TWI388565B - 用以製造有機金屬化合物之方法 - Google Patents

用以製造有機金屬化合物之方法 Download PDF

Info

Publication number
TWI388565B
TWI388565B TW095103930A TW95103930A TWI388565B TW I388565 B TWI388565 B TW I388565B TW 095103930 A TW095103930 A TW 095103930A TW 95103930 A TW95103930 A TW 95103930A TW I388565 B TWI388565 B TW I388565B
Authority
TW
Taiwan
Prior art keywords
bis
ruthenium
group
compound
diazepine
Prior art date
Application number
TW095103930A
Other languages
English (en)
Other versions
TW200700425A (en
Inventor
David Michael Thompson
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of TW200700425A publication Critical patent/TW200700425A/zh
Application granted granted Critical
Publication of TWI388565B publication Critical patent/TWI388565B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/02Iron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

用以製造有機金屬化合物之方法
本發明係關於用以製造有機金屬脒化合物之方法,一種從有機金屬脒化合物製造薄膜或塗覆物的方法,及可以氫還原且以自身限制方式沉積的釕脒化合物。該有機金屬脒化合物在半導體應用中可作為薄膜沉積用之化學氣相或原子層沉積前驅體。
在現有之半導體裝置中,晶體管藉由一精巧系列的銅互連器來彼此聯絡,該銅互連器經由晶體管之上的一系列金屬層來連接。為了使這些互連器間之電容偶合最小化,其間之空間被低介電常數材料(亦即低-K材料)所佔據。為防止銅擴散入此低-K材料,一複合阻障材料被適當的安置。現行的慣例係使用物理氣相沉積技術來完成。藉物理氣相沉積及電化沉積以適當安置阻障材料的BEOL(線之後端)互連器策略之實例如下:低-K修復,氮化鉭反應性濺射物理氣相沉積,鉭濺射物理氣相沉積,銅晶種濺射物理氣相沉積及銅電化沉積。
物理氣相沉積技術導致各向異性沉積,且相較於在晶片表面上之薄膜厚度,在側壁上之薄膜厚度明顯地更薄。因為阻障材料防止銅移至低-K介電物質的能力與阻障材料厚度成正比,阻障材料相較於彼在水平晶片表面上所需者是更厚的。
隨著半導體發展至未來技術之分歧點,互連器之尺寸會減低。這將導致互連器之表面積對體積之比例的減低,同時增加擴散阻障材料所佔據之體積。隨著阻障材料佔據更多之互連器渠空間,互連器之有效電阻率因為以下二理由而增加:首先,互連器尺寸之減低,其次,電子之銅/阻障表面積擴散會變為更嚴重之問題。
減低這些問題之方法是要使用原子層沉積以各向同性地沉積薄膜。不幸地,沒有能用原子層沉積來沉積鉭金屬之化學存在。在上述沉積策略中鉭所扮演之角色是要在銅與氮化鉭之間產生恰當的黏性。若無鉭,銅從氮化鉭薄膜剝離出,而損及裝置之效能。
能在本申請案中存在之另一金屬是釕。釕黏附至氮化鈦,且因此可以預測彼可以黏附至氮化鉭,再者,釕之使用可以排除銅晶種層之需,因為釕有足夠之導電性,以致可以直接在釕薄膜上進行銅電化沉積。供使用釕以形成BEOL互連器之各向同性原子層沉積策略如下:低K修復,氮化鉭原子層沉積,釕原子層沉積及銅電化沉積。
雖然在文獻中曾有報告詳述釕原子層沉積,它們皆牽涉使用氧或電漿。以氧為基礎之化學是與BEOL整合順序不相容的,因為在經沉積薄膜中微量存在之氧可以擴散入銅渠中,導致氧化銅形成,而損及裝置效能。類似地,亦有關於電漿沉積各向同性薄膜的能力的課題。
理想地,適合的BEOL原子層沉積方法能在低於300℃之溫度下使用氫或其他還原氣體,以使沉積可以用一種與其餘BEOL整合策略相容之方式來進行。除了是氫可還原之外,化學應以自身限制之方式來沉積。換言之,在沒有反應物氣體之存在下,基底應該用解離性化學吸附的前驅體單層或部分單層來飽和。
問題是並無已知之具有足夠揮發性的適合的氫可還原的釕複合物,以供作為原子層沉積之前驅體,且照此方式,尚未確認有自身限制之氫可還原的前驅體。因此在此技藝中想要發展適合BEOL原子層沉積方法之自身限制的氫可還原之釕複合物。
再者,用來產生有機金屬前驅體的合成方法是極重要的,且必須確保安全性、高純度、物料通過量及一致性。與此種方法有關之經濟性和電子工業之嚴格的要求使得有機金屬前驅體合成具挑戰性。發展一種製造有機金屬前驅體之方法以因應上述潛在要求,對於確立這些用於電子工業的材料的製造是有益的。
製備有機金屬化合物的方法包括那些在2004年7月1日公告之美國專利申請案公告US2004/0127732 A1所揭示的。有機金屬前驅體化合物也可以藉以下方法來製備,諸如Vendemiati,Beatrice et al.,Paramagnetic Bis(amidinate)Iron(II)Complexes and their Diamagnetic Dicarbonyl Derivatives,Euro.J.Inorg.Chem.2001,707-711;Lim,Booyong S.et al.,Synthesis and Characterization of Volatile,Thermally Stable,Reactive Transition Metal Amidinates,Inorg.Chem.,2003,Preprint;及其中之參考資料所述者。
需要用以製造有機金屬前驅體之新的方法,其有較高的產物產率,操作有效率,提供一致性且使有機金屬化合物之產量的擴大更容易。因此在此技藝中想要提供一種符合這些需要之用以製造有機金屬化合物的新的方法。
並且,在藉化學氣相沉積或原子層沉積方法以發展形成薄膜之方法時,極想要前驅體,其較佳是氫可還原的,以自身限制之方式沉積,在室溫是液態,具有合適的蒸氣壓,具有合適的熱安定性(亦即,對化學氣相沉積而言,會在經加熱之基底上分解而不會在運輸途中分解;且對原子層沉積而言,不會加熱分解但當曝於共反應物時會反應),可以形成均勻的薄膜,且即使有也僅是留下極少之雜質(如鹵化物、碳等)。需要發展新的化合物且發現其作為薄膜沉積用之化學氣相或原子層沉積前驅體的潛力,特別是供如上述之原子層沉積用之自身限制之氫可還原的有機金屬複合物。因此,在此技藝中想要提供具有某些或較佳地全部之以上特徵的前驅體。
本發明係關於用於製造有機金屬化合物的方法,其選自以下:一種用以製造由式(L)2 M(L’)2 所示之有機金屬化合物的方法,該方法包含(i)在溶劑之存在下並在足以製造一種包含該有機金屬化合物的反應混合物的反應條件下,令一種由式MX2 R所示之經取代或未經取代之金屬源化合物與一種由式A1 L所示之經取代或未經取代之脒或類脒化合物及一種由式L’所示之配合基源反應,(ii)將該有機金屬化合物由該反應混合物中分離出;以及一種用以製造由式M(L)3 所示之有機金屬化合物的方法,該方法包含(i)在溶劑之存在下並在足以製造一種包含該有機金屬化合物的反應混合物的反應條件下,令一種由式MX2 R所示之經取代或未經取代之金屬源化合物與一種由式A1 L所示之經取代或未經取代之脒或類脒化合物反應,(ii)將該有機金屬化合物由該反應混合物中分離出;其中M是VIII族金屬,X是鹵基,R是經取代或未經取代之烴基,A1 是鹼金屬或溴鎂離子,L是相同或不同且是經取代或未經取代之脒基或經取代或未經取代之類脒基,且L’是相同或不同且示N2 或經取代或未經取代之含雜原子基團。
本發明亦關於由下式所示之有機金屬釕化合物
其中R1 、R2 、R3 、R4 、R5 及R6 相同或不同且個別代表氫、鹵原子、具有1至約12碳原子,較佳地1至約6碳原子之醯基、具有1至約12碳原子,較佳地1至約6碳原子之烷氧基、具有1至約12碳原子,較佳地1至約6碳原子之烷氧羰基、具有1至約12碳原子,較佳地1至約6碳原子之烷基、具有1至約12碳原子,較佳地1至約6碳原子之胺基或具有0至約12碳原子,較佳地0至約6碳原子之甲矽基,且L1 及L2 相同或不同且個別代表N2 或經取代或未經取代之含雜原子基團。該有機釕化合物較佳是氫可還原的且以自身限制的方式沉積。
本發明進一步關於一種用於製造薄膜、塗覆物或粉末的方法,其係藉分解由上式(L)2 M(L’)2 所示之有機金屬前驅體化合物,藉此製造薄膜、塗覆物或粉末。典型地,該有機金屬前驅體化合物的分解是加熱的,化學的,光化學的或電漿活化的。薄膜沉積較佳是自身限制的且在至少一種反應性氣體如氫之存在下進行。
本發明亦關於有機金屬前驅體混合物,其包含(i)由如上式(L)2 M(L’)2 或M(L)3 所示之第一有機金屬前驅體化合物,以及(ii)一種以上之不同的有機金屬前驅體化合物(如含鉿,含鉭或含鉬之有機金屬前驅體化合物)。
本發明特別關於包含以脒為底質之釕前驅體的沉積。這些前驅體可以比其他已知的前驅體更有利,特別是與其他‵後續生成(next generation)′之材料(如鉿、鉭及鉬)配對使用時。這些含釕材料可用於多種用途,如介電材料、阻障材料及電極,且在很多情況中比不含釕之薄膜顯出改良的性質(熱安定性、所要之型態、較少之擴散、較低之滲漏、較少之電荷捕捉及類似者)。這些以脒為底質之釕前驅體可以藉著利用自身限制方式之氫還原途徑的原子層沉積來沉積,藉此使作為阻障材料/黏附層之釕能與氮化鉭共同用於BEOL襯墊應用。藉原子層沉積以自身限制方式所沉積之此種以脒為底質的釕前驅體可以使得正形的薄膜在還原環境中在高縱橫比之渠結構上成長。
本發明具有數項優點。例如,本發明之方法可用於產生具有不同的化學結構及物理性質的有機金屬化合物前驅體。由該有機金屬化合物前驅體所產生之薄膜可以用自身限制之方式,以短的培育時間來沉積,且由該有機金屬化合物前驅體所沉積之薄膜顯出良好的平滑性。
本發明特別關於供後續生成裝置用之化學氣相沉積及原子層沉積前驅體,特別是自身限制、氫可還原且在室溫(亦即20℃)是所要的液態者。
發明詳述
如以上指明的,本發明係關於一種用以製造有機金屬化合物的方法,其選自以下方法:一種用以製造由式(L)2 M(L’)2 所示之有機金屬化合物的方法,該方法包含(i)在溶劑之存在下並在足以製造一種包含該有機金屬化合物的反應混合物的反應條件下,令一種由式MX2 R所示之經取代或未經取代之金屬源化合物與一種由式A1 L所示之經取代或未經取代之脒或類脒化合物及一種由式L’所示之配合基源反應,(ii)將該有基金屬化合物由該反應混合物中分離出;及一種用以製造由式M(L)3 所示之有機金屬化合物的方法,該方法包含(i)在溶劑之存在下並在足以製造一種包含該有機金屬化合物的反應混合物的反應條件下,令一種由式MX2 R所示之經取代或未經取代之金屬源化合物與一種由式A1 L所示之經取代或未經取代之脒或類脒化合物反應,(ii)將該有機金屬化合物由該反應混合物中分離出;其中M是VIII族金屬,X是鹵基,R是經取代或未經取代之烴基,A1 是鹼金屬或溴鎂離子,L是相同或不同且是經取代或未經取代之脒基,或經取代或未經取代之類脒基,且L’是相同或不同且示N2 或經取代或未經取代之含雜原子基團。
金屬源化合物原料MX2 R可以選自在此技藝中已知的多種化合物。在此本發明最偏好選自Ru、Os及Fe之金屬。由式MX2 R所示之說明性的金屬源化合物包括例如雙[二氯(η6 -苯)釕(II)]、雙[二氯(η6 -甲苯)釕(II)]及類似者。如以上指明的,M是VIII族金屬,如Ru、Os或Fe,X是鹵基,如氟、氯、溴及碘,且R是經取代或未經取代之烴基,較佳地不飽和烴基,更為較佳地芳族化合物如η6 -苯、η6 -甲苯及類似者。
在以上方法(1)之較佳具體表現中,釕(II)源原料,如雙[二氯(η6 -苯)釕(II)]可與脒原料,如(N,N’-二異丙基乙脒)鋰及氮氣反應以得到脒化釕(II)產物,如雙(N,N’-二異丙基乙脒)二氮釕(II)。在以上方法(2)之較佳具體表現中,釕(II)源原料,如雙[二氯(η6 -苯)釕(II)]可以與脒原料,如(N,N’-二異丙基乙脒)鋰反應,以得到脒化釕(III)產物,如參(N,N’-二異丙基乙脒基)釕(III)。
本發明之方法較佳是有用於產生具有不同化學結構及物理性質的有機金屬釕化合物前驅體。多種反應材料可被用於本發明之方法中。例如,在製備金屬源化合物時,可以被使用之釕原料包括商業級之氯化釕(III)水合物、α-氯化釕(III)、β-氯化釕(III)、硝酸釕(III)、(PPh3 )x RuCl2 (x=3-4)及類似者。
金屬源化合物原料之濃度可以變化甚廣,且僅需最小量,該最小量是與脒或類脒化合物及配合基源於方法(1)中反應所需者,或與脒化或類脒化合物在方法(2)中反應所需者,且是提供所要被利用之特定金屬濃度所需者,並要作為供本發明之有機金屬化合物所需之最少金屬量的基礎。通常,依照反應混合物之多寡,在約1毫莫耳以下至約10,000毫莫耳以上範圍內之金屬源化合物原料濃度對大部分方法而言應是足夠的。
脒或類脒化合物原料A1 L可以選自此技藝中已知的多種化合物。由式A1 L所示之說明性脒化合物包括脒化鋰,如(N,N’-二異丙基乙脒)鋰、(N,N’-二異丙基甲脒)鋰、(N,N’-二正丙基乙脒)鋰、(N,N’-二正丙基甲脒)鋰、(N,N’-二乙基乙脒)鋰、(N,N’-二乙基甲脒)鋰、(N,N’-二甲基乙脒)鋰、及(N,N’-二甲基甲脒)鋰、以上之脒化鈉、以上之脒化溴鎂及類似者。由式A1 L所示之說明性類脒化合物包括負電荷螯合之四電子給予體化合物,如β-二酮化鋰、烯丙化鋰、二硫氨基甲酸鋰、以上之鈉類脒化合物、以上之溴鎂類脒化合物及類似者。西弗(Schiff)鹼及某些螯合的烷基胺類及芳基胺類如2-[(二甲基胺基)甲基]苯基是說明性氮鍵結之負電荷螯合的四電子給予體化合物。如以上指明的,A1 是鹼金屬如鋰或鈉,或溴鎂離子,且L相同或不同且示氫取代或未經取代之脒基,或經取代或未經取代之類脒基。
脒或類脒原料之濃度可以變化甚廣,且僅需最小量,該最小量是與金屬源合物及配合基源於方法(1)中反應所需者,或與金屬源化合物在方法(2)中反應所需者。通常,依照第一反應混合物之多寡,在約1毫莫耳以下至約10,000毫莫耳以上範圍內之脒或類脒化合物原料濃度對大部分方法而言應是足夠的。
配合基源原料L’可以選自此技藝中已知的多種化合物。本發明在此最佳使用選自N2 、NCR7 、PR7 R8 R9 或NR7 R8 R9 之配合基源原料,其中R7 、R8 及R9 相同或不同且個別示氫、鹵原子、及具有1至約12碳原子,較佳地1至約6碳原子之醯基、具有1至約12碳原子,較佳地1至約6碳原子之烷氧基、具有1至約12碳原子,較佳地1至約6碳原子之烷氧羰基、具有1至約12碳原子,較佳地1至約6碳原子之烷基、具有1至約12碳原子,較佳地1至約6碳原子之胺基、具有0至約12碳原子,較佳地0至約6碳原子之甲矽基。由式L’所示之說明性配合基源原料包括例如二電子給予體配合基,如腈、二氮、胺類、低分子量膦及類似者。如以上所指明的,L’相同或不同且示N2 或經取代或未經取代之含雜原子基團。
配合基源原料之濃度可以變化甚廣,且僅需與金屬源合物及脒或類脒化合物於以上方法(1)中反應所需之最小量。通常,依照反應混合物之多寡,在約1毫莫耳以下至約10,000毫莫耳以上範圍內之配合基源原料濃度對大部分方法而言應是足夠的。
配合基源原料也可以用在以上之方法(2)中,其量是使其不被預期會直接共價鍵結至過渡金屬上。然而,若配合基源原料足量地被使用於以上方法(2)中,則預期可產製由式(L2 )M(L’)2 所示之有機金屬化合物與由式M(L)3 所示之有機金屬化合物。同樣地,若配合基源原料足量地被用於以上方法(1)中,則預期可產製由式M(L)3 所示之有機金屬化合物與由式(L2 )M(L’)2 所示之有機金屬化合物。
經取代之脒及類脒基團(L),經取代之烴基團(R)及經取代之含雜原子的基團(L’、L1 及L2 )的可允許的取代基包括鹵原子,具有1至約12碳原子之醯基,具有1至約12碳原子之烷氧基,具有1至約12碳原子之烷氧羰基,具有1至約12碳原子之烷基,具有1至約12碳原子之胺基或具有0至約12碳原子之甲矽基。
說明性之鹵原子包括例如氟、氯、溴及碘。較佳之鹵原子包括氯及氟。
說明性之醯基包括例如甲醯基、乙醯基、丙醯基、丁醯基、異丁醯基、戊醯基、1-甲基丙基羰基、異戊醯基、戊基羰基、1-甲基丁基羰基、2-甲基丁基羰基、3-甲基丁基羰基、1-乙基丙基羰基、2-乙基丙基羰基及類似者。較佳之醯基包括甲醯基、乙醯基及丙醯基。
說明性之烷氧基包括例如甲氧基、乙氧基、正丙氧基、異丙氧基、正丁氧基、異丁氧基、第二丁氧基、特丁氧基、戊氧基、1-甲基丁氧基、2-甲基丁氧基、3-甲基丁氧基、1,2-二甲基丙氧基、己氧基、1-甲基戊氧基、1-乙基丙氧基、2-甲基戊氧基、3-甲基戊氧基、4-甲基戊氧基、1,2-二甲基丁氧基、1,3-二甲基丁氧基、2,,3-二甲基丁氧基、1,1-二甲基丁氧基、2,2-二甲基丁氧基、3,3-二甲基丁氧基及類似者。較佳之烷氧基包括甲氧基、乙氧基及丙氧基。
說明性之烷氧羰基包括例如甲氧羰基、乙氧羰基、丙氧羰基、異丙氧羰基、環丙氧羰基、丁氧羰基、異丁氧羰基、第二丁氧羰基、特丁氧羰基及類似者。較佳之烷氧羰基包括甲氧羰基、乙氧羰基、丙氧羰基、異丙氧羰基及環丙氧羰基。
說明性之烷基包括例如甲基、乙基、正丙基、異丙基、正丁基、異丁基、第二丁基、特丁基、戊基、異戊基、新戊基、特戊基、1-甲基丁基、2-甲基丁基、1,2-二甲基丙基、己基、異己基、1-甲基戊基、2-甲基戊基、3-甲基戊基、1,1-二甲基丁基、2,2-二甲基丁基、1,3-二甲基丁基、2,3-二甲基丁基、3,3-二甲基丁基、1-乙基丁基、2-乙基丁基、1,1,2-三甲基丙基、1,2,2-三甲基丙基、1-乙基-1-甲基丙基、1-乙基-2-甲基丙基、環丙基、環丁基、環戊基、環己基、環丙基甲基、環丙基乙基、環丁基甲基及類似者。較佳之烷基包括甲基、乙基、正丙基、異丙基及環丙基。
說明性之胺基包括例如甲胺基、二甲胺基、乙胺基、二乙胺基、丙胺基、二丙胺基、異丙胺基、二異丙胺基、丁胺基、二丁胺基、特丁胺基、二(特丁胺基)、乙基甲胺基、丁基甲胺基、環己胺基、二環己胺基、及類似者。較佳之胺基包括二甲胺基、二乙胺基及二異丙胺基。
說明性之甲矽基包括例如甲矽基、三甲基甲矽基、三乙基甲矽基、參(三甲基甲矽基)甲基、三甲矽基甲基、甲基甲矽基及類似者。較佳之甲矽基包括甲矽基、三甲基甲矽基及三乙基甲矽基。
可以用本發明之方法(1)來製備之說明性有機金屬前驅體化合物包括例如雙(N,N’-二異丙基乙脒基)二氮釕(II)、雙(N,N’-二異丙基乙脒基)二-三甲基膦釕(II)、雙(N,N’-二異丙基甲脒基)二氮釕(II)、雙(N,N’-二異丙基甲脒基)二-三甲基膦釕(II)、雙(N,N’-二正丙基乙脒基)二氮釕(II)、雙(N,N’-二正丙基乙脒基)二-三甲基膦釕(II)、雙(N,N’-二正丙基甲脒基)二氮釕(II)、雙(N,N’-二正丙基甲脒基)二-三甲基膦釕(II)、雙(N,N’-二乙基乙脒基)二氮釕(II)、雙(N,N’-二乙基乙脒基)二-三甲基膦釕(II)、雙(N,N’-二乙基甲脒基)二氮釕(II)、雙(N,N’-二乙基甲脒基)二-三甲基膦釕(II)、雙(N,N’-二甲基乙脒基)二氮釕(II)、雙(N,N’-二甲基乙脒基)二-三甲基膦釕(II)、雙(N,N’-二甲基甲脒基)二氮釕(II)及雙(N,N’-二甲基甲脒基)二-三甲基膦釕(II)及類似者。在本發明之方法(1)之較佳具體表現中,釕源原料如雙[二氯(η6 -苯)釕(II)]可以與脒原料如(N,N’-二異丙基乙脒)鋰,及氮反應以得到脒化釕(II)產物,如雙(N,N’-二異丙基乙脒基)二氮釕(II)。
可以藉本發明之方法(2)所製備之說明性之有機金屬前驅體化合物包括例如三(N,N’-二異丙基乙脒基)釕(III)、三(N,N’-二異丙基甲脒基)釕(III)、三(N,N’-二正丙基乙脒基)釕(III)、三(N,N’-二正丙基甲脒基)釕(III)、三(N,N’-二乙基乙脒基)釕(III)、三(N,N’-二乙基甲脒基)釕(III)、三(N,N’-二甲基乙脒基)釕(III)、三(N,N’-二甲基甲脒基)釕(III)及類似者。在本發明之方法(2)之較佳具體表現中,釕(II)源原料,如雙[二氯(η6 -苯)釕(II)],可以與脒原料,如(N,N’-二異丙基乙脒)鋰,反應以得到脒化釕(III)產物,如參(N,N’-二異丙基乙脒基)釕(III)。
該方法特別適合大規模生產,因為他們可以使用與容易被採用以製造廣泛產物者相同之設備,一些相同之試劑及方法參數來進行。該方法提供有機金屬前驅體化合物之合成,其使用以下方法:其中可以在單一槽中進行所有的操作且得到有機前驅體化合物之途徑並不需金屬源化合物或中間複合物之離析。
在本發明之方法中所用之溶劑可以是任何飽和及不飽和的烴類、芳族烴類、芳族雜環類、烷基鹵化物、甲矽基化之烴類、醚類、聚醚類、硫醚類、酯類、硫酯類、內酯類、醯胺類、胺類、聚胺類、腈類、矽酮油、其他質子惰性溶劑或一或多種以上者之混合物;更為較佳地是乙醚、戊烷類或二甲氧基乙烷類;且最為較佳是己烷或THF。可以使用不會不利地干擾所要反應的任何適合的溶劑。若想要也可以使用一或多種不同溶劑之混合物。所用之溶劑的量對本發明而言並不重要且僅是足以溶解反應混合物中之反應成分所需的量。通常,以反應混合物原料的總重量為基準計,溶劑之量可以在約5重量%至約99重量%之範圍內。
脒化合物與金屬源化合物及配合基源原料之反應(亦即以上之方法(1))的反應條件,如溫度、壓力及接觸時間,也可廣泛變化且在本文中可以利用這些條件之任何適合的組合。反應溫度可以是任何上述溶劑之迴流溫度,且更為較佳地是在約-80℃至約150℃間,且最為較佳地是在約20℃至約80℃間。正常地,反應是在常壓下進行且接觸時間可以在數秒或分鐘的程度至數小時以上的範圍內變化。反應物可以添加至反應混合物或以任何順序來結合。對所有步驟而言,所用之攪拌時間範圍可以在約0.1至約400小時內,較佳地約1至75小時內,且更為較佳地約4至16小時內。
脒化合物與金屬源化合物之反應(亦即以上之方法(2))的反應條件如溫度、壓力及接觸時間,亦可以大幅變化且這些條件之任何適合的組合在本文中可以被利用。反應溫度可以是任何上述溶劑之迴流溫度,且更為較佳地是在約-80℃至約150℃間,且最為較佳地是在約20℃至約80℃間。正常地,反應是在常壓下進行且接觸時間可以在數秒或分鐘程度至數小時以上的範圍內變化。反應物可以添加至反應混合物或以任何順序來結合。對所有步驟而言,所用之攪拌時間範圍可以在約0.1至約400小時內,較佳地約1至75小時內,且更為較佳地約4至16小時內。
其他可以用來製備本發明之有機金屬釕化合物的替代方法包括那些揭示於2004年7月1日公告之美國專利申請案公告US2004/0127732 A1,其揭示併入本文作為參考。本發明之有機金屬前驅體化合物有可以藉慣用之方法來製備,如在Vendemiati,Beatrice et al.,Paramagnetic Bis(amidinate)Iron(II)Complexes and their Diamagnetic Dicarbonyl Derivatives,Euro.J.Inorg.Chem.2001,707-711;Lim,Booyong S.et al.,Synthesis and Characterization of Volatile,Thermally Stable,Reactive Transition Metal Amidinates,Inorg.Chem.,2003,Perprint;及其中之參考。
對於藉本發明之方法所製備之有機金屬前驅體化合物而言,可以經由再結晶,更為較佳地經由反應殘餘物(如己烷)之萃取及層析,且最為較佳地經由昇華及蒸餾,而發生。
精於此技藝者承認:對於本文中所詳述之方法可以有很多改變,卻不會偏離本發明之範圍及精神,如以下申請專利範圍中所特別定義的。
可以用來將上述合成方法所形成之有機金屬前驅體化合物特徵化的技術實例包括但不限於分析氣相層析、核磁共振、熱解重量分析、感應偶合電漿質量光譜測定、為分掃描量熱法、蒸氣壓及黏度測量。
可以用此技藝中已知的熱解重量分析來測量蒸發速率,其在實驗限制內,與上述有機金屬化合物前驅體之蒸氣壓甚相關。在化合物之蒸氣被導入槽中且如技藝中已知的測量壓力之後,例如藉著從密封槽中抽空所有氣體,也可以測得平衡蒸氣壓。
如以上指明的,本發明亦關於由下式所示之有機金屬釕前驅體化合物
其中R1 、R2 、R3 、R4 、R5 及R6 相同或不同且個別代表氫、鹵原子、具有1至約12碳原子,較佳地1至約6碳原子之醯基、具有1至約12碳原子,較佳地1至約6碳原子之烷氧基、具有1至約12碳原子,較佳地1至約6碳原子之烷氧羰基、具有1至約12碳原子,較佳地1至約6碳原子之烷基、具有1至約12碳原子,較佳地1至約6碳原子之胺基或具有0至約12碳原子,較佳地0至約6碳原子之甲矽基,且L1 及L2 相同或不同且個別代表N2 或經取代或未經取代之含雜原子基團。說明性之此種基團列述於以上。
由上式所示之說明性有機金屬釕前驅體化合物包括雙(N,N’-二異丙基乙脒基)二氮釕(II)、雙(N,N’-二異丙基乙脒基)二-三甲基膦釕(II)、雙(N,N’-二異丙基甲脒基)二氮釕(II)、雙(N,N,-二異丙基甲脒基)二-三甲基膦釕(II)、雙(N,N’-二正丙基乙脒基)二氮釕(II)、雙(N,N’-二正丙基乙脒基)二-三甲基膦釕(II)、雙(N,N’-二正丙基甲脒基)二氮釕(II)、雙(N,N’-二正丙基甲脒基)二-三甲基膦釕(II)、雙(N,N’-二乙基乙脒基)二氮釕(II)、雙(N,N’-二乙基乙脒基)二-三甲基膦釕(II)、雙(N,N’-二乙基甲脒基)二氮釕(II)、雙(N,N’-二乙基甲脒基)二-三甲基膦釕(II)、雙(N,N’-二甲基乙脒基)二氮釕(II)、雙(N,N’-二甲基乙脒基)二-三甲基膦釕(II)、雙(N,N’-二甲基甲脒基)二氮釕(II)、雙(N,N’-二甲基甲脒基)二-三甲基膦釕(II)。
本文中所述之有機金屬前驅體化合物較佳是氫可還原的,以自身限制之方式沉積,在室溫(即20℃)是液態的且極適合原位製備粉末及塗覆物。例如,液態有機金屬化合物前驅體可以施加至基底,而後加熱至足以分解前驅體之溫度,藉此形成金屬或金屬氧化物在基底上。藉粉刷、噴霧、浸漬或其他此技藝中已知的技術,可以將液態前驅體施加至基底。可以在爐中、用加熱槍、藉電加熱基底或藉其他此技藝中已知的方式進行加熱。藉以下方式可以獲得層合的塗覆物:施加有機金屬化合物前驅體,且將其加熱及分解,藉此形成第一層,接著是用相同或不同之前驅體所得之至少一其他塗覆物,且加熱。
如上述之液態有機金屬化合物前驅體也可以被霧化且噴在基底上。可以利用之霧化及噴霧裝置,如噴嘴、噴霧器及其他者在此技藝中是已知的。
在本發明之較佳具體表現中,如上述之有機金屬化合物被用在氣相沉積技術中以供形成粉末、薄膜或塗覆物。此化合物可以以單一來源前驅體形式被利用或與一種以上之其他前驅體,例如藉加熱至少一種其他的有機金屬化合物或金屬複合物所產生之蒸氣一同被使用。也可以使用一種以上之上述有機金屬化合物前驅體於一特定方法中。
如以上指明的,本發明係關於有機金屬前驅體混合物,其包含(i)由式(L2 )M(L’)2 或M(L)3 所示之第一有機金屬前驅體化合物,及(ii)一或多種不同之有機金屬前驅體化合物(如含鉿、含鉭或含鉬之有機金屬前驅體化合物)。
可以在其他氣相成分之存在下進行沉積。在本發明之一具體表現中,薄膜沉積是在至少一種非反應性載體氣體存在下進行。非反應性氣體之實例包括惰性氣體,如氮氣、氬氣、氦氣以及其他在處理條件下不會與有機金屬前驅體化合物反應之氣體。在其他具體表現中,薄膜沉積是在至少一種反應性氣體之存在下進行。可以被使用之某些反應性氣體包括但不限於肼、氧氣、氫氣、空氣、富含氧之空氣、臭氧(O3 )、一氧化二氮(N2 O)、水蒸氣、有機蒸氣、氨及其他者。如此技藝中已知的,氧化用氣體如空氣、氧氣、富含氧之空氣、O3 、N2 O或氧化用有機化合物之蒸氣之存在有利於金屬氧化物薄膜之形成。
在一具體表現中,氫或其他還原性氣體可以被使用在溫度低於300℃之BEOL原子層沉積方法中,以致沉積可以用與其餘BEOL整合策略相容之方式來進行。氫可還原之釕複合物也可以被用來整合釕於MIM疊合電池DRAM電容器中。
除了是氫可還原的之外,本發明之釕複合物是以自身限制的方式沉積。例如,在沒有反應物氣體之下,基底用解離性化學吸附的釕前驅體單層或部分單層來飽和。以自身限制的方式,一次僅一層有機金屬前驅體被沉積。藉原子層沉積,以自身限制之方式所沉積之以脒為底質的釕前驅體使得正形的薄膜可以在還原性條件下在高縱橫比之渠結構中成長。
如以上指明的,本發明也部分關於一種產製薄膜、塗覆物或粉末的方法。該方法包括分解至少一種有機金屬化合物前驅體的步驟,藉此產製薄膜、塗覆物或粉末,如以下所進一步描述的。
進行本文中所述之沉積方法以形成包括單一金屬之薄膜、塗覆物或粉末,或包括單一金屬氧化物的薄膜、塗覆物或粉末。也可以沉積混合的薄膜、粉末或塗覆物,例如混合的金屬氧化物薄膜。例如藉利用數種有機金屬前驅體且其至少一種選自上述之有機金屬化合物,可以形成混合的金屬氧化物薄膜。
可以進行氣相薄膜沉積以形成所要厚度之薄膜層,例如在約1奈米至超過1毫米之範圍內者。在本文中所述之前驅體特別有用於製造薄膜,如具有在約10奈米至約100奈米範圍內之厚度的薄膜。例如,可以考慮用本發明之薄膜以製造金屬電極,特別是作為邏輯型n-渠金屬電極,作為供DRAM應用之電容器電極及作為介電材料。
該方法也適合製備層合的薄膜,其中至少二層有不同的相或組成。層合薄膜之實例包括金屬-絕緣體-半導體及金屬-絕緣體-金屬。
在一具體表現中,本發明係關於一種方法,其包括加熱地、化學地、光化學地或藉電漿活化地分解有機金屬化合物前驅體之蒸氣,藉此形成薄膜在基底上。例如,由化合物所生成之蒸氣與基底接觸,該基底具有足以引起有機金屬化合物分解且形成薄膜在其上之溫度。
有機金屬化合物前驅體可以用在化學氣相沉積中,或更為特別地用在此技藝中已知的金屬有機化學氣相沉積方法中。例如,上述之有機金屬化合物前驅體可以用在大氣壓、以及低氣壓的化學氣相沉積方法中。該化合物可以用在熱壁化學氣相沉積中,其是一種其中整個反應室被加熱的方法;以及用在冷或溫壁型化學氣相沉積中,其是一種其中僅基底被加熱的技術。
上述之有機金屬化合物前驅體也可以用在電漿-或光-輔助之化學氣相沉積方法,其中分別使用來自電漿的能量或電磁能量以活化化學氣相沉積前驅體。該化合物也可以用在離子束-或電子束-輔助之化學氣相沉積方法,其中離子束或電子束分別導引至基底以提供能量來分解化學氣相沉積前驅體。也可以使用雷射-輔助之化學氣相沉積方法,其中雷射光被導引至基底以影響化學氣相沉積前驅體之光解反應。
本發明之方法也可以在不同之化學氣相沉積反應器如熱壁或冷壁反應器、電漿-輔助、光束-輔助或雷射-輔助之反應器中進行,如此技藝中已知的。
可以用本發明之方法來塗覆之基底的實例包括固態基底,諸如金屬基底,如鋁、鎳、鈦、鈷、鉑、鉭;金屬矽化物,如TiSi2 、CoSi2 、NiSi2 ;半導體材料,如Si、SiGe、GaAs、InP、鑽石、GaN、SiC;絕緣體,如SiO2 、Si3 N4 、HfO2 、HfSiO2 、HfSiON、Ta2 O5 、Al2 O3 、鈦酸鋇鍶(BST);阻障材料,如TiN、TaN、WN、WSiN、TaSiN;或在包括以上材料之組合物的基底上者。此外,薄膜或塗覆物可以形成在玻璃、陶瓷、塑膠、熱固性聚合材料上,以及在其他塗覆物或薄膜上。在較佳之具體表現中,薄膜沉積是在一用於製造或處理電子元件之基底上。在其他具體表現中,基底被用來支持在高溫及氧化劑存在下是安定的低電阻導體沉積物或光透射薄膜。
可以進行本發明之方法以將薄膜沉積在具有光滑且平坦表面的基底上。在一具體表現中,進行該方法以將薄膜沉積在一用於晶片製造或處理之基底上。例如,可以進行該方法以將薄膜沉積在包括渠、孔或經孔之圖形化基底上。再者,本發明之方法也可以與晶片製造或處理之其他步驟如光罩、蝕刻或其他者整合。
可以沉積化學氣相沉積薄膜至所要厚度。例如,所形成之薄膜可以小於1微米厚,較佳地小於500奈米厚且更為較佳地小於200奈米厚。也可以產製小於50奈米厚之薄膜,例如厚度介於約1至約20奈米之薄膜。也可以沉積原子層沉積薄膜至所要之厚度。例如,所形成之薄膜可以小於500奈米厚,較佳地小於50奈米厚且更為較佳地介於2至5奈米厚。
也可以利用上述之有機金屬化合物前驅體在本發明之方法中以藉原子層沉積(ALD)或原子層核晶(ALN)技術來形成薄膜,期間基底曝於前驅體、反應物氣體及惰性氣體流的交替脈流。連續層沉積技術描述於例如美國專利6,287,965及美國專利6,342,277中。二專利之揭示整個併入本文作為參考。
例如,在一ALD循環中,以逐步方式將基底曝於:a)惰性氣體;b)攜帶前驅體蒸氣之惰性氣體;c)惰性氣體;及d)單獨之反應物或與惰性氣體一同者。通常,每一步驟可以如裝置所允許的一般短(如毫秒),也可如方法所需的一般長(如數秒或分鐘)。一循環之時間可以短如毫秒,也可長如分鐘。在範圍可在數分鐘至小時之期間重複該循環。所產製之薄膜可以是數奈米薄或更厚,如1毫米(mm)。
使用超臨界流體也可以進行本發明之方法。現今在此技藝中已知之使用超臨界流體之薄膜沉積方法的實例包括化學流體沉積;超臨界流體輸送化學沉積;超臨界流體化學沉積;及超臨界浸漬沉積。
例如化學流體沉積方法極適於產製高純度薄膜及覆蓋複雜表面及填充高縱橫特徵者。化學流體沉積被描述於例如美國專利5,789,027中。使用超臨界流體以形成薄膜也描述於美國專利6,541,278B2中。此二專利之揭示整個併入本文作為參考。
在本發明之一具體表現中,經加熱之圖形化的基底在溶劑,如近臨界或超臨界流體,諸如近臨界或超臨界二氧化碳之存在下,曝於一種以上之有機金屬化合物前驅體。在二氧化碳之情況下,在約1000psig以上之壓力下且在至少約30℃之溫度下提供溶劑流體。
前驅體分解以形成金屬薄膜在基底上。反應以自前驅體產生有機材料。有機材料被溶劑流體所溶解且容易地自基底除去。例如藉使用氧化用氣體也可以形成金屬氧化物薄膜。
在一實例中,在一容納一個以上基底之反應室中進行沉積方法。藉加熱整個室,例如藉助於爐,將基底加熱至所要之溫度。例如藉著對此室施以真空,可以產生有機金屬化合物之蒸氣。對低沸點化合物而言,此室可以夠熱以致使化合物蒸發。當蒸氣接觸經加熱之基底表面時,蒸氣分解且形成金屬或金屬氧化物薄膜。如上述,有機金屬化合物前驅體可以被單獨使用或配合使用一種以上之成分,例如其他有機金屬前驅體、惰性載體氣體或反應性氣體。
在可被使用以藉本發明方法產製薄膜的系統中,原料可以被導引至氣體摻合歧管以產製處理用氣體,該處理用氣體供應至沉積反應器,其中進行薄膜成長。原料包括但不限於載體氣體、反應性氣體、清除用氣體、前驅體、蝕刻/清潔用氣體及其他。處理用氣體組成物之精確控制是使用此技藝中已知的質流控制器、閥、壓力換能器及其他裝置來完成。排氣歧管可以將沉積反應器所排出之氣體以及旁通流輸送至真空幫浦。可以使用在真空幫浦下游之排除系統以自廢氣除去任何有害材料。沉積系統可以配備原位分析系統,包括殘餘氣體分析儀,其可以測量處理用氣體之組成。控制及資料取得系統可以偵測不同的處理參數(如溫度、壓力、流速等)。
可以利用上述之有機金屬化合物前驅體以產製包括單一金屬之薄膜或包括單一金屬氧化物之薄膜。也可以沉積混合的薄膜,例如混合的金屬氧化物薄膜。此種薄膜係藉例如使用數種有機金屬前驅體來產製。例如,亦可藉不使用載體氣體、蒸氣或其他氧來源而形成金屬薄膜。
藉本文中所述之方法所形成之薄膜可以藉此技藝中已知的技術來特徵化,例如藉X光繞射、俄歇光譜術、X光光電子發射光譜術、原子力顯微術、掃描電子顯微術及其他在此技藝中已知技術。也可以藉此技藝中已知的方法來測量薄膜之電阻及熱安定性。
本發明之不同的改良及變化對於精於此技藝之工作者而言是明顯的且據了解此種改良及變化欲被包括在本申請案之範圍及申請專利範圍之精神及範圍內。
實例1
(N,N’-二異丙基乙脒)鋰之合成乾的500毫升3頸圓底燒瓶配備100毫升滴液漏斗、鐵弗龍攪拌棒及熱電偶。此系統連接至惰性大氣(N2 )氮氣歧管且其餘出口用橡膠隔膜來密封。添加155毫升四氫呋喃(THF)及13.99克二異丙基碳化二醯亞胺至此燒瓶。藉使用乾冰/丙酮浴將此溶液冷卻至-50℃。72毫升之1.6M MeLi的乙醚溶液被添加至滴液漏斗。MeLi溶液在足以保持溶液溫度在-30℃以下的速率下被逐滴添加至二異丙基碳化二醯亞胺溶液。在添加後,使溶液加溫至室溫以過夜。可以使用(N,N’-二異丙基乙脒)鋰溶液形式之此淡黃色溶液或溶劑可以被除去以離析此鹽。
雙[二氯(η6 -苯)釕(II)]之合成遵循摘自Inorganic Syntheses,Vol 21,75頁中所列者。乾的500毫升3頸圓底燒瓶填充以6克RuCl3 .H2 O及300毫升乙醇。溶液用氮氣來清除。添加30毫升1,3-環己二烯至此溶液。溶液迴流4小時。在此期間深橘色固體變為明顯且溶液顏色由混濁之深橘色轉為澄清之淡黃色。經由粗糙之玻璃料來過濾且離析。5.8克雙[二氯(η6 -苯)釕(II)以此方式被離析。產物在真空爐中乾燥以除去殘餘之乙醇。
參(N,N’-二異丙基乙脒基)釕(III)及雙(N,N’-二異丙基乙脒基)二氮釕(II)之合成在250毫升圓底燒瓶中,添加雙[二氯(η6 -苯)釕(II)]及鐵氟龍攪拌棒。燒瓶配備熱電偶及迴流冷凝器且連接至惰性大氣/氮氣歧管,且其餘出口用橡膠隔膜來密封。此燒瓶被抽真空且再填充以氮氣三次。在此系統中添加4當量(N,N’-二異丙基乙脒)鋰鹽之THF/乙醚溶液。溶液迴流16小時。在溶液迴流之後,溶液被過濾且溶劑在低壓下除去。以此方式回收3.1克粗製之材料。粗製材料昇華成2部份。第一部份起初是無色的,且隨著溫度從30℃遽升至70℃,變成淡藍色。隨著昇華器下油浴溫度在80℃至130℃間遽烈變化,收集第二部分。收集120毫克之藍色結晶。
在藍色晶體之環己烷溶液測試中,GC/MS分析顯出二峰。約累積成二峰之總強度的5%的第1峰具有440Da/e之質量且顯出與雙(N,N’-二異丙基乙脒基)二氮釕(II)(iPr-Me-AMD)2 (N2 )2 Ru相符之同位素圖形且片段圖形符合二個二氮配合基之喪失。第二峰具有525Da/e之質量且顯出與指定之參(N,N’-二異丙基乙脒基)釕(III)(iPr-Me-AMD)3 Ru相符之同位素圖形及片段圖形。反應式可以說明如下:2Li(iPr-Me-AMD)+[(C6 H6 )RuCl2 ]2 →Ru(iPr-Me-AMD)3 +Ru(iPr-Me-AMD)2 (N2 )2

Claims (11)

  1. 一種用以製造由式(L)2 M(L’)2 所示之有機金屬化合物的方法,該方法包含(i)在溶劑之存在下並在足以製造一種包含該有機金屬化合物的反應混合物的反應條件下,令一種由式MX2 R所示之經取代或未經取代之金屬源化合物,與一種由式A1 L所示之經取代或未經取代之脒或選自β-二酮化鋰、烯丙化鋰、二硫氨基甲酸鋰、以上化合物之鈉類脒化合物及以上化合物之溴鎂類脒化合物中之類脒化合物,及一種由式L’所示之配合基源反應,其中該配合基源L’係以足以直接共價鍵結至M上之量存在,及(ii)將該有機金屬化合物由該反應混合物中分離出;其中M是VIII族金屬,X是鹵基,R是經取代或未經取代之烴基,A1 是鹼金屬或溴鎂離子,L是相同或不同且是經取代或未經取代之脒基,且L’是相同或不同且示N2 或選自NCR7 、PR7 R8 R9 及NR7 R8 R9 中之經取代或未經取代之含雜原子基團,其中R7 、R8 、與R9 相同或不同且個別代表氫、鹵原子、具有1至約12碳原子之醯基、具有1至約12碳原子之烷氧基、具有1至約12碳原子之烷氧羰基、具有1至約12碳原子之烷基、具有1至約12碳原子之胺基或具有0至約12碳原子之矽烷基。
  2. 如申請專利範圍第1項之方法,其中在由式MX2 R所示之金屬源化合物中,M是Ru、Os或Fe,X是氟、氯 、溴或碘,且R是η6 -苯或η6 -甲苯。
  3. 如申請專利範圍第1項之方法,其中金屬源化合物選自雙[二氯(η6 -苯)釕(II)]及雙[二氯(η6 -甲苯)釕(II)]。
  4. 如申請專利範圍第1項之方法,其中在由式A1 L所示之脒或類脒化合物中,A1 是鋰、鈉或溴鎂離子,且L是脒基或負電荷螯合之四電子給予體基團。
  5. 如申請專利範圍第1項之方法,其中脒或類脒化合物選自(N,N’-二異丙基乙脒)鋰、(N,N’-二異丙基甲脒)鋰、(N,N’-二正丙基乙脒)鋰、(N,N’-二正丙基甲脒)鋰、(N,N’-二乙基乙脒)鋰、(N,N’-二乙基甲脒)鋰、(N,N’-二甲基乙脒)鋰、及(N,N’-二甲基甲脒)鋰。
  6. 如申請專利範圍第1項之方法,其中有機金屬化合物包含雙(N,N’-二異丙基乙脒基)二氮釕(II)、雙(N,N’-二異丙基乙脒基)二-三甲基膦釕(II)、雙(N,N’-二異丙基甲脒基)二氮釕(II)、雙(N,N’-二異丙基甲脒基)二-三甲基膦釕(II)、雙(N,N’-二正丙基乙脒基)二氮釕(II)、雙(N,N’-二正丙基乙脒基)二-三甲基膦釕(II)、雙(N,N’-二正丙基甲脒基)二氮釕(II)、雙(N,N’-二正丙基甲脒基)二-三甲基膦釕(II)、雙(N,N’-二乙基乙脒基)二氮釕(II)、雙(N,N’-二乙基乙脒基)二-三甲基膦釕(II)、雙(N,N’-二乙基甲脒基)二氮釕(II)、雙(N,N’-二乙基 甲脒基)二-三甲基膦釕(II)、雙(N,N’-二甲基乙脒基)二氮釕(II)、雙(N,N’-二甲基乙脒基)二-三甲基膦釕(II)、雙(N,N’-二甲基甲脒基)二氮釕(II)、及雙(N,N’-二甲基甲脒基)二-三甲基膦釕(II)。
  7. 一種由下式所代表之有機金屬釕化合物, 其中R1 、R2 、R3 、R4 、R5 及R6 相同或不同且個別代表氫、鹵原子、具有1至約12碳原子之醯基、具有1至約12碳原子之烷氧基、具有1至約12碳原子之烷氧羰基、具有1至約12碳原子之烷基、具有1至約12碳原子之胺基或具有0至約12碳原子之矽烷基,且L1 及L2 相同或不同且個別代表N2 或經取代或未經取代之含雜原子基團。
  8. 如申請專利範圍第7項之有機金屬釕化合物,其選自雙(N,N’-二異丙基乙脒基)二氮釕(II)、雙(N,N’-二異丙基乙脒基)二-三甲基膦釕(II)、雙(N,N’-二異丙基甲脒基)二氮釕(II)、雙(N,N’-二異丙基甲脒基)二-三甲基膦釕(II)、雙(N,N’-二正丙基乙脒基)二氮釕(II)、雙(N,N’-二正丙基乙脒基)二-三甲基膦釕(II)、雙(N,N’-二正丙基甲脒基)二 氮釕(II)、雙(N,N’-二正丙基甲脒基)二-三甲基膦釕(II)、雙(N,N’-二乙基乙脒基)二氮釕(II)、雙(N,N’-二乙基乙脒基)二-三甲基膦釕(II)、雙(N,N’-二乙基甲脒基)二氮釕(II)、雙(N,N’-二乙基甲脒基)二-三甲基膦釕(II)、雙(N,N’-二甲基乙脒基)二氮釕(II)、雙(N,N’-二甲基乙脒基)二-三甲基膦釕(II)、雙(N,N’-二甲基甲脒基)二氮釕(II)及雙(N,N’-二甲基甲脒基)二-三甲基膦釕(II)。
  9. 如申請專利範圍第7項之有機金屬釕化合物,其已進行氫還原。
  10. 一種用以製造薄膜、塗覆物或粉末的方法,其係藉分解如申請專利範圍第7項之有機金屬釕化合物,以製造該薄膜、塗覆物或粉末。
  11. 如申請專利範圍第10項之方法,其中該有機金屬釕化合物之分解是加熱的、化學的、光化學的或經電漿活化的。
TW095103930A 2005-02-10 2006-02-06 用以製造有機金屬化合物之方法 TWI388565B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/053,836 US7816550B2 (en) 2005-02-10 2005-02-10 Processes for the production of organometallic compounds

Publications (2)

Publication Number Publication Date
TW200700425A TW200700425A (en) 2007-01-01
TWI388565B true TWI388565B (zh) 2013-03-11

Family

ID=36780274

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095103930A TWI388565B (zh) 2005-02-10 2006-02-06 用以製造有機金屬化合物之方法

Country Status (8)

Country Link
US (3) US7816550B2 (zh)
EP (1) EP1855863A4 (zh)
JP (1) JP2008536800A (zh)
KR (1) KR20070101385A (zh)
CN (1) CN101155676A (zh)
IL (1) IL185110A0 (zh)
TW (1) TWI388565B (zh)
WO (1) WO2006086329A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2182088B1 (en) * 2002-11-15 2013-07-17 President and Fellows of Harvard College Atomic layer deposition using metal amidinates
US9029189B2 (en) * 2003-11-14 2015-05-12 President And Fellows Of Harvard College Bicyclic guanidines, metal complexes thereof and their use in vapor deposition
JP2006328034A (ja) * 2005-05-30 2006-12-07 Nippon Zeon Co Ltd 遷移金属錯体、環状オレフィン重合用触媒、および環状オレフィン重合体の製造方法
JP5032085B2 (ja) * 2006-10-06 2012-09-26 田中貴金属工業株式会社 化学蒸着用の有機ルテニウム化合物及び該有機ルテニウム化合物を用いた化学蒸着方法
US7476615B2 (en) * 2006-11-01 2009-01-13 Intel Corporation Deposition process for iodine-doped ruthenium barrier layers
CN101687896B (zh) * 2007-04-09 2013-03-27 哈佛学院院长等 用于铜互连的氮化钴层及它们的形成方法
TWI398541B (zh) * 2007-06-05 2013-06-11 羅門哈斯電子材料有限公司 有機金屬化合物
US20090028745A1 (en) * 2007-07-24 2009-01-29 Julien Gatineau Ruthenium precursor with two differing ligands for use in semiconductor applications
WO2009031582A1 (ja) * 2007-09-03 2009-03-12 Ulvac, Inc. 半導体装置の製造方法
US20090202740A1 (en) * 2008-01-24 2009-08-13 Thompson David M Organometallic compounds, processes for the preparation thereof and methods of use thereof
US20090205538A1 (en) * 2008-01-24 2009-08-20 Thompson David M Organometallic compounds, processes for the preparation thereof and methods of use thereof
US20090205968A1 (en) * 2008-01-24 2009-08-20 Thompson David M Organometallic compounds, processes for the preparation thereof and methods of use thereof
US20090203928A1 (en) * 2008-01-24 2009-08-13 Thompson David M Organometallic compounds, processes for the preparation thereof and methods of use thereof
EP2339048B1 (en) * 2009-09-14 2016-12-07 Rohm and Haas Electronic Materials, L.L.C. Method for depositing organometallic compounds
DE102011012515A1 (de) 2011-02-25 2012-08-30 Umicore Ag & Co. Kg Metallkomplexe mit N-Amino-Amidinat-Liganden
JP6054659B2 (ja) 2011-07-13 2016-12-27 ダウ グローバル テクノロジーズ エルエルシー 有機金属化合物精製および装置
EP2559681B1 (en) 2011-08-15 2016-06-22 Dow Global Technologies LLC Organometallic compound preparation
EP2559682B1 (en) 2011-08-15 2016-08-03 Rohm and Haas Electronic Materials LLC Organometallic compound preparation
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
WO2018063410A1 (en) * 2016-10-01 2018-04-05 Intel Corporation Scandium precursor for sc2o3 or sc2s3 atomic layer deposition
TWI674629B (zh) * 2017-01-12 2019-10-11 國立中山大學 以超臨界流體處理電子元件之方法
US11101141B2 (en) 2017-01-12 2021-08-24 National Sun Yat-Sen University Kz Method for reducing defects of electronic components by a supercritical fluid
JP6429352B1 (ja) * 2017-11-16 2018-11-28 株式会社Adeka ルテニウム化合物、薄膜形成用原料及び薄膜の製造方法
KR102634502B1 (ko) * 2017-11-16 2024-02-06 가부시키가이샤 아데카 루테늄 화합물, 박막 형성용 원료 및 박막의 제조 방법
TR201806565A2 (tr) 2018-05-09 2018-07-23 Celikform Gestamp Otomotiv Anonim Sirketi Kapi açma ve kapamayi sağlayan bi̇r ray mekani̇zmasi
JP2022031988A (ja) * 2018-11-08 2022-02-24 株式会社Adeka 原子層堆積法による金属ルテニウム薄膜の製造方法
KR102702951B1 (ko) * 2022-05-20 2024-09-05 주식회사 아이켐스 비대칭 아미딘 화합물 및 이의 제조방법
WO2024157934A1 (ja) * 2023-01-24 2024-08-02 気相成長株式会社 製造方法、膜形成方法、及び膜形成材料

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US127732A (en) * 1872-06-11 Improvement in hemmers for sewing-machines
JPH0757758B2 (ja) * 1988-10-24 1995-06-21 高砂香料工業株式会社 ルテニウム―ホスフィン錯体
US5707913A (en) * 1994-06-15 1998-01-13 Basf Aktiengesellschaft Amidinato catalyst systems for the polymerization of olefins
JP2764560B2 (ja) * 1995-09-14 1998-06-11 工業技術院長 窒素固定化能をもつルテニウム三級ポリアミン錯体
BR9813196A (pt) * 1997-11-07 2000-08-29 Bayer Ag Processo para preparação de complexos metálicos de fulvenos
TWI274082B (en) * 2002-10-31 2007-02-21 Praxair Technology Inc Methods for making metallocene compounds
US6884901B2 (en) 2002-10-31 2005-04-26 Praxair Technology, Inc. Methods for making metallocene compounds
EP2182088B1 (en) * 2002-11-15 2013-07-17 President and Fellows of Harvard College Atomic layer deposition using metal amidinates
US7041759B2 (en) * 2002-11-20 2006-05-09 The University Of Maryland, College Park Method for the preparation of well-defined metal acetamidinate-based catalysts on solid supports
DE10257938A1 (de) * 2002-12-12 2004-06-24 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von Metallkomplexen der Gruppen 6 bis 10 des Periodensystems und ihr Einsatz als Katalysatoren
JP4639686B2 (ja) * 2004-07-27 2011-02-23 Jsr株式会社 化学気相成長材料及び化学気相成長方法

Also Published As

Publication number Publication date
EP1855863A1 (en) 2007-11-21
WO2006086329A1 (en) 2006-08-17
US20110008971A1 (en) 2011-01-13
US20060177577A1 (en) 2006-08-10
KR20070101385A (ko) 2007-10-16
CN101155676A (zh) 2008-04-02
US7973188B2 (en) 2011-07-05
IL185110A0 (en) 2007-12-03
JP2008536800A (ja) 2008-09-11
EP1855863A4 (en) 2011-02-23
US20060229462A1 (en) 2006-10-12
TW200700425A (en) 2007-01-01
US7816550B2 (en) 2010-10-19

Similar Documents

Publication Publication Date Title
TWI388565B (zh) 用以製造有機金屬化合物之方法
JP5202952B2 (ja) 有機金属化合物及びその製造のための方法
US8153831B2 (en) Organometallic compounds, processes for the preparation thereof and methods of use thereof
TWI426079B (zh) 有機金屬化合物
US20090209777A1 (en) Organometallic compounds, processes for the preparation thereof and methods of use thereof
TWI378936B (en) Organometallic compounds and methods of use thereof
US20090205538A1 (en) Organometallic compounds, processes for the preparation thereof and methods of use thereof
US20090203928A1 (en) Organometallic compounds, processes for the preparation thereof and methods of use thereof
JP2009510074A (ja) 有機金属化合物及びその使用方法
JP6284682B2 (ja) 新規ルテニウム化合物、その製造方法、これを含む膜蒸着用前駆体組成物、及びこれを利用した膜の蒸着方法
US20090202740A1 (en) Organometallic compounds, processes for the preparation thereof and methods of use thereof
KR20070014195A (ko) 유기금속 전구체 화합물
US7959986B2 (en) Organometallic compounds, processes for the preparation thereof and methods of use thereof