TWI396745B - 還原鐵球塊之製造方法及生鐵之製造方法 - Google Patents

還原鐵球塊之製造方法及生鐵之製造方法 Download PDF

Info

Publication number
TWI396745B
TWI396745B TW097135062A TW97135062A TWI396745B TW I396745 B TWI396745 B TW I396745B TW 097135062 A TW097135062 A TW 097135062A TW 97135062 A TW97135062 A TW 97135062A TW I396745 B TWI396745 B TW I396745B
Authority
TW
Taiwan
Prior art keywords
iron
reduced iron
oxide
reduced
ratio
Prior art date
Application number
TW097135062A
Other languages
English (en)
Other versions
TW200920850A (en
Inventor
Tetsuharu Ibaraki
Hiroshi Oda
Original Assignee
Nippon Steel & Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel & Sumitomo Metal Corp filed Critical Nippon Steel & Sumitomo Metal Corp
Publication of TW200920850A publication Critical patent/TW200920850A/zh
Application granted granted Critical
Publication of TWI396745B publication Critical patent/TWI396745B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0046Making spongy iron or liquid steel, by direct processes making metallised agglomerates or iron oxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/008Use of special additives or fluxing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

還原鐵球塊之製造方法及生鐵之製造方法 發明領域
本發明係有關於一種利用轉膛爐使含有氧化鐵及碳之粉體還原以製造部分還原鐵之還原鐵球塊之製造方法。又,本發明並有關於一種將前述部分還原鐵(還原鐵含有物)以鼓風爐或立式直井爐還原熔解,製成鐵水之生鐵之製造方法。
本申請案係以日本專利申請案第2007-239058號與第2008-227163號為基礎,並取用其等之內容於本案中。
發明背景
製造還原鐵或合金鐵之金屬還原程序有各種方式。其中,利用轉膛爐(Rotary Hearth Furnace,以下簡稱RHF)進行之操作係較低成本又生產性高之程序,其概要可以專利文獻1所載者為例。
第1圖所示者係RHF之直徑方向之割平面。該RHF係一種於固定之耐火物頂部1及側壁2下,有一安裝有車輪3且中央部形成缺口之圓盤狀耐火物製之爐床4,於圓形之軌道5上以一定速度旋轉之烘焙爐(以下稱迴轉爐)。側壁2上設有數個燃燒器6,用以從該等燃燒器吹送燃料與空氣,並控制爐內之環境氣體成分及溫度。一般而言,迴轉爐之爐床直徑為10~50公尺,寬度為2~8公尺。作為原料並由含有氧化金屬及碳之粉體組成之成形體,係供給於爐床4上,再經 化金屬及碳之粉體組成之成形體,係供給於爐床4上,再經爐內上部之氣體放出之輻射熱加熱,藉由成形體內部之氧化金屬與碳所產生之反應,於成形體內部獲得金屬。
第2圖所示者係RHF之設備全體之例圖。
原料係使用粉狀之礦石或氧化金屬微塵等氧化金屬,並使用碳作為還原劑。還原鐵之製造上,係使用球結礦(pellet feed)等微粒鐵礦或轉爐微塵、燒結微塵、鼓風爐煤氣微塵等製鐵程序所產生之副產物作為氧化鐵來源。作為還原劑之碳係使用焦炭、油焦、煤等。並以即使在引發還原反應之溫度1100℃左右時,未揮發之含碳量(固定碳)比率仍高者尤為理想。符合敘述之碳源為焦炭屑或無煙煤。
首先,利用第2圖之混合裝置,即球磨機11,將含有氧化金屬之粉體與含碳之粉體混合後,以製粒裝置12將混合物做成粒狀。將該成形體供給至迴轉爐13並於爐床4上平均舖滿。迴轉爐13中,成形體係隨爐床4之旋轉於爐內各部分移動。
成形體經高溫氣體之輻射加熱至1000~1500℃後,再藉由成形體內之碳,使氧化金屬還原。爐內產生之廢氣係通過排氣管14由鍋爐15與熱交換器16進行熱回收,並經集塵裝置17除塵後從煙囪18排放至大氣中。迴轉爐13之使用因係將成形體靜置於迴轉爐13內之爐床4上,故具有成形體難以於爐內崩壞之優點,好處在於無粉末化之原料附著於耐火物上以致引發相關問題。此外並具有可使用生產性高且價格低廉之碳類還原劑或粉原料之優點。
上述方法製成之還原鐵之金屬化率一般在90%以下,最大不過95%左右。該金屬化率仍低於MIDREX法等氣體還原方式製成之直接還原鐵(Directly Reduced Iron,以下稱DRI)。
RHF之爐內氣體環境以二氧化碳濃度較高,本應不會形成還原反應,但因成形體內混雜氧化鐵與碳,故將引起成形體內之自發性反應(FetO+C→tFe+CO),因此具有還原能力。該反應之結果將使成形體內及成形體周邊之一氧化碳比率提高,則成形體周邊在氣氛上還原性變高,使氧化鐵開始還原。但,成形體內之金屬鐵比率一旦提高,還原反應速度將隨氧化鐵比率降低而下降,且成形體內及成形體周邊之一氧化碳比率降低。因此,具有若金屬化率提高則還原減緩之缺點。
又如專利文獻2所載,有一製造高強度還原鐵之方法,並將該高強度還原鐵與塊礦或燒結礦一同供給於鼓風爐中製造生鐵。該方法係將業經預還原之氧化鐵於鼓風爐內進行最終還原與熔解,故具有鼓風爐之熱負荷降低,使鼓風爐之焦炭原始單位減少,且增加生鐵產量之效果。
又,一般使用還原鐵之鼓風爐之操作方法習用已久,舉例言之,專利文獻3中即揭示一種用以使用大量還原鐵之技術。該技術係於大量使用金屬廢料或高還原率之還原鐵時,藉由調整送風溫度或微粉煤吹入量,調整爐內溫度。
此外,亦可於熔鐵爐等非鼓風爐之立式爐,將還原鐵連同金屬廢料一併熔解。如專利文獻4所載,將塊狀焦炭與 金屬廢料放入爐內,從爐下部吹入業經加熱之空氣或添加氧之空氣,對金屬廢料進行熔解處理之操作中,係將塊狀之還原鐵(Hot Briquette Iron(HBI)或DRI)與金屬廢料一併熔解以生產生鐵。
【專利文獻1】日本專利公開公報特開第2001-303115號
【專利文獻2】日本專利公開公報特開第2004-218019號
【專利文獻3】日本專利公開公報特開第2001-234213號
【專利文獻4】日本專利公開公報特開平第11-117010號
【非專利文獻1】"Dust Recycling Technology by the Rotary Hearth Furnace at Nippon Steel's Kimitsu Works", Revue de Metall. Cahiers d'Inf. Tech. (2002)Vol.99, (10), p.809-818, T. Ibaraki and H. Oda
發明揭示
RHF與鼓風爐組合之操作,以專利文獻2所載之技術等為例,係於RHF製造還原率中等且高強度之還原鐵球塊,再於鼓風爐還原熔解。然而,上述習知技術中並不具備用以於鼓風爐增加使用比率之技術改善面。以非專利文獻1為例,鼓風爐中還原鐵球塊之使用量僅止於2~3%左右(製造生鐵25~40kg/每噸)。亦即,即使是日產1萬噸之大型鼓風爐,每1日之還原鐵球塊使用量亦僅在250~400噸之極少量。
結果,處理量少、1日之處理量僅數百噸之製鐵所內之 鋼鐵微塵經處理後製成之還原鐵球塊,其生產量可於鼓風爐中全數消化。但,於RHF處理鐵礦並大量生產還原鐵時,每1日可生產數百噸~數千噸之還原鐵。將該數量之還原鐵球塊作為原料於鼓風爐中生產生鐵時,於大型鼓風爐中,還原鐵球塊之使用量將達到每1噸製造生鐵60~200kg之高比率。
但,專利文獻2或非專利文獻1等習知技術中,還原鐵球塊之使用量少。因此,若僅思考將還原鐵球塊裝入鼓風爐,將無法控制爐內還原鐵球塊之最終還原狀態或熔解狀況。又,RHF操作只著重於製造高強度還原鐵球塊,鼓風爐爐內則無使還原鐵球塊之殘留氧化物更易於還原之技術。結果將使還原鐵球塊上殘留之氧化鐵之還原減緩,並於鼓風爐爐頸中部之還原終了前,氧化鐵已滲入爐下部之熔渣沈澱物中。如此一來,將造成因熔渣中產生氧化鐵還原,以致爐下部與熔渣溫度下降之問題,或熔渣中之FeO上升使熔渣之脫硫性能降低之問題。
另外,若使用專利文獻3所載之技術,可藉由控制鼓風爐之操作條件,於鼓風爐適當使用較大量之還原鐵。但該技術之前提在於使用習知技術如MIDREX等還原程序所生產之高金屬化率還原鐵。即,該技術不考慮使用以RHF製造之低金屬化率還原鐵。若為高金屬化率之還原鐵,則其中殘存之氧化鐵甚少,因此僅藉由加熱並熔解該還原鐵,即可製造熔鐵。故無如何還原低還原率還原鐵中之氧化鐵之技術。此外,以RHF製造之還原鐵球塊,金屬化率為50 ~85%,且內部含有大量氧化鐵。因此,該還原鐵球塊中,其內部之氧化鐵還原至為重要,且即使具有專利文獻3所載之技術,還原反應仍不完全,並將引發前述技術性問題。
於立式直井爐熔解還原鐵之技術,係如專利文獻4所載,為將低金屬化率之還原鐵球塊還原熔解,必須進行特殊操作。即,使用還原度低之還原鐵時,須正確控制焦炭與鐵源(金屬廢料或還原鐵)之裝入位置,並需要用以進行該控制之特殊裝置,故欲進行一般之實施實屬困難。又,雖使用如此特殊之技術,但因還原鐵內之氧化鐵還原減緩,仍易因熔渣之FeO增加而產生相關問題。基於上述理由,故有僅能使用還原速度快、5毫米以下小粒徑之低還原率還原鐵之問題。如此一來,將難以於習知技術中大量使用低還原率且粒子徑稍大之還原鐵球塊。
如上所述,習知技術無法於鼓風爐或立式爐(熔鐵爐等)大量使用以RHF製成之低還原率還原鐵球塊。反之,若於RHF製造高還原率(金屬化率85%以上)之還原鐵,再於鼓風爐或立式爐大量使用,在技術上係屬可行。但前述亦指明,RHF之問題在於若金屬化率高則還原反應停滯。結果,若將金屬化率設為85%以上,則需添加過剩之碳,進而須進行400℃以上之高溫處理。因此將有製造還原鐵之能量原始單位惡化之問題,就熱經濟性而言效率甚差。
承上可知,於RHF製造還原鐵,再於鼓風爐或立式爐大量處理該還原鐵以製造熔鐵之方法,仍有各種問題。因此,一直以來為克服該等習知技術之問題點,始終不停尋 求新技術。
本發明係為解決上述以RHF製成之還原鐵含有物於加熱成形時之技術問題而產生者,詳細內容如下列(1)~(16)所載。
(1)本發明之還原鐵球塊之製造方法,係將含有氧化鐵及碳之粉體之成形體於轉膛爐進行加熱處理予以還原時,藉由對由前述氧化鐵平均粒徑在50微米以下之原料所製成之成形體,設定還原帶內之一氧化碳相對於二氧化碳之比值為0.3至1,並以1400℃以下之溫度進行還原處理,製造出鐵之金屬化率為50~85%,且殘碳比率為2%以下之還原鐵球塊。藉由該還原鐵球塊之製造方法,可製造孔隙率為20~50%,且抗碎強度為5MPa以上以上之還原鐵球塊。
(2)如上述(1)之還原鐵球塊之製造方法,亦可將前述成形體於前述轉膛爐內1200℃以上環境中之停留時間,設為8分鐘以上且to=69.5-0.035T所示時間以下(其中,to之單位為分,T係1200℃以上之前述轉膛爐內之平均氣體溫度(℃))。如此即可兼顧適當之孔隙率及抗碎強度。
(3)如上述(1)之還原鐵球塊之製造方法,亦可設定由100℃加熱至1000℃時,該成形體中心部之平均加熱速度為每分鐘400℃以下。如此一來,上述(1)或(2)之方法即可更確實兼顧適當之孔隙率及抗碎強度。
(4)如上述(1)之還原鐵球塊之製造方法,亦可將前述成形體中氧化鈣相對於氧化矽之質量比設為2.2以下。
(5)如上述(1)之還原鐵球塊之製造方法,其中原料中之氟與氯之含有率可設為(F質量%)+0.4(Cl質量%)<0.25%。
(6)如上述(1)之還原鐵球塊之製造方法,亦可將前述成形體中氧化鎂、氧化鈣、氧化矽、及氧化鐵中之總含鐵率設為{(CaO質量%)-(MgO質量%)}/(T.Fe質量%)<0.1且{(CaO質量%)-(MgO質量%)}/(SiO2 質量%)<2.0。
該等(4)~(6)藉由維持還原鐵球塊中氧化物之熔點在高點,而可更確實兼顧適當之孔隙率及抗碎強度。
(7)本發明之生鐵之製造方法,係將還原鐵球塊按5~20mm者之比率在80%以上之條件,與礦石及燒結礦一同裝入製鐵鼓風爐中進行還原熔解;該還原鐵球塊係將含有氧化鐵及碳之粉體之成形體於轉膛爐中加熱處理製造而成,總含鐵率為55質量%以上,鐵之金屬化率為50~85%,且平均35微米以下之金屬鐵粒子結合後,於前述氧化鐵與其他氧化物之混合物間形成金屬鐵網狀物,且孔隙率為20~50%者。
(8)如上述(7)之生鐵之製造方法,亦可將前述還原鐵球塊與礦石及燒結礦一同裝入製鐵鼓風爐中進行還原熔解;該還原鐵球塊之內部構造係呈含有前述氧化鐵之氧化物之平均粒徑為5~100微米,且該氧化鐵受金屬鐵網狀物限制之狀態。
(9)如上述(7)之生鐵之製造方法,亦可相對所欲製造之生鐵量,按250kg/噸以下之比率,將前述還原鐵球塊裝 入製鐵鼓風爐中。藉此可更有效率地製造熔融生鐵。
(10)如上述(7)之生鐵之製造方法,亦可將前述還原鐵球塊裝入前述製鐵鼓風爐中直徑方向上距離中心2/3以內之位置,使前述製鐵鼓風爐內前述還原鐵球塊之比率達65%以上。
(11)本發明之另一種生鐵之製造方法,係將含有氧化鐵及碳之粉體之成形體於轉膛爐進行加熱處理予以還原時,將總含鐵率為55質量%以上,鐵之金屬化率為50~85%,且孔隙率為20~50%之依申請專利範圍第1項之方法製成之還原鐵球塊,按5~20mm者之比率在80%以上之條件,與礦石及燒結礦一同裝入製鐵鼓風爐中進行還原熔解。
(12)本發明之又另一種生鐵之製造方法,係將還原鐵球塊按5~20mm者之比率在80%以上之條件,裝入塊狀鐵及塊焦之爐內空間填充率在80%以下之立式爐中,進行還原熔解;該還原鐵球塊係將含有氧化鐵及碳之粉體之成形體於轉膛爐中加熱處理製造而成,總含鐵率為55質量%以上,鐵之金屬化率為50~85%,且平均35微米以下之金屬鐵粒子結合,於前述氧化鐵與其他氧化物之混合體間形成金屬鐵網狀物,且孔隙率為20~50%者。
(13)如上述(12)之生鐵之製造方法,亦可按前述立式爐內前述還原鐵球塊相對於前述塊狀鐵之比率在100%以下之條件,將還原鐵球塊還原熔解。
(14)如上述(12)之生鐵之製造方法,亦可將前述還原鐵球塊裝入前述立式爐中直徑方向上距離中心至2/3以內之 位置,使前述製鐵鼓風爐內前述還原鐵球塊之比率達70%以上。
(15)如上述(12)之生鐵之製造方法,亦可將還原鐵球塊裝入呈現爐上部氣體溫度為500℃以上狀態之前述立式爐中進行還原熔解;該還原鐵球塊係藉由將含有鋅及鉛至少一種、氧化鐵與碳之粉體之成形體於轉膛爐中加熱處理製造而成,且鋅及鉛之合計含有率為0.05%以上者。
(16)本發明之再另一種生鐵之製造方法,係將含有氧化鐵及碳之粉體之成形體於轉膛爐進行加熱處理予以還原時,將還原鐵球塊按5~20mm者之比率在80%以上之條件,裝入塊狀鐵及塊焦之爐內空間填充率在80%以下之立式爐中,進行還原熔解;該還原鐵球塊係總含鐵率為55質量%以上,鐵之金屬化率為50~85%,並於前述氧化鐵與其他氧化物之混合體間形成金屬鐵網狀物,且孔隙率為20~50%之依申請專利範圍第1項之方法製造而成者。
依據本發明,係於RHF適當還原氧化鐵粉體或由製鐵設備回收之含氧化鐵微塵。並可將還原鐵球塊供給於鼓風爐,經濟地製造熔鐵。又,即使以熔鐵爐等立式爐代替鼓風爐,同樣可經濟地製造熔鐵。
圖式簡單說明
第1圖所示者係轉膛爐之構造。
第2圖所示者係使用轉膛爐時之處理程序全體。
第3圖所示者係鼓風爐之爐內構造。
第4圖所示者係利用柱式反應裝置測量1100℃之一氧化碳環境下還原鐵球塊內氧化鐵之還原速度之結果,並以反應速度之指數(修正還原鐵球塊之直徑與還原度)與還原鐵球塊之孔隙率間之關係呈現。
用以實施發明之最佳形態
有關本發明之還原鐵球塊之製造方法及生鐵之製造方法之實施形態係說明如下。
又,本實施形態係使用含有氧化鐵及碳之粉體作為原料。氧化鐵使用氧化亞鐵(方鐵礦,FeO)、四氧化三鐵(磁鐵礦,Fe3 O4 )、三氧化二鐵(赤鐵礦,Fe2 O3 )任一種皆可,或可使用其等之混合物。此外亦可混合金屬鐵粉。氧化鐵來源為鐵礦、鐵砂等礦石類,與製鐵所等所產生之含氧化鐵微塵等。碳源係使用焦炭屑、粉煤、油焦等。使用即使達1000℃以上仍未揮發之固定碳(FC)對還原反應極有助益,故以固定碳比率多者為佳。由此點可知,焦炭屑、油焦、無煙煤、中揮發分煤等皆宜。此外,利用製鐵業之含碳量大之微塵等亦可。
原料中係混入有鐵礦、含氧化鐵微塵、焦炭、煤等雜質,包含氧化鎳、氧化錳、氧化鉻、氧化鋅等容易還原之金屬氧化物,與氧化矽、氧化鈣、氧化鋁、氧化鎂、氧化鈦等不易還原之金屬氧化物。除碳源外,粉體之總含鐵率(總鐵(T.Fe)含有率)宜為50%以上。若T.Fe為50%以下,則還原後之金屬鐵比率將在55%以下,並引起還原鐵球塊強度 降低之問題。另,此處所謂T.Fe含有率,係氧化鐵中含鐵量與金屬鐵量之合計值除以粉體總量後之數值。
作為原料之粉體係使用氧化鐵粒子之平均粒子徑為50微米以下者。若平均粒子徑為50微米以上,則粒子內之物質移動減緩,且還原時間耗費過多,因此不宜使用50微米以上之粒子。又,為控制還原鐵球塊之孔隙率,宜使用微細粒子,若情況允許,則以平均粒子徑為25微米以下之粒子為佳。此外,製粒操作亦同,粒子徑越小則成形體之製作越容易,故由此點可知粒子以越細者為佳。
將原料中之氧化鐵與碳之比率按適當條件調整後,將原料加以調和。RHF中之反應,係MO+C=M+CO及MO+CO=M+CO2 。其中,M係表示金屬元素之符號。本發明人等調查RHF內部反應之結果如下。氧化鐵、氧化鎳、氧化錳、氧化鉻、氧化鋅等在1200℃時會受一氧化碳催化而還原之金屬,將於RHF內起金屬化反應;其金屬化率係取決於RHF之操作條件等。反之,氧化矽、氧化鈣、氧化鋁、氧化鎂、氧化鈦等在1200℃時不會受一氧化碳影響而還原之金屬,則不會於RHF內還原,並殘留形成氧化物。
碳摻合量係取決於氧化鐵、氧化鎳、氧化錳、氧化鉻、氧化鋅等容易還原之金屬與相化合之氧(以下簡稱活性氧)之比率。又,氧化鐵等之還原反應約於超過1000℃時發生,故有助於還原反應之碳為固定碳。由此可發現,藉由調整活性氧與固定碳之比率,將於RHF內引起良好反應。其條件係相對於活性氧之原子莫耳量,固定碳之原子莫耳量之 比率(C/O)為0.7~1.5。若C/O在0.7以下,無論RHF中之還原條件如何,都將因碳不足而使還原不完全,故多數時候將使鐵之金屬化率在50%以下,且部分氧化鐵將殘留成為三氧化二鐵。反之,於碳過剩之狀態下,反應後則有大量碳殘留於還原鐵球塊上。參照下述,C/O在1.5以上時,殘碳將達2質量%以上,故有引發還原鐵球塊之抗碎強度降低之問題。
藉由第1圖及第2圖說明於RHF還原該原料粉體之方法。首先,將原料粉體以混合裝置(第2圖中為球磨機11)混合後,再以製粒裝置12做成成形體。混合裝置並非以球磨機為限,揉合式、流體化床式、水中混合等裝置亦可。製粒裝置有盤式製粒裝置、滾子式壓縮成形裝置、擠製式成形裝置等。將該成形體於迴轉爐13之爐床4上均勻舖滿。爐床4上成形體之層數以2層以下為宜,此係為使熱傳遞情形良好所需之條件。成形體之大小,若為球狀者,宜為平均直徑8~25毫米,若為其他形狀者,宜為平均換算直徑7~30毫米。過小者,將使爐床4上之成形體厚度太薄,有生產性低落之問題,若過大,則有成形體內部之熱傳遞惡化之問題。於迴轉爐13內部,成形體係隨爐床4之旋轉而由爐內之加熱帶至還原帶移動。藉由高溫氣體之輻射,於還原帶內部將成形體加熱至1200~1400℃,使碳與氧化金屬於成形體內產生反應,進而生成還原鐵。成形體於爐內之停留時間為10~25分鐘,扣除加熱至1000℃之時間後,還原時間為5~20分鐘左右。其中,所謂換算直徑係以容積之開立 方表示者。
成形體之加熱速度,中心宜為400℃/分以下,理想者為300℃/分以下。為達成此條件,宜設定加熱帶之平均氣體溫度為1200℃以下。若加熱速度過快,將使中心部與外周部之溫度差異大。外周部若超過1000℃,則該部分將引發還原反應。另外,若中心部與外周部之溫度差異大,即使外周部之反應幾近完了,中心部仍呈現幾乎尚未開始反應之狀態。隨後,中心部開始還原,但此時外周部已形成一氣體難以流通之還原完了層,以致隨中心部還原所產生之氣體之通過阻力變大。因而有產生外周部形成裂縫等缺陷之問題。此外,100℃/分以下之成形體加熱速度,因RHF之生產性大幅降低,故成形體之加熱速度宜設為100℃/分以上,更理想者為150℃/分以上。
該反應所生成之還原鐵球塊,還原率(被還原金屬之去氧率)為65~90%,鐵之金屬化率為50~85%。此時製造之還原鐵球塊,孔隙率為20~50%,理想者為20~45%。作為原料之成形體係使用孔隙率為27~55%者,但若藉反應脫除碳與氧化鐵中之氧,則成形體內之空隙變多,並使還原鐵球塊之孔隙率增加至50~70%。又,若逕於該狀態下完成處理,則還原鐵球塊之抗碎強度將為1MPa(10kg-f/cm2 )以下。在此抗碎強度下,若裝入鼓風爐或立式爐中,將容易粉末化,以致爐內之通風惡化。
因此,應於RHF爐內燒結還原鐵球塊中之金屬鐵與氧化物,提高還原鐵球塊之孔隙率。為進行上述操作,需具 備下列3點條件:將還原溫度設為1200℃以上、還原鐵球塊之金屬鐵比率設為50%以上、及殘碳設為2質量%以下。又,為確保燒結時間,成形體於1200℃以上之爐內停留時間設為8分鐘以上。若依此條件,則可製造孔隙率在50%以下之還原鐵球塊。惟,還原溫度若設為1400℃以上,則還原鐵球塊內之金屬鐵與碳反應後將形成雪明碳鐵。因雪明碳鐵熔點低,一旦熔解將使金屬鐵與氧化物產生物理性分離。故將無法形成適當之金屬鐵粒子之網狀物,且還原鐵球塊之抗碎強度降低。因此,還原溫度宜設為1200~1400℃。在此條件下,可製造孔隙率為50%以下之還原鐵球塊,若具有該孔隙率,則還原鐵球塊之抗碎強度將達5MPa以上,而可用於鼓風爐或立式爐中。另,該孔隙率係由還原鐵球塊所含物質之真比重與還原鐵球塊視比重之比值算出者。孔隙率係按(孔隙率)=100-((視比重)/(真比重)×100(%))求出者,此外,視比重係將還原鐵球塊之質量除以容積之比值。
依本發明方法製成之還原鐵球塊,其構造上具有一特徵,係於氧化鐵與其他氧化物之混合體間形成有金屬鐵粒子網狀物。重點在於餘留少量氧化鐵,且不使成形體內之碳殘留。因此,本發明之方法相對於習知之製造方法,操作上之特徵在於不極端提升還原率。為此,須將RHF爐內之還原帶氣氛形成弱還原性。若環境氣氛之還原性強,則除碳與氧化鐵之反應所引發之還原外,氣體中之一氧化碳與氧化鐵亦將產生反應,而易使碳殘留於還原鐵球塊內。 如此一來,將形成雪明碳鐵,以致金屬鐵之熔點降低,且無法形成金屬鐵粒子網狀物,並使還原鐵球塊之抗碎強度下降。另,此處所謂金屬鐵粒子網狀物,係指由數微米至35微米左右,經還原產生之金屬鐵粒子等結合後,形成立體網狀物者。
本發明人等之實驗中,還原帶氣體中一氧化碳相對於二氧化碳之比值(CO/CO2 比)以1以下為宜,更理想者為0.8以下。惟,若CO/CO2 比為0.3以下,則氧化鐵無法正常進行還原。其中,所謂還原帶係還原鐵球塊之中心溫度在1000℃以上之爐內位置,又,此處氣體成分之定義係由成形體算起300mm以上之爐內空間之平均值。由成形體算起300mm以下之部分,因受到氧化鐵還原反應所產生之一氧化碳影響,而與氣體全體之成分有所偏差,因此該部分之氣體成分不在本發明之氣體組成之定義範圍內。
還原鐵球塊內殘留之氧化物形態對還原鐵球塊之強度與孔隙率亦有影響。若該氧化物熔點低,並於爐內熔融或軟化,則冷卻後還原鐵球塊內之氧化物粒子將變粗大。結果將使還原鐵粒子網狀物與氧化物分離,且還原鐵球塊之全體結合狀態惡化。因而造成還原鐵球塊強度降低之問題。又,更極端之結果為熔融氧化物將堵塞孔隙。本發明乃控制氧化物粒子之大小為5~100微米。若為5微米以下,則氧化物粒子小於金屬鐵粒子網狀物之空隙,無法形成緊密構造。此外,若為100微米以上,則粗大氧化物粒子內部將吸收金屬鐵粒子網狀物,致使還原鐵球塊之強度降低。 另,此處所謂氧化物之大小,若以單獨存在而言,係指該氧化物大小,若為燒結體,則為粒子徑。
為防止該現象,並使氧化物粒子大小適中,宜調配不會生成低熔點氧化物化合物之原料之化學成分。低熔點之氧化物,係指於鈣鐵氧體或矽酸鈣中混雜有雜質者等。調查不會生成該等氧化物之原料化學成分後可知,應控制氧化鈣與氧化鐵之比率及氧化鈣與氧化矽之比值。此外並確知氧化鎂係用以控制鈣鐵氧體或矽酸鈣之生成。經實驗確定,於1200~1400℃時不使氧化物熔融或軟化之條件,在於相對於氧化矽之氧化鈣質量比宜為2.2以下。又,為求更進一步之改善,則宜為{(CaO質量%)-(MgO質量%)}/(T.Fe質量%)<0.1且{(CaO質量%)-(MgO質量%)}/(SiO2 質量%)<2.0。此外,氟與氯係用以使氧化物熔點降低之元素,故以(F質量%)+0.4(Cl質量%)<0.25%為宜。其中,氯濃度相關之係數,係供考量有關氯之原子量差與軟化之影響程度者。特別是進行製鐵微塵等之再循環時,氧化物成分之限定即成重要手段。
另一方面,還原鐵球塊之孔隙率設為20%以上,係為提升還原鐵球塊之還原速度之所必須。此係由於在鼓風爐或立式爐將還原鐵球塊還原時,乃經由孔隙使還原氣體擴散滲透,促進還原鐵球塊之最終還原。為滿足該孔隙率,則設定還原溫度為1400℃以下,殘碳為2質量%以下,成形體於爐內1200℃以上環境之停留時間為to=69.5-0.035T所示時間以下。其中,T係1200℃以上之爐內部分之平均氣 體溫度(℃),to係最長爐內停留時間(分)。To於1200℃時為27.5分,於1300℃時為24.0分,於1400℃時為20.5分。若依據此條件,則可防止過度燒結,並可將孔隙率保持為20%以上。結果將使還原鐵球塊因燒結而收縮,並形成5~20毫米之換算直徑。另,由於成形體破裂等現象,該還原鐵球塊中,將含有5毫米以下之少量金屬鐵粒子。
將依上述條件製成之還原鐵球塊冷卻。冷卻時應注意之處在於還原鐵球塊之再氧化。為防止再氧化,若還原鐵球塊之溫度達300℃以上,則宜於氧濃度5容積%以下之低氧化環境氣體中進行冷卻。使用之冷卻裝置,則以可於內部導入氮之形式,如桶式外部水冷器為佳。又如後述,冷卻後呈常溫之還原鐵球塊中三氧化二鐵之比率係訂為5質量%。對三氧化二鐵之比率加以限制之理由,係由於三氧化二鐵於鼓風爐爐內還原時將粉末化,而導致還原鐵球塊強度降低。
將以上說明之還原鐵球塊置於鼓風爐中還原熔解。鼓風爐之概略構造係如第3圖所示。鼓風爐原料,係將本發明之還原鐵球塊與塊礦、燒結礦、燒成球塊等鐵源及冶金用焦炭,經由爐上部之鐘形塞進器供給於鼓風爐爐內之爐頂21。還原鐵球塊係與礦石或燒結礦等一同裝入,於爐內形成礦石層22。塊焦係單獨裝入而形成焦炭層23。從風口25吹入1100~1200℃之熱風與微粉煤,使爐內引發反應。該等原料於反應進行之同時,於爐內落下,並於爐心24周圍形成熔鐵與熔渣沉積於爐下部。將該等熔融物由出鐵口26 排出。用以供給鼓風爐之還原鐵球塊係如前述,為鐵之金屬化率50~85%,換算直徑5~20毫米者佔80%以上,且孔隙率20~50%者。還原鐵球塊之抗碎強度宜為5MPa以上。又,鼓風爐中還原鐵球塊使用量少時,還原減緩問題不明顯,故本發明之效果最顯著者在於還原鐵球塊使用量為40kg/t以上之熔鐵生產量。
換算直徑5~20毫米者佔80%以上,且孔隙率達20~50%之條件,係取決於鼓風爐中還原反應與熱傳遞之特性。以RHF製成之還原鐵球塊,因金屬化率為50~85%,故其內部含有大量氧化鐵。因此,若包含鼓風爐爐頸中部在內之鼓風爐內氣體還原不完全,則連爐下部皆有氧化鐵殘存,以致熔渣中之焦炭引發直接還原。結果,熔渣溫度受還原反應之吸熱影響而降低,致使熔渣難以自鼓風爐排出,或熔渣中FeO增加,因而導致熔渣之脫硫能力下降,使生鐵之硫濃度上升等情形。
有關還原鐵球塊之大小,從RHF中之製造條件而言,宜為20毫米以下,以不擾亂鼓風爐爐內氣體流動之觀點言之,則以5毫米以下為佳。本發明者經實驗發現,5毫米以下之還原鐵球塊若達10~15%以上,則鼓風爐爐內之氣體壓降變大。如此將造成換算直徑為5毫米以下者與其他裝入物填充於爐內,增加填充物之氣體通過壓降,以致對鼓風爐內之送風量減少之問題。若引發該現象,則鼓風爐之生產性(出鐵比(t/日))將降低。又,若20毫米以上之還原鐵球塊變多,雖還原條件佳,但亦可發現熱傳遞之減緩將使熔 渣內之FeO增加。另,還原鐵球塊之大小並非一致,因此實際之粒度管理上,只需管控5~20毫米者所佔比率為80%以上即可。
為對還原鐵球塊內之殘留氧化物進行還原,故使還原氣體於還原鐵球塊內部擴散至為重要,本發明人即由此點,調查影響還原鐵球塊內氣體擴散之因子。最具影響之因子係內部孔隙率與大小。本發明人更使用大小符合熱傳遞相關限制之直徑在5~20毫米範圍內之還原鐵球塊,於反應塔進行還原實驗。該實驗係用以測量1100℃一氧化碳環境下之還原速度。將該實驗結果,依還原反應速度指數(修正還原鐵球塊之直徑並予以指數化者)與還原鐵球塊孔隙率之關係呈現,並顯示如第4圖。另,指數顯示以孔隙率55%之數據設為1。該指數若為0.6以上,鼓風爐內將以充分速度進行還原,不致引起還原減緩現象,故孔隙率宜為20%以上。又由該圖所示可知,若為25%以上之孔隙率,則還原反應速度將呈高度穩定狀態。
將孔隙率20%以上、直徑5~20毫米且金屬化率為50~85%之還原鐵球塊置於鼓風爐爐內,則還原鐵球塊內部之一氧化碳氣體迅速擴散並於到達位於鼓風爐爐頸下部之熔化帶前,氧化鐵之金屬化即幾近結束。又,內部構造為含有氧化鐵之氧化物之平均粒徑在5~100微米者,還原鐵球塊之強度充足,並可提高還原速度。即,若為100微米以下之粒子,則粒子內之擴散快,可使還原迅速。此外,5微米以下之粒子,有時將造成還原鐵球塊之強度降低,故不宜 使用。依據該理由,熔化帶之還原鐵球塊將迅速燒熔,且於該部分之氣體壓降減少,因而可改善爐內之氣體流動。另外如前述,孔隙率之上限值係取決於還原鐵球塊之強度下限,就本發明而言係50%。
由於以RHF製成之還原鐵球塊中殘留有氧化鐵,故仍將引起一個問題。該氧化鐵球塊含有三氧化二鐵時,其還原過程中將造成晶體膨脹,而有還原鐵球塊分解之問題。因此,必須降低三氧化二鐵比率,若該比率為5質量%以下,則無此現象。為管理三氧化二鐵比率,重點在於使還原條件良好,並防止還原鐵球塊於冷卻時與保管時再氧化。還原條件係將C/O設為0.7以上,且將RHF爐內1200℃以上溫度設定為7分鐘以上。又,冷卻時,將還原鐵球塊為300℃以上狀態下之氧濃度設為5容積%以下等之方法則屬必要。此外應適當訂定保管期間,以防產生再氧化。
本發明人於4800立方米之鼓風爐施行上述技術後發現,在還原鐵球塊100kg/t之範圍內,依據還原鐵球塊之還原度影響熱負荷降低之計算值,還原劑(焦炭+微粉煤)有比率以上之降低效果。100~250kg/t時,還原鐵球塊之還原熔解順利進行,但已證實熱效應比計算值稍小。如此一來,還原鐵球塊量若增加,則熱效應將趨於減少。此應係爐內之還原鐵球塊比例若過高,則爐內氣體與礦石類之接觸狀態將起變化,以致氣體利用率改變之故。因此,乃將65%以上之還原鐵球塊裝入製鐵鼓風爐中直徑方向上距離中心2/3以內之位置(面積比為44%),藉以抑制該現象。此方法 對於使用100kg/t以上之還原鐵球塊時等特別有效,最大2500kg/t者,亦可依據使用金屬鐵或低氧化度氧化鐵(FeO)對熱負荷降低之計算值,按還原劑(焦炭+微粉煤)之比率以下之還原劑比進行操作。
如上所述,若於鼓風爐之外周側裝入大量還原鐵球塊,則還原鐵球塊將比礦石等更快還原熔解,因而外周部之填充物(爐料)之落下速度過大。結果將出現還原較慢之外周部礦石在未還原狀態下到達爐下部,使爐下部過度冷卻之問題。又,若於爐中心部供給大量還原鐵球塊,則有增進爐中心部之氣體流動,並促進填充物落下之效果。此係由於還原鐵球塊未因還原而粉末化,故填充物中之氣體壓降不會提高,且還原鐵球塊之落下速度亦比礦石等大。因此,可促進中心部之氣體流動,從而增加送風量,並使中心部之填充物於短時間內還原。結果可再降低鼓風爐中之還原劑比率,從而使生鐵生產性(生產t/d)更為提升。
本發明亦可將以RHF製成之還原鐵球塊裝入熔鐵爐等立式爐中生產熔鐵。此種情形亦運用與鼓風爐之技術類似之技術。立式爐係圓筒狀或具有下方做成錐狀之上部爐頸與用以貯存熔融物之爐下部之瓶形爐,並呈類似鼓風爐之立式直井爐構造。一般而言,高度與最大直徑之比率係4:1~8:1左右。從該爐之上部將金屬廢料、型鐵等塊狀鐵與塊焦裝入爐中。此時,將於RHF製成之還原鐵球塊與金屬廢料等一同裝入,再由設於爐下部側壁上之風口吹入常溫空氣或200~600℃之加熱空氣,使焦炭燃燒,以熔解金屬 廢料等,並對還原鐵球塊進行最終還原及熔解。此外,更有對吹入空氣施以富氧化者。另外亦有將風口做成上下2段者,藉此可促進焦炭燃燒。
於立式爐中有效使用還原鐵球塊之條件,在於爐內供塊狀鐵與塊焦填充之空間率(填充率)宜為80%以下。此係由於比塊焦或塊狀鐵小之還原鐵球塊,會跑進塊焦與塊狀鐵之間,故填充率若高於80%,則可供氣體通過之空間變少,以致氣體難以通過。更理想之條件係將其等之爐內填充率設為65%以上。又,為確保氣體於填充物間流通,並使未還原之氧化鐵不致滲入熔渣中,故立式爐內相對於塊狀鐵之還原鐵球塊質量比率宜為100%以下。此外,距離中心2/3以內之距離之部分,還原鐵球塊之供給比率若設為70%以上,可促進還原鐵球塊之還原熔解。特別是相對於塊狀鐵之還原鐵球塊質量比率為50~100%時,其效果尤大。
又,於立式爐中,可較為提高爐內填充物之最上部(爐頂)溫度。依據該條件,將還原鐵球塊裝入爐中之後即可開始加熱,故可較為縮短還原鐵球塊之爐內停留時間。爐頂溫度在500℃以上之立式爐中,還原鐵球塊之爐內時間最短可設為20分鐘。即使延長停留時間再多亦無益處,因此就經濟面而言,最長以2小時為宜。
立式爐中可提高爐頂溫度之另一優點,在於可使用鋅、鉛等含有揮發性物質之原料。業經金屬化之鋅、鉛,約於1000℃以上時蒸發。該蒸氣於500~800℃時將以氧化物或氯化物之形態再聚集。因此,立式爐內鋅與鉛金屬化 後再蒸發之操作中,若爐頂溫度低,該等金屬將於有填充物之部分再聚集。該再聚集物(氧化鋅、氯化鋅、氧化鉛、氯化鉛等)有附著於爐壁之情形。結果將造成該部分之爐內空間縮小,以致立式爐之生產性降低之問題。本發明人之研究發現,若爐頂溫度為500℃以上,蒸發物大部分將與氣體一併排出爐外,並難以產生爐壁之附著物。因此,藉由在RHF中對含有鋅、鉛至少任一種並含有氧化鐵與碳之粉體之成形體進行加熱處理,可去除一部分鋅與鉛,製造出鋅與鉛之合計含有率在0.1%以上之還原鐵球塊。另,按該鋅、鉛濃度,將從立式爐內產生大量鋅,因此只要是一般操作皆會形成爐內附著物。將該還原鐵球塊裝入呈爐上部氣體溫度在500℃以上狀態之立式爐中之後,可藉由該方法,以鋅與鉛含有率高之粉體為原料,製造熔鐵。
實施本發明時,宜於RHF中,製造鐵之金屬化率為50~85%之還原鐵含有物,經加熱成形後形成還原鐵球塊,再於鼓風爐將還原鐵球塊進行還原熔解。於RHF中進行之程序,可以高還原速度於短時間內將氧化鐵還原。但,如背景技術中段落編號[0005]之說明,該程序之特性係於爐內環境氣體中依某一比率混入二氧化碳。結果為進行鐵之金屬化率在85%以上之高速還原,須設定爐內溫度為1400℃以上,且設定反應後之還原鐵含有物中殘碳為5質量%以上。為使鐵之金屬化率由80%提升至90%,能量消耗將增加30%,無法進行經濟的操作。因此,鐵之金屬化率設為85%以下熱經濟性較佳,更理想者宜設為80%以下。又,鐵之 金屬化率設定下限值為50%之理由,在於50%以下之金屬化率將難以製造高強度之還原鐵球塊。經本發明者檢討後確定,於RHF中製造鐵之金屬化率為50~85%之還原鐵含有物,並將該還原鐵含有物於鼓風爐進行還原熔解所需之能量,少於以燒結設備與鼓風爐之組合製造生鐵所需之能量,且更經濟。
實施例
利用第2圖所示之RHF設備實施本發明之方法,進行氧化鐵之還原及成形處理。另,RHF之爐床外徑為25米,處理能力為24噸/時。又,將由上述設備製成之還原鐵球塊供給於4800立方米之鼓風爐,或高10m、內徑2.2m之熔鐵爐中,並調查操作結果。所使用之原料係載於表1,操作結果則載於表2至表4。
原料為表1所示之6種,原料1係製鐵所中產生之含氧化鐵微塵與焦炭屑,原料2係赤鐵礦與無煙煤之混合物。C/O之條件皆在本發明之範圍內。原料4係以製鐵所之含氧化鐵微塵與焦炭屑為原料製成者,其中鋅與鉛之含有率各為2.1質量%與0.7質量%。原料5係以含氧化鐵微塵與焦炭屑為原料製成者,並為粒子徑小之原料。原料6係以含氧化鐵微塵與焦炭屑為原料製成,且氧化鈣等較多者。
以上原料於RHF進行還原後之結果顯示如表2。RHF1、RHF3、RHF4、RHF5所示者係依本發明之良好條件處理後之結果之平均值。該等實施例中,金屬化率、孔隙率、抗碎強度皆在本發明之鼓風爐及立式爐之最佳使用條件內。平均之換算直徑為11~16毫米,且換算直徑5~20毫米之比率在83~96%之範圍內。此外,RHF5實施例中,將原料中之部分鋅與鉛去除後,其等之含有率各為0.18質量%與0.07質量%。RHF6實施例中,因原料5之粒子徑小,故孔隙率較高,為40%,但抗碎強度為15.3MPa,非常良好。
另一方面,RHF2實施例,係成形體於1200℃以上部分之停留時間比to長之操作例。該實施例係使用大粒徑之成形體,但因充分燒成,故抗碎強度為19.6MPa,非常良好。惟,成形體於1200℃以上部分之停留時間過長,以致孔隙率僅22%。將該成形體供給於鼓風爐,就強度而言係可使用,若每噸僅生產數十kg少量之熔鐵尚無問題,但因孔隙率低,故若大量使用,鼓風爐中或將有還原性上之問題。
RHF7實施例因原料中氧化鈣比率高,故{(CaO)- (MgO)}/(T.Fe)為0.12,且{(CaO)-(MgO)}/(SiO2 )為2.7,因此抗碎強度低至5.9MPa。RHF8實施例,孔隙率良好但加熱速度高,因此抗碎強度低至5.1MPa。RHF9因還原帶之CO/CO2 比為1以上,故孔隙率達50%以上,但抗碎強度低至3.6MPa,未達可於鼓風爐等直井爐中使用之強度。
將表2所載之還原鐵球塊用於鼓風爐後之使用結果顯示如表3。實施例之鼓風爐1係於未使用還原鐵球塊之條件(比較條件)下之操作結果。實施例之鼓風爐1至鼓風爐4,係使用符合本發明條件之原料之結果。無論任一結果,每單位金屬鐵之還原劑減少率皆為在0.43~0.45kg/kg範圍內之良好數值。生鐵生產量之增加亦佳,每單位金屬鐵為7.7~9.1t-hm/d/kg。縱於還原鐵球塊裝入比率高之鼓風爐4之條件下,由於由鼓風爐爐中心至2/3之部分中裝入比率高達75%,故還原劑減少比率與製鐵生產量之效果俱佳。反之, 作為比較例並使用孔隙率低之還原鐵球塊之鼓風爐5實施例,無論每單位金屬鐵之還原劑減少率與生鐵生產量增加率皆低於其他實施例,此外更發現熔渣中之FeO增加。如此可知,孔隙率低之還原鐵球塊難以獲致良好之操作結果。
將表2所載之還原鐵球塊用於立式爐後之使用結果顯示如表4。立式爐1係於未使用還原鐵球塊之條件(比較條件)下之操作結果。由立式爐1至立式爐4之實施例,係使用符合本發明條件之原料之結果。該等操作可順利進行還原與熔解,且生產性良好。並就熔渣中之FeO比率加以比較,以作為確認還原鐵球塊是否順利進行還原之指標。實施例之立式爐2至立式爐4,FeO皆低至2%以下。主要因素在於還原鐵球塊於立式爐之爐頸充分還原。又,立式爐5實施例係使用含有鋅與鉛合計0.25質量%之還原鐵球塊,但因爐頂溫度高達565℃,故無操作上之問題。反之,作為比較例之立式爐6實施例,生產性略微惡化,且熔渣中FeO增加為5.9質量%。此表示還原鐵球塊之還原未充分進行。
產業之可利用性
本發明可運用於使用鐵礦原料並組合轉膛爐與製鐵鼓風爐或立式熔解爐,進行生鐵生產之操作上。此外,亦可運用於將製鐵所或鋼鐵加工工廠等所產生之含氧化鐵微塵或銹皮等還原,並製造生鐵之操作上。
1‧‧‧頂部
2‧‧‧側壁
3‧‧‧車輪
4‧‧‧爐床
5‧‧‧軌道
6‧‧‧燃燒器
11‧‧‧球磨機
12‧‧‧製粒裝置
13‧‧‧迴轉爐
14‧‧‧排氣管
15‧‧‧鍋爐
16‧‧‧熱交換器
17‧‧‧集塵裝置
18‧‧‧煙囪
21‧‧‧爐頂
22‧‧‧礦石層
23‧‧‧焦炭層
24‧‧‧爐心
25‧‧‧風口
26‧‧‧出鐵口
第1圖所示者係轉膛爐之構造。
第2圖所示者係使用轉膛爐時之處理程序全體。
第3圖所示者係鼓風爐之爐內構造。
第4圖所示者係利用柱式反應裝置測量1100℃之一氧化碳環境下還原鐵球塊內氧化鐵之還原速度之結果,並以反應速度之指數(修正還原鐵球塊之直徑與還原度)與還原鐵球塊之孔隙率間之關係呈現。

Claims (16)

  1. 一種還原鐵球塊之製造方法,係將含有氧化鐵及碳之粉體之成形體於轉膛爐進行加熱處理予以還原時,藉由對由前述氧化鐵平均粒徑在50微米以下之原料所製成之成形體,設定還原帶內之一氧化碳相對於二氧化碳之比值為0.3至1,並以1400℃以下之溫度進行還原處理,製造出鐵之金屬化率為50~85%,且殘碳比率為2%以下之還原鐵球塊。
  2. 如申請專利範圍第1項之還原鐵球塊之製造方法,係將前述成形體於前述轉膛爐內1200℃以上環境中之停留時間,設為8分鐘以上且to=69.5-0.035T所示時間以下;其中,to之單位為分,T係1200℃以上之前述轉膛爐內之平均氣體溫度(℃)。
  3. 如申請專利範圍第1項之還原鐵球塊之製造方法,係設定由100℃加熱至1000℃時,該成形體中心部之平均加熱速度為每分鐘400℃以下。
  4. 如申請專利範圍第1項之還原鐵球塊之製造方法,係將前述成形體中氧化鈣相對於氧化矽之質量比設為2.2以下。
  5. 如申請專利範圍第4項之還原鐵球塊之製造方法,其中原料中之氟與氯之含有率係(F質量%)+0.4(Cl質量%)<0.25%。
  6. 如申請專利範圍第1項之還原鐵球塊之製造方法,係將前述成形體中氧化鎂、氧化鈣、氧化矽、及氧化鐵中之總含鐵率設為{(CaO質量%)-(MgO質量%)}/(T.Fe質量%)<0.1且{(CaO質量%)-(MgO質量%)}/(SiO2 質量%)<2.0。
  7. 一種生鐵之製造方法,係將還原鐵球塊按5~20mm者之比率在80%以上之條件,與礦石及燒結礦一同裝入製鐵鼓風爐中進行還原熔解;該還原鐵球塊係將含有氧化鐵及碳之粉體之成形體於轉膛爐中加熱處理製造而成,總含鐵率為55質量%以上,鐵之金屬化率為50~85%,且平均35微米以下之金屬鐵粒子結合,於前述氧化鐵與其他氧化物之混合物間形成金屬鐵網狀物,且孔隙率為20~50%者。
  8. 如申請專利範圍第7項之生鐵之製造方法,係將前述還原鐵球塊與礦石及燒結礦一同裝入製鐵鼓風爐中進行還原熔解;該還原鐵球塊之內部構造係呈含有前述氧化鐵之氧化物之平均粒徑為5~100微米,且該氧化鐵受金屬鐵網狀物限制之狀態。
  9. 如申請專利範圍第7項之生鐵之製造方法,係相對所欲製造之生鐵量,按250kg/噸以下之比率,將前述還原鐵球塊裝入製鐵鼓風爐中。
  10. 如申請專利範圍第7項之生鐵之製造方法,係將前述還原鐵球塊裝入前述製鐵鼓風爐中直徑 方向上距離中心至2/3以內之位置,使前述製鐵鼓風爐內前述還原鐵球塊之比率達65%以上。
  11. 一種生鐵之製造方法,係將含有氧化鐵及碳之粉體之成形體於轉膛爐進行加熱處理予以還原時,將總含鐵率為55質量%以上,鐵之金屬化率為50~85%,且孔隙率為20~50%之依申請專利範圍第1項之方法製成之還原鐵球塊,按5~20mm者之比率在80%以上之條件,與礦石及燒結礦一同裝入製鐵鼓風爐中進行還原熔解。
  12. 一種生鐵之製造方法,係將還原鐵球塊按5~20mm者之比率在80%以上之條件,裝入塊狀鐵及塊焦之爐內空間填充率在80%以下之立式爐中,進行還原熔解;該還原鐵球塊係將含有氧化鐵及碳之粉體之成形體於轉膛爐中加熱處理製造而成,總含鐵率為55質量%以上,鐵之金屬化率為50~85%,且平均35微米以下之金屬鐵粒子結合,於前述氧化鐵與其他氧化物之混合體間形成金屬鐵網狀物,且孔隙率為20~50%者。
  13. 如申請專利範圍第12項之生鐵之製造方法,係按前述立式爐內前述還原鐵球塊相對於前述塊狀鐵之比率在100%以下之條件,將還原鐵球塊還原熔解。
  14. 如申請專利範圍第12項之生鐵之製造方法,係將前述還原鐵球塊裝入前述立式爐中直徑方向上距離中心至2/3以內之位置,使前述製鐵鼓風爐內前述還原鐵球塊之比 率達70%以上。
  15. 如申請專利範圍第12項之生鐵之製造方法,係將還原鐵球塊裝入呈現爐上部氣體溫度為500℃以上狀態之前述立式爐中進行還原熔解;該還原鐵球塊係藉由將含有鋅及鉛至少一種、氧化鐵與碳之粉體之成形體於轉膛爐中加熱處理製造而成,且鋅及鉛之合計含有率為0.05%以上者。
  16. 一種生鐵之製造方法,係將含有氧化鐵及碳之粉體之成形體於轉膛爐進行加熱處理予以還原時,將還原鐵球塊按5~20mm者之比率在80%以上之條件,裝入塊狀鐵及塊焦之爐內空間填充率在80%以下之立式爐中,進行還原熔解;該還原鐵球塊係總含鐵率為55質量%以上,鐵之金屬化率為50~85%,並於前述氧化鐵與其他氧化物之混合體間形成金屬鐵網狀物,且孔隙率為20~50%之依申請專利範圍第1項之方法製造而成者。
TW097135062A 2007-09-14 2008-09-12 還原鐵球塊之製造方法及生鐵之製造方法 TWI396745B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007239058 2007-09-14
JP2008227163A JP4317580B2 (ja) 2007-09-14 2008-09-04 還元鉄ペレットの製造方法及び銑鉄の製造方法

Publications (2)

Publication Number Publication Date
TW200920850A TW200920850A (en) 2009-05-16
TWI396745B true TWI396745B (zh) 2013-05-21

Family

ID=40452060

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097135062A TWI396745B (zh) 2007-09-14 2008-09-12 還原鐵球塊之製造方法及生鐵之製造方法

Country Status (12)

Country Link
US (1) US9034074B2 (zh)
EP (1) EP2189547B1 (zh)
JP (1) JP4317580B2 (zh)
KR (1) KR101145603B1 (zh)
CN (1) CN101790590B (zh)
AU (1) AU2008298193B2 (zh)
BR (1) BRPI0815904B1 (zh)
CA (1) CA2707423C (zh)
MX (1) MX2010002288A (zh)
RU (1) RU2447164C2 (zh)
TW (1) TWI396745B (zh)
WO (1) WO2009035053A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4317579B2 (ja) * 2007-09-05 2009-08-19 新日本製鐵株式会社 還元鉄成形体の製造方法、及び銑鉄の製造方法
JP5384175B2 (ja) * 2008-04-10 2014-01-08 株式会社神戸製鋼所 粒状金属鉄製造用酸化チタン含有塊成物
JP5521387B2 (ja) * 2009-04-28 2014-06-11 新日鐵住金株式会社 還元鉄成形体の製造方法、及び銑鉄の製造方法
JP2011042870A (ja) * 2009-07-21 2011-03-03 Kobe Steel Ltd アルカリ含有製鉄ダストを原料とする還元鉄の製造装置および製造方法
JP5466590B2 (ja) * 2009-07-21 2014-04-09 株式会社神戸製鋼所 炭材内装塊成化物を用いた還元鉄製造方法
EP2551362A1 (en) 2010-03-25 2013-01-30 Kabushiki Kaisha Kobe Seiko Sho Carbon-material-containing iron oxide briquette composition, method for producing same, and method for producing reduced iron using same
JP5608144B2 (ja) * 2011-10-19 2014-10-15 株式会社神戸製鋼所 還元鉄の製造方法
US10144981B2 (en) * 2012-02-28 2018-12-04 Kobe Steel, Ltd. Process for manufacturing reduced iron agglomerates
JP5958264B2 (ja) * 2012-10-15 2016-07-27 新日鐵住金株式会社 高炉用塊成鉱及びその製造方法
JP5546675B1 (ja) * 2012-12-07 2014-07-09 新日鉄住金エンジニアリング株式会社 高炉の操業方法及び溶銑の製造方法
KR101442920B1 (ko) 2012-12-18 2014-09-22 주식회사 포스코 환원철 제조방법 및 제조장치
JP6043271B2 (ja) * 2013-12-02 2016-12-14 株式会社神戸製鋼所 還元鉄の製造方法
TN2016000232A1 (en) * 2013-12-23 2017-10-06 Invent Center Kft Iron (iii) oxide containing soil-binding composition.
CN103920885B (zh) * 2014-04-30 2017-03-08 攀枝花市尚亿科技有限责任公司 次铁精矿回收工艺
CN104087698B (zh) * 2014-06-30 2017-02-22 攀枝花学院 煤基直接还原生铁增碳工艺
CN104195276B (zh) * 2014-09-05 2016-05-11 攀枝花学院 铁矿粉内配碳多孔块直接还原工艺
EP3418400B1 (en) * 2017-06-19 2020-03-11 Subcoal International B.V. Process of making pig iron in a blast furnace using pellets containing thermoplastic and cellulosic materials
CZ2017815A3 (cs) * 2017-12-19 2019-10-16 Martin Gajdzica Briketa či peleta pro vsázku do metalurgických agregátů
RU2755216C1 (ru) * 2020-11-20 2021-09-14 Общество с ограниченной ответственностью "ФЕРРМЕ ГРУПП" Способ получения высокодисперсных железосодержащих порошков из техногенных отходов станций водоподготовки подземных вод
KR102596866B1 (ko) * 2020-12-21 2023-10-31 포스코홀딩스 주식회사 산화철 환원철 복합재 연료의 제조 방법
CN113582561B (zh) * 2021-10-08 2021-12-10 天津市新天钢钢铁集团有限公司 一种烧结机头灰炉外配加制作矿渣微粉原料的方法
CN113957185B (zh) * 2021-10-20 2022-08-23 中南大学 一种高炉冶炼钒钛磁铁矿的炉料配方
JP2024033885A (ja) * 2022-08-31 2024-03-13 株式会社神戸製鋼所 銑鉄製造方法
WO2024054653A2 (en) * 2022-09-09 2024-03-14 Phoenix Tailings, Inc. Systems and methods for processing particulate metallic transition metal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW546385B (en) * 2001-09-14 2003-08-11 Nippon Steel Corp A reduced iron compact, a method of producing the same and a method of producing pig iron by using the reduced iron compacts

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1305466A (zh) * 1969-10-24 1973-01-31
US3751241A (en) * 1970-12-28 1973-08-07 Bethlehem Steel Corp Method for producing weather-resistant superfluxed metallized pellets from iron-bearing fines and a superfluxed metallized pellet produced thereby
US4248624A (en) * 1979-04-26 1981-02-03 Hylsa, S.A. Use of prereduced ore in a blast furnace
US5258054A (en) * 1991-11-06 1993-11-02 Ebenfelt Li W Method for continuously producing steel or semi-steel
AT406482B (de) * 1995-07-19 2000-05-25 Voest Alpine Ind Anlagen Verfahren zur herstellung von flüssigem roheisen oder stahlvorprodukten und anlage zur durchführung des verfahrens
WO1998021372A1 (fr) * 1996-11-11 1998-05-22 Sumitomo Metal Industries, Ltd. Procede et dispositif de fabrication de fer reduit
JPH1112627A (ja) * 1997-06-30 1999-01-19 Sumitomo Metal Ind Ltd 還元鉄製造における回転炉床の回転速度制御方法
JP4047422B2 (ja) 1997-10-15 2008-02-13 新日本製鐵株式会社 竪型炉の操業方法
TW495552B (en) * 1997-12-18 2002-07-21 Kobe Steel Ltd Method of producing reduced iron pellets
EP0952230A1 (en) * 1998-03-24 1999-10-27 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Method of producing reduced iron agglomerates
JP2000034526A (ja) 1998-07-17 2000-02-02 Nippon Steel Corp 還元鉄ペレットの製造方法
CN1399688A (zh) 1999-09-06 2003-02-26 日本钢管株式会社 金属冶炼方法和金属冶炼设备
JP2001234213A (ja) 2000-02-28 2001-08-28 Nippon Steel Corp 高炉操業方法
TW562860B (en) * 2000-04-10 2003-11-21 Kobe Steel Ltd Method for producing reduced iron
JP3737928B2 (ja) 2000-04-25 2006-01-25 新日本製鐵株式会社 回転炉床式還元炉の操業方法、および、酸化金属の還元設備
JP4757982B2 (ja) * 2000-06-28 2011-08-24 株式会社神戸製鋼所 粒状金属鉄の歩留まり向上方法
WO2002036836A1 (fr) * 2000-10-30 2002-05-10 Nippon Steel Corporation Granules verts contenant des oxydes metalliques pour four de reduction, procede de production de ces granules, procede de reduction de ces granules et installations de reduction
DE60132485D1 (de) * 2000-11-10 2008-03-06 Nippon Steel Corp Verfahren zum betrieb eines drehherd-reduktionsofens und einrichtungen für drehherd-reduktionsöfen
JP4691827B2 (ja) * 2001-05-15 2011-06-01 株式会社神戸製鋼所 粒状金属鉄
JP2004208019A (ja) * 2002-12-25 2004-07-22 Konica Minolta Holdings Inc ディジタル複写機
JP3749710B2 (ja) 2003-01-16 2006-03-01 新日本製鐵株式会社 高強度鉄含有粒状物の製造方法
JP4167101B2 (ja) * 2003-03-20 2008-10-15 株式会社神戸製鋼所 粒状金属鉄の製法
JP5059379B2 (ja) * 2006-11-16 2012-10-24 株式会社神戸製鋼所 高炉装入原料用ホットブリケットアイアンおよびその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW546385B (en) * 2001-09-14 2003-08-11 Nippon Steel Corp A reduced iron compact, a method of producing the same and a method of producing pig iron by using the reduced iron compacts

Also Published As

Publication number Publication date
CA2707423A1 (en) 2009-03-19
JP4317580B2 (ja) 2009-08-19
TW200920850A (en) 2009-05-16
RU2447164C2 (ru) 2012-04-10
KR20100043095A (ko) 2010-04-27
CN101790590B (zh) 2012-09-05
KR101145603B1 (ko) 2012-05-15
AU2008298193A1 (en) 2009-03-19
BRPI0815904B1 (pt) 2018-05-15
CA2707423C (en) 2013-08-27
MX2010002288A (es) 2010-03-22
JP2009084688A (ja) 2009-04-23
EP2189547B1 (en) 2018-10-31
EP2189547A4 (en) 2010-12-08
WO2009035053A1 (ja) 2009-03-19
RU2010109068A (ru) 2011-09-20
BRPI0815904A2 (pt) 2015-03-03
AU2008298193B2 (en) 2012-07-12
CN101790590A (zh) 2010-07-28
EP2189547A1 (en) 2010-05-26
US9034074B2 (en) 2015-05-19
US20110023657A1 (en) 2011-02-03

Similar Documents

Publication Publication Date Title
TWI396745B (zh) 還原鐵球塊之製造方法及生鐵之製造方法
JP6620850B2 (ja) 焼結鉱製造用の炭材内装造粒粒子とその製造方法
JP4317579B2 (ja) 還元鉄成形体の製造方法、及び銑鉄の製造方法
JP5053305B2 (ja) 銑鉄の製造方法
JP5540859B2 (ja) 製鉄用炭材内装塊成鉱およびその製造方法
JP5540806B2 (ja) 製鉄用炭材内装塊成鉱およびその製造方法
JP2004218019A (ja) 高強度鉄含有粒状物の製造方法
JP5521387B2 (ja) 還元鉄成形体の製造方法、及び銑鉄の製造方法
JP4214111B2 (ja) 部分還元鉄の製造方法及び部分還元鉄製造用竪型シャフト炉
JPH1150160A (ja) 半還元鉄塊成鉱およびその製造方法ならびに銑鉄の製造方法