CN112404452B - 一种镁基磁性微球的制备方法 - Google Patents

一种镁基磁性微球的制备方法 Download PDF

Info

Publication number
CN112404452B
CN112404452B CN202011132320.4A CN202011132320A CN112404452B CN 112404452 B CN112404452 B CN 112404452B CN 202011132320 A CN202011132320 A CN 202011132320A CN 112404452 B CN112404452 B CN 112404452B
Authority
CN
China
Prior art keywords
magnesium
stirring
magnetic
nano tube
carbon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011132320.4A
Other languages
English (en)
Other versions
CN112404452A (zh
Inventor
梁军浩
贺辛亥
刘明霞
李海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Polytechnic University
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN202011132320.4A priority Critical patent/CN112404452B/zh
Publication of CN112404452A publication Critical patent/CN112404452A/zh
Application granted granted Critical
Publication of CN112404452B publication Critical patent/CN112404452B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明的一种镁基磁性微球的制备方法,首先将碳纳米管通过化学镀的方法进行磁改性,在碳纳米管表面均匀镀一层5nm~10nm的磁性颗粒,然后将改性后的碳纳米管与镁在一定条件下进行搅拌复合后,得到碳纳米管质量含量5%~10%的镁基复合材料,最后利用金属微滴喷射技术将复合材料在630℃~650℃下喷射成形50μm~100μm的磁性微球。该镁基磁性微球既具有良好的机械强度,又可以利用镁与人体相容性高的特点使制备的磁性微球具有通用性。

Description

一种镁基磁性微球的制备方法
技术领域
本发明属于磁性复合材料技术领域,具体涉及一种镁基磁性微球的制备方法。
背景技术
磁性微球是一种新型的功能材料,在生物医学、细胞学和生物工程学等领域被广泛地应用于生物目标产品的快速分离,在临床医学方面被广泛应用于靶向给药。常见的磁性微球为的基体为高分子材料,高分子材料与身体蛋白容易出现非特异性,很难具有通用性。因此,开发一种金属材料、与身体的相容性非常好磁性微球是十分有必要的。
发明内容
本发明的目的是提供一种镁基磁性微球的制备方法,解决了现有技术中存在的高分子磁性微球与人体蛋白存在非特异性的问题。
本发明所采用的技术方案是,一种镁基磁性微球的制备方法,首先将碳纳米管通过化学镀的方法进行磁改性,即在碳纳米管表面均匀镀一层10nm~20nm厚的磁性颗粒,得到改性后的碳纳米管,然后将改性后的碳纳米管与镁进行搅拌复合后,得到碳纳米管质量含量为5%~10%的镁基复合材料,最后利用金属微滴喷射技术将镁基复合材料在630℃~650℃、SJ-5覆盖剂保护下喷射成形50μm~100μm磁性微球。
本发明的特点还在于:
磁性颗粒为钴、镍及其钴、镍合金或氧化物中的一种。
碳纳米管为多壁碳纳米管、单壁碳纳米管中的一种。
镁为纯镁、AZ31镁合金中任意一种。
搅拌为固态搅拌或半固态搅拌:
半固态搅拌时,在真空度5×104Pa~1×105Pa或RJ-5覆盖剂下,温度为520℃~560℃,搅拌速度1000rpm~1500rpm条件下进行机械搅拌,然后在620℃温度下,浇注至预热200℃的钢模中,取复合材料放入压电式金属微滴喷射装置的坩埚中;
固态搅拌时,在Ar气或CO2+SF6气体保护下进行搅拌摩擦加工,旋转速度800~1200rpm,行进速度20~50mm/min。
其中金属微滴喷射技术为连续式和按需式喷射。
本发明的有益效果是
本发明的一种镁基磁性微球的制备方法,首先将碳纳米管通过化学镀的方法进行磁改性,在碳纳米管表面均匀镀一层5nm~10nm的磁性颗粒,然后将改性后的碳纳米管与镁在一定条件下进行搅拌复合后,得到碳纳米管质量含量5%~10%的镁基复合材料,最后利用金属微滴喷射技术将复合材料在630℃~650℃下喷射成形50μm~100μm的磁性微球。该镁基磁性微球既具有良好的机械强度,又可以利用镁与人体相容性高的特点使制备的磁性微球具有通用性。
具体实施方式
下面结合具体实施方式对本发明进行详细说明。
本发明提供了一种磁吸附局部真空蒸镀的方法,具体包括以下步骤:首先将碳纳米管通过化学镀的方法进行磁改性,在碳纳米管表面均匀镀一层5nm~10nm的磁性颗粒,然后将改性后的碳纳米管与镁在一定条件下进行搅拌复合后,得到碳纳米管质量含量5%~10%的镁基复合材料,最后利用金属微滴喷射技术将复合材料在630℃~650℃下喷射成形50μm~100μm的磁性微球。
半固态搅拌时,在真空度5×104Pa~1×105Pa或RJ-5覆盖剂下,温度为520℃~560℃,搅拌速度1000rpm~1500rpm条件下进行机械搅拌,然后在620℃温度下,浇注至预热200℃的钢模中,取复合材料放入压电式金属微滴喷射装置的坩埚中;
固态搅拌时,在Ar气或CO2+SF6气体保护下进行搅拌摩擦加工,旋转速度800~1200rpm,行进速度20~50mm/min。
实施例1
首先将碳纳米管加入到由CoSO4、NaH2PO2、Pb(NO3)2、Na3C6H5O7组成的镀液中,镀液pH值为5,施镀温度为60℃,施镀时间20分钟,在碳纳米管表面镀一层均匀5nm的钴镀层,将镀钴碳纳米管预埋入纯镁中,在Co2+SF6气体保护下,旋转速度1000rpm,行进速度50mm/min,通过搅拌摩擦工艺进行复合,取复合材料放入压电式金属微滴喷射装置的坩埚中,在630℃、SJ-5覆盖剂保护、沉积距离100mm下,喷射成形50μm-100μm的磁性微球。
实施例2
首先将碳纳米管加入到由NiSO4·6H2O、NaH2PO2·2H2O、NH4Cl、Na3C6H5O7·2H2O和PdCI2组成的镀液中,镀液pH值为7,施镀温度为90℃,施镀时间30分钟,在碳纳米管表面镀一层均匀7nm的钴镀层,将镀镍碳纳米管预埋入AZ31镁合金中,在温度为530℃,在真空度1×105Pa,搅拌速度1000rpm条件下进行机械搅拌,在620℃温度下,浇注至预热200℃的钢模中,取复合材料放入压电式金属微滴喷射装置的坩埚中,在620℃、Ar气保护、沉积距离120mm下,喷射成形50μm-100μm的磁性微球。
实施例2
首先将碳纳米管加入到由NiSO4·6H2O、NaH2PO2·2H2O、NH4Cl、Na3C6H5O7·2H2O和PdCI2组成的镀液中,镀液pH值为8,施镀温度为90℃,施镀时间30分钟,在碳纳米管表面镀一层均匀10nm的钴镍层,将镀镍碳纳米管预埋入AZ31镁合金中,在温度为530℃,在真空度1×105Pa,搅拌速度1000rpm条件下进行机械搅拌,在620℃温度下,浇注至预热200℃的钢模中,取复合材料放入压电式金属微滴喷射装置的坩埚中,在630℃、Ar气保护、沉积距离120mm下,喷射成形50μm-100μm的磁性微球。
实施例3
首先将碳纳米管加入到由NiSO4·6H2O、NaH2PO2·2H2O、NH4Cl、Na3C6H5O7·2H2O和PdCI2组成的镀液中,镀液pH值为8,施镀温度为90℃,施镀时间30分钟,在碳纳米管表面镀一层均匀10nm的镍镀层,将镀镍碳纳米管预埋入AZ31镁合金中,在温度为530℃,添加RJ-5覆盖剂,搅拌速度1300rpm条件下进行机械搅拌;最后在620℃温度下,浇注至预热200℃的钢模中,取复合材料放入压电式金属微滴喷射装置的坩埚中,在630℃、Ar气保护、沉积距离120mm下,喷射成形50μm-100μm的磁性微球。
实施例4
首先将多壁碳纳米管加入到由CoSO4、NaH2PO2、Pb(NO3)2、Na3C6H5O7组成的镀液中,镀液pH值为5,施镀温度为60℃,施镀时间20分钟,在碳纳米管表面镀一层均匀5nm的钴镀层,将镀钴碳纳米管预埋入纯镁中,在Co2+SF6气体保护下,旋转速度800rpm,行进速度20mm/min,通过搅拌摩擦工艺进行复合,取复合材料放入压电式金属微滴喷射装置的坩埚中,在650℃、SJ-5覆盖剂保护、沉积距离100mm下,喷射成形50μm-100μm的磁性微球。
实施例5
首先将单壁碳纳米管加入到由CoSO4、NaH2PO2、Pb(NO3)2、Na3C6H5O7组成的镀液中,镀液pH值为5,施镀温度为60℃,施镀时间20分钟,在碳纳米管表面镀一层均匀5nm的钴镀层,将镀钴碳纳米管预埋入纯镁中,在Co2+SF6气体保护下,旋转速度1200rpm,行进速度50mm/min,通过搅拌摩擦工艺进行复合,取复合材料放入压电式金属微滴喷射装置的坩埚中,在650℃、SJ-5覆盖剂保护、沉积距离100mm下,喷射成形50μm-100μm的磁性微球。
实施例6
首先将单壁碳纳米管加入到由CoSO4、NaH2PO2、Pb(NO3)2、Na3C6H5O7组成的镀液中,镀液pH值为5,施镀温度为60℃,施镀时间20分钟,在碳纳米管表面镀一层均匀5nm的钴镀层,将镀钴碳纳米管预埋入AZ31镁合金中,在温度为560℃,在真空度5×104Pa,搅拌速度1500rpm条件下进行机械搅拌,在620℃温度下,浇注至预热200℃的钢模中,取复合材料放入压电式金属微滴喷射装置的坩埚中,取复合材料放入压电式金属微滴喷射装置的坩埚中,在650℃、SJ-5覆盖剂保护、沉积距离100mm下,喷射成形50μm-100μm的磁性微球。
本发明制备的磁性微球可以应用在靶向药物输送、生物检测和生物分离等众多领域。

Claims (3)

1.一种镁基磁性微球的制备方法,其特征在于:首先将碳纳米管通过化学镀的方法进行磁改性,即在碳纳米管表面均匀镀一层10nm~20nm厚的磁性颗粒,得到改性后的碳纳米管,然后将改性后的碳纳米管与镁进行搅拌复合后,得到碳纳米管质量含量为5%~10%的镁基复合材料,最后利用金属微滴喷射技术将镁基复合材料在630℃~650℃下喷射成形50μm~100μm磁性微球;其中金属微滴喷射技术为连续式和按需式喷射;
所述磁性颗粒为钴、镍及其钴、镍合金或氧化物中的一种;
所述搅拌为固态搅拌或半固态搅拌;
半固态搅拌时,在真空度5×104Pa~1×105Pa或RJ-5覆盖剂下,温度为520℃~560℃,搅拌速度1000 rpm~1500rpm条件下进行机械搅拌,然后在620℃温度下,浇注至预热200℃的钢模中,取复合材料放入压电式金属微滴喷射装置的坩埚中;
固态搅拌时,在Ar气或CO2+SF6气体保护下进行搅拌摩擦加工,旋转速度800~1200 rpm,行进速度20~50mm/min。
2.如权利要求1所述的一种镁基磁性微球的制备方法,其特征在于:所述碳纳米管为多壁碳纳米管、单壁碳纳米管中的一种。
3.如权利要求1所述的一种镁基磁性微球的制备方法,其特征在于:所述镁为纯镁、AZ31镁合金中任意一种。
CN202011132320.4A 2020-10-21 2020-10-21 一种镁基磁性微球的制备方法 Active CN112404452B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011132320.4A CN112404452B (zh) 2020-10-21 2020-10-21 一种镁基磁性微球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011132320.4A CN112404452B (zh) 2020-10-21 2020-10-21 一种镁基磁性微球的制备方法

Publications (2)

Publication Number Publication Date
CN112404452A CN112404452A (zh) 2021-02-26
CN112404452B true CN112404452B (zh) 2023-05-02

Family

ID=74840380

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011132320.4A Active CN112404452B (zh) 2020-10-21 2020-10-21 一种镁基磁性微球的制备方法

Country Status (1)

Country Link
CN (1) CN112404452B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208898A (ja) * 2013-03-29 2014-11-06 台湾カーボンナノチューブテクノロジー股▲ふん▼有限公司 金属ベースのカーボンナノチューブ複合材料の製造方法
CN107096924A (zh) * 2017-05-17 2017-08-29 中国科学院重庆绿色智能技术研究院 一种可用于三维打印的球形金属基稀土纳米复合粉末的制备方法及产品
CN108796259A (zh) * 2018-07-04 2018-11-13 湘潭大学 一种碳纳米管增强Zn基复合材料的制备方法
CN109321794A (zh) * 2018-10-31 2019-02-12 江苏理工学院 Al2Ca颗粒和碳纳米管混杂增强超轻镁锂基复合材料及制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100558966B1 (ko) * 2003-07-25 2006-03-10 한국과학기술원 탄소나노튜브가 강화된 금속 나노복합분말 및 그 제조방법
CN101376932B (zh) * 2007-08-31 2010-11-10 清华大学 镁基复合材料的制备方法及制备装置
TWI400340B (zh) * 2008-08-25 2013-07-01 Ind Tech Res Inst 鎂基儲氫材料奈米化方法
CN101851716B (zh) * 2010-06-14 2014-07-09 清华大学 镁基复合材料及其制备方法,以及其在发声装置中的应用
CN102747240B (zh) * 2012-05-15 2014-03-26 东北大学 一种碳纳米管增强镁基复合材料的制备方法
CN104209515B (zh) * 2014-09-12 2016-08-24 北京工业大学 一种碳纳米管包覆金属颗粒的制备方法
KR101844884B1 (ko) * 2016-10-24 2018-04-04 주식회사 경신전선 Al-CNT 복합 소재의 제조방법
US11325348B2 (en) * 2017-05-23 2022-05-10 Ut-Battelle, Llc Metal-carbon composites and methods for their production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208898A (ja) * 2013-03-29 2014-11-06 台湾カーボンナノチューブテクノロジー股▲ふん▼有限公司 金属ベースのカーボンナノチューブ複合材料の製造方法
CN107096924A (zh) * 2017-05-17 2017-08-29 中国科学院重庆绿色智能技术研究院 一种可用于三维打印的球形金属基稀土纳米复合粉末的制备方法及产品
CN108796259A (zh) * 2018-07-04 2018-11-13 湘潭大学 一种碳纳米管增强Zn基复合材料的制备方法
CN109321794A (zh) * 2018-10-31 2019-02-12 江苏理工学院 Al2Ca颗粒和碳纳米管混杂增强超轻镁锂基复合材料及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李四年,宋守志,余天庆,陈慧敏,张友寿,黄晋.铸造法制备纳米碳管增强镁基复合材料的力学性能研究.铸造.2004,(第03期),第190-193页. *

Also Published As

Publication number Publication date
CN112404452A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
CA2668089C (en) Material containing carbon nano tubes, method for their production and use of the materials
Zhou et al. Biotemplating rod-like viruses for the synthesis of copper nanorods and nanowires
Azarniya et al. Metallurgical challenges in carbon nanotube-reinforced metal matrix nanocomposites
Kondoh et al. Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes
CN101713071B (zh) 制备整体金属结构的方法以及由该方法制备的结构
US9789539B2 (en) Nanometal-flake-graphite composite and method of manufaturing the same
Zheng et al. A carbon nanotube–enhanced SiC coating for the oxidation protection of C/C composite materials
CN101391500B (zh) 镁基复合材料及其制备方法
TW201109448A (en) A connection means, a method of manufacturing the same and a material connection
Li et al. Characterization of hydroxyapatite/nano-zirconia composite coatings deposited by high velocity oxy-fuel (HVOF) spray process
Guo et al. Comprehensive performance regulation of Cu matrix composites with graphene nanoplatelets in situ encapsulated Al2O3 nanoparticles as reinforcement
US20180223260A1 (en) Functionalized nanoparticles for the intracellular delivery of biologically active molecules and methods for their manufacture and use
Singh et al. Synthesis of Ag–Pt alloy nanoparticles in aqueous bovine serum albumin foam and their cytocompatibility against human gingival fibroblasts
Tong et al. Enhancing mechanical properties of copper matrix composite by adding SiO2 quantum dots reinforcement
Shi et al. Surface modifications of nanoparticles and nanotubes by plasma polymerization
CN112404452B (zh) 一种镁基磁性微球的制备方法
Kim et al. Roles of Ni/CNTs hybridization on rheological and mechanical properties of CNTs/epoxy nanocomposites
Gu et al. DNA-templated fabrication of nickel nanocluster chains
EP2396442B1 (en) An engine or engine part and a method of manufacturing the same
Shuai et al. Rivet-inspired modification of carbon nanotubes by in situ-reduced Ag nanoparticles to enhance the strength and ductility of Zn implants
Sun et al. Mechanical properties, degradation behavior and cytocompatibility of biodegradable 3vol% X (X= MgO, ZnO and CuO)/Zn matrix composites with excellent dispersion property fabricated by graphene oxide-assisted hetero-aggregation
Sahoo et al. Improving reinforcement properties of CNTs in aluminium matrix composites: a case of surface modification through AlN nano-particle grafting
Liu et al. Controlled growth of Fe catalyst film for synthesis of vertically aligned carbon nanotubes by glancing angle deposition
Tekumalla et al. Processing, properties and potential applications of magnesium alloy-based nanocomposites: A review
EP2646598B1 (de) Verfahren zur metallbeschichtung von nanopartikeln mittels stromloser abscheidetechniken

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant