JP5521387B2 - 還元鉄成形体の製造方法、及び銑鉄の製造方法 - Google Patents

還元鉄成形体の製造方法、及び銑鉄の製造方法 Download PDF

Info

Publication number
JP5521387B2
JP5521387B2 JP2009109375A JP2009109375A JP5521387B2 JP 5521387 B2 JP5521387 B2 JP 5521387B2 JP 2009109375 A JP2009109375 A JP 2009109375A JP 2009109375 A JP2009109375 A JP 2009109375A JP 5521387 B2 JP5521387 B2 JP 5521387B2
Authority
JP
Japan
Prior art keywords
iron
reduced iron
reduced
oxide
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009109375A
Other languages
English (en)
Other versions
JP2010255075A (ja
Inventor
哲治 茨城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009109375A priority Critical patent/JP5521387B2/ja
Publication of JP2010255075A publication Critical patent/JP2010255075A/ja
Application granted granted Critical
Publication of JP5521387B2 publication Critical patent/JP5521387B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、回転炉床式還元炉を用いて、酸化鉄と炭素を含む粉体を還元して、還元鉄含有物を製造して、当該還元鉄含有物を熱間で成形する還元鉄成形体の製造技術に関する。また、回転炉床式還元炉で製造した部分還元鉄を成形して、これを高炉で還元溶解して、溶銑を製造する技術にも関する。
還元鉄や合金鉄を製造する金属還元プロセスとしては各種のものがあるが、この内で、低コストで生産性の高いプロセスとして、回転炉床式還元炉(Rotary Hearth Furnace、以下、RHFと称す)の操業が実施されており、その概要は、例えば、特許文献1に記載されている。図1は、回転炉床式還元炉の直径方向の切断面を表すものであり、この図に示されるように、RHFは、固定した耐火物の天井1および側壁2の下で、車輪3に乗った中央部を欠いた円盤状の耐火物製の炉床4が、円を描くレール5の上を一定速度で回転する型式の焼成炉(以下、回転炉と称す)を主体とするプロセスである。側壁2には、複数のバーナー6が設置されており、ここから燃料と空気を吹き込み、炉内の雰囲気ガス成分と温度を制御する。一般的に、回転炉の炉床の直径は10〜50メートル、かつ、幅は2〜8メートルである。原料である、酸化金属と炭素を含む粉体の成形体は、炉床4の上に供給されて、炉内上部のガスからの輻射熱で加熱されて、成形体内部での酸化金属と炭素との反応により、成形体内部で金属を得る。
RHFの設備全体の例を図2に示す。原料としては、粉状の鉱石や酸化金属ダストなどの酸化金属と、還元剤として炭素を用いる。還元鉄の製造では、酸化鉄源としてペレットフィード等の微粒鉄鉱石や、転炉ダスト、焼結ダスト、高炉ガスダストなどの製鉄プロセスからの副生成物を用いる。還元剤の炭素は、コークス、オイルコークス、石炭などを用いる。還元反応の生じる温度である1100℃程度までに、揮発しない炭素分(固定炭素)の比率が高いものがより望ましい。この様な炭素源は、粉コークスや無煙炭である。
まず、図2の混合装置、ボールミル11にて、酸化金属を含む粉体と炭素を含む粉を混合した後、これを、造粒装置12にて粒状に成形する。この成形体を回転炉13の炉床4の上に、均一に敷きつめられるように供給する。回転炉13では、炉床4の回転とともに成形体が炉内の各部分を移動する。成形体は高温ガスの輻射により、1000〜1500℃に加熱されて、成形体内の炭素により、酸化金属が還元される。炉内で発生した排ガスは、排ガスダクト14を経由して、ボイラー15と熱交換器16で熱回収して、集塵装置17で除塵された後に煙突18から大気に放出される。回転炉13内では、成形体が炉床4上に静置されていることから、成形体が炉内で崩壊しづらいといった利点がある。その結果、耐火物上に粉化した原料が付着することに起因する問題が無い長所がある。また、生産性が高く、安価な石炭系の還元剤や粉原料を使用できる利点もある。このような方法で製造された還元鉄の金属化率は93%以下であり、MIDREX法等のガス還元方式の直接還元鉄(DRI)と比較すると、やや還元度の低いものである。
例えば特許文献2に記載されているように、この還元鉄を高強度に製造する方法もあり、この高強度還元鉄を塊鉱石や焼結鉱と一緒に高炉に供給して、銑鉄を製造することも行われている。この方法では、予備還元した酸化鉄を高炉内で、最終還元と溶解することから、高炉の熱負荷が低下して、高炉のコークス原単位が低下するとともに、銑鉄生産量が増加する効果がある。
一方で、RHF以外の還元鉄製造方法であるMIDREX法等のガス還元方式で製造されたDRIは空隙率が高く、その結果、金属鉄の再酸化が起きやすい問題があった。この問題の対応のために、例えば特許文献3や特許文献4に記載されているように、図3に示す装置などで、DRIを熱間で成形することが行われている。この成形方法としては、還元鉄を多く含む粉状又は粒状の原料を1000℃以下の比較的高温において、原料シュート21から供給された還元鉄を凹状モールド22のある一対のローラー23の間に挟みこみ、還元鉄成形体24(ホットブリケットアイアン(HBI))を製造する。還元鉄成形体24は、水冷装置25で常温まで冷却される。ホットブリケット法においては、金属鉄を押し付けて、成形するため、良い成形物を作るためには、DRIの金属鉄の比率が高いことが望ましく、一般的には、鉄の特に金属化率の高いDRIが成形されており、原料の金属鉄比率は90〜98%である。この金属鉄比率であれば、特に特殊な成形技術がなくとも高強度の成形体を製造できる。
HBIは高密度であり、その内部に空隙が少ない特徴がある。従って、このHBIは、再酸化されづらく、積載密度も高いことから、長期保存や長時間の輸送が可能である。また、その緻密な構造から、製鋼電気炉などの溶解炉での溶解速度も速い利点がある。現在は、ホットブリケット設備が、多くの還元鉄プラントに設置されている。その使用方法は、例えば特許文献5に記載される方法のように、縦型溶解炉や製鋼電気炉などで還元鉄原料として用いられている。
特開2001−303115号公報 特開2004−218019号公報 米国特許第4,934,665号明細書 米国特許第5,547,357号明細書 特開平11−117010号公報
RHFで生産された還元鉄は、MIDREX法等で生産される還元鉄と比較すると、より高温で処理されていることから、金属鉄の焼結により高密度とすることが可能で、この結果、再酸化されづらい利点がある。この還元鉄は、例えば特許文献2に記載されている方法などで製造すれば、1ヶ月程度の露天備蓄では、わずかの再酸化しかしない。しかし、3ヶ月以上の長期保管する場合(特に雨天が続いて還元鉄が濡れている場合)には、再酸化が顕著になる。この結果、還元鉄の製品としての価値が低下することや、再酸化に伴う熱発生のために、還元鉄が高温になる問題が起きることもある。
従って、従来は、RHFで生産された還元鉄は、隣接する高炉、転炉、製鋼電気炉などに供給されることが一般的であり、還元鉄を遠方の製鉄所に船で搬送したり、長期間保管したりすることはなかった。しかし、MIDEX法等で生産された還元鉄を鉱石採掘現場近くや鉱石積出港の敷地内で生産することにより、鉱石の付加価値を高めて出荷する効果を狙うことが注目されており、RHFで生産された還元鉄も同様に、遠方輸送を容易に行えるような化学特性にするためには、従来の未成形の還元鉄のままでなく、やはりHBI(還元鉄成形体)とする必要が生じてきた。
RHFで生産された還元鉄は、次の特徴があり、必ずしもホットブリケット法に向いている物性ではなかった。まず、酸化鉄(酸化ニッケル等も含む)の還元度が低く、また、還元剤である炭素分は灰分を含むことから、他の方法で作られた還元鉄よりも酸化物不純物(SiO2、CaO、Al2O3、その他)が多い。この結果、その内部に含まれる金属鉄の含有率が低く、一般的には40〜75質量%程度である。次に、還元に用いられる炭素が完全に消費されなく、還元鉄を含む成形体内部に炭素粉又は浸炭(鉄中への溶解)された炭素として残留する。残留した炭素粉圧縮成形時の金属鉄圧着の阻害要因となり、また、浸炭した鉄は延性が悪化して、金属鉄の圧着性能が低下する。
RHFで製造された還元鉄には、以上のような特徴があり、容易にホットブリケット製造が行える物性ではなかった。また、このような金属鉄以外の成分を多く含む還元鉄を熱間成形する方法も十分に研究されてこなかった。従って、上記の従来技術の欠点を克服するための新しい技術が求められていた。
一方で、従来は、例えば特許文献5に記載される方法のように、HBIなどの還元鉄を専用溶解炉又は製鋼電炉で使用する技術があった。しかしながら、この方法では、溶解炉の設備費と操業費がかさむ問題があり、また、製鋼電気炉での使用では、未還元酸化鉄の影響による電気炉の電力原単位増加などの問題があった。そこで、前述したように、還元鉄を高炉で使用することが望ましいが、特許文献2などに記載されている技術では、高炉での使用量が少なかったことから、還元鉄を使用する際の問題点が把握できず、ただ単に高炉に供給して溶解すれば良いとの考えしかなかった。その結果、適正な還元溶解のための操業条件の解明がなされていなかった。このように、還元鉄やHBIを高炉で使用する際の適正な条件が判明していない問題があった。また、RHFと高炉との組み合わせで溶融鉄を製造する方法での両炉での最適な還元率の配分にいても十分な解析がなされていなかった。この結果、両炉合計での最適なエネルギー消費を実現することがなされていなかった。
以上に説明したように、RHFで製造した還元鉄を熱間で成形する技術は、高炉で使用するための技術が完成しておらず、これを解決するための新しい技術が求められていた。
本発明は、以上に記載されているRHFで製造された還元鉄含有物を熱間で成形する際の技術的な課題を解決するためになされたものであり、その詳細は、下記の(1)〜(8)に記載される通りである。
(1)RHFにて、酸化鉄、金属鉄に含有されるトータル鉄を40質量%以上含み、かつ、鉄、マンガン、ニッケル、クロム、鉛、及び亜鉛などの1200℃の一酸化炭素雰囲気で還元される酸化金属と化合している酸素の原子モル量に対して0.8〜1.7倍の原子モル量の炭素を含んでいる粉体を原料として用いる。この原料を用いて、気孔率を24〜42%の成形体を製造する。この成形体を、最高温度で1200〜1420℃の雰囲気、かつ、還元帯の一酸化炭素の二酸化炭素に対する比が0.18〜0.29の条件で、10〜30分間焼成還元して、金属鉄比率が50質量%以上、かつ、炭素比率が5質量%以下の還元鉄含有物を製造する。500〜800℃の温度にて、当該還元鉄含有物をローラー形式のモールドで圧縮成形することで、還元鉄成形体(ホットブリケットアイアン、HBI)を製造する。
(2)前出(1)の方法において、原料配合とRHFの操業条件を適切にして、還元鉄含有物中の金属鉄の炭素含有率を2質量%以下とする。この還元鉄含有物を熱間で圧縮成形して、還元鉄成形体を製造する。
(3)前出(1)又は(2)いずれか1つに記載される還元鉄含有物は平均で70マイクロメートル以下である鉄粒子、又は平均粒子径が70マイクロメートル以下の鉄粒子が焼結したものを含有し、当該還元鉄含有物を圧縮成形する。
(4)前出(1)乃至(3)のいずれかに記載の還元鉄成形体の製造方法であって、酸化鉄と炭素を含む粉体の成形体中の酸化珪素に対する酸化カルシウムの質量比が2.2以下とする。
(5)前出(1)乃至(4)のいずれか1つの操業において、酸化物を5〜30質量%含む還元鉄含有物を処理する場合においては、嵩密度が1.4〜2.8g/cm3である還元鉄含有物を熱間で圧縮成形して、還元鉄成形体を製造する。
(6)前出(1)乃至(5)のいずれか1つの還元鉄成形体の製造方法において、製造された還元鉄成形体を製鉄用高炉に供給して溶融鉄を製造する。
(7)RHFにて、金属鉄比率を50質量%以上、かつ、炭素比率を5質量%以下の還元鉄含有物を製造する。当該還元鉄含有物をローラー形式のモールドで圧縮成形して、換算径が8〜45ミリメートル、かつ見掛け密度が4.2〜5.8g/cm3の還元鉄成形体を製造する。そして、当該成形体を塊鉱石、焼結鉱、焼成ペレット等といっしょに製鉄用高炉に供給して溶融鉄を製造する。なお、換算径とは、還元鉄成形体の容積の1/3乗で定義されるものである。
(8)前出(6)又は(7)の方法であって、還元鉄成形体を溶銑1トン当り150kg以下の比率で高炉に供給して溶融鉄を製造する。
本発明を用いれば、RHFで、酸化鉄粉体や製鐵設備から回収される酸化鉄含有ダストを適切に還元するとともに、熱間で成形して、良質な形状の還元鉄成形体(ホットブリケットアイアン)を製造することができる。また、RHFで熱間成形機で製造した良質な形状の還元鉄成形体は、再酸化しづらい性状であり、長期間の保管や長距離輸送を行うことができる。この還元鉄成形体を適正な条件で高炉に供給することで、高炉でのコークス原単位を低減するとともに、銑鉄の時間当たり生産量を増加することができる。
回転炉床式還元炉の構造を示す図である。 回転炉床式還元炉の処理工程全体を示す図である。 熱間成形装置(ホットブリケット)の概略を示す図である。
酸化鉄と炭素を含む粉体を原料として使用する。酸化鉄は、酸化第一鉄(ウスタイト、FeO)、三四酸化鉄(マグネタイト、Fe3O4)、酸化第二鉄(ヘマタイト、Fe2O3)のいずれでも良く、これらが混合したものも使用できる。また、金属鉄粉が混合していても良い。酸化鉄源は、鉄鉱石、砂鉄などの鉱石類と、製鉄所などで発生する酸化鉄含有ダストなどである。炭素源は、粉コークス、粉炭、石油コークスなどを用いる。還元反応には、1000℃以上でも揮発しない固定炭素(FC)が寄与することから、固定炭素の比率が多いものが望ましい。この観点からは、粉コークス、石油コークス、無煙炭、中揮発分炭などが良い。また、製鉄業の炭素分を多く含むダストなどを利用することも良い。
原料には、鉄鉱石、酸化鉄含有ダスト、コークス、石炭などの不純物が混入している。これらは、酸化ニッケル、酸化マンガン、酸化クロム、酸化亜鉛等の容易に還元される金属酸化物と、酸化珪素、酸化カルシウム、酸化アルミニウム、酸化マグネシウム、酸化チタン等の容易に還元されない金属酸化物がある。炭素源を除く、粉体の全鉄含有率(トータル鉄(T.Fe)含有率)は40%以上が良い。トータル鉄が40%未満の場合は、還元後の金属鉄比率が50%以下になることがあり、ホットブリケット化を良好に行える条件を外れることがある。なお、ここでトータル鉄含有率とは、酸化鉄中の鉄含有量と金属鉄量の合計を粉体総量で割った値である。
原料の粉体は、平均粒子径が100ミクロン以下のものを用いる。平均粒子径が100ミクロンを超えると、粒子内の物質移動が遅くなり、還元のための時間がかかりすぎるため、100ミクロンを超える粒子は好ましくない。また、造粒操作においても、粒子径が小さいものほど、成形体を製造しやすいため、この観点からも粒子は細かい方が良い。
原料中の酸化鉄と炭素の比率を適正な条件として、原料を配合する。RHFでの反応は、MO+C=M+CO及びMO+CO=M+COである。ここでMは金属元素を表す記号である。本発明者らは、RHFの内部での反応を調査した結果は以下のとおりである。酸化鉄、酸化ニッケル、酸化マンガン、酸化クロム、酸化亜鉛等の1200℃で一酸化炭素によって還元される金属は、RHF内で金属化される。その金属化率は、RHFの操業条件等で決まる。一方、酸化珪素、酸化カルシウム、酸化アルミニウム、酸化マグネシウム、酸化チタン等の1400℃でも一酸化炭素によって還元されない金属は、RHF内で還元されずに、酸化物として残る。
炭素配合量は、酸化鉄、酸化ニッケル、酸化マンガン、酸化クロム、酸化亜鉛等の容易に還元される金属と化合している酸素(以下、活性酸素と称する)との比率で決める。また、酸化鉄等の還元反応は約1000℃を越えた時点で起きるため、還元反応に寄与する炭素は固定炭素である。従って、活性酸素と固定炭素の比率を調整すれば、RHF内で良好な反応を起こせることを見出した。本発明では、後述するように、極力、燃料効率を上げるため、炉内ガスのCO/CO比率を低くし、COの燃焼を促進して、炉内発生ガスの発熱を増加させることで、燃料消費量を抑制することを目的とする。このために、他の方法と比較すると、原料の炭素比率がやや高い条件で処理する。その条件は、活性酸素の原子モル量に対して原子モル量の固定炭素の比率(C/O)が、0.8〜1.7であることである。C/Oが0.8以下の場合は、低CO/CO比率の還元条件では、成形体内の炭素が炉内ガスのCOと反応して、還元向けの炭素不足となるため、本発明の目標とする金属化率が達成できなくなる問題が生じる。このような場合は、還元が不十分になることから、多くの場合で鉄の金属化率が55%以下となる。この条件では、還元後の金属鉄比率が50%以下になり、ホットブリケット処理を良好に行える条件を外れる。
また、成形体の気孔率を42%以下とすることも重要である。成形体の気孔率が42%超の場合は、炉内雰囲気中のCOが成形体内に侵入して、炭素を過剰に消費するともに、還元された金属鉄を再酸化する問題が起きる。ただし、気孔率が23%未満であると、成形体内の酸化鉄還元反応により精製するCOガスが成形体外に抜ける際に、成形体内圧が上がり、成形体が変形したり、分解したりする問題が起きる。この現象があると、粉が炉床に蓄積して、操業障害となる問題が起きる。また、C/Oが1.7以上の場合は、炉内での成形体内の炭素燃焼が起きることを前提にしても、還元反応に対して極めて多い量の炭素が配合されているため、還元後に炭素が大量に、還元生成物当り5質量%程度、残留する。この炭素は、ホットブリケット工程で、鉄粒子同士の接触を妨げ、成形処理の阻害要因となることから、残留炭素が5質量%以上残る条件であるC/O1.7以上は避ける。
この原料粉体をRHFで還元する方法を図1及び図2を用いて説明する。まず、原料粉体を混合装置(図2のボールミル11)にて混合した後、これを造粒装置12にて粒状の成形体を製造する。混合装置は、ボールミルに限定されるものではなく、ニーダー式、流動層式、水中混合等の手段でも良い。造粒装置としては、ディスク式造粒粒装置(ペレタイザー)、ローラー式圧縮成形装置(ブリケッター)、押出式成形装置などがある。この成形体を回転炉13の炉床4の上に、均一に敷きつめられるように供給する。炉床4上の成形体の層数は2層以下が良い。これは伝熱を良好にするための条件である。成形体の大きさは、球状のもので、平均直径8〜20mm、その他の形状のもので、平均換算径が7〜22mmのものが良い。小さ過ぎるものは、炉床4の上の成形体の厚みが薄くなりすぎて、生産性が低下する問題があり、また、大き過ぎるものは、成形体内部の伝熱が悪化する問題がある。回転炉13の内部では、炉床4の回転とともに成形体が炉内の加熱帯から還元帯を移動する。成形体は高温ガスの輻射により、還元帯内部では1200〜1420℃に加熱されて、成形体内で炭素と酸化金属が反応して、還元鉄が生成する。成形体の炉内の滞在時間は8〜25分間であり、加熱時間を除いた還元時間は6〜22分間である。
この反応で生成した還元鉄含有物は、還元率(被還元金属の酸素原子の除去率)が65〜90%であり、鉄の金属化率55〜85%のものである。この還元鉄含有物は金属鉄比率を50質量%以上含み、かつ、その炭素比率は5質量%以下となる。還元温度を1200℃以上とする理由は、これ以下の温度であれば、酸化鉄の還元反応が極めて遅く、反応時間が25分以上かかってしまい、工業的に経済性のある条件で還元鉄を製造できないためである。また、還元温度を1420℃以下にする理由は、これ以上の温度であると、例え反応後の残留炭素が5質量%以下であっても、残留(混在)した炭素が金属鉄の結晶内に侵入する浸炭現象が速くなり、還元鉄の浸炭比率が2質量%以上となるためである。なお、浸炭比率が2質量%以上となると、鉄粒子の中にセメンタイト(Fe3C)が相当量存在する結果、常温から800℃にかけて鉄の延性が悪化して、ホットブリケット処理時に、鉄粒子が延びなくなることが問題となる。また、浸炭量は、炉内温度と反応時間によっても影響されるため、還元鉄含有物の残留炭素と金属鉄の比率が0.02対1から0.06対1の範囲で、かつ炉内ガスの最高温度が1420℃以下の場合は、炉内でガス温度が1200℃以上の部分の平均温度と1200℃以上のガス温度の部分に成形体が存在する時間との関係が、本発明者らの実験で求められた式の関係:浸炭上限時間t<0.13*exp(7,800/T)を満たすことがより望ましい。(ただし、t:1200℃以上のガス温度の時間(分)、T:1200℃以上の平均炉内温度(K)である。)
本発明の方法で製造される還元鉄ペレットは、その構造が、酸化鉄とその他酸化物との混合体間に金属鉄粒子が適度に分散している状態を形成している特徴を持つ。更に、金属鉄には炭素が過剰に存在しないことが重要である。また、場合によっては、金属鉄粒子ネットワークを形成することもある。従って、本発明の方法は、従来法の製造方法に対して、還元率が極端には上げないことが操業上の特徴である。このために、RHF炉内の還元帯の雰囲気を弱還元性とする。雰囲気が強還元性であると、炭素と酸化鉄との反応による還元に加えて、ガス中の一酸化炭素と酸化鉄の反応が進行して、炭素が還元鉄ペレット内に残留しやすくなる。この場合は、セメンタイトが形成されてしまう。
上記の目的を達成するには、本発明者の実験では、還元帯ガス中の一酸化炭素の二酸化炭素に対する比(CO/CO比)は0.4以下が良く、また更に望ましくは0.3以下が良いことが判明した。ただし、CO/CO比が0.18以下であると、本発明の条件のように、炭素が比較的多く含まれた条件であっても、酸化鉄の還元が正常に進まない。ここで、還元帯とは、還元鉄ペレットの中心温度が1000℃以上である炉内の位置であり、また、ここでのガス成分の定義は成形体から300mm以上の炉内空間の平均値である。成形体から300mm以下では、酸化鉄の還元反応により発生する一酸化炭素の影響を受けているため、ガス全体の組成との偏差があることから、この部分のガス組成は本発明のガス組成の定義から外す。
RHFで製造された還元鉄含有物が含んでいる酸化物総量は、原料の不純物混入比率と、鉄の還元率(残量酸化鉄比率)によって決まる。不純物を多く含んでいる場合や、鉄の金属化率が85%以下の場合は、不純物としての容易に還元されない金属酸化物に加えて、未還元の酸化鉄も残留する。このため、還元鉄含有物の酸化物総量が5〜30質量%となる。この場合は、酸化物が接着の阻害要因となるため、ホットブリケット処理が困難であることから、前述したように還元鉄含有物中の金属鉄の炭素含有率を2質量%以下として、更に、ホットブリケット処理が最も容易とするためには、還元鉄含有物が70マイクロメートル以下である鉄粒子を粒子の状態のもの、又は、鉄粒子が焼結したネットワーク構成物の状態のものから構成されるものとする。
還元鉄ペレット内に残る酸化物の形態も還元鉄含有物の金属鉄の構造と密度に影響する。この酸化物は融点が低く、炉内で溶融又は軟化すると、冷却後の還元鉄含有物の酸化物粒子が粗大化する。この結果、還元鉄粒子と酸化物が分離してしまい、還元鉄含有物の全体的な結合状態が悪化する。その結果、還元鉄含有物の密度が低下する問題が起きる。本発明では、酸化物粒子の大きさを5〜100ミクロンに制御する。5ミクロン未満では、酸化物粒子と金属鉄粒子が分離してしまい、密な構造にならない。また、100ミクロンを超えると、粗大な酸化物粒子に内部に金属鉄粒子が取り込まれてしまい、還元鉄含有物の熱間での成形性が低下する。なお、ここで、酸化物の大きさとは、単独で存在する場合は、この大きさであり、焼結体である場合は、ここの粒子径である。
この現象を防止し、酸化物粒子の大きさを適正にするためには、低融点の酸化物化合物を生成しない原料の化学組成とすることが良い。低融点の酸化物は、カルシウムフェライトやカルシウムシリケートに不純物が混在しているものなどがある。これらが生成しない原料化学組成を調査したところ、酸化カルシウムと酸化鉄の比率と酸化カルシウムと酸化珪素の比を制御すれば良いことが判った。また、酸化マグネシウムは、カルシウムフェライトやカルシウムシリケートの生成を抑制することも判明した。実験により、1200〜1400℃で酸化物が溶融又は軟化しない条件として、酸化珪素に対する酸化カルシウムの質量比が2.2以下であることが良いことが判明した。
上記の方法で製造した還元鉄含有物を熱間成形(ホットブリケット処理)する。熱間成形の方法そのものの原理は、一般的なホットブリケット法と同様であり、図3に示す装置で成形処理する。フィーダー21から、還元鉄22(粉状と粒状の混合物の還元鉄含有物)を500〜800℃の状態で、凹状モールド23のある一対のローラー24の間に挟みこみ、凹状モールド23の内部で圧縮して、密度の高い還元鉄成形体25を製造する。還元鉄成形体25は、水冷装置26で常温まで冷却される。成形されずに粉として残ったものは、熱いままで、返送装置26を経由して、フィーダー21に戻される。
本発明における成形の条件は、以下に記載されるとおりである。ローラー24に供給される還元鉄含有物の温度を500〜800℃とする。特に良好な範囲は、500〜650℃である。本発明者の実験では、500℃未満の還元鉄は延性が低いため、圧縮成形時に互いに圧着することが少なく、還元鉄成形体の製造が上手く行かず、強度が不足するとともに、還元鉄成形体から欠けて粉になる部分が多くなる問題が生じる。また、RHFで製造した還元鉄含有物の場合は、800℃を超える場合は、その中の一部の酸化物が軟化してしまい金属鉄粒子の同士の接着面に入り込んで、その接着効果が小さくなる問題が起きる。これは、この還元鉄含有物は、金属酸化物を多く含むことから、アルカリ金属の塩化物や酸化物が、金属酸化物との無機複合となって、その融点を下げることの影響が大きいためである。また、800℃超では、凹状モールド23の磨耗が大きくなる問題も起きる。これらの問題は、還元鉄含有物の温度を650℃以下とすることで、更に改善される。
RHFから排出される還元鉄含有物の温度は1000〜1200℃であることから、まず還元鉄含有物を500〜800℃に冷却する。冷却中の再酸化が起きないように、望ましくは、窒素を混入するなどの方法で5容積%以下の低酸素濃度の雰囲気を作り、この内でRHFから排出された還元鉄含有物を冷却する。冷却のために還元鉄含有物に直接水をかけると、水が還元されて水素が発生して危険であることから、水を用いない冷却方法を実施する。冷却する装置としては、外部水冷の回転式ドラムクーラーなどの内部雰囲気を制御できる装置が良い。
本発明での熱間成形の原料は以下に記載のとおりである。金属鉄を50質量%以上含み、かつ、その炭素比率は5質量%以下である還元鉄含有物を使用する。本発明者が行った種々の実験によって、50質量%未満の金属鉄の還元鉄含有物を成形する場合は、成形体のバインダーとなる金属鉄が不足して、成形体の強度が不十分になることが解明された。
また、RHFによって製造された還元鉄含有物は、金属鉄以外の含有物(不純物であり、圧縮時の延性がない)が多いため、圧縮時の成形体強度が発現しづらい。本発明者は、塊状還元鉄含有物においては、その容積減少率の成形体強度に対する影響が大きいことを見出した。高い容積減少率の塊状還元鉄含有物では、たとえ鉄粒子が偏在していても、圧縮される間に、混在する酸化物の間を鉄粒子が移動して、空隙部を鉄粒子が埋めることができる。この結果、空隙率が高い還元鉄含有物では、還元鉄成形体の強度が発現しやすくなる。そこで、酸化物総量が5〜30質量%となる場合などの成形のための条件が悪い場合は、稠密でない還元鉄含有物が良く、嵩比重が3.0g/cm3以下、望ましくは2.8g/cm3以下、のものであることが望ましい。一方、還元鉄含有物の嵩比重が小さくなると、還元鉄含有物が凹状モールド23の中に十分に充填されずに、還元鉄成形体の密度が低くなる問題が起き、その結果、還元鉄成形体の強度が低下する。これは、嵩比重の値で決まるものであり、嵩比重が1.4g/cm3以上であることも重要な条件である。ここで、嵩比重とは、定容積の容器に充填された物質の質量を容器の容積で割った値である。
また、このような酸化物総量の多い還元鉄含有物では、前述したように、望ましくは還元鉄に浸炭した炭素が金属鉄に対して2質量%以下であるものを使用すると良い。これは、炭素含有率が2質量%以下の鉄粒子は鉄粒子中にセメンタイト(低延性物質)の析出が少なく、800℃以下で延性を大きく保つことができるためである。この結果、成形時の金属鉄の密着性を向上する。
更に、良好な成形条件とするためには、還元鉄含有物が70マイクロメートル以下である鉄粒子を粒子の状態、又は鉄粒子が焼結したネットワーク構成物の状態とする。この条件であれば、微細な鉄粒子が還元鉄含有物全体に多数存在して、これが圧縮成形時に粒子同士が結合する機会が増えるためであり、この結果、高強度の成形体を製造できる。特に、圧縮時の延性がない酸化物が5〜30質量%と多く含まれる場合で、この条件の鉄粒子を含む還元鉄含有物を用いることが良い。
凹状モールド23では、正方形又は長方形で、厚み方向の中央が盛り上がった形状となる成形体を製造する。基本的には、その成形体は、いずれのサイズでも良いが、高炉で使用する用途向けには、2辺が10mm角、厚み5mm程度の大きさ以上、2辺が40mmと120mm、厚み25mm程度の大きさ以下のものを製造する。換算径で表現すると7〜45ミリメートルの還元鉄成形体が高炉に適したものである。ここで、換算径とは、還元鉄成形体の容積の1/3乗の値で定義されるものである。
還元鉄成形体の密度は、見掛け密度で4.2g/cm3以上が望ましい。RHFで製造した還元鉄成形体においては、この見掛け密度以下では、還元鉄成形体の強度が低く、長期保管や搬送に耐えられないからである。なお、この見掛け密度が一般的なHBIの見掛け密度よりも低いが、この理由は、RHFで製造した還元鉄には、金属鉄よりも低比重である残留酸化物と炭素が多く含まれるためである。ただし、高炉向けの還元鉄成形体の見掛け密度が高すぎても問題が生じる。つまり、本発明の還元鉄成形体は、完全に還元されていないため、高炉の炉内でも還元鉄成形体内の酸化鉄を還元する必要がある。還元鉄成形体の高炉炉内での還元速度を高くするためには、還元鉄成形体内へのガス浸透が良好な条件である、高密度すぎないものが良い。本発明者らの実験では、還元鉄成形体の見掛け密度が5.8g/cm3以下であると、気孔からガスが入りやすく、この結果、還元が進みやすいことが判明した。また、還元鉄成形体の見掛け密度が5.0g/cm3未満であると、更に還元が進みやすいことも解明した。従って、RHFで製造した還元鉄成形体を高炉で使用する場合は、見掛け密度が4.2〜5.8g/cm3、望ましくは4.2〜5.0g/cm3、であることが良い。ここで、見掛け比重とは、成形体の質量を成形体の容積で割った値である。
以上に説明した還元鉄成形体を高炉で還元溶解する。高炉原料としては、本発明の還元鉄成形体、塊鉱石、焼結鉱、焼成ペレット等の鉄源と冶金用コークスを、炉上部のベルを経由して、高炉炉内に供給する。高炉に供給する還元鉄成形体は、前述したように、金属鉄比率50質量%以上、かつ、炭素比率5質量%以下の還元鉄含有物を圧縮成形したものである。その換算径は7〜45ミリメートル、かつ見掛け密度が4.2〜5.8g/cm3、望ましくは4.2〜5.0g/cm3、のものである。換算径が7mm未満のものは、他の装入物と層状に炉内に充填された場合に、この充填物のガス通過圧力損出が増加して、操業しづらくなるため、避けるべきである。また、換算径が45mmを超えるものは、還元速度と溶解速度が低いため、固体の状態で炉下部まで降下することから、炉下部の反応は不活性になる問題が起きる。見掛け密度の条件は、前述したとおりの理由である。
高炉炉内での還元鉄成形体の供給位置も重要な技術である。本発明者は、還元鉄成形体を高炉を上から見た外周円の内部において、炉中心から直径に2/3以内の位置に、65%以上の還元鉄成形体を供給することが良いことを見出した。還元鉄成形体を高炉の外周側に多く入れると、還元鉄成形体は鉱石等と比較して還元・溶解が速いため、外周部の充填物(バーダン)の降下速度が大きくなりすぎてしまう。この結果、還元の遅い外周部の鉱石が未還元のままで炉下部に到達してしまい、炉下部が過冷却されてしまう問題が出る。また、還元鉄成形体を炉中心部に多く供給すると、炉中心部のガス流れが促進されるとともに、充填物の降下の促進される効果が出る。これは、還元鉄成形体が還元粉化しないため、充填物中のガス圧力損出を低減できることと、還元鉄成形体の降下速度が大きいことが原因である。この結果、中心部でのガス流れが促進されて、送風量を増加することができ、かつ、中心部での充填物が短時間で還元される。この結果、高炉での銑鉄生産性(生産t/d)を向上できる。
以上に記載した還元鉄成形体を製鉄用高炉に供給する量は、溶銑1トン当り150kg以下の比率とすることにより、高炉の銑鉄生産性を向上できる良い条件となる。当然、これ以上の量を高炉に装入しても良いが、この場合は、高炉シャフト融着帯の位置が下がりすぎて、還元鉄装入による銑鉄生産性の向上効果が小さくなるためである。
本発明を実施する場合には、RHFでは、鉄の金属化率が55〜85%の還元鉄含有物を製造して、これを熱間成形した還元鉄成形体を高炉で還元・溶解することが良い。RHFは、還元速度が高く短時間に酸化鉄を還元することができるプロセスである。しかし、プロセスの特性として、炉内雰囲気ガスに二酸化炭素がある比率で混入してしまう。この結果、鉄の金属化率で85%以上の高還元を実施するためには、炉内温度を1420℃以上、反応後の還元鉄含有物中に残留炭素を5質量%以上とすることが必要となる。この結果、鉄の金属化率を80%から90%に向上するために、エネルギー消費が30%増加し、経済的な操業を実施できない。従って、鉄の金属化率は85%以下、望ましくは80%以下とすることが良い。
本発明の方法を図2に記載のRHF設備と図3に記載のホットブリケット装置を連結した設備を用いて、原料条件を変えて、酸化鉄の還元・成形処理を実施した。なお、RHFは炉床外径24メートル、処理能力24トン/時のものであり、ホットブリケット装置は処理能力16トン/時のものである。また、以上の設備で製造した還元鉄成形体を4800立方メートルの高炉に供給して、操業結果を調査した。これらの結果を表1から表3に記載する。
原料の粉体の性状を表1に示す。原料1は、鉄鋼プロセスから回収された酸化鉄を含むダストやスラッジ等の副産物を原料としたものであり、金属鉄や酸化第一鉄を含み、不純物としての酸化金属等が多いものである。炭素源は粉コークス(FC89質量%)を用いた。原料2は、酸化第二鉄主体の粉体と無煙炭(FC80質量%、揮発分8質量%)の混合物である。原料3は、三四酸化鉄(マグネタイト)を含む酸化第二鉄の粉体と粉コークス(FC89質量%)の混合物である。なお、Fe酸化度(O/Fe)は、酸化鉄と化合している酸素とT.Feの元素比率を示すものである。
RHF・熱間成形の操業条件とホットブリケットアイアンの製造結果を表2−1と表2−2に示す。なお、原料の成形体は、全て平均14mmの球状のペレットで、気孔率は25〜41%であり、これらをRHFに供給した。表2−1、表2−2中のRHF1からRHF3は、原料1を用いて、種々の温度条件でRHFを操業した結果である。還元帯のCO/CO比は0.27〜0.35であった。還元処理後の鉄の金属化率は73〜79%であり、還元帯のガス温度が高いほど鉄の金属化率が高くなっている。それに伴い残留炭素比率が低下している。還元鉄含有物の嵩密度は1.9〜2.3であり、本発明のより適正な範囲であった。これを成形温度510〜650℃で幅12mm、長さ40mm、厚み7mmのブリケットに成形した。成形体は、見掛け密度4.3〜5.2g/cm3、強度16〜19MPaと高強度であった。この強度は、高炉で使用できる下限値の7MPaより大きかった。
RHF4は、原料2を、還元帯のCO/CO比0.18、処理時間20分、最高温度1350℃で操業した結果である。金属化率62%、還元鉄含有物中の金属鉄比率51%であった。嵩比重2.6g/cm3の還元鉄含有物ができ、これを成形温度750℃で幅40mm、長さ150mm、厚み25mmのブリケットに成形した。成形体は、見掛け密度4.5g/cm3、強度15MPaと良好なものであった。
RHF5は、原料3を還元帯のCO/CO比0.22、処理時間10分、還元帯最高温度1300℃で操業した結果である。RHF5では、処理時間が短く、還元帯ガス温度も中程度であったため、金属化率59%、還元鉄含有物中の金属鉄比率54%と金属鉄の少ないものでであった。これを成形温度550℃、600℃で幅30mm、長さ120mm、厚み20mmに成形した。成形体は、見掛け密度、強度ともに良好であった。なお、RHF1〜RHF6までのいずれの場合も、還元鉄含有物の鉄粒子の平均径は70ミクロン以下と良好な条件内であった。なお、1200℃以上の温度の部分での原料成形体の滞在時間は、いずれの操業条件でも、浸炭上限時間以下であった。この結果、金属鉄の炭素含有率は、全て2質量%以下であった。
RHFで製造した還元鉄成形体を前述の高炉で還元・溶解することの熱経済評価を行った。比較データを採取するために、この高炉での還元鉄成形体を使用してない場合の操業結果を高炉1に記載する。還元材比(コークス+微粉炭)は503kg/t-hmであり、銑鉄生産量は9890トン/日であった。同一の操業条件において、還元鉄成形体を装入した結果が表3の高炉2〜高炉4に記載されている。
1 天井
2 側壁
3 車輪
4 炉床
5 レール
6 バーナー
11 ボールミル
12 装置造粒
13 回転炉
14 排ガスダクト
15 ボイラー
16 熱交換器
17 集塵装置
18 煙突
21 原料シュート
22 凹状モールド
23 ローラー
24 還元鉄成形体
25 水冷装置

Claims (8)

  1. 回転炉床式還元炉にて、トータル鉄を40%以上含み、かつ、1200℃の一酸化炭素雰囲気で還元される金属酸化物と化合している酸素の原子モル量に対して0.8〜1.7倍の原子モル量の固定炭素を含んでいる粉体の成形体を還元するに際して、当該成形体の気孔率を24〜42%として、最高温度で1200〜1420℃の雰囲気、還元帯内の一酸化炭素の二酸化炭素に対する比を0.18〜0.29として、金属鉄比率を50質量%以上、かつ、炭素比率を5質量%以下の還元鉄含有物を製造して、当該還元鉄含有物を500〜800℃の温度にてローラー形式のモールドで圧縮成形することを特徴とする還元鉄成形体の製造方法。
  2. 含有している金属鉄が2質量%以下の炭素含有率である還元鉄含有物を、圧縮成形することを特徴とする請求項1記載の還元鉄成形体の製造方法。
  3. 平均粒子径が70マイクロメートル以下である鉄粒子、又は平均粒子径が70マイクロメートル以下の鉄粒子が焼結したものを含有している還元鉄含有物を、圧縮成形することを特徴とする請求項1又は2のいずれかに記載の還元鉄成形体の製造方法。
  4. 酸化鉄と炭素を含む粉体の成形体中の酸化珪素に対する酸化カルシウムの質量比が2.2以下であることを特徴とする請求項1乃至3のいずれか1項に記載の還元鉄成形体の製造方法。
  5. 酸化物を5〜30質量%含む還元鉄含有物において、当該還元鉄含有物の嵩密度が1.4〜2.8g/cm3である還元鉄含有物を圧縮成形することを特徴とする請求項1乃至4のいずれか1項に記載の還元鉄成形体の製造方法。
  6. 請求項1乃至5のいずれか1項に記載の方法で製造された還元鉄成形体を、製鉄用高炉に供給して溶融鉄を製造することを特徴とする銑鉄の製造方法。
  7. 回転炉床式還元炉で、金属鉄比率を50質量%以上、かつ、炭素比率を5質量%以下の還元鉄含有物を製造して、当該還元鉄含有物をローラー形式のモールドで圧縮成形した、換算径が8〜45ミリメートル、かつ見掛け密度が4.2〜5.8g/cm3の還元鉄成形体を、製鉄用高炉に供給して溶融鉄を製造することを特徴とする請求項6記載の銑鉄の製造方法。
  8. 還元鉄成形体を溶銑1トン当り150kg以下の比率で高炉に供給して溶融鉄を製造することを特徴とする請求項6又は7のいずれかに記載の銑鉄の製造方法。
JP2009109375A 2009-04-28 2009-04-28 還元鉄成形体の製造方法、及び銑鉄の製造方法 Active JP5521387B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009109375A JP5521387B2 (ja) 2009-04-28 2009-04-28 還元鉄成形体の製造方法、及び銑鉄の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009109375A JP5521387B2 (ja) 2009-04-28 2009-04-28 還元鉄成形体の製造方法、及び銑鉄の製造方法

Publications (2)

Publication Number Publication Date
JP2010255075A JP2010255075A (ja) 2010-11-11
JP5521387B2 true JP5521387B2 (ja) 2014-06-11

Family

ID=43316320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009109375A Active JP5521387B2 (ja) 2009-04-28 2009-04-28 還元鉄成形体の製造方法、及び銑鉄の製造方法

Country Status (1)

Country Link
JP (1) JP5521387B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5571345B2 (ja) * 2009-09-29 2014-08-13 株式会社神戸製鋼所 ブリケットの製造方法、還元金属の製造方法、及び亜鉛若しくは鉛の分離方法
JP6287374B2 (ja) * 2014-03-10 2018-03-07 新日鐵住金株式会社 還元鉄の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3732132B2 (ja) * 2000-10-18 2006-01-05 新日本製鐵株式会社 回転炉床式還元炉の操業方法
JP4589875B2 (ja) * 2006-01-27 2010-12-01 新日本製鐵株式会社 回転炉床式還元炉での酸化金属の還元方法
JP4317579B2 (ja) * 2007-09-05 2009-08-19 新日本製鐵株式会社 還元鉄成形体の製造方法、及び銑鉄の製造方法
JP4317580B2 (ja) * 2007-09-14 2009-08-19 新日本製鐵株式会社 還元鉄ペレットの製造方法及び銑鉄の製造方法

Also Published As

Publication number Publication date
JP2010255075A (ja) 2010-11-11

Similar Documents

Publication Publication Date Title
JP4317579B2 (ja) 還元鉄成形体の製造方法、及び銑鉄の製造方法
JP4317580B2 (ja) 還元鉄ペレットの製造方法及び銑鉄の製造方法
JP5053305B2 (ja) 銑鉄の製造方法
JP5540859B2 (ja) 製鉄用炭材内装塊成鉱およびその製造方法
JPWO2015005190A1 (ja) 炭材内装焼結鉱の製造方法
JP5540806B2 (ja) 製鉄用炭材内装塊成鉱およびその製造方法
JP5512205B2 (ja) 塊成化状高炉用原料の強度改善方法
JP3749710B2 (ja) 高強度鉄含有粒状物の製造方法
JP5521387B2 (ja) 還元鉄成形体の製造方法、及び銑鉄の製造方法
JP3732132B2 (ja) 回転炉床式還元炉の操業方法
JP5825459B1 (ja) 還元鉄の製造方法及び製造設備
JP3864506B2 (ja) 半還元鉄塊成鉱およびその製造方法ならびに銑鉄の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R151 Written notification of patent or utility model registration

Ref document number: 5521387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350