TWI674629B - 以超臨界流體處理電子元件之方法 - Google Patents

以超臨界流體處理電子元件之方法 Download PDF

Info

Publication number
TWI674629B
TWI674629B TW106101012A TW106101012A TWI674629B TW I674629 B TWI674629 B TW I674629B TW 106101012 A TW106101012 A TW 106101012A TW 106101012 A TW106101012 A TW 106101012A TW I674629 B TWI674629 B TW I674629B
Authority
TW
Taiwan
Prior art keywords
supercritical fluid
electronic component
cavity
electronic
supercritical
Prior art date
Application number
TW106101012A
Other languages
English (en)
Other versions
TW201826395A (zh
Inventor
張鼎張
張冠張
施志承
潘致宏
Original Assignee
國立中山大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中山大學 filed Critical 國立中山大學
Priority to TW106101012A priority Critical patent/TWI674629B/zh
Priority to US15/712,772 priority patent/US20180195200A1/en
Priority to CN201711180660.2A priority patent/CN108305828A/zh
Publication of TW201826395A publication Critical patent/TW201826395A/zh
Priority to US16/511,396 priority patent/US11101141B2/en
Application granted granted Critical
Publication of TWI674629B publication Critical patent/TWI674629B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02101Cleaning only involving supercritical fluids
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/04After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • H01L31/204Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table including AIVBIV alloys, e.g. SiGe, SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Electroluminescent Light Sources (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

本發明揭示一種以超臨界流體處理電子元件之方法,用於解決習知電子元件效能問題,該方法之步驟包含:於一腔體內通入一超臨界流體,該超臨界流體摻雜為氕或氘的一氫同位素之化合物或一有機金屬化合物,於該超臨界流體維持超臨界態之溫度範圍及壓力範圍下,使該超臨界流體對該腔體內的至少一電子元件進行改質反應。藉此,可確實解決上述問題。

Description

以超臨界流體處理電子元件之方法
本發明係關於一種電子元件處理方法;特別是關於一種以超臨界流體處理電子元件之方法。
由於半導體技術日益精進,逐漸發展出可實現不同功能的電子元件,用以組成不同功能之電路,以便用於不同電子裝置。
上述電子元件製造過程中,可能會反覆經歷材料成長、微影及蝕刻等製程,惟元件材料成長過程不可避免地會產生缺陷,導致元件性能不佳。為了克服此問題,習知元件性能改善方式通常從元件成長過程著手,經由不斷改善上述製程的良率,期能改善元件成長後的性能。
然而,儘管電子元件製程不斷改良,仍無法保證電子元件成長過程完美無缺,故電子元件之性能改善幅度仍有限。且,上述電子元件性能改良方式會受限於製程中的溫度、壓力等必要條件,導致效果不甚理想。
有鑑於此,上述先前技術在實際使用時確有不便之處,亟需進一步改良,以提升其實用性。
本發明係提供一種以超臨界流體處理電子元件之方法,無須改變元件原有製程,即可加工處理電子元件,以改善電子元件的性能。
本發明揭示一種以超臨界流體處理電子元件之方法,其步驟 可包含:於一腔體內通入一超臨界流體,該超臨界流體摻雜一氫同位素之化合物,所述氫同位素可為氕或氘,且該腔體內引入一電磁波,於該超臨界流體維持超臨界態之溫度範圍及壓力範圍下,使該超臨界流體與該電磁波共同對該腔體內的至少一電子元件進行改質反應,以降低該至少一電子元件之介面及內部缺陷。
所述氫同位素之化合物可選自LiH、NaH、KH、CaH2、MgH2、BeH2、PH3、BnHm、CxHy、HF、AsH3、NH3、AlH3、H2S、H2Se、HCl、HBr、HI、NH4Cl及CO(NH2)2所組成之群組,n、m、x及y均為大於0之整數。
本發明另揭示一種以超臨界流體處理電子元件之方法,其步驟可包含:於一腔體內通入一超臨界流體,該超臨界流體摻雜一有機金屬化合物,且該腔體內引入一電磁波,於該超臨界流體維持超臨界態之溫度範圍及壓力範圍下,使該超臨界流體與該電磁波共同對該腔體內的至少一電子元件進行改質反應,以降低該至少一電子元件之介面及內部缺陷。
所述電子元件可為一電子元件成品或一電子元件半成品;所述電子元件可為一發光元件、一光伏元件、一儲能元件、一感測元件、一被動元件、一微機電元件、一記憶體元件、一薄膜電晶體元件、一高功率電子元件或一含有機化合物之電子元件;所述溫度範圍可為77至1000K;所述壓力範圍可為3至1000atm。
上揭以超臨界流體處理電子元件之方法,可於上述電子元件之缺陷處進行超臨界處理之改質過程,進而降低介面及內部缺陷,降低因缺陷造成的性能損耗(如降低耗電量等),可以達成「提升元件工作效能」等功效。
A1‧‧‧腔體
A2‧‧‧流體進出孔
B‧‧‧超臨界流體
E‧‧‧電子元件
第1圖:係本發明以超臨界流體處理電子元件之方法實施例的使用示 意圖。
第2a圖:係本發明實施例之電子元件為α-SiC/α-Si太陽能電池之缺陷密度曲線圖。
第2b圖:係本發明實施例之電子元件為α-SiC/α-Si太陽能電池經超臨界流體處理前後之輸出電流曲線圖。
第3a圖:係本發明實施例之電子元件為AlGaN UV-C發光二極體(λ=280nm)之電性曲線圖(一)。
第3b圖:係本發明實施例之電子元件為AlGaN UV-C發光二極體(λ=280nm)之電性曲線圖(二)。
第4a圖:係本發明實施例之電子元件為SiC MOSFET高功率元件之電性曲線圖(一)。
第4b圖:係本發明實施例之電子元件為SiC MOSFET高功率元件之電性曲線圖(二)。
為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式,作詳細說明如下:本發明全文所述之方向性用語,例如「前」、「後」、「左」、「右」、「上(頂)」、「下(底)」、「內」、「外」、「側」等,主要係參考附加圖式的方向,各方向性用語僅用以輔助說明及理解本發明的各實施例,非用以限制本發明。
請參閱第1圖所示,其係本發明之以超臨界流體處理電子元件之方法實施例的使用示意圖。其中,該方法實施例可在一腔體A1(如:具有反應腔室之腔體)中透過一流體進出孔A2通入一超臨界流體B(supercritical fluid),如:二氧化碳(CO2)、水(H2O)或氟利昂(Freon)等,CO2之臨界溫度31℃、臨界壓力72.8atm,CO2具備常溫加壓即可產生 超臨界態之特性;H2O之臨界溫度374℃、臨界壓力218.3atm,H2O具備強氧化力與穿透力,惟不以此為限,用以對至少一電子元件E進行超臨界改質加工處理。
該電子元件E可為電子元件成品或電子元件半成品,如:發光元件(如LED或Laser等)、光伏元件(如太陽能電池等)、儲能元件(如電池等)、感測元件(如氣體感測器、光感測器、壓力感測器等)、被動元件(如電阻器、電容器、電感器等)、微機電元件(如加速度計、陀螺儀等)、記憶體元件(如電阻式記憶體等)、薄膜電晶體元件、高功率電子元件(如耐壓電晶體等)或含有機化合物之電子元件(如有機薄膜電晶體或有機發光二極體(OLED)等),惟不以此為限。其中,上述電子元件E之結構及其可能產生缺陷之位置係所屬技術領域中具有通常知識者可以理解,在此容不贅述。
在此例中,如第1圖所示,可於該腔體A1內通入該超臨界流體B(如:SCCO2),該超臨界流體B可摻雜一氫同位素(如:氕或氘等非放射性氫同位素)之化合物作為共溶劑,例如:該氫同位素之化合物可選自LiH、NaH、KH、CaH2、MgH2、BeH2、PH3、BnHm、CxHy、HF、AsH3、NH3、AlH3、H2S、H2Se、HCl、HBr、HI、NH4Cl及CO(NH2)2所組成之群組,n、m、x及y均為大於0之整數,該群組之化合物的佔比可依實際需求調整;或者,該超臨界流體B可摻雜一有機金屬化合物作為共溶劑,該有機金屬化合物可由一前驅物(如經由一化學反應形成之前驅物)所形成,惟不以此為限;或者,該超臨界流體B可摻雜鹵素、氧、硫、硒、磷、砷或其化合物作為共溶劑,該鹵素可為氟(F)、氯(Cl)、溴(Br)或碘(I)。在此實施例中,該共溶劑僅以氫同位素之化合物作為實施態樣說明;另於該超臨界流體B維持超臨界態之溫度範圍(如77至1000K)及壓力範圍(如3至1000atm)下,以該超臨界流體B對該腔體A1內的至少一電子 元件E進行改質反應,惟不以此為限。
在此例中,由於超臨界流體之密度、擴散率、黏滯率等特性介於液體與氣體之間,相較於氣體之高穿透度及無溶解度、液體之低穿透度及高溶解度,超臨界流體可兼具高穿透度及高溶解度。因此,可對該電子元件原有之材料層進行消除材料缺陷、改善介面缺陷及薄膜改質(如K值的變化,惟不以此為限)等作用。同時,更可外加電磁波加強超臨界處理效能,如:上述腔體可引入一電磁波,該電磁波與超臨界流體可共同對該腔體內的至少一電子元件進行改質反應,用以加強改質反應效果,其實施方式係所屬技術領域中具有通常知識者可以理解,在此容不贅述。
因此,該電子元件經過上述改質反應後,該電子元件可在無缺陷或低缺陷的狀態下工作,避免因缺陷造成的性能損失,相較於未經超臨界流體加工處理之電子元件,本案上述方法處理後的電子元件可優化工作效能。以下係以不同元件之特性曲線舉例說明電子元件經超臨界流體加工處理與否之工作效能差異,惟不以此為限。
另,如第2a及2b圖所示,經由超臨界流體改質〝處理後〞,相較於〝處理前〞,α-SiC/α-Si太陽能電池的缺陷密度明顯降低(如第2a圖所示);且α-SiC/α-Si太陽能電池的輸出電流可大幅提升(如第2b圖所示)。
另,如第3a及3b圖所示,其係電子元件為AlGaN UV-C發光二極體(λ=280nm)之電性曲線圖(一)及(二)。由圖可知,經由超臨界流體改質〝處理後〞(如第3b圖所示),相較於〝處理前〞(如第3a圖所示),AlGaN UV-C發光二極體之相對光密度可集中於波長為280nm的UV-C光源。
另,如第4a及4b圖所示,其係電子元件為SiC MOSFET高功率元件之電性曲線圖(一)及(二)。由圖可知,經由超臨界流體改質〝處理後〞(如第4b圖所示),相較於〝處理前〞(如第4a圖所示),SiC MOSFET 高功率元件之汲極電壓與電流之關係曲線大幅改變。
藉此,本發明上述實施例可於上述電子元件之缺陷處進行超臨界處理之改質過程,進而降低介面及內部缺陷,降低因缺陷造成的性能損耗(如降低耗電量等),可以達成「提高電性轉換效率」及「提升元件性能」等功效。
雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。

Claims (7)

  1. 一種以超臨界流體處理電子元件之方法,其步驟包含:於一腔體內通入一超臨界流體,該超臨界流體摻雜一氫同位素之化合物,該氫同位素為氕或氘,且該腔體內引入一電磁波,於該超臨界流體維持超臨界態之溫度範圍及壓力範圍下,使該超臨界流體與該電磁波共同對該腔體內的至少一電子元件進行改質反應,以降低該至少一電子元件之介面及內部缺陷。
  2. 根據申請專利範圍第1項所述以超臨界流體處理電子元件之方法,其中該氫同位素之化合物係選自LiH、NaH、KH、CaH2、MgH2、BeH2、PH3、BnHm、CxHy、HF、AsH3、NH3、AlH3、H2S、H2Se、HCl、HBr、HI、NH4Cl及CO(NH2)2所組成之群組,n、m、x及y均為大於0之整數。
  3. 一種以超臨界流體處理電子元件之方法,其步驟包含:於一腔體內通入一超臨界流體,該超臨界流體摻雜一有機金屬化合物,且該腔體內引入一電磁波,於該超臨界流體維持超臨界態之溫度範圍及壓力範圍下,使該超臨界流體與該電磁波共同對該腔體內的至少一電子元件進行改質反應,以降低該至少一電子元件之介面及內部缺陷。
  4. 根據申請專利範圍第1至3項中任一項所述以超臨界流體處理電子元件之方法,其中該電子元件為一電子元件成品或一電子元件半成品。
  5. 根據申請專利範圍第1至3項中任一項所述以超臨界流體處理電子元件之方法,其中該電子元件為一發光元件、一光伏元件、一儲能元件、一感測元件、一被動元件、一微機電元件、一記憶體元件、一薄膜電晶體元件、一高功率電子元件或一含有機化合物之電子元件。
  6. 根據申請專利範圍第1至3項中任一項所述以超臨界流體處理電子元件之方法,其中該溫度範圍為77至1000K。
  7. 根據申請專利範圍第1至3項中任一項所述以超臨界流體處理電子元 件之方法,其中該壓力範圍為3至1000atm。
TW106101012A 2017-01-12 2017-01-12 以超臨界流體處理電子元件之方法 TWI674629B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW106101012A TWI674629B (zh) 2017-01-12 2017-01-12 以超臨界流體處理電子元件之方法
US15/712,772 US20180195200A1 (en) 2017-01-12 2017-09-22 Method for processing electronic components by a supercritical fluid
CN201711180660.2A CN108305828A (zh) 2017-01-12 2017-11-23 以超临界流体处理电子组件的方法
US16/511,396 US11101141B2 (en) 2017-01-12 2019-07-15 Method for reducing defects of electronic components by a supercritical fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106101012A TWI674629B (zh) 2017-01-12 2017-01-12 以超臨界流體處理電子元件之方法

Publications (2)

Publication Number Publication Date
TW201826395A TW201826395A (zh) 2018-07-16
TWI674629B true TWI674629B (zh) 2019-10-11

Family

ID=62782165

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106101012A TWI674629B (zh) 2017-01-12 2017-01-12 以超臨界流體處理電子元件之方法

Country Status (3)

Country Link
US (1) US20180195200A1 (zh)
CN (1) CN108305828A (zh)
TW (1) TWI674629B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7155896B2 (ja) * 2018-11-08 2022-10-19 株式会社ダイフク 画像認識システム
CN113437187B (zh) * 2021-08-26 2022-01-25 北京大学深圳研究生院 一种发光二极管超临界处理方法
WO2023024001A1 (zh) * 2021-08-26 2023-03-02 北京大学深圳研究生院 一种物质超临界化方法、设备以及半导体器件处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200418583A (en) * 2002-12-16 2004-10-01 Ibm Solid CO2 cleaning
TW200426928A (en) * 2002-04-05 2004-12-01 Boc Inc Fluid assisted cryogenic cleaning
TW200500457A (en) * 2003-05-06 2005-01-01 Advanced Tech Materials Supercritical fluid-based cleaning compositions and methods
TW200700425A (en) * 2005-02-10 2007-01-01 Praxair Technology Inc Processes for the production of organometallic compounds
CN101621001A (zh) * 2003-03-04 2010-01-06 气体产品与化学公司 通过紫外光辐射改善致密和多孔有机硅酸盐材料的机械性能
TW201207995A (en) * 2010-05-27 2012-02-16 Ibm Interconnect structure with an oxygen-doped SiC antireflective coating and method of fabrication

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330266A (ja) * 1995-05-31 1996-12-13 Texas Instr Inc <Ti> 半導体装置等の表面を浄化し、処理する方法
US6376531B1 (en) * 1998-11-13 2002-04-23 Rupert Charles Bell Method of treatment using deuterium compounds
US7175704B2 (en) * 2002-06-27 2007-02-13 Diamond Innovations, Inc. Method for reducing defect concentrations in crystals
US7267727B2 (en) * 2002-09-24 2007-09-11 Air Products And Chemicals, Inc. Processing of semiconductor components with dense processing fluids and ultrasonic energy
TWI484559B (zh) * 2013-01-07 2015-05-11 Univ Nat Chiao Tung 一種半導體元件製程

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200426928A (en) * 2002-04-05 2004-12-01 Boc Inc Fluid assisted cryogenic cleaning
TW200418583A (en) * 2002-12-16 2004-10-01 Ibm Solid CO2 cleaning
CN101621001A (zh) * 2003-03-04 2010-01-06 气体产品与化学公司 通过紫外光辐射改善致密和多孔有机硅酸盐材料的机械性能
TW200500457A (en) * 2003-05-06 2005-01-01 Advanced Tech Materials Supercritical fluid-based cleaning compositions and methods
TW200700425A (en) * 2005-02-10 2007-01-01 Praxair Technology Inc Processes for the production of organometallic compounds
TW201207995A (en) * 2010-05-27 2012-02-16 Ibm Interconnect structure with an oxygen-doped SiC antireflective coating and method of fabrication

Also Published As

Publication number Publication date
TW201826395A (zh) 2018-07-16
CN108305828A (zh) 2018-07-20
US20180195200A1 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
TWI674629B (zh) 以超臨界流體處理電子元件之方法
JP6854794B2 (ja) 半導体装置
Huo et al. Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS 2 and WS 2
TWI746424B (zh) 以改良之前接觸式異質接面製程來製造太陽能電池的方法及其太陽能電池
Yang et al. High water resistance of monoclinic CsPbBr3 nanocrystals derived from zero-dimensional cesium lead halide perovskites
JP2009283916A5 (zh)
TW201246222A (en) Memory circuit
KR20120099341A (ko) 반도체 장치 및 그의 제조 방법
Wang et al. Approaching the external quantum efficiency limit in 2D photovoltaic devices
US11101141B2 (en) Method for reducing defects of electronic components by a supercritical fluid
CN109728096B (zh) 基于氧化铝材料内嵌纳米晶的铁电场效应晶体管及制备方法
CN102592974A (zh) 一种高k介质薄膜的制备方法
CN107017203A (zh) 半导体元件的制造方法
Qian et al. Transistors and logic circuits enabled by 2D transition metal dichalcogenides: a state-of-the-art survey
WO2022166087A1 (zh) 清洗工艺和半导体工艺方法
Li et al. Near Zero‐Threshold Voltage P‐N Junction Diodes Based on Super‐Semiconducting Nanostructured Ag/Al Arrays
CN103253660B (zh) 一种超高氮掺杂的石墨烯的制备方法
CN103632968B (zh) 晶体管及其形成方法
TWI578558B (zh) 用於改善以臭氧處理之太陽能電池的紋理之方法
US6869889B1 (en) Etching metal carbide films
CN103972079B (zh) 一种三维空间分布有序硅量子点的制备方法
Ankaiah et al. perovskite solar cells with electron and hole transport absorber layers of high-power conversion efficiency by numerical simulations design using SCAPS
CN101894750A (zh) 干法刻蚀TaN电极的方法
CN101533772A (zh) 一种刻蚀钨栅的工艺方法
Efremov et al. A model-based comparative study of HCl and HBr plasma chemistries for dry etching purposes