TWI284965B - Method of manufacturing a semiconductor device - Google Patents

Method of manufacturing a semiconductor device Download PDF

Info

Publication number
TWI284965B
TWI284965B TW094143183A TW94143183A TWI284965B TW I284965 B TWI284965 B TW I284965B TW 094143183 A TW094143183 A TW 094143183A TW 94143183 A TW94143183 A TW 94143183A TW I284965 B TWI284965 B TW I284965B
Authority
TW
Taiwan
Prior art keywords
deposited
layer
tantalum nitride
semiconductor device
nitride layer
Prior art date
Application number
TW094143183A
Other languages
English (en)
Other versions
TW200639977A (en
Inventor
Hiroyuki Inuzuka
Tsukasa Doi
Kazumasa Mitsumune
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Publication of TW200639977A publication Critical patent/TW200639977A/zh
Application granted granted Critical
Publication of TWI284965B publication Critical patent/TWI284965B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Description

1284965 程 製 觸 接 界: 邊法 無方 部之 底置 於裝 用體 一 導 積半 沉 一 1由造 域藉製 領種來 術 一驟 技於步 明 之關之 說 屬明層 丨明 所發矽 ο發 明本化 、 發 氮 九 t 之 【先前技術】 隨著大規模積體電路(LSI )裝置變得愈來愈高密度 且積體化,一氮化矽層已被使用作爲一用於位在上方層間 絕緣層中之接觸孔開口之擴散層,或者作爲在一自行對準 矽化物層上方之蝕刻中止層,以使擴散層及該自行對準砂 化物層與一上方接線金屬相接觸。 圖7係在一製造步驟中在一習知半導體裝置(諸如非 易失性記憶體裝置)中之浮動閘型記憶單元中之一閘電極 結構之截面視圖。詳言之,圖7(A)爲方便而僅顯示在 製造步驟中之該浮動閘結構的截面視圖,該浮動閘結構包 括一浮動閘203、一絕緣層204及一控制閘205,其經由 一閘氧化物層202而被形成在一半導體基板201上(以下 稱之爲基板201)。圖7(B)顯示在製造步驟中之圖7( A )中之浮動閘結構之一狀態的截面視圖,其中一側壁絕 緣層208被形成在由該浮動閘203、絕緣層204及控制閘 2 0 5所構成之該閘電極結構之每一側壁上’源極/汲極區 域2 07被形成在該基板201之閘電極的兩側面上’矽化物 層2 1 0及2 1 3自行對準地分別形成在該控制閘205及該源 極/汲極區域2 0 7上,一氮化矽層2 1 5及一上方層間絕緣 (2) 1284965 層216被形成在該側壁絕緣層208及該矽化物層 213的整個表面上,且位在該源極/汲極區域207 氮化矽層2 1 3具有一接觸開口 2 1 7。在圖7 ( B )中 該氮化矽層2 1 5係作爲用於該接觸開口 2 1 7之蝕刻 〇 該氮化矽層2 1 5被設置在該層間絕緣層2 1 6下 斷水從該上方層間絕緣層2 1 6散佈且防止水被供應 上形成有元件之基板201的一表面。再者,該氮 215防止該擴散層207或該自行對準矽化物層210 在該層間絕緣層2 1 6中該接觸孔2 1 7蝕穿期間被過 。換言之,當該接觸孔藉由蝕刻製程而同時被蝕穿 該控制閘205及該源極/汲極區域207之該自行對 物層210及213中時,可以藉由使該氮化矽層215 蝕刻中止層來蝕刻該自行對準矽化物層2 1 0及2 1 3 等接觸孔被蝕穿成具有不同的深度,此係藉由設定 矽層2 1 5難以被蝕刻至該層間絕緣層2 1 6且該層間 216被蝕刻至不同深度而達成。當該層間絕緣層2] 蝕刻時,氮化矽的部分可從該接觸對準孔移除。一 氮化矽層215作爲一蝕刻中止層來製造一半導體裝 知方法係被揭示在日本專利先行公開公告案第 228589 號中。 傳統上,該氮化矽層通常係藉由一電漿CVD 一低壓CVD技術而被沉積。然而,藉由電漿CVD 沉積之氮化矽層的階差覆蓋率係50%或以下,尤其 210及 上之該 所示的 中止層 方以阻 至於其 化砂層 及213 度蝕刻 於位在 準矽化 作爲該 以使該 該氮化 絕緣層 6已被 種藉由 置之習 2004- 技術或 技術所 係早於 (3) 1284965 〇. 1 3微米世代的先進半導體裝置中,此係相較於覆蓋率幾 乎爲100%之由該低壓CVD技術所沉積的氮化矽層而言。 這係因爲當用於底部無邊界接觸製程之該蝕刻中止層(諸 如自行對準接點配置)被沉積至一所需厚度時,該層間絕 緣層很難以植入所致。因此,有需要藉由低壓CVD技術 沉積該氮化矽層而可獲得高階差覆蓋率,即使當更進一步 微型化時亦然。 然而,藉由該低壓CVD技術的氮化矽層的沉積具有 以下缺點。利用該低壓CVD技術,一氮化矽層大約在 760 °C之溫度下被沉積,且在沉積期間產生的活性氫會擴 散至通道區域及該擴散層。這會造成該電晶體配置之臨限 電壓的變動,且進而導致產量的降低。 【發明內容】 本發明係有鑑於上述的問題而發展出來。本發明之一 目的係要提供一種半導體裝置製造方法,該半導體裝置具 有浮動閘型記憶體單元,其中該氮化矽層被沉積在一控制 閘電極上作爲一用於底部無邊界接觸製程的蝕刻中止層, 同時可抑制電晶體配置之臨限電壓的變動,且不會造成產 量的減少。 爲了達成本發明上述之目的,在此提供一種半導體裝 置製造方法,該半導體裝置包含一記憶體單元矩陣,每一 記憶體單元包括被設置在一半導體基板上之源極及汲極區 域以及一具有被沉積在一被定位於該源極及汲極區域之間 -7 - (4) 1284965 之通道區域上的一閘絕緣層、一浮動閘、另一絕緣層及一 控制閘的層體構造,其中在一被沉積在該控制閘電極上以 作爲用於底部無邊界接觸製程之蝕刻中止層的氮化矽層中 的氯濃度係保持在一從1·5χ1021至2·6χ1021原子/ cm3的 範圍內。 該半導體裝置製造方法可經修改,其中該氮化矽層被 沉積以完全覆蓋該控制閘電極與該源極及汲極區域。 φ 再者,該半導體裝置製造方法可經修改,其中該氮化 矽層係在不高於7〇〇°C之溫度下藉由一低壓CVD技術所 沉積。較佳地,該氮化矽層係被沉積成具有1 5至6 0奈米 之厚度。 再者,該半導體裝置製造方法可經修改,其中在該氮 化矽層被沉積之前,一自行對準金屬矽化物層(metal salicide layer )被選擇性地形成在該控制閘電極與該源極 及汲極區域之表面上。 # 再者,該半導體裝置製造方法可經修改,其中該氮化 矽層係在不高於7〇〇°C之溫度下或較佳地從5 00°C至700°C 之溫度範圍內藉由使用矽甲烷及氨氣的一材料組合而沉積 。更佳地,該氮化矽層係以一範圍從2 5至1 3 3之氨氣對 矽甲烷的流量比而沉積。 該半導體裝置製造方法可經修改,其中該氮化矽層係 在不高於7 〇 〇 °C之溫度下或較佳地從5 0 0 °C至6 5 0 °C之溫 度範圍內藉由使用矽乙烷及氨氣的一材料組合而沉積。更 佳地,該氮化矽層係以一範圍從2 5至3 5 0之氨氣對矽乙 (5) 1284965 烷的流量比而沉積。 【實施方式】 依照本發明之一半導體裝置製造方法(以下稱之爲本 發明方法)將參考相關圖式來予以詳細說明。應瞭解,作 爲本發明之一實施例之由本發明方法所製造之半導體裝置 係一種非易失性半導體儲存裝置(快閃記憶體),其係由 一快閃記憶體單元矩陣所組成。亦應瞭解,本發明方法並 未侷限於以下的說明。 以下首先說明該記憶體單元之電晶體結構及一位在該 記憶體單元以外之其他周圍電路的相關電晶體結構,如圖 1及2所示。 圖1 ( A )係沿著垂直於控制閘1 05 (其作爲包括主 動區域1 1 1之字元線之延伸方向之圖1 ( B )之剖面線X-X ’所取之低壓的截面視圖,其中顯示沿著垂直於該字元線 之延伸方向的方向重複配置的一列記憶體單元。圖1 ( A )係沿著平行於包括浮動閘1 03及該控制閘1 05之字元線 的延伸方向之方向之圖1 ( A )之剖面線Υ- Y所取之低壓 的截面視圖,其中顯示沿著該字元線之延伸方向的方向重 複配置的一列記憶體單元。 如圖1 ( B )所示,該等記憶體單元被形成在一 p-型 矽基板101上。詳言之,主動區域111及該元件分離區域 109藉由一 STI (淺穿渠隔離)技術而被交替地設置在該 P-型矽基板101之上表面。再者,如圖1(A)所示,每 -9- (6) 1284965 一主動區域111倂入一通道區域112及被設置在該通道區 域1 1 2之兩側面的源極/汲極區域1 07。一隧道氧化物層 102被沉積在該通道區域112上,如被覆蓋一主要由多晶 矽層所構成之浮動閘103。該浮動閘103被覆蓋三層薄膜 (ΟΝΟ層)104,其主要係由氧化物層、氮化物層及氧化 物層的三個層體所構成。在頂面處,一由一矽化鈷1 1 〇 ( 相當於一自行對準金屬矽化物(metal salicide))及一多 φ 晶矽所構成之控制閘105被沉積在該ΟΝΟ層104上,俾 沿著垂直於該基板101之上方表面且平行於沿著線Υ-Υ’ 所取之截面的方向而與該浮動閘1 03自行對準。此外,如 圖1 ( A )所示,一矽化鈷1 1 3被沉積在該源極/汲極區 域107之表面上,而藉由氧物層型式之側壁絕緣層108與 兩側面隔離。 在該半導體裝置中之周圍電路的電晶體結構將在下文 中參考圖2的截面視圖來予以說明。該周圍電路之電晶體 φ 結構亦被設置在P-型矽基板101上。詳言之,當一主要 由一砂化銘1 1 0及一多晶i夕所構成之閘電極1 0 6被沉積在 一厚度上比該記億體單元之隧道氧化物層1 02還厚之閘氧 化物層114上時,源極/汲極區域107被設置在該通道區 域1 1 2之兩側面上。一矽化鈷1 1 3接著被沉積在該源極/ 汲極區域107之上方表面,而藉由一側壁絕緣層1〇8與兩 側面隔離。每一周圍電路之電晶體結構亦藉由該元件分離 區域109而與該另一周圍電路之任何其他的主動區域(未 圖示)或該電晶體結構隔離。在圖2中,相同的元件係以 -10- (7) (7)1284965 相同於圖1所示之記憶體單元的元件符號予以標示。在圖 3及4中之相同元件亦可相同符號予以標示,以簡化說明 〇 圖1及2所示之該記憶體單元電晶體結構及該周圍電 路電晶體結構之上述配置係接著進行沉積一由氮化矽所構 成之蝕刻中止層1 1 5於該記憶體單元區域及周圍電路區域 的整個面積上的步驟,其係藉由,例如,一單一晶圓型之 低壓CVD裝置來進行,且沉積一由例如氧化矽製成之層 間絕緣層Π 6於該蝕刻中止層1 1 5上,如圖3及4所示。 然後,一光阻.劑層圖案(未圖示)被沉積在該層間絕緣層 1 1 6上以決定蝕刻區域,且以自行對準方式進行一蝕刻製 程來提供接觸開口 1 1 7。圖3係一低壓截面視圖,其中該 接觸開口 1 1 7係藉由下蝕該層間絕緣層1 1 6至位在圖1 ( A )所不之每一記憶體單元之電晶體結構上的融刻中止層 1 1 5而形成。圖4係一低壓截面視圖,其中另一接觸開口 1 1 7係藉由下蝕該層間絕緣層1 1 6至位在圖2所示之一周 圍電路的電晶體結構上的蝕刻中止層1 1 5。 接下來將說明藉由一單一晶圓型低壓CVD裝置來進 行上述沉積及圖案化該氮化矽層1 1 5的步驟。 一用於沉積該氮化矽層之氣態型式之矽材料及氮材料 可分別爲矽甲烷(SiH4 )或矽乙烷(Si2H6 )以及氮氣或 氨(NH3 )。詳言之,矽甲烷及氨之組合或者矽乙烷及氨 之組合係較佳的,因爲其反應性效率係最佳的。承載氣體 可較佳地爲一氮氣(N2 )。 •11 - (8) 1284965 當選擇矽甲烷及氨之組合時,氨對矽甲烷之流量比係 設定爲25-133。詳言之,當採用2000 seem之氨時,矽甲 院係 2 0 s c c m。 在層體沉積動作期間之溫度係不高於700°C或較佳地 落在500°C至700°C之間的範圍中,且例如爲700°C。 或者,當選擇矽乙烷及氨之組合時,氨對矽乙烷之流 量比係設定爲25-350。詳言之,當採用7000 seem的氨時 ,該矽乙烷係20 seem。在層體沉積動作期間之溫度係不 高於700°C或較佳地落在500°C至7〇〇°C之間的範圍中, 或較佳爲5 00 °C至65 0 °C,且例如爲600 °C。該基板在層體 沉積動作期間的溫度係較佳爲500°C至7〇〇°C之範圍內的 低溫。沉積該氮化矽時的溫度愈低,則在層體中之氫濃度 的增加會愈高。因此,該基板之溫度較佳地設定爲500°C 或更高。因此,在該氮化矽層中之氫(H2)濃度可保持在 所需要的量値,此將在下文中詳述。 在沉積該矽化物層110及113之後採用700°C或更高 的高溫製程的例子中,會因爲矽化物層之較低的熱阻抗而 產生某些問題。例如,在該氮化矽層及該矽層之間的反應 將造成該氮化矽層之成份的改變。詳言之,在該氮化矽層 及熱分解氨之間的反應將會降低導電性或者增加在該氮化 矽層中的應力,因而產生不當的空隙。因此,最好沉積該 氮化矽層時的溫度不會高於700°C。 作爲該蝕刻中止層115之氮化矽層的厚度較佳地從 15奈米至60奈米。藉由具有厚度足以阻止蝕刻通過該層 -12- (9) 1284965 間絕緣層1 1 6的蝕刻中止層1 1 5,該氮化矽層1 1 5可被輕 易地蝕刻以提供該接觸孔Π 7穿過該層間絕緣層1 1 6。 在利用上述條件(具有矽甲烷及氨組成之反應氣體之 700 °C的基板溫度或具有矽乙烷及氨組成之反應氣體之 600°C的基板溫度)而藉由低壓CVD方法沉積層體之後, 在該氮化矽層中之氫濃度被測量出來係保持在從 〇.〇8χ1021至1.6χ1021原子/ cm3的範圍內。相反地,在藉 由習知電漿CVD方法所沉積之氮化矽層中的氫濃度經測 量係在從1.8χ1021至3.16χ1021原子/cm3的範圍內,這是 高於該低壓CVD方法。亦發現在層體沉積期間所產生的 一定量的活性氫(H)會遷移至該擴散層或通道區域,因 而在該電晶體結構之臨限電壓中會產生一變化。亦進一步 發現,當該氫濃度落在允許範圍之外時,快閃記憶體的產 量會降低。在該氮化矽層中之氫濃度的測量係利用TDS 及FT-IR技術來進行。 在該氮化矽層中之氫濃度、在該周圍電路之P +區域 中的臨限電壓(Vth )以及該快閃記憶體之瑕疵比率之間 的關係將由以下實驗結果來說明。圖5顯示當在該氮化矽 層中之氫濃度改變時在該周圍電路之P +區域中的臨限電 壓(Vth )的曲線圖。從圖5中所示之實驗結果可知,當 在該氮化矽層中之氫濃度從1.5χ1021改變至2.6M021原子 /cm3時,該臨限電壓升高至接近0.6V。然後,當在氮化 矽層中之氫濃度從該2·6χ1021進一步增加至3.16χ102]原 子/ cm3時,該臨限電壓從0.6V下降至0.5V。 -13- (10) 1284965 圖6顯示當在該氮化矽層中之氫濃度改變時,該快閃 記憶體之瑕疵率。如圖6所示,當該氫濃度係0 · 4 X 1 021原 子/ cm3時,該瑕疵率係高達100%。當在該氮化矽層中 之氫濃度從1.5 χΙΟ21增加至2.6M021原子/ cm3時,該瑕 疵率係下降至接近爲0%。若在該氮化矽層中之氫濃度進 一步上升至3. 16 χΙΟ21原子/ cm3時,該瑕疵率將上升至 3 0 %附近。 如一系列的實驗證明,在該快閃記憶體中之氮化矽層 中的氫濃度的適當値的存在可實現在該周圍電路p +區域 之臨限電壓中的增加及該快閃記憶體之瑕疵率的降低。該 氫濃度係適於保持在從1·5χ1021至2.6χ102]原子/cm3的 範圍內。當其氮化矽層被沉積成具有從 1.5 χΙΟ21至 2·6χ1021原子/cm3之範圍的氫濃度時,該快閃記憶體或 非易失性半導體裝置便可增加產量。 簡言之,製造一非易失性半導體裝置之本發明方法允 許作爲一被使用在該底部無邊界接觸製程中之蝕刻中止層 的氮化矽層被控制在一較低溫度且將氫濃度保持在一所需 要的範圍,因此可以成功地減少該周圍電路之p +區域之 臨限電壓中的變化且避免產量的減少。再者,採用有助於 增進在該氮化矽層之沉積期間之階差覆蓋率的低壓CVD 技術的方法可以有助於產品的尺寸縮減。 雖然本發明已針對較佳實施例說明如上,然而應瞭解 ,在不違背本發明之精神及範圍的情況下,熟習此項技術 者仍可對該實施例進行各種不同的修飾及替代。因此,本 -14- (11) 1284965 發明應由後附申請專利範圍所界定。 【圖式簡單說明】 圖1係一步驟的截面視圖,其中顯示兩個垂直截面彼 此以一直角相交,以闡釋在依照本發明之一半導體裝置製 造方法中形成一記憶體單元電晶體配置之動作; 圖2係一步驟之截面視圖,其闡釋在依照本發明之半 導體裝置製造方法中形成一周圍電路電晶體配置之動作; 圖3係一步驟之截面視圖,其闡釋在依照本發明之半 導體裝置製造方法中於該記億體單元區域處提供接觸孔之 動作; 圖4係一步驟之截面視圖,其闡釋在依照本發明之半 導體裝置製造方法中於該周圍電路區域處提供接觸孔之動 作; 圖5係一圖表,其中顯示在該氮化矽層中之被改變的 氫濃度與在一周圍電路p +區域中之臨限電壓之間的關係 圖6係一圖表,其中顯示在該氮化矽層中之被改變的 氫濃度與在該快閃記憶體半導體裝置之瑕疵率之間的關係 :及 圖7係一步驟的截面視圖,其闡釋一習知方法在一習 知的非易失性半導體儲存裝置中於浮動閘型之記憶體單元 處形成一閘電極結構的動作。 -15- (12) (12)1284965 【主要元件符號說明】 1 0 1 :基板 102 :隧道氧化物層 1 〇 3 :浮動閘 1 04 : ΟΝΟ 層 1 0 5 :控制閘 1 〇 6 :閘電極 107 :源極/汲極區域 1 〇 8 :側壁絕緣層 109 :元件分離區域 1 1 0 :矽化物層 1 1 1 :主動區域 1 1 2 :通道區域 1 1 3 :矽化鈷 1 1 4 :閘氧化物層 1 1 5 :氮化砂層 1 1 6 :層間絕緣層 1 1 7 :接觸開口 -16-

Claims (1)

1284965 (1) 十、申請專利範圍 1· 一種半導體裝置製造方法,該半導體裝置包含一記 憶體單元矩陣,每一記憶體單元包括被設置在一半導體基 板上之源極及汲極區域以及一具有被沉積在一設於該源極 及汲極區域之間之通道區域上的一閘絕緣層、一浮動閘、 另一絕緣層及一控制閘的層構造,其中 在一被沉積在該控制閘電極上以作爲用於底部無邊界 Φ 接觸製程之蝕刻終止層的氮化矽層中的氫濃度係保持在從 1·5χ1021原子/cm3至2·6χ1021原子/cm3的範圍內。 2 ·如申請專利範圍第1項之半導體裝置製造方法,其 中 該氮化矽層被沉積以完全覆蓋該控制閘電極與該源極 及汲極區域。 3 ·如申請專利範圍第1項之半導體裝置製造方法,其 中 φ 該氮化矽層係在不高於700°C之溫度下藉由一低壓 CVD技術所沉積。 4.如申請專利範圍第1項之半導體裝置製造方法,其 中 該氮化矽層被沉積成具有15奈米至60奈米之厚度。 5 .如申請專利範圍第1項之半導體裝置製造方法,其 中 在該氮化矽層被沉積之前,一自行對準金屬矽化物層 之圖案被選擇性地形成在該控制閘電極及該源極及汲極區 -17- (2) 1284965 域之表面上。 6.如申請專利範圍第1項之半導體裝置製造方法,其 中 該氮化矽層係在不高於700 °C之溫度下藉由使用砂甲 烷及氨氣之材料組合而沉積。 7 ·如申請專利範圍第1項之半導體裝置製造方法,其 中 該氮化矽層係在從500 °C至700 °C之溫度範圍內藉由 使用矽甲烷及氨氣之材料組合而沉積。 8·如申請專利範圍第6或7項之半導體裝置製造方法 ,其中 該氮化矽層係以一範圍從25至133之氨氣對矽甲烷 的流量比而沉積。 9 ·如申請專利範圍第1項之半導體裝置製造方法,其 中 該氮化矽層係在不高於700 °C之溫度下藉由使用矽乙 烷及氨氣之材料組合而沉積。 1 0.如申請專利範圍第1項之半導體裝置製造方法, 其中 該氮化矽層係在從500°C至650 t之溫度範圍內藉由 使用矽乙烷及氨氣之材料組合而沉積。 1 1 ·如申請專利範圍第9或1 0項之半導體裝置製造方 法,其中 該氮化矽層係以一範圍從25至3 5 0之氨氣對矽乙烷 的流量比而沉積 -18-
TW094143183A 2004-12-17 2005-12-07 Method of manufacturing a semiconductor device TWI284965B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004366473A JP2006173479A (ja) 2004-12-17 2004-12-17 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
TW200639977A TW200639977A (en) 2006-11-16
TWI284965B true TWI284965B (en) 2007-08-01

Family

ID=36596494

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094143183A TWI284965B (en) 2004-12-17 2005-12-07 Method of manufacturing a semiconductor device

Country Status (4)

Country Link
US (1) US20060134865A1 (zh)
JP (1) JP2006173479A (zh)
KR (1) KR100694608B1 (zh)
TW (1) TWI284965B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060189167A1 (en) * 2005-02-18 2006-08-24 Hsiang-Ying Wang Method for fabricating silicon nitride film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311992A (ja) * 1999-04-26 2000-11-07 Toshiba Corp 不揮発性半導体記憶装置およびその製造方法
TW415045B (en) * 1999-08-10 2000-12-11 United Microelectronics Corp Manufacture of embedded flash memory
IT1314142B1 (it) * 1999-12-20 2002-12-04 St Microelectronics Srl Dispositivo di memoria non volatile e relativo processo difabbricazione
US6846359B2 (en) * 2002-10-25 2005-01-25 The Board Of Trustees Of The University Of Illinois Epitaxial CoSi2 on MOS devices
JP4653949B2 (ja) * 2003-12-10 2011-03-16 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体装置
JP2004228589A (ja) * 2004-03-03 2004-08-12 Renesas Technology Corp 半導体装置の製造方法および半導体装置

Also Published As

Publication number Publication date
KR20060069348A (ko) 2006-06-21
KR100694608B1 (ko) 2007-03-13
JP2006173479A (ja) 2006-06-29
TW200639977A (en) 2006-11-16
US20060134865A1 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
KR100378186B1 (ko) 원자층 증착법으로 형성된 박막이 채용된 반도체 소자 및그 제조방법
US6987069B2 (en) Fabrication process of a semiconductor integrated circuit device
US7211506B2 (en) Methods of forming cobalt layers for semiconductor devices
KR100653796B1 (ko) 반도체 집적 회로 장치의 제조 방법
US7785984B2 (en) Manufacturing method for semiconductor device
TWI533402B (zh) 渠溝之充填方法及半導體積體電路裝置之製造方法
KR100890047B1 (ko) 반도체소자의 배선 형성방법
US7691743B2 (en) Semiconductor device having a capacitance element and method of manufacturing the same
US8969196B2 (en) Semiconductor devices and methods of manufacturing the same
JP2000188401A (ja) 半導体素子のゲ―ト電極形成方法
US9947769B1 (en) Multiple-layer spacers for field-effect transistors
US6544835B2 (en) Method of forming a ruthenium film by CVD
US8679938B2 (en) Shallow trench isolation for device including deep trench capacitors
TWI284965B (en) Method of manufacturing a semiconductor device
KR20060072680A (ko) 반도체 장치의 커패시터 및 그 제조방법
KR20040053460A (ko) 반도체 소자의 제조 방법
JP2009218421A (ja) 半導体装置およびその製造方法
KR100481073B1 (ko) 박막 형성 방법과 이를 이용한 게이트 전극 및 트렌지스터 형성 방법
TWI246747B (en) Method of manufacturing flash memory device
TW202121668A (zh) 半導體裝置
JP2007329286A (ja) 半導体装置、およびその製造方法
KR101255764B1 (ko) 반도체 소자의 캐패시터 제조 방법
WO2020195992A1 (ja) 半導体装置の製造方法
US10008456B1 (en) Laminated spacers for field-effect transistors
KR100914283B1 (ko) 반도체소자의 폴리메탈게이트 형성방법

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees