슘에 기초한 수소 저장 물질의 나노화 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW097132385A TWI400340B (zh) | 2008-08-25 | 2008-08-25 | 鎂基儲氫材料奈米化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201009093A TW201009093A (en) | 2010-03-01 |
TWI400340B true TWI400340B (zh) | 2013-07-01 |
Family
ID=41695442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097132385A TWI400340B (zh) | 2008-08-25 | 2008-08-25 | 鎂基儲氫材料奈米化方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8056840B2 (zh) |
JP (1) | JP5164935B2 (zh) |
KR (1) | KR101106508B1 (zh) |
SG (1) | SG159438A1 (zh) |
TW (1) | TWI400340B (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010151435A1 (en) * | 2009-06-26 | 2010-12-29 | 3M Innovative Properties Company | Method of milling particles with nanoparticles and milled free-flowing powder |
JP5658761B2 (ja) | 2009-12-03 | 2015-01-28 | スリーエム イノベイティブ プロパティズ カンパニー | 粒子の静電気付着の方法、研磨材グレイン及び物品 |
CN102639650A (zh) | 2009-12-03 | 2012-08-15 | 3M创新有限公司 | 通过添加疏水性纳米粒子抑制粉末吸水性的方法 |
WO2011108693A1 (ja) | 2010-03-04 | 2011-09-09 | 本田技研工業株式会社 | 車両の旋回制御装置 |
US8666626B2 (en) | 2010-03-04 | 2014-03-04 | Honda Motor Co., Ltd. | Turning control device for vehicle |
CN102674406B (zh) * | 2011-12-19 | 2013-10-30 | 河南科技大学 | 一种纳米管状氧化镁的制备方法 |
TWI526396B (zh) * | 2012-09-12 | 2016-03-21 | 財團法人工業技術研究院 | 儲氫複合材料及其形成方法 |
CN105401030A (zh) * | 2015-11-10 | 2016-03-16 | 太仓捷公精密金属材料有限公司 | 一种耐腐蚀的钛镁合金材料 |
CN109457156A (zh) * | 2018-10-17 | 2019-03-12 | 北京杜尔考特科技有限公司 | 一种高强超韧镁基复合材料及其制备方法 |
KR102183381B1 (ko) * | 2018-12-28 | 2020-11-26 | 한국교통대학교산학협력단 | Mwcnt가 첨가된 마그네슘산화칼슘계 수소저장합금 및 이의 제조방법 |
CN112404452B (zh) * | 2020-10-21 | 2023-05-02 | 西安工程大学 | 一种镁基磁性微球的制备方法 |
KR102470444B1 (ko) | 2020-11-13 | 2022-11-25 | 한국과학기술원 | 환원된 산화 그래핀-마그네슘 나노결정 복합체의 제조 방법 |
KR102389205B1 (ko) * | 2020-11-13 | 2022-04-21 | 한국과학기술원 | 마그네슘 나노시트, 및 이를 포함하는 수소 저장 장치 |
CN115367700B (zh) * | 2022-08-31 | 2024-04-05 | 理工清科(重庆)先进材料研究院有限公司 | 锌铜双金属MOF催化的MgH2储氢材料、其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004091839A (ja) * | 2002-08-30 | 2004-03-25 | Kawatetsu Mining Co Ltd | 水素吸蔵用複合金属粉、その製造装置、製造方法及び燃料電池自動車 |
CN100358624C (zh) * | 2003-12-19 | 2008-01-02 | 中国科学院金属研究所 | 一种纳米镁/石墨复合储氢材料及制备方法 |
CN100368074C (zh) * | 2004-08-31 | 2008-02-13 | 中国科学院金属研究所 | 一种纳米复合储氢材料及其制备方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10168502A (ja) * | 1996-12-10 | 1998-06-23 | Osaka Gas Co Ltd | 高熱伝導率複合材 |
CN1100154C (zh) | 2000-01-20 | 2003-01-29 | 南开大学 | 储氢合金/碳纳米管复合储氢材料 |
US20070092437A1 (en) | 2001-12-11 | 2007-04-26 | Young-Kyun Kwon | Increasing hydrogen adsorption of nanostructured storage materials by modifying sp2 covalent bonds |
US6911260B2 (en) | 2002-01-11 | 2005-06-28 | Trustees Of Boston College | Reinforced carbon nanotubes |
US20050075245A1 (en) * | 2002-11-21 | 2005-04-07 | Goddard William A. | Carbon-based compositions for reversible hydrogen storage |
EP1613550A4 (en) * | 2003-04-17 | 2007-02-07 | Kyungwon Entpr Co Ltd | METAL-CARBON-COMPOSITE MATERIAL WITH NANOSTRUCTURE AND MANUFACTURING METHOD THEREFOR |
JP4550462B2 (ja) * | 2004-03-31 | 2010-09-22 | 古河電気工業株式会社 | 水素吸蔵体、水素貯蔵容器及び水素貯蔵容器内圧力調整方法 |
CN100338798C (zh) | 2004-05-19 | 2007-09-19 | 中国科学院金属研究所 | 镁/多壁纳米碳管复合储氢材料的制备方法 |
JP2006051473A (ja) * | 2004-08-16 | 2006-02-23 | Toyota Central Res & Dev Lab Inc | 水素吸蔵放出触媒およびそれを用いた水素吸蔵複合材料 |
US7259124B2 (en) * | 2005-02-07 | 2007-08-21 | Industrial Technology Research Institiute | Hydrogen storage composite and preparation thereof |
CN100513605C (zh) | 2006-07-26 | 2009-07-15 | 贵州佑邦科技有限公司 | 一种四元系镁基储氢合金、其生产方法及应用 |
US7746812B2 (en) * | 2006-08-17 | 2010-06-29 | Texas Instruments Incorporated | Reliable packet detection in a wireless receiver when packets contain a known repetitive sequence |
-
2008
- 2008-08-25 TW TW097132385A patent/TWI400340B/zh active
-
2009
- 2009-06-19 US US12/488,165 patent/US8056840B2/en active Active
- 2009-06-24 SG SG200904340-7A patent/SG159438A1/en unknown
- 2009-06-26 JP JP2009152428A patent/JP5164935B2/ja active Active
- 2009-07-03 KR KR1020090060483A patent/KR101106508B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004091839A (ja) * | 2002-08-30 | 2004-03-25 | Kawatetsu Mining Co Ltd | 水素吸蔵用複合金属粉、その製造装置、製造方法及び燃料電池自動車 |
CN100358624C (zh) * | 2003-12-19 | 2008-01-02 | 中国科学院金属研究所 | 一种纳米镁/石墨复合储氢材料及制备方法 |
CN100368074C (zh) * | 2004-08-31 | 2008-02-13 | 中国科学院金属研究所 | 一种纳米复合储氢材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20100044478A1 (en) | 2010-02-25 |
JP5164935B2 (ja) | 2013-03-21 |
SG159438A1 (en) | 2010-03-30 |
KR101106508B1 (ko) | 2012-01-20 |
US8056840B2 (en) | 2011-11-15 |
JP2010047833A (ja) | 2010-03-04 |
TW201009093A (en) | 2010-03-01 |
KR20100024341A (ko) | 2010-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI400340B (zh) | 鎂基儲氫材料奈米化方法 | |
CN101671788B (zh) | 镁基储氢材料纳米化方法 | |
Liu et al. | Reinforcement with intragranular dispersion of carbon nanotubes in aluminum matrix composites | |
Jiang et al. | Tailoring the structure and mechanical properties of graphene nanosheet/aluminum composites by flake powder metallurgy via shift-speed ball milling | |
Guo et al. | Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes | |
Guo et al. | Enhanced mechanical properties of aluminum based composites reinforced by chemically oxidized carbon nanotubes | |
Li et al. | Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling | |
Sun et al. | In situ synthesis of CNTs in Mg powder at low temperature for fabricating reinforced Mg composites | |
Chen et al. | Formation of the orientation relationship-dependent interfacial carbide in Al matrix composite affected by architectured carbon nanotube | |
KR101197581B1 (ko) | 금속기지 복합재 및 그 제조 방법 | |
Chen et al. | Heat treatment behavior and strengthening mechanisms of CNT/6061Al composites fabricated by flake powder metallurgy | |
JP5650103B2 (ja) | 安定な酸素終端半導体ナノ粒子の製造方法 | |
Sadeghi et al. | Hot rolling of MWCNTs reinforced Al matrix composites produced via spark plasma sintering | |
Gajdics et al. | Microstructural and morphological investigations on Mg-Nb2O5-CNT nanocomposites processed by high-pressure torsion for hydrogen storage applications | |
JP2021526502A (ja) | ナノ水素化マグネシウムの原位調製方法 | |
Pillari et al. | Carbon nanotube and graphene reinforced magnesium matrix composites: a state-of-the-art review | |
Bishoyi et al. | Synthesis and structural characterization of nanocrystalline silicon by high energy mechanical milling using Al2O3 media | |
Ding et al. | Activity-tuning of supported co–ni nanocatalysts via composition and morphology for hydrogen storage in MgH2 | |
JP2006152376A (ja) | ナノ遷移金属粒子、その製造方法、およびナノ遷移金属粒子を複合化した水素吸蔵複合材料 | |
Guan et al. | Fe-based metallic glass particles carry carbon nanotubes to reinforce Al matrix composites | |
JP5449989B2 (ja) | 水素吸蔵合金及びその製造方法、並びに、水素貯蔵装置 | |
Ren et al. | Revealing the effect of 2D carbides with different metal sites for improving hydrogen storage in MgH2 | |
Yang et al. | Effect of graphite (GR) content on microstructure and hydrogen storage properties of nanocrystalline Mg24Y3–Ni–GR composites | |
Yao et al. | Effects of carbon nanotubes and metal catalysts on hydrogen storage in magnesium nanocomposites | |
JP2006142281A (ja) | アルミニウム系ナノ複合触媒、その製造方法、およびそれを用いた水素吸蔵複合材料 |