TWI364869B - Micro-cavity mems device and method of fabricating same - Google Patents
Micro-cavity mems device and method of fabricating same Download PDFInfo
- Publication number
- TWI364869B TWI364869B TW095132214A TW95132214A TWI364869B TW I364869 B TWI364869 B TW I364869B TW 095132214 A TW095132214 A TW 095132214A TW 95132214 A TW95132214 A TW 95132214A TW I364869 B TWI364869 B TW I364869B
- Authority
- TW
- Taiwan
- Prior art keywords
- microcavity
- inductive
- cavity
- conductor
- coil
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/005—Details of electromagnetic relays using micromechanics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/10—Auxiliary devices for switching or interrupting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/005—Details of electromagnetic relays using micromechanics
- H01H2050/007—Relays of the polarised type, e.g. the MEMS relay beam having a preferential magnetisation direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/4902—Electromagnet, transformer or inductor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49105—Switch making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49147—Assembling terminal to base
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Micromachines (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Description
1364869 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種微機電(MEM)裝置,此者具有一 基於一經感應磁力之切換機制,以及一製造此一裝置之方 法。MEM切換器在其低插入漏失及優越的開/關電子特徵 方面優越於傳統的電晶體裝置。這種切換器在日益增多的 應用項目上,特別是高頻領域裡,具有發展的空間。
【先前技術】 藉以範例說明,經授予Pond之美國專利第5,943,22 3 號案文中即描述一種MEM切換器,該者可降低能量轉換 設備中的電力漏失,其中MEM裝置可切換各種AC至AC 轉換器、AC至DC轉換器、DC至AC轉換器、矩陣轉換 器、馬達控制器、共振馬達控制器以及其他的類似裝置。 經設計以利用各種組態,而經良好適配以於許多不同 應用項目中最佳地執行之MEM切換器確為業界所已知者。
例如,經授予Chow等人之美國第6,6 6 7,245號案文中 即描述一種如第1 8圖中所示之懸桁型式MEM切換器,其 中含有:(1)上部平板71 ; (2)下部平板74 ; (3)下部接觸點 19 ; (4)上部接觸點29 ; (5)互連插頭27以及(6)懸桁72。 當電流於該上部平板7 1與該下部平板7 4之間流動時,即 可建立起一靜電力,吸引該上部平板71並將該懸桁72彎 折向下而朝向該1 4,而令兩個接觸點1 9及2 9相互接觸。 另一種組態則是使用一扭力束,即如經授予共同所有 5 1364869
權人之Volant等人的美國專利第6,701,779 B2號案文中所 描述者。該垂直扭力微機電切換器可如第19A及19B圖中 所說明者,且該等個別地顯示出其一側視圖及一上視圖。 圖中描繪一切換器,此者是由五項關鍵構件所組成:(1) 可移動接觸點20 ; (2)靜止接觸點30 ; (3)靜止第一控制電 極40;(4)彈性第二控制電極50及50A;以及(5)扭力束60。 當將一 DC電壓施加於該等電極40及50之間時,該等可 相互吸引,而令該扭力束60產生彎折。由於該可移動接觸 點2 0係經接附於該扭力束6 0,因此這將會類似地向下移 動,而接觸於該靜止接觸點30。
又在另一組態裡,美國專利第6,831,542 B2號案文中 即描述一種微機電感應性耦接力度切換器,而可如第2 0 圖中所顯示者。該MEM裝置含有至少五項構件:(1)可移 動線圈組裝1 0 ; (2)可移動電感器線圈20及30,該等可繞 於該主軸針75而旋轉;(3)靜止線圈40及50; (4)電梳驅 動器8及9 ;以及(5)各導體,此等係經耦接於該等可移動 電感器線圈20及30。該等線圈(20及40、30及50)的耦 接力度係依據由該等電梳驅動器8及9所調整之組裝位置 而定,而為可忽略不計或是極為強烈者。在其完整耦接的 條件下,流入該線圈4 0的電流會感應出一流入該線圈2 0 内的電流。由於該電感器線圈2 0及3 0為互連,因此相同 電流將流至3 0處,而這又會感應出一流入該靜止線圈5 0 的電流。 一種即如經授予York等人之美國專利第6,·452,124Β1 6 1364869 號案文中所描述的進一步组態顯示一種電容薄膜MEM裝 置,即如第21圖申所示。其内,一 MEM切換器經圖示為 由四項基本構件所組成:(1)上部金屬電極102; (2)下部金 屬電極104; (3)絕緣薄膜108;以及(4)金屬覆帽110。當 於102及104之間施加一 DC電壓電位時,電極102彎折 向下並令接觸於該金屬覆帽110而關閉該切換器。
經授予Pan等人之美國專利第6,577,431 B2號案文中 描述一種磁性耦接,此者可提供一種角移位以供啟動各微 反射鏡。此組裝可分別地如第2 2 A及2 2 B圖所示,其中顯 示其一外觀視圖及一侧視圖。此者含有三項基本構件:(1 ) 反射鏡44 ; (2)指向反射鏡43 ;以及(3)高導磁合金材料441 及431。當電流通過該啟動器46時,兩個高導磁合金構件 即感應一磁場,並產生一反衝力度,且將各反射鏡彎折而 離於該基板。該反射鏡44與該指向反射鏡43兩者是由42a 所支撐於一玻璃或矽質基板41上。 其他的相關專利包含:
經授予Yi等人之美國專利第6,1 66,478號,其中描述 一種藉由至少兩個鏈栓翼板而利用磁性啟動的微機電系 統,而各鏈栓翼板具有不同量值的高導磁合金或其他金屬 材料。 經授予Judy等人之美國專利第5,945,898號,其中描 述一種磁性微啟動器,此者具有一由至少一機械附接所支 撐的懸桁構件,該至少一機械附接可令其能夠改變該構 件,以及經放置於該懸桁之一或更多範圍上的至少一磁性 7 1364869 作用材料層,的指向。 經授予Wu蓉人> $ 之義國專利第6,542,65 3B2號,A中 描述-種牵涉到複數個鎖扣機制的微切換器組裝。’、 業界所缺少且需要者即為—種具有低成本、高可靠性 的MEM切換g ,士本h '裔此者相谷於CMOS製造技術,而不需要 難以覆蓋且甚更難以適當平坦化的大型空腔。巾業界進一 步而要此MEM切換器為與鏈栓無關聯者,亦即去除機械 移動部分,藉此獲致耐固且可靠的切換處理。 【發明内容】 從而’本發明之一目的即在於提供一種微空腔Mems (底下稱之為MC-MEMS),以及一種製造此一裝置而可完全 地整合於一 CMOS半導體晶片製造線的方法。 本發明之另一目的即在於提供一種無需大型開放表面 空腔的MC-MEMS切換器。 本發明之又另一目的即在於提供一種高度可靠且耐固 的MC-MEMS,此者與在真空狀態下所包封之移動機械鏈 栓構件無關聯。 在本發明之一態樣中,茲提供一由一基板所支撐的微 機電(MEM)切換Is ’其中包含:一在該基板内的空腔;一 切換構件’此者可在該空腔自由移動,而由至少一感應構 件所啟動’其中在一第一位置内,該切換構件電子耦接兩 條導體線路’而在一第二位置處,該切換構件可自該等兩 條導體線路解耦接。 ’ 8 1364869 在本發明之另一態樣中,茲提供一種於一基板上構成 微機電切換器之方法,其中包含如下步驟:在該基板上構 成一繞於一磁核芯之感應線圈;將一微空腔蝕刻入該基板 内,此空腔具有一大致對齊於該磁核芯之開口;構成一磁 性切換構件,此者可在該微空腔内自由移動,該磁性切換 構件在當被該感應線圈所啟動後會移至一第一位置,並且 當被關閉後會移至一第二位置。
本發明進一步提供一MEM切換器,此者係基於一感 應磁力,並且含有像是如下之獨具特性: a) 該切換裝置並無局部係曝露於該開口表面; b) 該切換構件並非實體性地接附於該切換裝置的 任何其他部分; c) 該自由移動的切換構件係經嵌入於一具相同形 狀及大小,而運用於BEOL (線路後端)互連之金屬柱栓的 微小空腔内。
d) 該切換構件移入該空腔内,其中其動作是由一感 應磁力所控制。 【實施方式】 第1圖係一顯示一本發明M C - Μ E M S切換器之外觀視 圖的略圖。 該MC-MEMS經說明顯示有如下各基本構件:(1) 一上 部感應線圈1 7 0,一選擇性的下部感應線圈1 9 0 ;(2) —上 部核芯1 80,一選擇性的下部核芯200,而該等最好是由高 9 1364869
導磁合金所製成,(3) —微空腔 40,以及(4) 一切換構件 140,此者可於其内自由移動(底下稱為SW),且最好是由 磁性材料所製成。切換作業是透過該上部線圈藉由傳通一 電流(Iu)所啟動,這可在該線圈構件170内感應出一磁場。 在此一實例裡,該下部線圈1 9 0會被關閉(沒有電流通過該 下部線圈,亦即ld = 0)。該磁場將自由移動的磁性構件140 吸引向上,使得兩個個別線路節段M_1及M_r縮短。當該 電流停止或反向時,該自由移動磁性構件140即因重力而 落回到該微空腔的底部處,開啟該線路並且將該MC-MEM 切換器關閉。 該空腔最好是具有一圓柱形狀,而直徑是在從0.1至 ΙΟμηι的範圍内。該空腔於後文中亦可另稱為一微空腔’這 是由於其直徑約為一用於BEOL之傳統金屬柱栓的直徑。
從而,茲假定該晶片既經適當地架置於一朝上位置, 藉以能夠利用重力來開啟該電路。如此,即可無需具備一 下部線圈。然而,當並未將該晶片架置於一朝上位置時, 即無法利用重力。在此一實例裡,即需要一稱為下部線圈 190的第二線圈,藉以將該SW拉回,並將其握固在其原 始位置處。從而,在切換過程中,會關閉該上部線圈1 7 〇 (亦 即lu = 0),並且藉由傳通一電流(Id)以啟動該下部線圈1 90。 即如前述,該自由移動的導體構件SW最好是為高導 磁合金核芯,或是一具有一銅質鍍層以獲更佳導電性的高 導磁合金核芯。業界實作者將即可認知到該高導磁合金係 一鐵鎳式合金,此者具有高度的磁永久性,並且廣泛地運 10 1364869
用在磁性儲存業界。該高導磁合金材料亦可含有 鈷、釩、銖及/或錳。此外,可沉積,藉由物理濺鍍 沉積作業,像是美國專利第 4,699,702號、美國 6,656,41 9B2號以及美國專利第 6,599,411號案文 者。可增入微量的其他元素,像是鈷、釩、銖及/或 以強化該鎳鐵式高導磁合金之軟磁性質的效能。 當將電流施加於該感應器1 7 0上時,即令一磁 至該1 4 0移動導體構件以及該上部核芯1 8 0,而使 彼此互相吸引。該自由移動構件1 40造成該上部電 以及M_r短路,而關閉該切換器。當電流停止流動 磁場消失,並且該移動構件140因重力落回至該空 部而開啟該切換器。 在一第二具體實施例裡,該核芯1 8 0是作為一 鐵。根據電流方向而定,感應該自由移動導體構件 極性是等於或相反於該永久磁鐵核芯 1 8 0。因此, 移動導體構件140將會要不吸引或反衝該上部核芯 接著,該後隨切換器即隨之而關閉或開啟。 又在另一具體實施例裡,兩組具有其個別核芯 係經耦接於該自由移動切換構件 1 4 0。該等核芯與 140兩者皆最好是由高導磁合金所構成。因此,可 上部核芯 1 7 0,藉以在一第一時刻處將該構件吸引 類似地,可在一第二時刻處將啟動該底部核芯 190 將該SW 140帶降。基於該相同原理,亦可為其他 操作組合。 微量的 或電子 專利第 中所述 錳,藉 場感應 得該等 極Μ 一 1 時,該 腔的底 永久磁 140的 該自由 180° 之線圈 該 S W 啟動該 向上。 ,藉以 的切換 11 1364869 底下係一為在一 CMOS製造線上製造該MC-MEM切換 裔所必要之製造程序步驟的討論說明。 現參照第2圖,可藉由保護薄膜3 0將一基板1 0絕缘, 而這最好是利用一化學氣相沉積(CVD)氮化物。藉由一其 中含有沉積及樣式化作業之正常製程構成出一蝕刻停阻層 20 ’而此與是否具有導體性無關。然後在該基板内構成一 空腔40,這會停止在該蝕刻停阻層2〇處。 ® 現參照第3圖,將一緩衝(可犧牲)材料5 0予以毯覆沉 積。該薄膜的厚度是藉由讓該移動切換構件(未以圖示)至 X二腔的側壁之間存在有多少容忍度,藉.以在該微空腔的 ' 土與該自由移動構件之間留有一適當間隔,所決定。最 好該間卩m之寬度的範圍是在〇, 1 μπι數階以下。犧牲材料 最好是CVD聚⑯f ’非晶態$ f ’該等可相對於週遭的絕 緣材料而經選擇性地移除。這些材料可藉乾性或濕性钱刻 所移除,而對氧質具有高選擇性。 現參照帛4圖,該$體材_ 6〇最好i由像&鐵鎳合金 • t南導磁合金所構成’並將該者沉積於該空腔内且隨後 施以平坦化處理,令該空腔經完全㈣。而在一後續的化 學機械拋光處理過程中,將在該表面處的緩衝層50予以移 除。僅在該空腔的内部留有該緩衝層55。 在第5圖中,該經沉積的導體材料會凹陷至一預設位 準7 〇 ’且最好疋該空腔尚度的7 〇 %到8 〇 %。 在第6圖中,將用於該空腔側壁的相同緩衝材料加以 沉積80,並且再度地拋光而填充該空腔頂部。 12 1364869 在第7圖中,對保護材料30加以拋光,並且最好是予 以移除。 在第8圖中,利用任何傳統金屬化製程,像是金屬沉 績、裱式化及蝕刻作業,以構成該金屬接線1 〇〇。 在第9圖中,沉積出一絕緣材料層110,即如CVD氧 化物、旋上玻璃等等。
在第 1 0圖1ί7,對一在該絕緣材料 Π 0内的孔洞 1 2 0 加以樣式化並且蝕刻,而觸抵該微空腔的頂部8 0。 現參照第1 1圖,選擇性地移除位在該空腔頂部處的緩 衝材料8 0。 在第1 2圖中,可藉由傳統的選擇性乾式或濕式蝕刻處 理,以自該微空腔之側壁移除剩餘的緩衝材料5 5。
在第1 3圖中,可藉由經沉積於該結構之頂部處的絕緣 材料 1 5 0,將該孔洞的頂側局部加以嵌封。可利用高沉積 速率及壓力與低或未經偏壓之來源/電極電力,藉由化學氣 相沉積以完成此沉積作業。高沉積速率(大於 5000A/sec) 及壓力(高於 lOOmTorr)可限制該反應物劑的平均自由路 徑,並且防止該等沉積於該空腔之内。即如熟諳本項技藝 之人士所眾知者,低及未經偏壓之來源/電極電力(低於 1 0 0 W)可限制繞於該空腔頂部處的角落量,而這可進一步 禁制該反應物劑在該空腔内的沉積結果。 現參照第1 4圖,可利用傳統的沉積、樣式化及蝕刻製 程以個別地構成出一線圈及核芯構件。該核芯材料是由高 導磁合金材料所構成,最好是鎳、銅、鈦或鉬質者。該線 13 圈是由任彳"T 4务 啊傳統金屬所製成,像是鋁、鋼、鎢或其合金。 製造步驟"to -r .、 卜.首先沉積出一薄膜高導磁合金材料,接著 藉由將今古道
XtBJ導磁合金薄膜樣式化。可藉由一 Damascene製 X有利地完成該樣式化處理,其中首先會沉積絕缘材 料,然德 β …、无疋一姓刻步驟,藉以構成該核芯樣式。接著填充 以核芯材料,π 1
^ 並予拋光以填入該樣式。然後將相同的絕緣 料樣式化藉以構成線圈樣式,且隨後為一金屬沉積作 業並予拋光以填入各線圈樣式。 第15圖顯示在一開啟狀態下的MC-MEM切換器,而 。玄導體切換移動構件140經顯示為位在該空腔的底部處。 第16圖顯示相同的MC-MEM切換短路這兩條線路 1 〇〇而廷疋藉由該導體性自由移動切換構件丄4〇被一磁場 拉起而達成。緩衝材料被蝕刻去離,即如第丨2圖所示,藉 此讓該SW不會變成被「勝附」於該微空腔之底部處。β
第17Α及17Β圖個別地顯示該最終MC MEMS結構 侧視圖,以及沿該直線χ_χ,的相對應上下視圖。 穿通至第17圖内之微空腔的開口經顯示為部分地 該金屬線路所遮蔽。該額外金屬延伸片部2〇〇具有兩項 的’⑴在該頂部嵌封製程過帛中阻斷殘餘物(又稱為遮 效應),以及(2)對於該切換構件提供更廣的電子接觸 域。可瞭解能夠按此-方式將金屬線路樣式化,而獲致 全的遮蔽效應,藉此避免讓殘餘物沉積在該空腔内。 本發明的微空腔具有與—傳統金屬柱栓約為相同的 丨在該工腔内的自由移動切換構件最好是在真空下而$ 14 1364869 嵌封,並因此不會受到侵蝕的影響。 不同於先前技藝MEM切換器,在此並無機械移動鏈 栓構件部份,並因而該裝置更為強固且耐久。由於該空腔 是被完全裹裝且嵌封,因此一後續之經平坦化表面可提供 進一步的整合或組裝功能性。如前所述之MC-MEMS完全 相容於傳統的CMOS半導體製程步驟。
為更佳地量化本發明 MEM切換器的各種參數,底下 將討論該MC-MEMS的磁場及線圈大小估算作業。 為將該等自由移動構件移動某一段距離所需要的能量 及功可如下式給定: 能量=WLI2 = (mg( 1+ε))1ι 其中:
Ε,摩擦係數 =0.1 Μ,該切換構件的質量 Η,該行旅距離的高度:0.5μιη Η,圓柱形切換構件的高度 =0.5 μηι D,圓柱形切換構件的直徑 =1 μ m G,重力係數:9.8m/s2 L,電感值(Henry) I,為產生磁性的電流(Amp) 該自由移動構件的質量可按如下方式加以估算: 15 1364869 鋁及合金的密度約為2.7g/cm3 該移動構件的體積可如下等式給定: V = π(ί!/2)2Η = (3.1 4)(0.25)(0.5) = 0.39E-12cm3 該移動構件的質量為 M = 2.7x0.39E-12 = 1,05E-12g
所估計的功為
功=(mg(l + s))h = (1·06Ε-12)χ9·8χ1.1(0·5Ε-6) -5.7Ε-1 8 gm2/s2 = 5.7E-21Nm = 5.7E-21J 感應器的大小經估算為:
V2L12 = 5.7E-21J 電流I經計算為:
I = 0.1mA = 1E-4A (或 1mA = 1E-3A) 然後,螺旋電感: L = (2χ5·7Ε-21)/1Ε-4)2 = 1.14E-11 = ΙΟρΗ (或 0.0 1 nH) 注意到一具有高μ核芯的線圈可將磁場增強一個1 0 以上的因數,使得能夠將所需之電流位準(I)降低1 0Χ。 16 1364869 經修改的滾輪公式 hntw = n2dnV}i Τ+ΚΪρ Κι = 2.34 Κ 2 = 2.75 η = 迴轉數 =1 davg =平均直徑 =0.5(din + dout) Ρ = 填充比例二 (dout-din)/(dout + din) U〇 = 空氣電容值 =1.26E-6
(1) 對於一單一迴轉, din = Ιμηι,並且 dout = 2 μπ7 davg = 1 . 5 μιη ρ = 0.34
L- (2.34xl.26E-6x(lxl.5E-6))/(l + 2.7 5x0.34) =1.90ρΗ (2) 對於一雙迴轉, din = Ιμηι,dout = 4μηι davg - 2.5μιη ρ = 0.6 L= (2.34x1.26Ε-6χ(4 χ 2.5 Ε - 6 ))/(1 + 2.7 5 χ 0.6) 17 1364869 第21圖說明一先前技藝電容性薄膜MEMS裝置。 第 22A-22B圖分別地說明一為提供一角移位以供啟 釭各微反射鏡之傳統磁性耦接的外觀視圖及側視圖。 【主要元件符號說明】 8 電梳驅動器 9 電梳驅動器
10 可移動線圈組裝 14 朝向位置 19 下部接觸點 20 可移動感應器線圈 27 互連插頭 29 上部接觸點 30 可移動感應器線圈 4 0 靜止線圈
41 玻璃或矽質基板 42a支撐器 43 指向反射鏡 44 反射鏡 46 啟動器 50 靜止線圈 5 0 A第二控制電極 5 5 缓衝層 60 扭力束 19 1364869 7 0 預設位準 71 上部平板 72 懸桁 7 4 下部平板 75 主轴針 80 緩衝材枓沉積 1 0 0金屬接線
102上部金屬電極 1 0 4下部金屬電極 1 0 8絕緣薄膜 1 1 0金屬覆帽/絕緣材料層 1 2 0孔洞 1 4 0切換構件 1 5 0絕緣材料 1 7 0上部感應線圈 1 8 0下部感應線圈
1 9 0上部核芯 2 00下部核芯 431高導磁合金材料 441高導磁合金材料 20
Claims (1)
1364869 通專利案叫年i月修正 十、申請專利範圍:
1. 一種由一基板所支撐之微機電(MEM)切換器,其中包 含: 一空腔,該空腔係在該基板内;以及
一切換構件,該切換構件可在該空腔内自由移動,而該 切換構件由至少一感應構件所激能化,其中在一第一位置 内,該切換構件電子耦接兩導體構件,而在一第二位置處, 該切換構件可自該等兩導體構件解耦接,該切換構件在當 被去激能化後,會藉由重力從該第一位置處下降至該第二 位置處。 2.如申請專利範圍第1項所述之MEM切換器,其中該切 換構件是由導體材料所製成。
3.如申請專利範圍第1項所述之MEM切換器,其中該切 換構件是由磁性材料所製成。 4.如申請專利範圍第1項所述之MEM切換器,其中該感 應構件包含經耦接於一磁核芯之一線圈。 5.如申請專利範圍第4項所述之MEM切換器,其中該磁 核芯及該切換構件是由高導磁合金所製成。 21 1364869 6.如申請專利範圍第4項所述之MEM切換器,其中經施 加於該線圈之一電流對該切換構件以及對該核芯感應出一 磁場,將該切換構件朝向該核芯吸引,該切換構件將該導 體構件短路,而關閉該MEM切換器。
7.如申請專利範圍第6項所述之MEM切換器,其中當關 閉該電流該磁場即 >肖失’並且該切換構件措由重力而回落 到該空腔的底部,開啟該MEM切換器。 8.如申請專利範圍第1項所述之MEM切換器,其中該等 兩導體構件是位在該空腔的頂部處,而其分隔則對齊於該 切換構件。 9.如申請專利範圍第1項所述之MEM切換器,其中在該 空腔内移動的該切換構件是由一上部及一下部感應構件所
1 0.如申請專利範圍第1項所述之MEM切換器,其中該空 腔具有一圓柱形狀,而具0.1到ΙΟμηι範圍之一直徑,以 及0.1到ΙΟμιη範圍之一高度。 1 1 .如申請專利範圍第1項所述之MEM切換器,其中該切 換構件經塑形為一圓球狀、圓柱形,或是任何具有小於該 22 1364869 空腔之直徑的一最大截面積之形狀。 12_如申請專利範圍第1項所述之MEM切換器,其中該感 應構件係具有N迴轉的一金屬線圈,N大於或等於1,以 及常駐於該金屬線圈内的一磁核芯。
13.如申請專利範圍第12項所述之MEM切換器,其中該 金屬線圈是由自如下群組中所選出的一材料所製成:鋁、 銅、欽、組、錄、鶴以及該等之任何合金。 14.如申請專利範圍第4項所述之MEM切換器,其中該磁 核芯是由高導磁合金所製成,並且其中該高導磁合金係一 鐵鎳式合金,該鐵鎳式合金組合於些許自如下群組所選出 之材料:姑、钒、錄及猛。
15. —種構成一微機電(MEM)切換器之方法,包含如下步 驟: 在一基板上構成至少一繞於一感應構件的感應線圈;及 在該基板内蝕刻出一微空腔,該微空腔具有實質上 (s u b s t a n t i a 11 y )對齊於該感應構件的一開口,該感應構件 可在該空腔内自由移動, 該感應構件當由該至少一感應線圈激能化時移動至一第一 位置,將兩條導體線路電子短路,及該感應構件在當被去 23 1364869 激能化後移動至一第二位置,將短路的該兩條導體線路開 路,該感應構件在當被去激能化後,會藉由重力從該第一 位置處下降至該第二位置處。 16. 如申請專利範圍第15項所述之方法,進一步包含以下 步驟:藉由首先沉積並樣式化一蝕刻停阻層來構成該微空 腔,及選擇性地蝕刻該微空腔,而停在該蝕刻停阻層處。
17. —種構成一微機電(MEM)切換器之方法,包含如下步 驟:
在一基板上構成至少一繞於一感應構件的感應線圈;及 在該基板内蝕刻出一微空腔,該微空腔具有實質上對齊 於該感應構件的一開口 ,該感應構件可在該空腔内自由移 動,其中構成該感應構件之步驟進一步包含以下步驟: 於該微空腔的各側壁上將犧牲材料保形地(conformally) 沉積至一厚度,該厚度係由該自由移動感應構件至該微空 腔之各側壁間的容忍度所決定; 在該微空腔内沉積導體材料; 平坦化回以填入該微空腔; 凹陷該導體材料至該微空腔高度之一預設位準; 將犧牲材料再度填入該微空腔而至該微空腔的一頂側表 面;以及 選擇性地移除該犧牲材料,以將該導體材料釋離於該空 24 1364869 腔的各側壁。 18. 如申請專利範圍第17項所述之方法,進一步包含以下 步驟:構成高導磁合金的該感應構件。 19. 如申請專利範圍第17項所述之方法,進一步包含如下 步驟: φ 在該微空腔内沉積導體材料; 平坦化該導體材料,而令該微空腔填入至該微空腔之一 預設高度;以及 _ 將犧牲材料填入該微空腔。 2 0.如申請專利範圍第1 9項所述之方法,進一步包含如下 步驟: 將該犧牲材料選擇性地自該微空腔的頂側表面移除;
構成導體線路,並於其上沉積絕緣材料。 21.如申請專利範圍第20項所述之方法,進一步包含如下 步驟: 樣式化及蝕刻觸抵該微空腔之一孔徑;並且 自該微空腔之頂側表面以及自各側壁選擇性地移除該 犧牲材料。 25 1364869
22.如申請專利範圍第20項所述之方法,進一步包含以 步驟:將該等導體線路樣式化,該等導體線路包含彼此 相分隔的導體線路節段,其中該分隔實質上對齊於該感 構件,讓該感應構件能夠在當該感應線圈被激能化和去 能化時分別將該等線路節段短路及開路。 23.如申請專利範圍第21項所述之方法,進一步包含嵌 該微空腔之頂側表面的步驟。 24.如申請專利範圍第22項所述之方法,其中是藉由經 加於該線圈之一電流來達到激能化並去激能化該感應 件,以在該感應構件上感應出一磁場,將該感應構件朝 該磁核芯吸引,該感應構件將該等導體線路短路。 25.如申請專利範圍第24項所述之方法,進一步包含以 步驟:關閉該電流以 >肖去該磁場*讓該感應構件措由重 而回落到該微空腔的底部。 26.如申請專利範圍第24項所述之方法,進一步包含以 步驟:移動在該微空腔内的該感應構件,該感應構件是 位於該微空腔的相對表面處的上部及下部感應線圈所 引。 下 互 應 激 封 施 構 向 下 力 下 由 導 26 1364869 27. 如申請專利範圍第24項所述之方法,進一步包含以下 步驟:構成該微空腔,該微空腔具有一圓柱形狀,而具0.1 到ΙΟμηι範圍之一直徑,以及0.1到ΙΟμπι範圍之一高度。 28. 如申請專利範圍第24項所述之方法,進一步包含以下 步驟:將該感應構件塑形為一圓球狀、圓柱形,或是任何 具有小於該微空腔之直徑的一最大截面積之形狀。
29. 如申請專利範圍第24項所述之方法,進一步包含以下 步驟:構成該感應構件為具有Ν迴轉的金屬線圈,Ν大於 或等於1,該感應構件放置於該感應線圈内。 30. 如申請專利範圍第29項所述之方法,進一步包含以下 步驟:形成自如下群組中所選出的一材料之該感應線圈: 紹、銅、鈦、la、錄、鶴以及該等之任何合金。
31.如申請專利範圍第24項所述之方法,進一步包含以下 步驟··形成高導磁合金的該感應構件,並且其中該高導磁 合金係一鐵鎳式合金,該鐵鎳式合金組合於些許自如下群 組所選出之材料:钻、飢、銖及猛。 27
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/217,163 US7394332B2 (en) | 2005-09-01 | 2005-09-01 | Micro-cavity MEMS device and method of fabricating same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200721585A TW200721585A (en) | 2007-06-01 |
TWI364869B true TWI364869B (en) | 2012-05-21 |
Family
ID=37803279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW095132214A TWI364869B (en) | 2005-09-01 | 2006-08-31 | Micro-cavity mems device and method of fabricating same |
Country Status (7)
Country | Link |
---|---|
US (2) | US7394332B2 (zh) |
EP (1) | EP1920493B1 (zh) |
JP (1) | JP4717118B2 (zh) |
KR (1) | KR100992026B1 (zh) |
CN (1) | CN101496220B (zh) |
TW (1) | TWI364869B (zh) |
WO (1) | WO2007027813A2 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7450385B1 (en) * | 2007-06-15 | 2008-11-11 | International Business Machines Corporation | Liquid-based cooling apparatus for an electronics rack |
JP2010093484A (ja) * | 2008-10-07 | 2010-04-22 | Fujitsu Ltd | メッセージ送信方法、メッセージ送信システム、およびコンピュータプログラム |
US8921144B2 (en) | 2010-06-25 | 2014-12-30 | International Business Machines Corporation | Planar cavity MEMS and related structures, methods of manufacture and design structures |
FR2970111B1 (fr) * | 2011-01-03 | 2013-01-11 | Commissariat Energie Atomique | Procede de fabrication d'un micro-contacteur actionnable par un champ magnetique |
CN103050746B (zh) * | 2012-11-20 | 2015-01-14 | 航天时代电子技术股份有限公司 | 一种电机型驱动的t型微波开关 |
CN104103454B (zh) * | 2014-07-28 | 2016-02-10 | 东南大学 | 一种磁悬浮式微机械开关 |
JP6950613B2 (ja) | 2018-04-11 | 2021-10-13 | Tdk株式会社 | 磁気作動型memsスイッチ |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62126036A (ja) * | 1985-11-22 | 1987-06-08 | Shin Meiwa Ind Co Ltd | デパレタイザの制御装置 |
JPS62127642A (ja) * | 1985-11-28 | 1987-06-09 | Wakunaga Pharmaceut Co Ltd | スライドグラス |
GB2194965B (en) | 1986-09-12 | 1991-01-09 | Sharp Kk | A process for preparing a soft magnetic film of ni-fe based alloy |
US5945898A (en) | 1996-05-31 | 1999-08-31 | The Regents Of The University Of California | Magnetic microactuator |
US5943223A (en) | 1997-10-15 | 1999-08-24 | Reliance Electric Industrial Company | Electric switches for reducing on-state power loss |
JP2000149740A (ja) * | 1998-11-05 | 2000-05-30 | Shoichi Inoue | 重力を利用したマグネットスイッチ |
US6166478A (en) | 1999-06-04 | 2000-12-26 | The Board Of Trustees Of The University Of Illinois | Method for assembly of microelectromechanical systems using magnetic actuation |
JP2001076605A (ja) * | 1999-07-01 | 2001-03-23 | Advantest Corp | 集積型マイクロスイッチおよびその製造方法 |
US6396368B1 (en) | 1999-11-10 | 2002-05-28 | Hrl Laboratories, Llc | CMOS-compatible MEM switches and method of making |
WO2002001584A1 (en) | 2000-06-28 | 2002-01-03 | The Regents Of The University Of California | Capacitive microelectromechanical switches |
JP4240823B2 (ja) | 2000-09-29 | 2009-03-18 | 日本冶金工業株式会社 | Fe−Ni系パーマロイ合金の製造方法 |
US6888979B2 (en) * | 2000-11-29 | 2005-05-03 | Analog Devices, Inc. | MEMS mirrors with precision clamping mechanism |
US6710689B2 (en) * | 2001-02-14 | 2004-03-23 | Credence Systems Corporation | Floating contactor relay |
KR100552659B1 (ko) * | 2001-03-07 | 2006-02-20 | 삼성전자주식회사 | 마이크로 스위칭 소자 및 그 제조 방법 |
US6542653B2 (en) | 2001-03-12 | 2003-04-01 | Integrated Micromachines, Inc. | Latching mechanism for optical switches |
US6599411B2 (en) | 2001-04-20 | 2003-07-29 | Hitachi Global Storage Technologies Netherlands, B.V. | Method of electroplating a nickel-iron alloy film with a graduated composition |
US6577431B2 (en) | 2001-06-15 | 2003-06-10 | Industrial Technology Research Institute | System of angular displacement control for micro-mirrors |
FR2828000B1 (fr) * | 2001-07-27 | 2003-12-05 | Commissariat Energie Atomique | Actionneur magnetique a aimant mobile |
US20030179057A1 (en) * | 2002-01-08 | 2003-09-25 | Jun Shen | Packaging of a micro-magnetic switch with a patterned permanent magnet |
US6717227B2 (en) * | 2002-02-21 | 2004-04-06 | Advanced Microsensors | MEMS devices and methods of manufacture |
US6701779B2 (en) | 2002-03-21 | 2004-03-09 | International Business Machines Corporation | Perpendicular torsion micro-electromechanical switch |
US7265429B2 (en) * | 2002-08-07 | 2007-09-04 | Chang-Feng Wan | System and method of fabricating micro cavities |
US20040050674A1 (en) * | 2002-09-14 | 2004-03-18 | Rubel Paul John | Mechanically bi-stable mems relay device |
US6800503B2 (en) * | 2002-11-20 | 2004-10-05 | International Business Machines Corporation | MEMS encapsulated structure and method of making same |
US6831542B2 (en) * | 2003-02-26 | 2004-12-14 | International Business Machines Corporation | Micro-electromechanical inductive switch |
US6838959B2 (en) * | 2003-04-14 | 2005-01-04 | Agilent Technologies, Inc. | Longitudinal electromagnetic latching relay |
US7215229B2 (en) * | 2003-09-17 | 2007-05-08 | Schneider Electric Industries Sas | Laminated relays with multiple flexible contacts |
JP2005123005A (ja) * | 2003-10-16 | 2005-05-12 | Yaskawa Electric Corp | ボール接点型小型スイッチ |
JP4447940B2 (ja) * | 2004-02-27 | 2010-04-07 | 富士通株式会社 | マイクロスイッチング素子製造方法およびマイクロスイッチング素子 |
-
2005
- 2005-09-01 US US11/217,163 patent/US7394332B2/en active Active
-
2006
- 2006-08-30 EP EP06802645A patent/EP1920493B1/en active Active
- 2006-08-30 KR KR1020087005252A patent/KR100992026B1/ko not_active IP Right Cessation
- 2006-08-30 CN CN200680038047.0A patent/CN101496220B/zh active Active
- 2006-08-30 WO PCT/US2006/033924 patent/WO2007027813A2/en active Application Filing
- 2006-08-30 JP JP2008529244A patent/JP4717118B2/ja not_active Expired - Fee Related
- 2006-08-31 TW TW095132214A patent/TWI364869B/zh not_active IP Right Cessation
-
2008
- 2008-01-03 US US11/968,896 patent/US7726010B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20080092367A1 (en) | 2008-04-24 |
JP2009507343A (ja) | 2009-02-19 |
JP4717118B2 (ja) | 2011-07-06 |
KR100992026B1 (ko) | 2010-11-05 |
CN101496220A (zh) | 2009-07-29 |
EP1920493B1 (en) | 2012-12-19 |
TW200721585A (en) | 2007-06-01 |
US20070046392A1 (en) | 2007-03-01 |
KR20080041676A (ko) | 2008-05-13 |
WO2007027813A2 (en) | 2007-03-08 |
US7726010B2 (en) | 2010-06-01 |
WO2007027813A3 (en) | 2007-12-06 |
US7394332B2 (en) | 2008-07-01 |
EP1920493A4 (en) | 2011-05-04 |
EP1920493A2 (en) | 2008-05-14 |
CN101496220B (zh) | 2016-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI364869B (en) | Micro-cavity mems device and method of fabricating same | |
US20080079530A1 (en) | Integrated magnetic features | |
US6320145B1 (en) | Fabricating and using a micromachined magnetostatic relay or switch | |
TWI312527B (en) | Noble metal contacts for micro-electromechanical switches | |
TW575736B (en) | Thin film electro magneto and switching element using the same | |
CN105308738B (zh) | 磁存储器及其制造方法 | |
US20090289747A1 (en) | Magnetic nano-resonator | |
JP3940391B2 (ja) | Mems封止構造および該製造方法 | |
US20080006850A1 (en) | System and method for forming through wafer vias using reverse pulse plating | |
CN1306291A (zh) | Mems磁性致动开关及相关的开关阵列 | |
EP1774547A1 (en) | Microfabricated system for magnetic field generation and focusing | |
EP3721485A1 (en) | Methods of manufacturing integrated circuits using isotropic and anisotropic etching processes | |
US9257250B2 (en) | Magnetic relay device made using MEMS or NEMS technology | |
Williams et al. | Microfabrication of an electromagnetic power relay using SU-8 based UV-LIGA technology | |
JP2009507343A5 (zh) | ||
EP4264692A1 (en) | Magneto-resistive random access memory with laterally-recessed free layer | |
TW569354B (en) | Thin film structure member, manufacturing method thereof, and switching element using the thin film structure member | |
JP2011060766A (ja) | 相互嵌合電極を備えた電気機械アクチュエータ | |
TW201222610A (en) | Structure with wiring structure, and mems relay | |
JP4782005B2 (ja) | 浮揚型磁気アクチュエータ | |
US6713908B1 (en) | Using a micromachined magnetostatic relay in commutating a DC motor | |
US20170062159A1 (en) | Mems reed switch device | |
AU2020405412B2 (en) | Magnetic tunnel junction having all-around structure | |
US20230200086A1 (en) | Magneto-resistive random access memory with substitutional bottom electrode | |
CN112599657A (zh) | 磁存储器件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |