TWI278722B - Exposing method, exposing device and manufacturing method for device - Google Patents
Exposing method, exposing device and manufacturing method for device Download PDFInfo
- Publication number
- TWI278722B TWI278722B TW092108905A TW92108905A TWI278722B TW I278722 B TWI278722 B TW I278722B TW 092108905 A TW092108905 A TW 092108905A TW 92108905 A TW92108905 A TW 92108905A TW I278722 B TWI278722 B TW I278722B
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- exposure
- alignment
- pattern
- mask
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 364
- 238000001514 detection method Methods 0.000 claims description 113
- 230000003287 optical effect Effects 0.000 claims description 108
- 238000012937 correction Methods 0.000 claims description 84
- 238000005192 partition Methods 0.000 claims description 34
- 230000001360 synchronised effect Effects 0.000 claims description 8
- 241000282994 Cervidae Species 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 69
- 206010070834 Sensitisation Diseases 0.000 abstract description 7
- 230000008313 sensitization Effects 0.000 abstract description 7
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000005286 illumination Methods 0.000 description 33
- 230000007261 regionalization Effects 0.000 description 28
- 230000015572 biosynthetic process Effects 0.000 description 18
- 238000005755 formation reaction Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 12
- 238000003384 imaging method Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 9
- 238000007689 inspection Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- 241000219112 Cucumis Species 0.000 description 3
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 206010011469 Crying Diseases 0.000 description 2
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 229910052705 radium Inorganic materials 0.000 description 2
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 239000010902 straw Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- WPWMAIDTZPLUGB-IUCAKERBSA-N (5S)-5-[(1S)-1-hydroxyhexyl]oxolan-2-one Chemical compound CCCCC[C@H](O)[C@@H]1CCC(=O)O1 WPWMAIDTZPLUGB-IUCAKERBSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 240000006432 Carica papaya Species 0.000 description 1
- 235000009467 Carica papaya Nutrition 0.000 description 1
- 101000891579 Homo sapiens Microtubule-associated protein tau Proteins 0.000 description 1
- 102100040243 Microtubule-associated protein tau Human genes 0.000 description 1
- 101150113153 PIF1 gene Proteins 0.000 description 1
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 description 1
- 101100146536 Picea mariana RPS15 gene Proteins 0.000 description 1
- 101100408281 Schizosaccharomyces pombe (strain 972 / ATCC 24843) pfh1 gene Proteins 0.000 description 1
- 241000239226 Scorpiones Species 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000003872 anastomosis Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- VPWFPZBFBFHIIL-UHFFFAOYSA-L disodium 4-[(4-methyl-2-sulfophenyl)diazenyl]-3-oxidonaphthalene-2-carboxylate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC(C)=CC=C1N=NC1=C(O)C(C([O-])=O)=CC2=CC=CC=C12 VPWFPZBFBFHIIL-UHFFFAOYSA-L 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000004647 photon scanning tunneling microscopy Methods 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7088—Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70225—Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/544—Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/544—Marks applied to semiconductor devices or parts
- H01L2223/54426—Marks applied to semiconductor devices or parts for alignment
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
I27872?46pifl 九、發明說明: 【發明所屬之技術領域】 本發明種曝光方法、曝光裝置及元件製造方 法,一面將光罩和基板作同步移動一面將光罩的圖案曝光 於基板上。 【先前技術】 安和半導體元件藉由將在光罩上形成之圖 *轉p於感光基板上’即所謂的微影法之手法而被製造。 ===的曝光裝置,具有載置感光基板作 過投影光學系_印於感光基板 成光j要有將光罩的圖案全體同時轉印於 α光基板上之一次型曝光裝置, 板載物台同步掃描一面將本罢从回啦面將先罩載物台和基 Ξ ^^^置2種°其中在製造液晶顯示元件 要應用。、丁品£的大型化的要求,婦描型曝光裝置被主 影區域有配置多個投影光學系統以使鄰接投 各個末端^八立進行所定量位移且使鄰接投影區域的 所謂多透,古:i在與掃描方向直交之方向上重覆,即 置)。多曝光裝置透鏡掃描型曝光裳 成像特性—面^ 1描型曝光裝置能夠一面維持良好的 w使裝置大型化而得到大的曝光區域(圖 1278722 1 1 246pif 1 案形成區域)。位於該掃描型曝光裝置之各 的視野光闌,可為例如梯开彡,卢 〜先子糸、洗 寬的人_通常被^ 向的視野光鬧之孔徑 見的口 .十通吊破叹疋為相等。因 的接合部被重覆曝光,所丨牧心仅〜尤子糸統 光與彡# & # K 〜知描型曝光裝置具有使投影 先予糸統的綠縣和曝光照度平滑變化之優點。 圖21所示為原來的多透鏡掃描型曝光裝置的-例。 如圖2 1所示,曝光裝置Εχ ;具備有支援光罩敗 光罩載物台MST、支援感綠板之基板載物台PST、 將光罩載物台MS T所域的光罩職由㈣進行 照明之照明光學系統I L、將藉由曝光光EL照明之光罩 Μ的圖案的像投影於基板載物台p s τ所支援的感光基板 P上之多個投影光學系統P L a〜p L g。投影曝光系統 PLa、PLc、PLd、PL g和投影光學系統p l b、 P L d、P L f成2列交錯狀排列,投影光學系統p乙a 〜P L g中的鄰接之投影光學系統彼此(例如投影光學系 統PLa和PLb、PLb和PLc)在X轴方向上被所 定量移位元配置。而且,分別與投影光學系統p L a〜p L g對應之梯形投影區域的接合部在感光基板p上重覆。 在光罩載物台MS T的上方,設有進行光罩μ和感光 基板Ρ之調正(alignment)的調正光學系統5 〇 〇 A、5 0 Ο B。調正光學系統5 〇 〇 A、5 Ο Ο B可藉由不圖示的 驅動機構在Y軸方向移動,在調正處理時進入照明光學系 統I L·和光罩Μ之間,同時在掃描曝光時又從照明區域退 避。調正光學系統5 〇 〇 A、5 Ο 〇 Β檢測形成於光罩Μ J278722 "246pif 1 =光罩调正標誌、,同時將形成於感光基板p之基板調正標 ^通過投影光學系統P L a及p L g檢測q外,在基板 ^物台P S T上之-X側的末端設有在¥軸方向延伸之移 鏡5 Q 2 a,在-γ側的末端設有在錄方向延伸之移 鏡5 Q 2 b,在與這些移動鏡5◦2 a、5 q 2 b分別 =向之位置,分職有藉由向移練5 Q 2 a、5 〇 2 b 照射鐳射光,可檢測在基板载物台p s τ的X轴方向及γ 軸方向之位置的鐳射干涉儀5 〇1 a、5 〇 1 b。 圖2 2A、b、c、d〜圖2 4A、B、C、D是用於說 明使用曝光裝置E X】的調正處理程式及曝歧理程式之 圖不。這長是關於在感光基板P上形成4個元件(圖案形 成區域)PA 1〜PA 4之場合進行說明。 如圖22A、B、C、D所示’在感光基板p上的圖案 形成區域PA1〜PA4之每—_4角上形成有調正標 誌。 f光裝置E X;首先如圖2 2A所示,將感光基板p 上的弟1圖案形成區域P A!之—χ側的2個基板調正桿 諸ml、m2,藉由調正光學系統5()()α、5〇〇 過投影光㈣統P L a及P L g而檢測。調正光學系統5 OOA、50QB同時也檢顺基板調正標誌m丄、 對應光罩調正標tt、(H2 2A中不圖示)。接著如圖22 B所不,感光基板P藉由基板載物台p s τ在—X側 動,調正光學系統5Q〇A、5(}(3B將圖案形成區域; A 1的+ X侧之2個基板調正標諸m 3、m 4通過投影光 I2787226pifi 學系統PL a及pl g檢測。此時,光罩M也藉由光罩基 板MS T進仃移動,感光基板p的基板調正標誌必3、❿ 4所對應之光罩_正標諸和基板調正標、m4一起 被檢測。接著如圖2 2C所示,感光基板p藉由基板載物 台P ST在一X側移動,調正光學系統5 〇 〇A、5 〇 〇 B檢測感絲板p的第2 ®案形成區域p a 2之基板調正 標誌ml'm2及與此對應之光罩調正標誌。接著如圖2 2D所示,感光基板P在一X侧移動,調正光學系統5 〇 0 A、5 Ο 〇 B檢測圖案形成區域p a 2的基板調正標誌 m3、m4及與此對應之光罩調正標誌。 接著如圖2 3A所示,感光基板p藉由基板載物台p S T在一Y側步進移動,調正光學系統5 〇 〇A、5 〇 〇 B檢測第3圖案形成區域PA3之基板調正標誌❿^^、m 4及與此對應之光罩調正標誌。接著如圖2 3 ( b )所示, 感光基板P在+ X側移動,調正光學系統5 〇 〇 A、5 〇 0B檢測形成區域pA3的基板調正標誌1111、m2及與 此對應之光罩調正標誌。接著如圖2 3 ( c)所示,感光 基板P在+ X側移動,調正光學系統5 〇 〇A、5 〇 〇 b 檢測第4圖案形成區域PA4的基板調正標誌、m3、m4 及與此對應之光罩調正標誌。接著如圖2 3D所示,感光 基板P在+ X側移動,調正光學系統5 〇 〇A、5 0 Q B 檢測圖案形成區域PA4的基板調正標誌ml、m2及與 此對應之光罩調正標誌。 如上所述,一面進行光罩Μ和感光基板p的步進移 I278722 1 1 246pifl 動,一 面由2個調正光學系統5 〇 〇 A、5 〇 〇 B檢測各 圖案形成區域P A 1〜ρ Λ 4之各個基板調正標誌m工〜 $4的位置育訊及光罩調正標誌的位置資訊。然後曝光裝 ΕΧ^基於調正光學系統5 〇 QA、5 Q QB的檢測結 、,,求每個圖案形成區域的光罩M和感光基板卩的位置誤 5及,移、旋轉、定標(scaling)等像特性,從求得之誤差 5成异出修正值,並基於絲正值進行曝光處理。在進行 二光處理犄,首先如圖2 4A所示,使對最後進行調正處 ^之圖案形成區域PA4的曝光處理被進行。即,一面將 ^感光基板P的基板載物台p s τ和支援光罩M的光罩 二MST(i!24A中不圖示)在—χ方向作同步移 的二用曝光光照明光罩M,進行對感光基板pI27872?46pifl IX. Description of the Invention: Technical Field of the Invention The exposure method, the exposure apparatus, and the device manufacturing method of the present invention expose the pattern of the reticle to the substrate while moving the reticle and the substrate in synchronization. [Prior Art] An am and a semiconductor element is manufactured by a method of turning a pattern formed on a photomask onto a photosensitive substrate, a so-called lithography method. The exposure device with === has a photosensitive substrate mounted thereon as a projection optical system. The photosensitive substrate is printed on the photosensitive substrate to form a light-emitting device. The primary-type exposure device for simultaneously transferring the entire pattern of the photomask to the α-light substrate is used. On the one side of the synchronous scanning side, the first cover stage and the base Ξ ^^^ are placed in two ways. Among them, the liquid crystal display element is applied. In order to increase the size of Ding Pin, the smear-type exposure apparatus is provided with a plurality of projection optical systems in the main shadow area so that the adjacent end projections are quantitatively displaced and the adjacent projection area is so-called multi-transparent. :i is repeated in the direction orthogonal to the scanning direction, ie set). Multi-exposure device Lens-scanning exposure image-characteristics - 1 The exposure device can maintain a large w while maintaining a large exposure area (Fig. 1278722 1 1 246pif 1 case formation area). The field of view diaphragm located in each of the scanning type exposure devices may be, for example, a ladder opening, a louver-first scorpion, a person who washes the width _ the mouth that is usually seen by the aperture of the field of view.疋 is equal. Because the joint is repeatedly exposed, the 丨 丨 〜 ~ 尤 糸 光 光 & & & & & & & & & & & & & & & & & 知 知 知 知 知 知 知 知 知 知 知 知 知 知 知 知 知 知 知 知 知 知 知 知. Fig. 21 shows an example of the original multi-lens scanning type exposure apparatus. As shown in Fig. 21, the exposure device Εχ has a mask support stage MST, a substrate stage PST supporting the green board, and a mask cover for the mask stage MS T. (4) The illumination optical system IL for illumination, and the image of the pattern of the mask 照明 illuminated by the exposure light EL are projected onto the plurality of projection optical systems PL a to P L supported on the photosensitive substrate P supported by the substrate stage ps τ g. The projection exposure systems PLa, PLc, PLd, PL g and the projection optical systems plb, PL d, PL f are arranged in two rows in a staggered manner, and the adjacent projection optical systems in the projection optical systems p a to PL g are mutually coupled (for example, projection optics) The systems PLa and PLb, PLb and PLc) are configured by the quantized shift elements in the X-axis direction. Further, the joint portions of the trapezoidal projection regions corresponding to the projection optical systems p L a to p L g are repeated on the photosensitive substrate p. Above the reticle stage MS T, alignment optical systems 5 〇 、 A, 5 0 Ο B for performing alignment of the mask μ and the photosensitive substrate 设有 are provided. The adjustment optical system 5 〇〇A, 5 Ο Ο B can be moved in the Y-axis direction by a drive mechanism not shown, and enters between the illumination optical system IL· and the mask 在 during the correction process, and at the time of scanning exposure Also retreat from the lighting area. Alignment optical system 5 〇〇A, 5 Ο 〇ΒDetection is formed in the mask Μ J278722 "246pif 1 = reticle alignment mark, and the substrate alignment mark formed on the photosensitive substrate p is passed through the projection optical system PL In addition to a and p L g detection q, a shift mirror 5 Q 2 a extending in the direction of the ¥ axis is provided at the end on the -X side of the substrate table PST, and the end of the -γ side is provided to extend in the recording direction. The shifting mirror 5 Q 2 b, at the position opposite to the moving mirrors 5◦2 a, 5 q 2 b respectively, is capable of detecting laser light by illuminating 5 Q 2 a, 5 〇 2 b The laser interferometers 5 〇 1 a, 5 〇 1 b at the positions of the substrate stage ps τ in the X-axis direction and the γ-axis direction. Fig. 2 2A, b, c, d to Fig. 2 4A, B, C, and D are diagrams for explaining the correction processing program and the exposure ambiguity program using the exposure device E X ]. This length is described with respect to the case where four elements (pattern formation regions) PA 1 to PA 4 are formed on the photosensitive substrate P. As shown in Figs. 22A, B, C, and D, a correction mark is formed on each of the pattern forming regions PA1 to PA4 on the photosensitive substrate p. f light device EX; first, as shown in FIG. 2A, the two substrate alignment bars ml and m2 on the side of the pattern 1 of the photosensitive substrate p are formed by the alignment optical system 5 ( () α, 5 〇〇 over the projected light (four) system PL a and PL g detected. The alignment optical system 5 OOA and 50QB also check the substrate alignment mark m丄 and the corresponding mask alignment mark tt (not shown in H2 2A). Next, as shown in FIG. 22B, the photosensitive substrate P is moved side by side by the substrate stage ps τ, and the optical system 5Q〇A, 5(} is corrected (3B is the pattern forming region; the + X side of A 1) The two substrate alignment marks m 3 and m 4 are detected by the projection light I2787226pifi system PL a and pl g. At this time, the mask M is also moved by the mask substrate MS T , and the substrate of the photosensitive substrate p is adjusted. The reticle corresponding to the mark 3 and ❿ 4 is detected together with the substrate alignment mark and m4. Then, as shown in Fig. 2 2C, the photosensitive substrate p is moved on the X side by the substrate stage P ST The alignment optical system 5 〇〇A, 5 〇〇B detects the substrate alignment mark ml'm2 of the second ® formation region pa 2 of the photosensitive plate p and the reticle alignment mark corresponding thereto. 2 2D, the photosensitive substrate P moves on the X side, and the alignment optical system 5 〇0 A, 5 Ο 〇 B detects the substrate alignment marks m3 and m4 of the pattern formation area pa 2 and the reticle alignment corresponding thereto Next, as shown in FIG. 2A, the photosensitive substrate p is stepwise moved on the Y side by the substrate stage p ST, and the alignment optical system 5 〇〇A, 5 〇〇B detects the third pattern formation. The substrate alignment marks ❿^^, m 4 of the area PA3 and the reticle alignment mark corresponding thereto. Then, as shown in Fig. 23 (b), the photosensitive substrate P moves on the + X side, and the optical system 5 is adjusted. 〇A, 5 〇0B detects the substrate alignment marks 1111 and m2 forming the region pA3 and the reticle alignment mark corresponding thereto. Then, as shown in Fig. 23 (c), the photosensitive substrate P moves on the + X side. The positive optical system 5 〇〇A, 5 〇〇b detects the substrate alignment marks of the fourth pattern forming region PA4, m3, m4, and the reticle alignment marks corresponding thereto. Then, as shown in FIG. Moving on the +X side, the alignment optical system 5 〇〇A, 5 0 QB detects the substrate alignment marks ml, m2 of the pattern formation area PA4 and the reticle alignment mark corresponding thereto. As described above, the mask is performed as described above. The stepwise shift of the 感光 and the photosensitive substrate p is 1278722 1 1 246pifl, and the substrate alignment marks m of each of the pattern forming regions PA 1 to ρ 检测 4 are detected by the two modulating optical systems 5 〇〇A, 5 〇〇B. Work ~ $4 position information and position information of the mask correction mark. Then exposure mounting ^ based on the adjustment optical system 5 QA, 5 Q QB detection, and the position error 5 of the mask M and the photosensitive substrate 每个 in each pattern forming region, image characteristics such as shift, rotation, scaling, etc., from the error 5 obtained The correction value is generated and the exposure processing is performed based on the positive value of the silk. After the two-light processing is performed, first, as shown in Fig. 24A, the exposure processing for the pattern forming region PA4 where the alignment is finally performed is performed. In other words, the substrate stage ps τ of the photosensitive substrate P and the photomask MST (not shown in the i! 24A) supporting the mask M are simultaneously irradiated with the dual-purpose exposure light M in the χ direction, Performing on the photosensitive substrate p
A=U 4之曝光處理。當對圖案形成區域P 4之曝先處理結束後,如圖2 4β所示,為了進行對圖 3之掃描曝光處理,設定光罩辦感光基 ==’感卿在,移動,同時光罩 Y (圖24B中不圖示)為返回初始位置在+ }(方 處:移:對行對圖案形成區域P A 3之掃描曝光 Γ1 域p A 3之掃描曝光處理牡束後, =4C所示,為了進行對 = f =理,設定光罩Μ和感光基板P的位置。== 行大的移動。“,進返回=位置在U側進 交進仃對圖案形成區域PA1之掃描曝 12787¾ 46pifi 光處理。當對圖案形成區域P A 1之曝光處理結束後,如 圖2 4D所示,為了進行對圖案形成區域pa 2之掃描曝 光處理,設定光罩Μ和感光基板p的位置。即,感光基板 Ρ在〜X方向移動,同時光罩Μ為了返回初始位置在+ χ 方向進行大的移動。然後,進行對圖案形成區域ρΑ 2之 掃描曝光處理。這樣即分別完成對各圖案形成區域pA工 〜P A 4的曝光處理。 而且曝光裝置E X J —面藉由鐳射干涉儀5 〇丄a、 5 Ο 1b檢測感光基板ρ的位置一面藉由調正光學系統5 Ο Ο A、5 Ο Ο Β依次檢測設于圖案形成區域ρ Α1〜ρ A 4的每一個之四角的調正標誌111 i〜m 4。具體地說, 曝光裝置E XI將基板載物台p s τ配置於所定位置,並 將感絲板上的第1圖案形成區域p A i的—χ側之2個 基板調正標如1、m2及與麟應之不圖示的光罩調正 標該,藉由調正光學系統5QQA、5QC)B通過投影光 學糸3及檢測。接著,曝光裝置EX J移動 基板載物台P ST,並藉由調正光學系統5 Q qA、5 〇 〇 ^將圖t成區域PA1之+X側的2個基板調正標諸 m 4、m 3通過投影光學系統P L a及P L g檢測。在進 行標該檢财,_干㈣檢職板輸台 基^的位X當檢測*1圖*形成區域PA1=i ’曝光x j與第1圖案形成區域 載物台"T,藉由調正樣’移動基板 尤予糸統5 Ο 〇A、5 Ο ο B檢 12 1278722 1 1246pifl 測第2圖案形成區域?人2的基板調正標誌ml、m2& 與此對應之光罩調正標誌,接著檢測基板調正標誌111 3、 m 4。此時鐳射干涉儀也檢測感光基板p的位置。以下, 隊光裝置EX】同樣地依次檢測第3、第4圖案形成區域 P A 3、P A 4的基板調正標諸m1〜m 4。A = U 4 exposure processing. After the exposure processing of the pattern forming region P 4 is completed, as shown in FIG. 24 β, in order to perform the scanning exposure processing for FIG. 3, the photomask is set to be photo-sensitive == 'sensing in, moving, and the mask Y (not shown in FIG. 24B) is returned to the initial position at + } (square: shift: after the scanning exposure processing of the iris of the scanning exposure Γ1 field p A 3 of the line pair pattern forming area PA 3, as indicated by =4C, In order to perform the correct = f = rationality, the position of the mask Μ and the photosensitive substrate P is set. == The movement of the line is large. ", the return is returned to the position on the U side, and the scanning of the pattern forming area PA1 is exposed 127873⁄4 46pifi light After the exposure processing of the pattern forming region PA 1 is completed, as shown in FIG. 24D, in order to perform the scanning exposure processing on the pattern forming region pa 2, the positions of the mask Μ and the photosensitive substrate p are set. Ρ moves in the ~X direction, and the mask Μ is moved in the + χ direction in order to return to the initial position. Then, the scanning exposure processing of the pattern forming region ρ Α 2 is performed. Thus, the pattern forming area pA is completed. Exposure treatment of PA 4. And exposure The position of the photosensitive substrate ρ is detected by the laser interferometers 5 〇丄a, 5 Ο 1b on the surface of the device EXJ, and is sequentially detected by the alignment optical system 5 Ο Ο A, 5 Ο Β ρ in the pattern forming region ρ Α 1 ρ The alignment marks 111 i to m 4 of each of the four corners of A 4. Specifically, the exposure device E XI arranges the substrate stage ps τ at a predetermined position, and the first pattern forming region p on the photosensitive plate The two substrates on the side of A i are adjusted by 1, 2, m2, and the mask of the mask, which is not shown in Fig. 1 , by adjusting the optical system 5QQA, 5QC) B through the projection optics 3 and Next, the exposure device EX J moves the substrate stage P ST and adjusts the two substrates on the +X side of the region PA1 by the alignment optical system 5 Q qA, 5 〇〇^ 4, m 3 is detected by the projection optical system PL a and PL g. In the inspection of the standard, _ dry (four) inspection board transmission station base ^ bit X when detecting * 1 map * formation area PA1 = i 'exposure xj and The first pattern forming area stage "T, by adjusting the sample 'moving the substrate, especially the system 5 Ο 、 A, 5 Ο ο B inspection 12 1278722 1 1246pifl measuring the second pattern In the area 2, the substrate alignment marks ml, m2 & the reticle alignment mark corresponding thereto, and then the substrate alignment marks 111 3 and m 4 are detected. At this time, the laser interferometer also detects the position of the photosensitive substrate p. The team light device EX] sequentially detects the substrate alignment marks m1 to m 4 of the third and fourth pattern forming regions PA 3 and PA 4 in this order.
如上所述,曝光裝置EX J --------- 叫/人攸逆仃无卓Μ和感 光基板Ρ的步進移動,一面藉由鐳射干涉儀檢測感光基板 Ρ及光罩Μ的位置並檢測各圖案形成區域ρ Α丄〜p a 4 的各個調正標誌必!〜m4。然後,曝光裝置Εχ】美於 =正光學系統5 Q Q A、5 ◦ Q B的檢測結果,求每二圖 =形成區域的光賴域絲板ρ的位置縣及位移、旋 ^、定標等像特性,從該求得之誤差f訊算出修正值,並 =於該修正值崎曝林理。錢行曝域科,對最後 =取處理之_形成區域P Α 4㈣光處理被進行。 ’-面將支域光基板ρ的基板祕台 3的光罩載物台Msw轴方向作同步移動 區域PA4之曝光處Γ 了對感祕板P的圖案形成 所述^題t述之原來的曝光裝置及曝光方法會產生以上 (元件f:方f為了曝光處理4個圖案形成區 P做同牛浐動而、隹4’需要-面將光罩Μ和感光基 ^ Π ν私動一面進行8次調正、 所需時間長。要得到更多的從“感光基=二 46pifl 1278m 凡件,調正處理時間變得更長。當調正處理時 曝光裳置整體的生紐雜下。 U長時’ 、、另一方面,為了縮短調正處理時間,考慮過要減小 測之調正標誌、的數量,也考慮過要將藉由圖案形^ 域檢測之調正標誌的數目從上述的4個減至2個進行二 處理,但是當減少檢測之調正標誌的數目後,定桿、扩 或正交度轉特性不能精度良好地被檢測,會招致調$ ^低下。調正精度—旦低下,製造的元件之圖案精度: 而且,為-種藉由鐳射干涉儀一面檢測感光基板 木〜pA4)的位置一面檢測與各二 成區域PA卜PA4對應之調正標如卜瓜 1 對各個_形成區域P A i〜p A 4進行曝域理之= 成。當使感祕板P大型化時,為了進行藉由 之各圖案形成區域PA1〜PA4的位置檢測,有必要= 隨感光基板P的大觀而使軸鏡也大型化,即長大化。 但是使移動鏡長大化會產生移動鏡的反射面撓曲等加工精 度晉也有考慮過使短移動鏡與各個圖案形成區域 =、:同時對應這些移動鏡設置多個鐘射干涉 儀,二多個鐳射干涉儀中用於感光基板p (圖 案檢測之lf射干涉儀一面進行位置檢 測,但疋料會發生替換誤差,不能進行精度良好的位置 檢測。 【發明内容】 14 I278722pifi 本舍明之目的是提供一種馨於 維持精度一面縮短調正處理時間^况形成的,一面 方法、曝絲置及元件製造方法。I i性提高之曝光 為了解決上述課題,本發明採 〜圖2 0對應之以下構成。 用與侧所示的圖1 在第方法是—種—面將光罩(M)和基板(p ) 在弟1方向(X)上同步移動— (M)的圖案之曝光方法,其特徵 =P)曝先先罩 上的多個調正標諸(m i〜m 6 )疋對;別=於基,(P ) 向(X)交又的第2方向(γ)上5 ΐ 5〜在與弟1方 备站,ΛΤ 1 上至少有3個並列配置之 修周:統(AL1〜AL6^測多個 位置吻合。 錢衫㈤和基板(P) 另外,本發明的曝光裝置( (M)和基板(P)在第1方向(χ)5 =將光罩 ^ / -η \ 〈人)上同步移動—面對* 基板(P)曝光光罩(M)的_ 檢測設於基板⑺上的多個位置之調正;;(:= θ )的多個調正系統(AIj丄〜 正系統(AL1〜AL6)在與雛是^ 2方向(Y)至少並列配置有3個。° (X)父叉的弟 ^ 發明,在對林和基板的掃描方向即第i方 向父又之料描方向即第2方向上 =比:?無需減少應檢測= 原末相比減少邮·的_動作次數。因此可—面維持 1278722 1 1 246pif1 調正精度一面縮短調正處理時間。 本發明的元件製造方法的特徵是··包括 的曝光方法或上述說明的曝光裝置(Εχ),將淨二 罩㈤的元件圖案曝光於基板 田γ先 將該曝光基板(Ρ)顯像之工程(2。之4广(2〇4)、 眠光用明’藉由以高精度進行調正處理後再進行 時間被縮短,所以能夠提高元件製造時的L性 在第光方法是一種將光罩(M)和基板(p) 的Η安^ i )做同步移動,對基板(P )曝光光單(Μ ) 2忒Ρ Γ ’其特徵是:將基板⑴分割為多個 = :=(ΡΑ1〜ρΑ9)的每個分區(二): 將光罩ΓΜ、先罩(Μ)和基板(Ρ)位置吻合之後, 將先罩(Μ)的圖案在基板⑺上曝光。 更 正(使位置吻人t亚在每分區上依次進行調 在各個分區多分區而分別進行處理,可 理。而且,對Γ八=上進订精度良好地調正處理及曝光處 的位置产、雇你之上述處理(調正處理及曝光處理) 置檢測;置::::切位職 理及❹走 丁 在對1個分區之處理(調正處 理及曝核理)林產生裝置的城誤差。 I2787226pifl 本發明的曝光裝置(Ex、θ 也产筮1 士a〆入)疋—種將光罩(Μ)和基 同步移動,對基板(ρ)曝光 置’其特徵是:包括在第1方 向(X)上亚列配置,可檢測在與 (X)交叉之第2方向(Υ)卜⑼“ / ^丄万门 ^ , . D 0 Λ J上的位置之多個位置檢測裝 γ γ 、對光罩(Μ)調正基板(ρ)之 調正部(AL)、按照基板 位置檢測裝置(P y i〜p y 3的二置,控制切換多個 Α Ί y 3) ’同時對應在基板(P) 域(PA1〜PA9),選擇多個位置檢測 I u =-〜P73)中的1個’基於該位置檢測裝置 的檢測位⑼_正部(AL)調正料 ONT)。 如利用本發明’將位置檢測裝置在掃描方向即第1方 向上夕们並》彳配置,並&照基板的位置切換控制多個位置 檢測裝置,所以即健動鏡短,也簡由按縣板的位置 娜位置檢測中所用的位置檢測裝置,在多個曝光區域的 =一個進行位置檢測。然後藉由在曝光多個曝光區域中的 第1曝光區域時,基於第1位置檢測裝置的檢測結果由調 ^部進行,正處理之後而曝光,並在曝光第2曝光區域 日寸基於第2位置檢測裝置的檢測結果由調正部進行調正 ,理^而曝光’可在對1個曝光區域(圖案形成區域)的 1理=不進行多個位置檢測裝置的切換動作,由1個位置 核測:置即可位置檢測,所以關於各個曝光區域可不含有 置才、】衣置的切換誤差,精度良好地進行位置檢測及曝 Ι2787226ριη 光處理。As described above, the exposure apparatus EX J --------- is called / human 攸 仃 仃 Μ Μ and the photosensitive substrate Ρ step movement, while detecting the photosensitive substrate Ρ and the mask 藉 by the laser interferometer Position and detect each correction mark of each pattern forming area ρ Α丄 ~ pa 4 must! ~m4. Then, the exposure device 美 美 美 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = The correction value is calculated from the obtained error f, and = the correction value is exposed. The money is exposed to the domain, and the final = take-up processing _ formation area P Α 4 (four) light processing is carried out. '-the surface of the mask stage Msw axis of the substrate substrate 3 of the branch light substrate ρ is the exposure area of the synchronous movement area PA4. The pattern of the sensory board P is formed to form the original The exposure apparatus and the exposure method generate the above (element f: the square f is for the exposure processing, the four pattern formation regions P are made to move with the same, and the 隹4' needs to face the mask and the photosensitive substrate 私 ν 8 times of adjustment, the required time is long. To get more from the "photosensitive base = two 46pifl 1278m pieces, the correction processing time becomes longer. When the correction processing is performed, the exposure is set to the overall birth. U long time ', on the other hand, in order to shorten the correction processing time, consider reducing the number of correction marks, and also consider the number of correction marks detected by the pattern form The above four are reduced to two for the second processing, but when the number of the correction marks detected is reduced, the fixed rod, the expansion or the orthogonality rotation characteristic cannot be accurately detected, and the adjustment is lowered. Accuracy - low, the pattern accuracy of the manufactured components: and, for - by laser While detecting the position of the photosensitive substrate wood ~pA4), the meter detects the alignment mark corresponding to each of the two-region PAs PA4, such as the papaya 1, and exposes the respective _ formation regions PA i to p A 4 to the surface. When the size sensor P is increased in size, in order to detect the position of each of the pattern forming regions PA1 to PA4, it is necessary to increase the size of the lens mirror as the size of the photosensitive substrate P is increased, that is, to lengthen the moving mirror. The enlargement will produce the processing precision of the moving surface of the moving mirror, etc. The processing precision of the moving mirror is also considered to make the short moving mirror and the respective pattern forming area =, and at the same time, the moving mirrors are provided with a plurality of clock-interfering interferometers, and two or more laser interferometers are used. It is used for the photoreceptor substrate p (the lf-ray interferometer for pattern detection performs position detection, but the replacement error occurs in the material, and the position detection with high precision cannot be performed. [Inventive content] 14 I278722pifi The purpose of this book is to provide a sweet-hearted maintenance. The accuracy is shortened by the correction processing time, one side method, the exposure wire setting, and the component manufacturing method. The exposure of the improved Ii property is to solve the above problem, and the present invention adopts the pair of It should be composed of the following: In the first method shown in Fig. 1, in the first method, the mask (M) and the substrate (p) are moved synchronously in the direction 1 (X) - the exposure of the pattern of (M) Method, the characteristic=P) exposure of a plurality of positively-adjusted labels on the first cover (mi~m 6 ) 疋 pairs; other = on the base, (P) on the (X) intersection in the second direction (γ) 5 ΐ 5~ At the side of the station with the younger brother, there are at least three side-by-side arrangements of the repair week: 统1 (AL1~AL6^ test multiple positions. The money shirt (five) and the substrate (P) In addition, the present invention Exposure device ((M) and substrate (P) in the first direction (χ) 5 = move the mask ^ / -η \ <人) synchronously - face * substrate (P) exposure mask (M) _ Detecting a plurality of positions on the substrate (7); (:= θ) multiple alignment systems (AIj丄~ positive system (AL1 to AL6) are juxtaposed at least in the direction of the ^2 direction (Y) There are three. ° (X) The parent of the parent fork ^ Invented, in the scanning direction of the forest and the substrate, that is, the i-th direction of the parent, the direction of the parent, that is, the second direction = ratio: no need to reduce the detection = the original compared to the reduction of the mail · The number of _ actions. Therefore, it is possible to shorten the adjustment processing time while maintaining the 1278722 1 1 246pif1 adjustment accuracy. The element manufacturing method of the present invention is characterized in that the exposure method included or the exposure apparatus described above exposes the element pattern of the net cover (5) to the substrate field γ to first develop the exposed substrate (Ρ). (2. 4th wide (2〇4), sleep light use Ming') After the correction process is performed with high precision, the time is shortened, so that the L-factor at the time of component manufacture can be improved. The cover (M) and the substrate (p) are moved synchronously, and the substrate (P) is exposed to light (Μ) 2忒Ρ Γ 'characterized by dividing the substrate (1) into a plurality of = :=(分区1~ρΑ9) For each partition (2): After the mask ΓΜ, the first cover (Μ) and the substrate (Ρ) are aligned, the pattern of the first cover (Μ) is exposed on the substrate (7). Correction (the position of the kisser t sub-subsequently in each partition is adjusted in each partition and multi-partition and processed separately, and it is reasonable to correct the processing and the position of the exposure place. Hire the above-mentioned treatment (correction processing and exposure processing) for the test; set:::: cut the position of the occupation and take care of the processing of one partition (correction treatment and exposure) Error. I2787226pifl The exposure apparatus of the present invention (Ex, θ is also produced by a 士 〆 〆 疋 疋 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步 同步In the 1 direction (X) upper sub-column configuration, it is possible to detect a plurality of positions in the second direction (Υ) (9) "/^丄万门^, . D 0 Λ J where the intersection with (X) is detected. γ, the correction unit (AL) for the mask (Μ) alignment substrate (ρ), and the substrate position detecting device (two sets of P yi~py 3, control switching multiple Α y y 3) In the substrate (P) field (PA1 to PA9), one of the plurality of position detections I u = - to P73 is selected 'based on the detection bit of the position detecting device (9) _ (AL) adjusting material ONT). According to the present invention, the position detecting device is disposed in the first direction of the scanning direction, and the plurality of position detecting devices are switched in accordance with the position of the substrate. That is, the health mirror is short, and it is also detected by the position detecting device used in the position detection of the county board, and the position detection is performed in one of the plurality of exposure areas. Then, by exposing the first exposure in the plurality of exposure areas In the region, the detection result by the first position detecting device is performed by the adjustment unit, and the exposure is performed after the processing, and the exposure time is adjusted by the correction unit based on the detection result of the second position detection device. The exposure can be performed on one exposure area (pattern formation area) = no switching operation of a plurality of position detecting devices is performed, and one position is measured: the position detection can be performed, so that each exposure area is used. It is possible to perform position detection and exposure 2787226ριη light processing with high precision without the switching error of the device and the clothing.
本發明的元件製造方法的特徵是:包括使用上述說明 的曝光方法或上述說明的曝光裝置(E 罩㈤㈣件圖案曝光於基板(p)之工程(2(;4f 將該曝光基板(p )顯像之工程(2 〇 4 )。 如利用本發明’可在多個曝光區域的每個分區進行高 精J的調正處理及曝光處理,所以能夠提高所製造 圖案精度。 為讓本發明之上述和其他目的、特徵、和優點能 更月㉝易It ’下文特舉—較佳實施例,並配合所附圖式, 作詳細說明如下: 【實施方式】 以下關於本發明的曝光裝置,參照圖1〜圖7逸 行說明。 囷1疋表示本叙明的曝光裝置之一實施例的概略斜視 圖’圖2是概略構成圖。 在圖1及圖2中’曝光裝置Ex具備有支援形成有圖 二之光罩Μ的光罩載物台MST、支援感綠板p的基板 載物台p st、藉由曝光光EL朗被鮮載物台mst 支援的光罩光料、統〗L、將藉由曝光光e L照 明之光罩Μ關案的像投影於基板載物台p s τ所支援的 感光基板P上之投影光學系統pL、檢測設於感光基板p 亡的調正標諸之調正系統A L。具備有檢測支援光罩_ 光罩載物台M S T在X軸方向之位置的多健射干涉儀 I27872?6pifl (=3置)Mxl’Mx2、檢測光罩載物台ms T在Y軸方向之位置的鐳射干涉儀(位置檢測裝 1、 檢測支援感光基板p的基板载物台PSTM轴方向 之位置的多個鐳射干涉儀(位置檢測裝置)p X丄p 2、 檢測基板載物台1^了0轴方向之 個^ 干涉儀(位置檢測裝置)Pyl,Py2,p^。^ 罩載物台M S T支援的光罩μ和被基板載物台p s τ支援 的感光基板Ρ,通過投影光學系統PL以共輛之位置關係 配置。照明光學系統I L有多個,本實施例為7個照明系 統模組IM(IMa〜IMg)。另外投影光學系統pL 也有與照明系統模組I Μ的數目對應的,本實施例為7個 投影光學线PL a〜PLg。各個投影光⑽統pL a 〜P L g與各個照明系統模組〗M a〜〗M g對應配置。 感光基板P是在_板(_基板)上塗敷感光飢光阻)。 有關本實施例之曝光裝置EX,為一面對曝光光EL 同步移動衫Μ和基板p -面♦行掃描曝光之掃描型 曝光裝置’在以下的說财,以投影光料統? L的光抽 方向為Z軸方向,以z軸方向的垂直方向即光罩M及感光 基板p的同步移動方向為X軸方向(第1方向,掃描方 向),以Z軸方向及X軸方向(掃描方向)的直交方向為 Y軸方向(第2方向,非掃描方向)。另外,以X軸周圍、 Y轴周圍、Z軸周圍的各個方向為θχ方向、方向、 Θ Z方向。 如圖2所示,照明光學系統I L·具備有超高壓水銀燈 46pifl 127872¾ 等構成之光源1、將從光源1射出的光束進行集光之橢圓 鏡1 a、將藉由該橢圓鏡1 a集光的光束之中曝光所需要 的波長的光束反射,並使其他波長的光束透過之分色鏡 2、在藉由分色鏡2反射的光束之中,再只使曝光所需之 波長(通常為g、h、1線中的至少^個波段)通過的 長選擇濾光H 3、將來自波長卿濾光器3的光束分支為 夕i卞,本只施例為7條,通過反射鏡5被入射各照明系 模組iMa〜IMg的料向設備4。 糸、、先 照明系統模組I Μ設有多個,在本實施例中設有ιΜ a〜I Mg 7個(但在圖2中,出於方便只對鱼昭 ;軸方向保持-定的間隔配置。然 L = ί多個照明系統模組1M a〜I Μ g的每-個射 光^ jEL ’分舰明光罩Mjl的不同小區域(昭明 先學糸統的照明區域)。 月 6 > 9。照明快門6在義的複眼透鏡8、聚光鏡 退自如配置。昭明决p^°又備4的光程下游側,對光程進 遮光,當解放“程時將來自該光程的光束 有使該照明'==對光束的遮光。照 明快門6接續 a。快門驅動^ ?束的綠進退移動之快門驅動部6 另外,在各個照明糸、丄破控制。 量調整機構10 …、、果1 Ma〜1 Mg上設有光 〇。该光量調整機構10是藉由對每光程設 20 1278722 1 1246pifl 定光束的照度來調整各光程的曝光量的,具備有半透明反 射鏡(half-mirror)l 1、檢測器(detect〇r)1 2、淚光哭工The component manufacturing method of the present invention is characterized in that it comprises an exposure method using the above-described exposure method or the above-described exposure apparatus (E-cover (5) (four) piece pattern exposure to the substrate (p) (2 (; 4f the exposed substrate (p) Engineering (2 〇 4). According to the present invention, it is possible to perform high-precision J correction processing and exposure processing in each of a plurality of exposure regions, so that the pattern precision can be improved. And other objects, features, and advantages can be described in detail below with reference to the accompanying drawings, and the following detailed description is given to the accompanying drawings: [Embodiment] Hereinafter, an exposure apparatus according to the present invention will be described with reference to the drawings. 1 to FIG. 7 is a schematic view showing an embodiment of an exposure apparatus of the present invention. FIG. 2 is a schematic configuration diagram. In FIGS. 1 and 2, the exposure apparatus Ex is provided with a support formation. The mask stage MST of the mask 图 of Fig. 2, the substrate stage p st supporting the green board p, and the mask material supported by the fresh stage mst by the exposure light EL, Will illuminate the mask by exposure light e L The projection optical system pL projected on the photosensitive substrate P supported by the substrate stage ps τ and the alignment correction system AL for detecting the correction of the photosensitive substrate p. The detection support mask _ the mask is provided. A multi-radiation interferometer I27872?6pifl (=3) Mxl'Mx2 at the position of the stage MST in the X-axis direction, and a laser interferometer for detecting the position of the reticle stage msT in the Y-axis direction (position detection device) 1. A plurality of laser interferometers (position detecting devices) for detecting the position of the substrate stage PSTM in the axial direction of the photosensitive substrate p. P X丄p 2. The substrate carrier 1 is detected in the 0-axis direction. (Position detecting device) Pyl, Py2, p^. The mask μ supported by the cover stage MST and the photosensitive substrate 支援 supported by the substrate stage ps τ are arranged in the positional relationship of the common unit by the projection optical system PL. There are a plurality of illumination optical systems IL, in this embodiment, seven illumination system modules IM (IMa~IMg). In addition, the projection optical system pL also has a number corresponding to the illumination system module I, which is 7 projections in this embodiment. Optical lines PL a to PLg. Each projection light (10) is unified from pL a to PL g and each The light system substrate P is coated on the _ plate (the substrate). The exposure device EX of the present embodiment is synchronized with the exposure light EL. The scanning type exposure apparatus of the mobile shirt Μ and the substrate p-surface ♦ line scanning exposure is described in the following. The light extraction direction of the projection light source system L is the Z-axis direction, and the vertical direction of the z-axis direction is the mask. The synchronous movement direction of M and the photosensitive substrate p is the X-axis direction (first direction, scanning direction), and the orthogonal direction of the Z-axis direction and the X-axis direction (scanning direction) is the Y-axis direction (second direction, non-scanning direction) . Further, each direction around the X-axis, around the Y-axis, and around the Z-axis is the θχ direction, the direction, and the ΘZ direction. As shown in Fig. 2, the illumination optical system IL is provided with a light source 1 such as an ultrahigh pressure mercury lamp 46pifl 1278723⁄4, an elliptical mirror 1a that collects a light beam emitted from the light source 1, and a light collected by the elliptical mirror 1a. The beam of light at the wavelength required for exposure is reflected, and the dichroic mirror 2 that transmits the beam of other wavelengths, and the wavelength of the beam reflected by the dichroic mirror 2, only the wavelength required for exposure (usually The long selection filter H 3 passing through at least one of the g, h, and 1 lines) branches the light beam from the wavelength clearing filter 3 into a 夕i卞, and the present embodiment is seven, passing through the mirror 5 The material is incident on the device 4 of each of the illumination system modules iMa to IMg.糸, the first lighting system module I Μ is provided in plurality, in the present embodiment, there are 7 ιΜ a~I Mg (but in FIG. 2, for convenience only for the fish; the axis direction is maintained - fixed Interval configuration. However, L = ί multiple lighting system modules 1M a~I Μ g each of the light ^ jEL 'different small area of the submarine bright mask Mjl (Zhaoming Xianxue lighting area). Month 6 > 9. Illumination shutter 6 in the right eye lens 8, the condenser is retracted from the configuration. Zhaoming decided to p ^ ° and the downstream side of the optical path of 4, the light path into the light, when the liberation "will be the light beam from the path The illumination is erected by the illumination '==. The illumination shutter 6 is connected to a. The shutter drive unit 6 is configured to move the shutter drive unit 6 in the green forward and backward movement. In addition, the illumination adjustment control unit 10 ..., A light is provided on the 1 Ma~1 Mg. The light amount adjusting mechanism 10 adjusts the exposure amount of each optical path by setting the illuminance of the fixed beam of 20 1278722 1 1246 pifl per optical path, and is provided with a semi-transparent mirror ( Half-mirror)l 1, detector (detect〇r) 1 2, tears crying
3、濾光器驅動部14。半透明反射鏡丄丄配置於濾&哭 1 3和中繼透鏡7之間的光程中,將透過濾光器丄':之& 束的-部分入射檢測器12。各檢測器i 2持^獨立檢測 入射之光束的照度,將檢測的照度信號輸出到控制裝置C 如圖3所示,濾光器1 3是在玻璃板1 3 a上藉由C r等以編帶狀圖案形成的,以使透過率在沿χ軸方向之範 圍内呈線形逐漸變化而形成,配置于各光程中的照明快^ 6和半透明半反射鏡11之間。 ^ 、 這些半透明半反射鏡1 1、檢測器丄2及濾光器丄3 在多個光程的每一個上分別配備設置。濾光器驅動部工4 基於控制裝置CONT的指示,在X軸方向上移動濾光器 1 3。然後,藉由利用濾光器驅動部14移動濾光器1 3, 調整各個光程的光量。 透過光量調整機構1〇的光束通過中繼透鏡7到達複 眼透鏡8。複眼透鏡8在射出面側形成二次光源,通過聚 光鏡9可藉由均勻的照度照射光罩μ的照明區域。然後, 通過聚光鏡9之曝光光在照明系統模組中,通過具備有直 角棱鏡1 6、透鏡系統1 7、凹面鏡1 8之反射折射型光 學系統後,藉由所定的照明區域照明光罩Μ。光罩μ藉由 透過照明系統模組IM a〜I Mg的各曝光光E L,以分 別照明不同的照明區域。 1278722 1 l246pifl ^支援光罩M的光罩載物台MS T具有在應進行一維掃 祂曝光之X軸方向上的長行程(str〇ke)、在與掃描方向直交 之Y軸方向上所定距離的行程。如圖2所示,光罩載物台 Ms T具備有使該光罩載物台MS T在X軸方向及γ軸方 向移動之光罩載物台驅動部Ms TD。光罩載物台驅動部 MS TD藉由控制裝置C QNT被控制。 如圖JL所示 .- 隹无罩載物台MS下上的X軸方向及γ 軸方向的各個末端邊緣,在直交之方向上分別設有移動鏡 3 2 a、3 2 b。在移動鏡3 2 a上有多個,本實施例為 ^固錯射干涉儀Μχ1、Μχ2#向配置。另外在移動鏡 2 b上對向配置有鐳射干涉儀丄。鐳射干涉儀μX j = X 2分別對移動鏡3 2 a照射鐳射光,檢測與移動 :山3的距離。錯射干涉儀Mx 1、Mx 2的檢測結果 裳置c〇NT,控制裝置c〇nt基於鍾射 :X1、Mx 2的檢測結果,求光罩載物台MS T 涉儀』:?:=5及2軸周圍的旋轉量。另外,。鐳射干 2 b的距M t動鏡3 2 b照射鐳射光,檢顺移動鏡3 « c 〇心録射干涉_y 1的檢職果被輸出到控制 後,控制裝置=^膽打軸—^ 1 T稭由從鐳射干涉儀Mx丄、Μχ 2 、,狄糾水輪出監控光罩載物台MST的位置(姿勢), 1 °又疋於所希望的位置(姿勢)。 22 1278722 1 1246pifl 透過光罩M的曝光光E L入射各個投影光學系統p l a〜P L g。投影光學系統p L a〜P L· g是將存在於光 罩M的照明區域之圖案像在感光基板p上成像,並在感光 基板的特定區域(投影區域)投影曝光圖案像的,與各照 明系統模組IMa〜I Mg對應設置。3. Filter drive unit 14. The semi-transparent mirror 丄丄 is disposed in the optical path between the filter & crying 1 3 and the relay lens 7, and passes through the portion of the filter 丄': & Each detector i 2 independently detects the illuminance of the incident beam, and outputs the detected illuminance signal to the control device C. As shown in FIG. 3, the filter 13 is on the glass plate 13a by Cr or the like. The strip-shaped pattern is formed such that the transmittance gradually changes in a linear shape in a range along the z-axis direction, and is disposed between the illumination fast in each optical path and the semi-transparent half mirror 11. ^, these translucent half mirrors 1 1 , detectors 丄 2 and filters 丄 3 are respectively provided on each of a plurality of optical paths. The filter driving unit 4 moves the filter 13 in the X-axis direction based on the instruction of the control unit CONT. Then, by moving the filter 13 by the filter driving unit 14, the amount of light of each optical path is adjusted. The light beam transmitted through the light amount adjusting mechanism 1 passes through the relay lens 7 to reach the fly-eye lens 8. The fly-eye lens 8 forms a secondary light source on the exit surface side, and the illuminating region 9 can illuminate the illumination area of the mask μ by uniform illuminance. Then, the exposure light passing through the condensing mirror 9 passes through the catadioptric optical system having the right-angle prism 16 , the lens system 17 , and the concave mirror 18 in the illumination system module, and then the mask 照明 is illuminated by the predetermined illumination region. The mask μ illuminates different illumination regions by transmitting the respective exposure lights E L of the illumination system modules IM a to I Mg . 1278722 1 l246pifl ^The reticle stage MS T supporting the mask M has a long stroke (str〇ke) in the X-axis direction in which one-dimensional scanning of the exposure should be performed, and is determined in the Y-axis direction orthogonal to the scanning direction. Distance to the itinerary. As shown in Fig. 2, the photomask stage Ms T is provided with a photomask stage drive unit Ms TD for moving the photomask stage MS T in the X-axis direction and the γ-axis direction. The reticle stage drive unit MS TD is controlled by the control unit C QNT . As shown in Fig. JL.- 各个 The end faces of the X-axis direction and the γ-axis direction on the hoodless stage MS are respectively provided with moving mirrors 3 2 a, 3 2 b in the direction of the orthogonal direction. There are a plurality of moving mirrors 3 2 a. In this embodiment, the solid-missing interferometers Μχ1 and Μχ2# are arranged. Further, a laser interferometer 配置 is disposed opposite to the moving mirror 2 b. The laser interferometer μX j = X 2 respectively irradiates the moving mirror 3 2 a with laser light, detecting and moving: the distance of the mountain 3. The detection results of the misfire interferometers Mx 1 and Mx 2 are set to c〇NT, and the control device c〇nt is based on the detection results of the clock shots: X1 and Mx 2, and the mask stage MS T is involved: ???:= The amount of rotation around the 5 and 2 axes. In addition, Laser dry 2 b from the M t moving mirror 3 2 b illuminate the laser light, check the moving mirror 3 « c 〇 heart recording interference _y 1 the inspection result is output to the control, the control device = ^ gallbladder axis - ^ 1 T straw is used to monitor the position (posture) of the reticle stage MST from the laser interferometers Mx丄, Μχ 2, and Di, and 1 ° is at the desired position (posture). 22 1278722 1 1246pifl The exposure light E L passing through the mask M is incident on each of the projection optical systems p l a to P L g . The projection optical system p L a to PL· g is an image in which the pattern image existing in the illumination region of the mask M is imaged on the photosensitive substrate p, and the exposure pattern image is projected on a specific region (projection region) of the photosensitive substrate, and each illumination The system modules IMa~I Mg are correspondingly arranged.
如圖1所示,多個投影光學系統P L a〜p L g之 中,投影光學系統P 影光學系統PLb、PLd、PL f呈2列交錯狀排列。 即,呈交錯狀配置的各投影光學系統P L a〜p l g使鄰 接之投影光學系統彼此(例如投影光學系統p L a和p l b、P L b和P L c )在Y軸方向上所定量移位元配置。 這些各投影光學系統PL a〜PL g使從照明系統模組j Ma〜I Mg射出且透過光罩Μ之多個曝光光E l透過, 在基板載物台P S T所載置的感光基板p上投影光罩M的 圖案像。即,透過各投影光學系統P L a〜p l g的曝光 光E L ’在感光基板p上的不同投影區域,將對應光罩μ 的照明區域之圖案像以所定的成像特性進行成像。 如圖2所示,各投影光學系統p l a〜P L g分別具 備有像位移裝置1 9、2組反射折射型光學系統2 1,2 2、視野光闌2 0、倍率調整裝置2 3。像位移裝置19 藉由例如2片平行平面玻璃板分別在X軸周圍或γ軸周圍 旋轉,將光罩Μ的圖案像在γ軸方向或又軸方向位移。透 過光罩Μ的曝光光E L透過像位移裝置1 9後,入射第1 組反射折射型光學系統21。 23 12787益 反射折射型光學系統21是形成光罩μ的圖案之中間 像的,具備有直角棱鏡2 4、透鏡系統2 5、凹面鏡2 6。 直角棱鏡2 4在Ζ軸周圍可旋轉自如,可使光罩μ的圖案 像旋轉。 在該中間像位置配置有視野光闌2 〇。視野光闌2 〇 是設定在感光基板Ρ上的投影區域的,在投影光學系統ρ L中對光罩Μ和感光基板ρ配置於大致共軛之位置。透過 視野光闌2 0的光束入射第2組反射折射型光學系統2 2。反射折射型光學系統2 2和反射折射型光學系統2工 同樣,具備有直角棱鏡2 7、透鏡系統28、凹面鏡29。 直角棱鏡2 7也可在ζ軸周圍旋轉自如,可使光罩“的圖 案像旋轉。 從反射折射型光⑽統2 2射出的曝光光EL通過倍 率調整裝置2 3 ’並在感絲板ρ上將光㈣的圖案像以 正像等倍成像。倍率調整裝置2 3由例如平凸透鏡、兩凸 ^鏡:平凸透獻34透鏡構成,藉由使位於平凸透鏡和 、’凹透鏡之_兩凸透鏡在2方向移動使相對位置變化, 而使光罩Μ的圖案像的倍率變化。As shown in Fig. 1, among the plurality of projection optical systems P L a to p L g , the projection optical systems P optical systems PLb, PLd, and PL f are arranged in two rows in a staggered manner. That is, each of the projection optical systems PL a to plg arranged in a staggered manner causes the adjacent projection optical systems to shift the element configuration in the Y-axis direction with respect to each other (for example, the projection optical systems p L a and plb, PL b and PL c ). . Each of the projection optical systems PL a to PL g transmits a plurality of exposure lights E l emitted from the illumination system modules j Ma to I Mg and transmitted through the mask , on the photosensitive substrate p placed on the substrate stage PST. A pattern image of the projection mask M. That is, the exposure image EB of each of the projection optical systems P L a to p l g is imaged in a different projection area on the photosensitive substrate p, and the pattern image of the illumination region corresponding to the mask μ is imaged with predetermined imaging characteristics. As shown in Fig. 2, each of the projection optical systems p l a to P L g has an image shifting device 19, two sets of catadioptric optical systems 2 1, 2 2, a field stop 20, and a magnification adjusting device 23. The image shifting device 19 rotates the pattern image of the mask Μ in the γ-axis direction or the axial direction by, for example, two parallel plane glass plates rotating around the X-axis or around the γ-axis. The exposure light E L that has passed through the mask 透过 passes through the image shifting device 19 and is incident on the first group of catadioptric optical systems 21. 23 12787E The catadioptric optical system 21 is an intermediate image of a pattern forming the mask μ, and includes a right-angle prism 24, a lens system 25, and a concave mirror 26. The right-angle prism 24 is rotatable around the x-axis, and the pattern of the mask μ can be rotated. A field stop 阑 2 配置 is arranged at the intermediate image position. The field of view 阑2 〇 is a projection area set on the photosensitive substrate ,, and the mask Μ and the photosensitive substrate ρ are disposed at substantially conjugate positions in the projection optical system ρ L . The light beam transmitted through the field of view 阑 20 is incident on the second group of catadioptric optical systems 2 2 . The catadioptric optical system 2 and the catadioptric optical system 2 are provided with a right-angle prism 27, a lens system 28, and a concave mirror 29. The right-angle prism 2 7 can also rotate freely around the x-axis to rotate the pattern image of the mask. The exposure light EL emitted from the catadioptric light (10) 2 2 passes through the magnification adjusting device 2 3 'and on the wire plate ρ The pattern image of the light (4) is imaged by a positive image. The magnification adjusting device 23 is composed of, for example, a plano-convex lens and a two-convex lens: a plano-convex lens, which is located in the plano-convex lens and the 'concave lens'. The convex lens moves in the two directions to change the relative position, and changes the magnification of the pattern image of the mask Μ.
軸方向及γ軸方向移動之基板载物台 載物台驅動部P S T D。 支援感光基板Ρ的基板载物台p s τ有 架保持感光基板Ρ。基板載物以二反A substrate stage stage drive unit P S T D that moves in the axial direction and the γ-axis direction. The substrate stage p s τ supporting the photosensitive substrate 有 holds the photosensitive substrate 有. Substrate
TfS!接,曰女夫虚、仏> 丄不尤罩载物台 T在X D。基 24 1278722 Η 246pif1 板載物台驅動部Ρ s Τ D藉由控制裝置c◦Ν τ被控制。 另外,基板載物台Ρ s Τ也可在ζ轴方向及0 χ、0 γ、 β ζ方向移動。 如圖1所示,在基板載物台P ST上的χ軸方向及丫 軸方向的各個末端邊緣,在直交的方向上分別設置移動鏡 (位置檢測裝置)34a、34b。在沿Υ軸方向延伸之 移動鏡3 4 a上對向配置有多個,本實施例為2個録射干 ν儀Ρ X1 Ρ X 2。另外’在沿X軸方向延伸之移動鏡 3 4 b上對向配置有多個,本實施例為3個鐳射干涉儀ρ yl、Py2、Py3。這裏的多個鐳射干涉儀p y工、 P y 2、P y 3分別沿X軸方向等間隔並列設置。藉由浐 動鏡3 4 3和鐳射干涉儀13:^1、13:^2構成可檢^二 基板P在X轴方向(第1方向)的位置之位置檢測裝置。 藉由移動鏡3 4 b和鐳射干涉儀p y1、p y 2、^ 構成可檢測感光基板ρ在γ軸方向(第2方向)的位=3 位置檢測裝置。騎干涉儀Ρχ1、Ρχ2分別向 = 3 4 a知射錯射光,檢測和移動鏡3 4 a的距離。梦务見 涉儀Ρ X1、Ρ X 2的檢測結果被輸出到控制裳置^^干TfS! Pick up, niece, 仏 仏 丄 丄 丄 尤 尤 T T T T T T T T T 在 在 在 在 在Base 24 1278722 Η 246pif1 The onboard stage drive unit s s Τ D is controlled by the control unit c ◦Ν τ. Further, the substrate stage Ρ s Τ can also move in the x-axis direction and in the direction of 0 χ, 0 γ, β ζ. As shown in Fig. 1, moving mirrors (position detecting means) 34a, 34b are provided in the orthogonal directions in the respective end edges of the substrate stage P ST in the x-axis direction and the z-axis direction. A plurality of moving mirrors 34a extending in the direction of the x-axis are arranged in the opposite direction, and in this embodiment, two recording dry sensors Ρ X1 Ρ X 2 are provided. Further, a plurality of moving mirrors 34b extending in the X-axis direction are disposed oppositely, and in the present embodiment, three laser interferometers ρyl, Py2, and Py3 are provided. Here, a plurality of laser interferometers p y , P y 2, and P y 3 are arranged side by side at equal intervals in the X-axis direction. The position detecting means for detecting the position of the second substrate P in the X-axis direction (first direction) is constituted by the pulsator 341 and the laser interferometers 13: 1, 1, and 1:2. The position detecting means for detecting the position of the photosensitive substrate ρ in the γ-axis direction (second direction) by the moving mirror 34b and the laser interferometers py1, py2, ^ constitutes a position detecting means. The interferometers Ρχ1 and Ρχ2 respectively detect the wrong light to = 3 4 a, and detect and move the distance of the mirror 34 4 a. Dreams see the instrument Ρ X1, Ρ X 2 test results are output to the control skirt ^ ^ dry
T,控制裝置CONT基於鐳射干涉儀p x i、ρ χ N 檢測結果,求基板载物台P 87^在又軸方向的位置^的 周圍的旋轉量。另外,鐳射干涉儀P y丄〜p y 3 軸 鏡3 4 b照射鐳射光,檢測和移動鏡3 4 b的距離動 干涉儀Py 1〜Py 3的制絲被輸㈣控财,射 NT,控制裝置C〇NT基於鐳射干涉儀p y Ί 〇 丄p y 3 25 ^278722 "246pifl 的松測結果’求基板载物台p 後,押㈣署「⑽下乂 在轴方向的位置。然T, the control unit CONT determines the amount of rotation of the substrate stage P 87^ around the position ^ in the axial direction based on the detection results of the laser interferometers p x i and ρ χ N . In addition, the laser interferometer P y 丄 py 3 axis mirror 3 4 b illuminates the laser light, and the distance between the detecting and moving mirrors 3 4 b is equal to that of the interferometer Py 1 to Py 3 (four) control money, shoot NT, control The device C〇NT is based on the laser interferometer py Ί 〇丄 py 3 25 ^ 278722 " 246 pifl loose test results 'after the substrate stage p, the (4) Department of the "(10) squat position in the axial direction.
工制衣置CONT错由從错射干涉儀ρ χ工、P (次=〜P 7 3的輸出監控基板載物台P s τ的位置 =),亚控制基域物纟轉 载物=ST設定於所希望的位置(姿勢)D而將基板 Y軸:f :控制t置C〇N丁在檢測基板载物台p st在 時按照基板載物台psT的移動,即按 置ϋ" 土板的基板載物台Ps 丁在x軸方向之位 的^干^鐳射干涉儀p y 1〜p y 3中用於位置檢測 光罩载物台驅動部MsTD基 TD藉由控制裝置C〇NT祐八二=口鶴州 A 分別獨立控制,光罩載物台 土板载物口 P S T在光罩載物台驅動部Ms TD 及基板載物台闕部P s TD各__之基礎上,可分 別獨立移動。然後,控魏置CQNT藉由-面監控光罩 載物台MST及基板载物台psT的位置一面控制兩驅動 #PSTD MSTD’可使光罩μ和感光基板p對投影 光學系統P L ’以任意的掃描速度(同步㈣速度)在X 轴方向上同步移動。 、在感光基板Ρ上投影光⑽統p L a〜p L g的投影 區域5 0 a〜5 o g分別被設定為所定形狀,本例中為梯 形形狀。如圖1所示,投影區域5 0 a、5 0 c、5 0 e、 5〇g和投影區域50b、50d、50 f在X轴方向上 對向配置另外,投影區域5 Q a〜5 Q g以使鄰接投影 26 1278722 1 1246pifl 區域的末端(交界部、接合部)彼此在γ軸方向上重合而 並列配置。然後,藉由以使投影區域5 〇 a〜5 〇 g二交 界部彼此在Y軸方向上重合而並列配置,χ軸方向的投影 區域之寬度的總計被設定得大致相等。藉此在乂軸方向掃 描曝光時的曝光量變得相等。這樣,藉由設置使利用投影 光學系統PL a〜PL g的投影區域5 ◦ a〜5 〇 g = 重合的重覆區域(接合部),可使接合部之光學像差的變 化和照度變化平滑進行。 接著’關於調正系統AL進行說明。 调正系統A L是檢測設於感光基板p上之調正標誌 (基板调正標誌)的,如圖1及圖2所示,在呈2列配置 的投影光學系統P La、PLc、PLe、PL g和投影 光學系統P L b、P L d、P L f之間與感光基板p對向 設置。調正系統AL在Y轴方向(第2方向)多個並列配 置,檢測设於感光基板P上的多個基板調正標誌。另外, 在呈2列配置的投影光學系統p La'pLc'pLe、 PLg和投影光學系統PLb、PLci、PL f之間,設 有與感光基板P相社檢_感光基板PI z軸方向之位 置的基板側自動調焦檢測系統(AIM^測系統)6 〇、與 光罩Μ相對且檢測該光罩^^在z軸方向之位置的光罩側自 動難檢測系統7 Q。各基板側a F檢測系統6 0及光罩 =AF檢測系統7 〇也在γ轴方向上多個並列配置。這 裏’多個调正系統A L、基板側A F檢測系統6 〇及光罩 A F檢測系統7 〇如圖!所示,為支架η所支援而單元 27 1278722 1 1246pifl 1匕n在3下的朗中,將被支架H所支援的A F檢測系統 、0及調正系統AL·宜稱為“調正單元,,。 圖4疋调正單元u的斜視圖 、b、 中的調正系統al、基板側af檢測系統6 晉B1偏系統7。、光罩M及感光基板P之位 mU不。這裏,目5A所示為光罩m和光罩側八? 、、、Q的位置關係’圖5B是圖4的調正單元U的 斷面圖,圖5C是從上側(+2側)觀察支援 基板載物台PST的平面圖。圖5A中所示 ^罩侧A F檢測系統7 〇相當於圖4的B - B斷面剖視 圖。 ^圖t及圖5B所示,調正系統AL (AL 1〜AL 非掃&方向即γ軸方向並列配置有多條,本實施例 光學系正系統AL卜紅6在呈2列配置的投影 姑:;、: a、PLc、pLe、PL g和投影光學系 、PLd、PL f之間,沿該投影光學系統PL· g之技衫區域5 q a〜5 〇 g的並列方向配置。 如圖5B所不,在γ軸方向多個並列之調正系統a l 1 A L 6中’ Y軸方向中央的調正系統A L 2〜a L 5 没= 又影光學系統PL (PL a〜pLg)的内侧,丫轴 方口,側的調正系統八L工、A L 6設於投影光學系統p L ^ Γ這裏,如圖5β及5c所示,多個調正系統A L、二L 6中,外側2個調正系統A ;l丄和八l 6的間 隔被設定得與感光基板?在¥軸方向的長度大致相等。另 28 1278722 1 1246pifl 5周正系統A L 1和A 方向的長度要長(在 外,如圖5 A及5B所示,外側2個 L 6的間隔被設定得比光罩;^在¥軸 光罩Μ的Y軸方向的長度以上)。 慨==在感光基板p上如圖5C所示,設咖 理的多個調正標諸(基板調正標⑹ml〜m6。 ’在:光基板p上沿γ軸方向並列有 ΐ 6,隔有間隔形成於X軸方向的egThe work clothes set CONT error is from the misalignment interferometer ρ completion, P (time = ~ P 7 3 output monitoring substrate stage P s τ position =), sub-control domain object transfer goods = ST Set to the desired position (posture) D and set the substrate Y-axis: f: control t to C〇N, in accordance with the movement of the substrate stage pST when the substrate stage pst is detected, that is, according to the setting " The substrate carrier Ps of the board is used in the position of the x-axis direction of the laser interferometer py 1 to py 3 for position detection of the reticle stage drive unit MsTD based TD by the control device C〇NT 八Two = mouth Hezhou A are independently controlled, and the reticle stage soil plate loading port PST can be separately based on the reticle stage driving part Ms TD and the substrate stage P part _ _ Move independently. Then, the control set CQNT can control the two drives #PSTD MSTD' by the surface monitoring of the position of the reticle stage MST and the substrate stage psT. The reticle μ and the photosensitive substrate p can be arbitrarily attached to the projection optical system PL ' The scanning speed (synchronous (four) speed) moves synchronously in the X-axis direction. The projection areas 5 0 a to 5 o g of the projection light (10) system p L a to p L g on the photosensitive substrate are set to a predetermined shape, and in this example, a trapezoidal shape. As shown in Fig. 1, the projection areas 5 0 a, 5 0 c, 5 0 e, 5 〇 g and the projection areas 50b, 50d, 50 f are arranged oppositely in the X-axis direction, and the projection areas 5 Q a to 5 Q g is arranged in parallel so that the ends (boundary portions, joint portions) of the adjacent projection 26 1278722 1 1246pifl region are superposed on each other in the γ-axis direction. Then, by arranging the projection regions 5 〇 a to 5 〇 g and the two overlapping portions in the Y-axis direction to be arranged in parallel, the total width of the projection regions in the x-axis direction is set to be substantially equal. Thereby, the exposure amount at the time of scanning the exposure in the x-axis direction becomes equal. Thus, by providing a repetitive region (joining portion) in which the projection regions 5 ◦ a to 5 〇g = overlap by the projection optical systems PL a to PL g are provided, the change in the optical aberration of the joint portion and the change in the illuminance can be smoothed. get on. Next, the explanation will be made regarding the adjustment system AL. The alignment system AL detects the alignment mark (substrate alignment mark) provided on the photosensitive substrate p, and as shown in FIGS. 1 and 2, the projection optical systems P La, PLc, PLe, and PL are arranged in two rows. g and the projection optical systems PL b, PL d, and PL f are disposed opposite to the photosensitive substrate p. The alignment system AL is arranged in parallel in the Y-axis direction (second direction), and detects a plurality of substrate alignment marks provided on the photosensitive substrate P. Further, between the projection optical systems p La'pLc'pLe, PLg and the projection optical systems PLb, PLci, and PL f arranged in two rows, a position is detected with the photosensitive substrate P, and the position of the photosensitive substrate in the PI z-axis direction is provided. The substrate side autofocus detection system (AIM^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Each of the substrate side a F detecting system 60 and the reticle = AF detecting system 7 〇 are also arranged in parallel in the γ-axis direction. Here, the 'multiple alignment system A L, the substrate side A F detection system 6 〇 and the mask A F detection system 7 are as shown in the figure! As shown in the figure, the unit 27 1278722 1 1246pifl 1匕n is supported by the bracket η, and the AF detection system, 0 and the correction system AL, which are supported by the bracket H, are preferably referred to as "modulation units." Fig. 4 is an oblique view of the alignment unit u, a correction system a in the b, a substrate side af detection system 6 and a B1 bias system 7. The mU of the mask M and the photosensitive substrate P are not. Here, 5A shows the positional relationship between the mask m and the mask side 八, 、, Q. FIG. 5B is a cross-sectional view of the aligning unit U of FIG. 4, and FIG. 5C is a view of the supporting substrate carrier viewed from the upper side (+2 side). A plan view of the stage PST. The cover side AF detection system 7 〇 shown in Fig. 5A corresponds to a cross-sectional view taken along line B - B of Fig. 4. Fig. t and Fig. 5B show the adjustment system AL (AL 1 to AL non-scan) The & direction, that is, a plurality of y-axis directions are arranged in parallel. In the present embodiment, the optical system positive system AL b red 6 is arranged in two rows: a, PLc, pLe, PL g and projection optics, PLd Between PL and F, it is arranged along the parallel direction of the technical shirt area 5 qa 〜5 〇g of the projection optical system PL·g. As shown in Fig. 5B, a plurality of parallel alignment systems in the γ-axis direction are aligned. 1 AL 6 'Alignment system in the center of the Y-axis direction AL 2 to a L 5 No = Inside of the shadow optical system PL (PL a to pLg), the side of the 丫 axis, the adjustment system of the side, L L, AL 6 is disposed in the projection optical system p L ^ Γ here, as shown in FIGS. 5β and 5c, among the plurality of alignment systems AL and 2 L 6 , the outer two correction systems A; the interval between the l丄 and the eight l 6 is set. It has the same length as the photosensitive substrate in the direction of the ¥ axis. The other 28 1278722 1 1246pifl 5 weeks positive system AL 1 and A direction length is long (external, as shown in Figures 5 A and 5B, the outer 2 L 6 interval It is set to be larger than the length of the mask in the Y-axis direction of the shaft mask ). ^======================================================================== Positive standard (6) ml~m6. 'In the optical substrate p, ΐ6 is arranged along the γ-axis direction, and the interval is formed in the X-axis direction.
形成有3 6個調正標14。另外,圖巾調正㈣ φ表示,但也可用十字形“+,,或箱形標諸“□,,( 本貫施例在感絲板Ρ上,對應在γ轴方向6個並歹i 之调正標誌、ml〜m6設有調正系統AL卜八^。然There are 36 correction marks 14 formed. In addition, the towel is adjusted (4) φ, but it can also be marked with a cross-shaped "+, or box-shaped" □, (the present embodiment is on the wire plate, corresponding to 6 in the γ-axis direction and 歹i The adjustment mark, ml~m6 is provided with the adjustment system AL 卜.
後,使這6個調正系統AL丄〜AL 6的每—個和調正標 遠ml〜m6的每—個成對向設定,調正系統al丄〜八 ^ 6以與調正標誌m1〜m 6的每一個對向之狀態,可同 k檢測廷些調正標i〜m 6的每一個。即,本實施例 基於在感光基板p上形成的調正標誌m i〜m 6的配置 (間隔),設定調正系統入1^1〜入]16的配置(間隔)。 如圖4及圖5B所示,在調正系統A L丄〜a L 6的 X軸方向兩側設有多個基板側AF檢測系統6 〇 ( 6 〇 a 〜60g)。在本實施例中,基板側AF檢測系統設有7 個60a〜6〇g。基板側aF檢測系統6 0 a〜6 〇 g 設於與基板載物台p S τ所支援的感光基板p對向之位 置’为別檢測感光基板p在曝光面的直交方向,即在Z轴 方向的位置。多個基板側AF檢測系統6 0 a〜6 〇 g 29 I2787226pm 中 ’ A F 檢測系統60a、60b、60d、60f、6 0 g在Y軸方向並列配置,同時A F檢測系統6 0 c、6 0 e在Y軸方向並列配置。而且這2列aF檢測系統6 Ο a、6 0 b、6 0 d、6 0 f、6 0 g 和 A F 檢測系統 6 0 c、6 0 e將調正系統A L (AL1〜AL6)挾持配 置。 多個基板側AF檢測系統6 0 a〜6 0 g中,Y軸方 向中央的基板側AF檢測系統6 0 b〜6 0 f設於投影光 學系統P L (P L a〜P L g)的内側,Y軸方向兩侧的 基板A F檢測系統6 0 a、6 0 g設於投影光學系統P L (PLa〜PLg)的外側。這裏,外側的基板側a F檢 測系統6 0 a、6 0 g的每一個,與多個調正系統A L1 〜A L 6中外側2個調正系統A L 1、A L 6的每一個鄰 接配置。外側2個基板侧AF檢測系統6 0 a、6 0 g的 間隔也被設定得與感光基板p的γ軸方向的長度大致相 等。另外,設於投影光學系統P L的内侧之基板侧A F檢 測系統6 0 b〜6 0 f呈2列交錯狀排列,在Y軸方向大 致等間隔設置。 基板側A F檢測系統6 0 a〜6 0 g的各個檢測結果 被輸出到控制裝置CONT,控制裝置CONT基於基板 側A F檢測系統6 0 a〜6 0 g的檢測結果,求感光基板 P在Z軸方向的位置。另外,基板侧A F檢測系統6 〇 a 〜6 0 g分別2維配置於X軸方向及Y軸方向,所以控制 裝置CONT基於多個基板側AF檢測系統6 〇 a〜6 〇 30 1278722 1 1246pifl g的檢測結果’可械絲板?在絲關方向及γ轴周 圍方向的姿勢。控制裝置C〇NT基於求得的在ζ軸方^ 之位置及在X軸、γ軸周圍方向之姿勢,驅動基板載物么 驅動部P S TD,並進行感光基板?在2軸方向之位置白口勺 調正及在X轴、γ軸周圍方向之姿勢的調正,即校平調正。 如圖4及圖5Α所示,調正單元υ上設有多個光 AF檢測系統7〇 (7〇a〜7〇d)。在本實施例中: 设有4個光罩侧AF檢測系統7 〇 a〜7 〇 d。光罩側a F檢測系統7 Q a〜7 Q d設於光罩載物台Ms τ所支援 =罩Μ的對向之位置,分別檢測與光罩Μ的圖案形成面 /父之方向’即在Ζ軸方向的位置。多個光罩側Af檢測 ^統7^a〜7◦d的每-個在γ軸方向上等間隔並列配 置。這晨如圖5 A所示,光罩側a F檢測系統7 〇 a〜7 〇cm^^_^L(pLa〜pLg)_^ ^:::二罩側八^^檢測系統”卜了㈤的間隔被設 疋侍與光罩Μ在Y軸方向的長度大致相等。 >圖6是調正系統aL工的概略構成圖。另外,其他的 ,正糸統AL2〜AL6也為與調正系統ali相同之構 成。 如=所示,調正系統A L工具備有由射出檢測用檢 ’屮ίίΐ燈構成的調正用光源81、由將從光源81射 $!Γ:ίΐ向中繼透鏡8 3之光纖構成的光導向設備8 4透鏡83之光程下游側的半透明半反射鏡8 4”又於+翻半反射鏡84和檢觸件即感光基板ρ(調 1278722 1 1246pifl 正標誌ml〜m6)之間,將通過半透明半反射鏡8 4之 檢測光照射於感光基板P上的物鏡8 5、藉由檢測光的照 射使在感光基板P(調正標諸)產生之反射光通過半透明 半反射鏡8 4被導向之.偏轉反射鏡8 6、將來自偏轉反射 鏡8 6的反射光進行分支之分光鏡(分支裝置)8 7、藉 由分光鏡8 7被分支的2支光束其巾的—支光权射^ . 倍率調正受光系統8 8、另-支絲人狀高鲜調衫 - 光系統8 9。低倍率調正受光系統8 8具有低倍率透鏡系 統8 8A和低倍用攝像元件(CCD) 88B,可以所定 鲁 的精度計測感光基板P上的大範圍區域。高倍率調正受光 系統8 9具有高倍料鏡純8 9A和高倍用攝像元件 (CD) 89B,可以南精度計測感光基板p的狹窄區 “ 域。這些低倍率調正受光系統88A和高倍率調正受光彡 8 B在同軸配置。而且,藉由調正用檢測光對感光基 板P (基板調正標誌)的照射而產生的光(反射光),被 低L率„周正叉光系統8 8和高倍率調正受光系統8 9分別 受光。 、”似口率调正文光系統8 8基於來自藉由調正用檢測光 被照射之感光基板p的大範圍區域的光資訊,進行以粗精 度,測調正標諸ml(m2〜m6)的位置資訊之探測調 - 正處理。另一方面,高倍率調正受光系統8 9基於來自藉 - 由調正用檢測光被照射之感光基板P的狹窄區域的光^ 進行以高精度檢測調正標誌ml (m2〜m6)的位 置賁訊之精密調正處理。低倍率調正受光系統8 8及高倍 32 Π78722 "246pif 1 二调正受光系統8 9分別向控制裝置⑶N T輸出受光信 =控制裝置⑶^^基於調正受光系統8 8、8 9各個 光信號進行圖像處理,求標誌位置:#訊。這裏,二制 j C Ο Ν Τ參照藉由低倍率調正受光系統8 8的探測調 =理結果,進行藉由高倍率調正受光系統8 9的精密調 正處理。 田藉由凋正系統A L求標誌位置資訊時,可藉由圖像 =理從標钟邊緣資訊求標認位置。另外,作為求標誌、位 的方法也可使用圖形比對(matching)法。即,控制裝置c 〇NT接續有圮憶樣板圖像的記憶裝置(不圖示),藉由 ,形比對求與樣板(template)一致之圖案的座標(在載^台 ,移動坐標系統的位置)。控制裝置c〇NT用該座標值 ,接合曝光時和重合曝光時所生成的偏離量,在下次以後 的曝,時藉由給基板載物台驅動部P S TD以修正參數, 而提高位置吻合精度。 在上述調正系統AL1(AL2〜AL6)中,光源 8 ^、光導向設備8 2及中繼透鏡系統8 3構成調正系統 的达光糸統,分光鏡8 7、低倍率調正受光系統8 8及高 倍率調正受光系統8 9構成調正系統 光源“可為設於多個調正系統川〜二:二固 之構成,也可為將從i射出的光藉由多個 向設備(光纖)82分支、並將該分支的多支光向調正系 統A ^ 1〜A L 6分別供給之構成。調正用檢測光對感光 基板的光阻為非感光性最為理想,可為在_81和感 33 1278722 光基板P之間的光程上,設置切除由鹵素燈構成的光源8 1射出的光(白色光)中特定波長的光之濾光器的構成。 圖7是表示基板側A F檢測系統6 〇 a的概略構成 圖。另外,其他的基板側A F檢測系統6 〇 b〜6 0 g及 光罩側A F檢測系統7 0 a〜7 0 d也和A F檢測系統6 0 a為同樣的構成。 _ 如圖7所示,AF檢測系統β 〇 a具備有由射出AF - 用檢測光之L E D構成的A F用光源6 1、使從光源6 1 射出的檢測光入射之送光透鏡系統62、將通過送光透鏡 鲁 系統6 2的光從傾斜方向導向檢測物件即感光基板(或光 罩M)之反射鏡6 3、基於通過反射鏡6 3所照射的檢測 光,將感光基板P (或光罩M)所產生的反射光導向受% ‘ 系統6 5之反射鏡6 4、將通過受光系統6 5的光進行$ 光之攝像兀件(CCD) 6 6。送光透鏡系統62將檢測 光整形為例如縫隙狀後照射感光基板p。這裏,After that, each of the six correction systems AL丄~AL6 and each of the adjustment marks are set in the opposite direction of the ml~m6, and the adjustment system a丄~8^6 is used to adjust the mark m1. Each of the opposite states of ~m 6 can be used to detect each of the calibration flags i~m 6 . In other words, in the present embodiment, the arrangement (interval) of the alignment system is set to 1 to 1 based on the arrangement (interval) of the alignment marks m i to m 6 formed on the photosensitive substrate p. As shown in Fig. 4 and Fig. 5B, a plurality of substrate-side AF detecting systems 6 〇 (6 〇 a to 60 g) are provided on both sides of the alignment system A L 丄 to a L 6 in the X-axis direction. In the present embodiment, the substrate side AF detecting system is provided with seven 60a to 6〇g. The substrate-side aF detecting system 6 0 a to 6 〇g is disposed at a position opposite to the photosensitive substrate p supported by the substrate stage p S τ 'to detect the orthogonal direction of the photosensitive substrate p on the exposure surface, that is, in the Z-axis The position of the direction. Multiple substrate side AF detection systems 6 0 a~6 〇g 29 I2787226pm The 'AF detection systems 60a, 60b, 60d, 60f, 60 g are arranged side by side in the Y-axis direction, while the AF detection system 6 0 c, 6 0 e Arranged side by side in the Y-axis direction. Moreover, the two columns of aF detection systems 6 Ο a, 60 b, 60 d, 60 f, 60 g, and A F detection systems 6 0 c, 60 0 e will adjust the system A L (AL1 to AL6). In the plurality of substrate-side AF detecting systems 6 0 to 600 g, the substrate-side AF detecting systems 6 0 b to 60 f at the center in the Y-axis direction are provided inside the projection optical system PL (PL a to PL g ), Y The substrate AF detecting systems 6 0 a and 60 0 g on both sides in the axial direction are provided outside the projection optical system PL (PLa to PLg). Here, each of the outer substrate side a F detecting systems 6 0 a and 60 g is disposed adjacent to each of the outer two correcting systems A L 1 and A L 6 of the plurality of correcting systems A L1 to A L 6 . The interval between the outer two substrate-side AF detecting systems 6 0 a and 60 g is also set to be substantially equal to the length of the photosensitive substrate p in the γ-axis direction. Further, the substrate-side A F detecting systems 6 0 to 60 f provided on the inner side of the projection optical system P L are arranged in two rows in a staggered manner, and are arranged at substantially equal intervals in the Y-axis direction. The respective detection results of the substrate side AF detecting system 6 0 a to 6 0 g are output to the control device CONT, and the control device CONT determines the photosensitive substrate P in the Z axis based on the detection result of the substrate side AF detecting system 6 0 to 600 g. The position of the direction. Further, since the substrate-side AF detecting systems 6 〇a to 650 are arranged two-dimensionally in the X-axis direction and the Y-axis direction, the control device CONT is based on the plurality of substrate-side AF detecting systems 6 〇a to 6 〇 30 1278722 1 1246pifl g The test result 'mechanical silk board? The posture in the direction of the wire closing and the direction around the γ axis. The control device C〇NT drives the substrate carrier driving portion P S TD based on the obtained position at the x-axis and the direction around the X-axis and the γ-axis, and performs the photosensitive substrate. At the position of the 2-axis direction, the white-mouth spoon is adjusted and the adjustment of the posture around the X-axis and the γ-axis is corrected. As shown in Fig. 4 and Fig. 5A, a plurality of light AF detecting systems 7A (7〇a to 7〇d) are provided on the adjusting unit υ. In the present embodiment: four mask side AF detecting systems 7 〇 a to 7 〇 d are provided. The mask side a F detecting system 7 Q a to 7 Q d is provided at a position where the mask holder Ms τ supports the opposite direction of the mask, and detects the pattern forming surface/father direction of the mask ', that is, The position in the direction of the x-axis. Each of the plurality of mask side Af detection systems 7^a to 7◦d is arranged side by side at equal intervals in the γ-axis direction. This morning, as shown in Fig. 5A, the mask side a F detection system 7 〇a~7 〇cm^^_^L(pLa~pLg)_^ ^::: two cover side eight ^^ detection system" The interval between (5) is set to be approximately equal to the length of the mask Μ in the Y-axis direction. > Figure 6 is a schematic configuration diagram of the adjustment system aL. In addition, other, the Orthodox AL2 to AL6 are also adjusted. The configuration of the positive system ali is the same. As shown by =, the correction system AL tool is provided with a modulating light source 81 composed of an emission detection test 屮 ΐ ί ΐ 、 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The light guiding device 8 of the optical fiber of the lens 83 has a translucent half mirror 8 4" on the downstream side of the optical path of the lens 83. The + half mirror 84 and the contact member, that is, the photosensitive substrate ρ (adjusted 1277822 1 1246pifl Between the marks ml to m6), the detection light that has passed through the translucent half mirror 84 is irradiated onto the objective lens 85 on the photosensitive substrate P, and the photosensitive substrate P (corrected standard) is generated by the irradiation of the detection light. The reflected light is guided through the translucent half mirror 84. The deflecting mirror 86, the beam splitter (branch device) that branches the reflected light from the deflecting mirror 86, borrows The two beams branched by the beam splitter 81 have a light-weighting control of the towel. The magnification is adjusted by the light receiving system 8 8 and the other is a wire-shaped high-profile shirt - the optical system 8 9 . The low magnification adjustment light receiving system 8 8 has a low magnification lens system 8 8A and a low magnification imaging element (CCD) 88B, and can measure a wide area on the photosensitive substrate P with a predetermined accuracy. The high-magnification-adjusting light-receiving system 8 9 has a high-magnification lens pure 8 9A and a high-magnification imaging element (CD) 89B, which can measure the narrow region of the photosensitive substrate p in the south precision. These low-magnification adjustment light receiving systems 88A and high magnification adjustment The light received by the light beam 8 B is disposed coaxially. Moreover, the light (reflected light) generated by the irradiation of the photosensitive substrate P (substrate alignment mark) by the detection light is adjusted to be low L rate „周正叉光系统8 8 And the high-magnification adjustment light receiving system 8 9 receives light respectively. "The tone-like tone-modulating system 8 8 is based on the light information from the wide-area region of the photosensitive substrate p irradiated with the detection light by the correction, and the coarse-precision measurement is performed on the ml (m2 to m6) On the other hand, the high-magnification-adjusting light-receiving system 8 is based on the light from the narrow region of the photosensitive substrate P irradiated with the detection light by the correction. The position of the positive mark ml (m2~m6) is precisely adjusted. The low magnification adjustment light receiving system 8 8 and the high magnification 32 Π78722 "246pif 1 two-tone positive light receiving system 8 9 respectively output the light receiving signal to the control device (3) N T = control device (3) ^ ^ based on the adjustment of the light receiving system 8 8 , 8 9 each optical signal for image processing, to find the mark position: # 信号. Here, the second system j C Ο Τ Τ reference by low magnification adjustment light receiving system 8 The detection result of 8 is adjusted, and the precise adjustment processing of the light receiving system 8 9 is performed by the high magnification. When the field is used to determine the position information by the AL system, the image information can be corrected by the image= Find the position of the mark. In addition, as a method of seeking marks and bits A graphics matching method can be used. That is, the control device c 〇 NT continues the memory device (not shown) with the image of the template, by the shape of the coordinates of the pattern matching the template. (At the position of the loading coordinate system, the position of the coordinate system is moved.) The control device c〇NT uses the coordinate value to engage the amount of deviation generated during the exposure and the coincident exposure, and the substrate stage is provided by the next exposure. The driving unit PS TD improves the positional matching accuracy by correcting the parameters. In the above-mentioned correction system AL1 (AL2 to AL6), the light source 8^, the light guiding device 8 2 and the relay lens system 8 3 constitute the light of the alignment system.糸,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The light emitted from i may be branched by a plurality of devices (fibers) 82, and the plurality of branches of the light may be supplied to the alignment systems A^1 to AL6, respectively. It is preferable that the detection light for the photosensitive substrate is non-photosensitive to be non-photosensitive, and the light emitted from the light source 81 formed of a halogen lamp may be provided on the optical path between the _81 and the sensation 33 1278722 optical substrate P. The configuration of a filter of light of a specific wavelength in (white light). Fig. 7 is a schematic block diagram showing the substrate side A F detecting system 6 〇 a. Further, the other substrate side A F detecting systems 6 〇 b to 60 g and the mask side A F detecting systems 7 0 a to 7 0 d have the same configuration as the A F detecting system 60 a. As shown in Fig. 7, the AF detection system β 〇a includes an AF light source 61 that is configured by an LED that emits AF-detecting light, and a light-emitting lens system 62 that causes the detection light emitted from the light source 61 to enter. The light passing through the light-receiving lens system 6 2 is guided from the oblique direction to the mirror 63 of the photosensitive substrate (or the mask M), and the photosensitive substrate P (or the light is irradiated based on the detection light irradiated by the mirror 63). The reflected light generated by the cover M) is guided by the mirror 64 of the % 'system 65 and the light-carrying element (CCD) 6 6 is passed through the light of the light receiving system 65. The light-transmitting lens system 62 shapes the detection light into, for example, a slit shape and irradiates the photosensitive substrate p. Here,
局以倍(例如1〇倍)時, 移位ΔΖ可以N倍(1 ◦倍)_度檢^ …1 v置A乙。這裏, 射面向射出面側的倍率被設定 攝像元件6 6對感光基板p的 34 1278722 1 1246pifl 在上述AF檢測系統6〇a (6〇b〜6〇g、7〇 a〜7 0 d)巾,光源6 1、送光透⑽統6 2及反射鏡 6 3構成A F檢測系統的送光系統,反射鏡6 4、受光透 鏡系統6 5及攝像元件6 6構成aF檢測系統的受光系 統。另外’ S源6 1可為設於多個a F檢測統6 〇 a〜6 Og (7〇a〜7Qd)的每-個之構成,也可為將從工 個光源6 1射出的光藉由多個光導向設備(光纖)分支、 並將該分支的多支光向多個A F线供給之構成。A f用 檢測光也是賴絲板P的光阻為祕紐最為理想,可 為在光源6 1和感光基板p<_絲上,設置切^光源 Θ 1射出的光中特定波長的光之濾光器的構成。〃彳’、 然而,本實施例中的調正系統AL為偏離中心線方 式,在進行調正處理時,光罩M和基板調正系統^的相 對位置即祕量被制。以下,_基線計射法進行說 明0 如圖1、圖2及圖5A、B、C所示,光罩Μ上設有基 線計測用的標諸(光罩側Α ;[ s標誌、)9 〇,基板載物台 P ST上設有具備基線計測用的標誌(基板側a〗s標誌) 9 1之基準構件9 2。基板侧a I s標誌9 1在Z軸方向 的形成位置(高度)被設定得與感光基板p的表面(曝^ =)略一致。另外光罩側A丨s標誌9 〇以對光罩1^的特 疋位置(例如中心位置)之所定的位置關係而被設置。光 罩側A I S標誌9 0和基板側A ;[ s標誌9 1相對應,分 別在Y軸方向多個並列設置。如圖2所示,在基準構件9 1278722 H246pifi 4具備有透鏡系統9 5 中。A I Sf光系統9 攝像元件(c c D ) 9 6 :、义透鏡系、統9 5的光受光之 接著,一面參照圖8a、b、 >如圖8 A所示,基_基線計測程式。 石又於基板载物台p S 双測系統6 0檢測與具有 件9 2之間的距離,;標朗的基準構 具有光罩側A I S標誌9 〇的檢測系統7 〇檢測與 置C〇N T基於基板側A F f M之間的距離。控制裝 測系統7 Q各個的檢測a果*…Μ Q及光罩側A F檢 距離(步驟SA1)。、° ,求光罩乂和基準構件9 2的 此日守,支援光罩Μ之光i 射干涉儀MX1、Μχ2 ^载物台MST的位置藉由鐳 ST的位置藉由鐳射干涉儀1被檢測’基板载物台p 測。也就是說,光_ ( 二=、f y 1被檢 涉儀μ y 1,_載物台p s M S T )糟由鐘射干 p”、Py3的任一個都可檢 接著,如圖8B所示,方向座 自動調光顯示(TTL·)方^衣CONT藉由所謂的 _A I S標諸9 〇和基板栽物,測光罩 91,並基於該檢測結果求井 々A1S標誌 相對位置(步驟SA2)。 和基板載物台PST的 具體來說’控織置CQNT祕光罩餘台 1278722 1 1246pifl 及基板载物台p s T以藉由攝像元件9 6使光罩側A I S 標誌9 0的像和基板側A I S標誌9 1的像一致,並藉由 照明光學系統1 L照明光罩Μ的光罩側A I S標誌9 0。 通過光罩Μ的照明光(曝光光)在通過投影光學系統p l 的同時通過基板側A I s標誌9 1,並被導向攝像元件9 6 '廷裏,控制裝置c〇NT基於藉由步驟SA 1所求得 · 的光罩Μ和基準構件g 2的距離,調整基板載物台p s T " 在Z軸方向的位置和投影光學系統p l的像特性,並使光 罩側A I s標誌9 〇及基板側a I S標誌9 1各個的像藉 · 由攝像元件96而成像(聚焦)。此時,支援光罩M之光 罩載物台MS T的位置藉由!f軒涉儀Μχ丨、Μχ 2、When the board is multiplied (for example, 1〇), the shift ΔΖ can be N times (1 ◦ times) _ degree check ^ 1 1 set A B. Here, the magnification of the surface facing the emission surface side is set to the imaging element 6 to the photosensitive substrate p 34 1278722 1 1246pifl in the AF detection system 6〇a (6〇b~6〇g, 7〇a~7 0d) The light source 61, the light transmitting and transmitting unit (6), and the mirror 63 constitute a light transmitting system of the AF detecting system, and the mirror 64, the light receiving lens system 65, and the image sensor 66 constitute a light receiving system of the aF detecting system. Further, the 'S source 6 1 may be configured for each of a plurality of a F detection systems 6 〇a to 6 Og (7〇a to 7Qd), or may be borrowed from the light emitted from the work source 6 1 . A plurality of light guiding devices (optical fibers) are branched, and a plurality of branches of the light are supplied to a plurality of AF lines. The detection light of A f is also the ideal for the photoresist of the ray plate P, and it is possible to set the filter of the specific wavelength of the light emitted from the light source Θ 1 on the light source 61 and the photosensitive substrate p< The composition of the light. 〃彳', however, the alignment system AL in the present embodiment is off-centerline, and the relative position of the mask M and the substrate alignment system, i.e., the secret amount, is produced when the alignment process is performed. Hereinafter, the _baseline measurement method will be described. As shown in Fig. 1, Fig. 2, and Figs. 5A, B, and C, the mask is provided with a mark for baseline measurement (mask side Α; [s mark,) 9 〇, the substrate stage P ST is provided with a reference member 9 2 having a mark for the base line measurement (substrate side a s mark) 9 1 . The formation position (height) of the substrate side a I s mark 91 in the Z-axis direction is set to slightly coincide with the surface (exposure =) of the photosensitive substrate p. Further, the reticle side A 丨 s mark 9 〇 is provided in a predetermined positional relationship with respect to the characteristic position (for example, the center position) of the reticle 1 . The mask side A I S mark 90 and the substrate side A; [s flag 9 1 correspond to each other, and are arranged in parallel in the Y-axis direction. As shown in FIG. 2, the reference member 9 1278722 H246pifi 4 is provided with a lens system 9 5 . A I Sf optical system 9 imaging element (c c D ) 9 6 : The light of the lens system and the system 9 is received by light. Next, referring to Figs. 8a, b, > as shown in Fig. 8A, the base-baseline measurement program. The stone is detected on the substrate stage p S double measuring system 60 and has a distance between the parts 92; the reference frame of the standard has a mask side AIS mark 9 〇 detection system 7 〇 detection and setting C〇NT Based on the distance between the substrate sides AF f M . Each of the detections of the control system 7 Q detects a fruit *...Μ Q and the mask side A F detection distance (step SA1). , °, the mask 乂 and the reference member 9.2 of this day, support the ray of the light i 干涉 干涉 MX ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Detect 'substrate stage p test. That is to say, light _ (two =, fy 1 is checked by the instrument μ y 1, _ stage ps MST) can be detected by any of the clock shot dry p", Py3, as shown in Figure 8B, the direction The automatic dimming display (TTL·) is used to mark the relative position of the well A1S mark based on the detection result by the so-called _AIS mark 9 〇 and the substrate load, and the relative position of the well A1S mark (step SA2). Specifically, the substrate stage PST 'controls the woven CQNT secret mask 1278722 1 1246pifl and the substrate stage ps T to make the reticle side AIS mark 90 image and the substrate side AIS by the image pickup element 96 The image of the mark 9 1 is identical, and the reticle side AIS mark 90 of the mask 照明 is illuminated by the illumination optical system 1 L. The illumination light (exposure light) passing through the mask 通过 passes through the substrate side while passing through the projection optical system pl The AI s flag 911 is directed to the imaging element 9 6 'Tingri, and the control device c〇NT adjusts the substrate stage ps based on the distance between the mask Μ and the reference member g 2 obtained by the step SA 1 T " position in the Z-axis direction and image characteristics of the projection optical system pl, and the reticle side AI s mark 9 〇 and the substrate a I S flag 91 by the respective image-imaged (focused) by the imaging device 96. At this time, the light shield support of the loading position of the mask M by the station MS T! F Hin interferometer Μχ Shu, Μχ 2,
My 1被檢測,基板載物台p s τ的位置藉由鐳射干涉儀 .My 1 is detected and the position of the substrate stage p s τ is by a laser interferometer.
Pxl、px2、pyi被檢測。另外,使用曝光光藉由 攝像元件96將A I S標諸9〇、9工攝像時,為了在攝 像件9 6上得到最適的光量(照度),可驅動例如照明 光學系統I L内的濾光器13。 、 接著,如圖8C所示,控制裝置C〇NT移動基板載 物台P S T,並使基板載物台P s τ的A J s 調=統AL的計測區域中心(具體地說是設于;j:測區域 的指標標誌)一致,藉由鐳射干涉儀13 χ丄、p X 2、p · y 1檢測此時的基板載物台p s τ的位置(步驟s a 3 )。 , 從藉由步驟SA 2及步驟SA3所求得之利用錯射干 涉儀的載物台位置檢測結果,可求光罩辦調正系、^L 的相對位置喊《。絲,基於所求得之基 37 1278722 1 1246pif1 隔所定時間光柄刪進行’也可每 所定批數進行。可—_母天♦)及補先設定的 攝像元件9 6進行攝像一 =^標則Q、9 1藉由 τ Q n τ 冢 面驅動投影光學系統PL (Ρ 作位歸置1 9、倍率調整裝置2 3及 學系裝置的直肖棱鏡24、2 7,並調整投影光 予^〜P L g各個的位移、定標及旋轉等像特性。 者,藉由有上述之調正系統A:L的曝光裝置Ex, ^二,周正鮮Μ和感光基板ρ的方法及將光罩㈣圖案在 =基板Ρ進行曝光的方法進行制。本實施例是如圖9 不’在感光基板Ρ上設定9個圖案形成區域(曝光區域) —Α1〜ΡΑ9,對這些圖案形成區域pA1〜ρΑ9的 ,一個進行曝光處理並形成元件的。這裏,多個圖案形成 區域ΡΑ1〜ΡΑ9中,圖案形成區域PA1〜ΡΑ3在 γ軸方向(第2方向)上3個並列設定,圖案形成區域ρ A 4〜ΡΑ6在Υ軸方向上3個並列設定,圖案形成區域 PA7〜PA9在Y軸方向上3個並列設定。 圖案形成區域PA 1〜pa 9的每一個,在X軸方向 的大小被設定得大於γ軸方向。而且,在γ軸方向上並列 的多個調正標誌m1〜m 6中,調正標誌m1〜m 6各個 的間隔被預先設定,以使調正標誌ml、m2配置于圖案 形成區域PA3、PA6、ΡΑ9,調正標該m 3、m 4 38 I27872246pifi 配置于圖案形成區域PA2、PA5、PA8,調正標誌、 m5、m6配置于圖案形成區域PA1、PA4、PA7。 在Y轴方向上並列的調正標諸m1〜m 6藉由在X軸方向 上隔有預先設定的間隔配置,在圖案形成區域pA 3、p A 6、P A 9之每一個的四角配置調正標誌瓜1、m 2, 在圖案形成區域PA2、PA5、PA8之每一個的四角 配置調正標誌m 3、m 4,在圖案形成區域p a 1、p a 4、PA9之每一個的四角配置調正標誌m5、m6。 這裏,在以下的說明中,酌情將在γ軸方向並列的圖 案形成區域PA1〜PA3稱為“分區BR1” ,將圖案 形成區域PA4〜ΡΑΘ稱為“分區BR2” ,將圖案形 成區域PA7〜PA9稱為“分區BR3” 。因此感光基Pxl, px2, pyi are detected. Further, when the AIS is indexed by the image pickup device 96 using the exposure light, the optimum light amount (illuminance) is obtained on the image pickup unit 96, and the filter 13 in the illumination optical system IL can be driven, for example. . Then, as shown in FIG. 8C, the control device C〇NT moves the substrate stage PST, and adjusts the AJ s of the substrate stage P s τ to the center of the measurement area of the AL (specifically, set at j; The indicator flag of the measurement area is identical, and the position of the substrate stage ps τ at this time is detected by the laser interferometers 13 χ丄, p X 2, p · y 1 (step sa 3 ). From the result of the position detection of the stage using the misalignment interferometer obtained by the steps SA 2 and SA3, the relative position of the photomask can be determined. Silk, based on the obtained basis 37 1278722 1 1246pif1. - _ 母 ♦ ♦ and the camera element set in the first setting 9 6 to perform imaging = ^ standard Q, 9 1 by τ Q n τ 冢 drive projection optical system PL (Ρ position placement 19, magnification Adjusting the device 2 3 and the straight oscillating prisms 24 and 27 of the faculty device, and adjusting the image characteristics of the displacement, scaling, and rotation of the projection light to the pl to the PL g. By the above-described correction system A: L exposure device Ex, ^2, Zhou Zhengxian and the photosensitive substrate ρ method and the method of exposing the mask (four) pattern to the = substrate 。. This embodiment is not set as shown in Fig. 9 on the photosensitive substrate Ρ Nine pattern forming regions (exposure regions) - Α1 to ΡΑ9, one of which is subjected to exposure processing and forming elements for the pattern forming regions pA1 to ρ9. Here, among the plurality of pattern forming regions ΡΑ1 to ΡΑ9, the pattern forming regions PA1 to ΡΑ3 is set in parallel in the γ-axis direction (second direction), and the pattern forming regions ρ A 4 to ΡΑ6 are arranged in parallel in the z-axis direction, and the pattern forming regions PA7 to PA9 are arranged in parallel in the Y-axis direction. Each of the pattern forming regions PA 1 to pa 9 in the X-axis direction The size is set to be larger than the γ-axis direction. Further, among the plurality of alignment marks m1 to m6 arranged in the γ-axis direction, the intervals of the alignment marks m1 to m6 are set in advance so that the alignment marks ml, M2 is disposed in the pattern forming regions PA3, PA6, and ΡΑ9, and the m3 and m4 38 I27872246pifi are disposed in the pattern forming regions PA2, PA5, and PA8, and the alignment marks, m5, and m6 are disposed in the pattern forming regions PA1 and PA4. PA7. The alignment marks m1 to m6 juxtaposed in the Y-axis direction are arranged at a predetermined interval in the X-axis direction, and are at the four corners of each of the pattern forming regions pA 3, p A 6 , and PA 9 The alignment marks melon 1 and m 2 are arranged, and the alignment marks m 3 and m 4 are arranged at the four corners of each of the pattern forming regions PA2, PA5, and PA8, and the four corners of each of the pattern forming regions pa 1 , pa 4 , and PA 9 are disposed. The alignment marks m5 and m6 are arranged. Here, in the following description, the pattern formation areas PA1 to PA3 arranged in the γ-axis direction are referred to as "partition BR1" and the pattern formation areas PA4 to ΡΑΘ are referred to as "partition BR2" as appropriate. The pattern forming regions PA7 to PA9 are referred to as "partition BR3". Photosensitive groups
板P被設定為關於X軸方向分割的3個分區bri、Βί 2、B R 3。而且,在X軸方向並列的|雷射干涉儀p y] 〜Py3的配置(間隔),在感光基板p上與在χ軸方# 並列的多個分區BR1、BR2、BR3對應設定。即,The board P is set to three partitions bri, Βί 2, and B R 3 divided in the X-axis direction. Further, the arrangement (interval) of the |laser interferometers p y] to Py3 arranged in the X-axis direction is set corresponding to the plurality of sections BR1, BR2, and BR3 arranged in parallel with the χ-axis side # on the photosensitive substrate p. which is,
f射:,Pyl〜Py3的間隔按關案形成區域P; D4、PA7在x轴方向的長度被設另外,# ==;,移動鏡3 4 _軸方向的長度: ==在X轴方向的長度短,移動鏡3 — C、D〜圖 1 5 A、B、C、 面關於調正處理程式及曝 以下一面參照圖1 0A、B、 D及圖16、圖17的流程圖_ 光處理程式進行說明。 39 1278722 1 1246pif1 如利用圖8A、B、C所述地進行基線計測後,如圖1 〇 A所示,控微置⑶NT移動基板載物台pST,並 使設於感光基板P的從—χ侧開始之第i列的調正標認瓜 1〜m 6的每-個和調正系統A L丄〜A L 6的每一個相 S。如上所述’本實施例基於在感光基板P形成的調正 “也1〜m6的配置(間隔),設定調正系統AL1〜 A丄6的配置(間隔)。然後,控制裝置_τ將此時 物台p ST在x軸方向及0 z方向的位置利用鐳 乎儀=義px1、px 2進行檢測,同時選擇多個鐳射干 二八σ yl〜Py3中與圖案形成區域pA丄〜PA3 翁^1)對應之…鐘射干涉儀p y 1,並將基板 ° 了在¥軸方向的位置用鐳射干涉儀P y i進行 tf向^鐘射干涉儀P 7 2、P y 3不和移動鏡3 4 _板载物ίΡ3:=〇ΝΤ-面藉由騎干涉儀檢 Δ T . ST的位置,一面以使調正系統Al工〜 夕狀能/卜X側開始的第1列調正標誌、m 1〜m 6對向 (曝Ϊ區軸方向ί個並列之圖案形成區域 彳〜 1〜ΡΑ3的每一個相對應的調正標誌 m丄m 6 (步驟s b 1 )。 m 5 言态m 標諸 ,JU Ρ Λ 1 ^ — ~Ί7Τ> W m 域以1配置有2個調正系統AL5、AL6, 、J在圖案形成區域pA工上配置有2個調正標誌 3、,在圖案形成區域PA2上配置有2個調正標 m5m4,在圖案形成區域PA3上配置有2個調正 m fi,與這些調正標誌相對應,對圖案形成區 對圖案开 40 ^278722 1 l246pif] =:二2配置有2個調正系統η △,成區域=二 接著,如圖inR,fr- Λ 置2個之構成。 物台PST在==’控制裝置C〇NT將基板載 X側開始之帛2 動’錢設於U紅P的從- 系統= 標fml〜m6的每-個和調^ ρ,,α 1 L6的母一個相對向,在藉由鐳射干夺禮 二=測基板載物台p s τ在γ軸方向之二義 ί=:=ρχ1、ρχ2檢測基板载物台二在 :,工Ζ方向之位置,並同時檢測各個調正 2 m 6 (步驟S Β 2)。 —控制裝置C0NT對圖案形成區域PA1〜PA 3 每-個’在X軸方向上間隔所定距_2個位置,進j 1列的調正標誌及第2列的調正標誌的位置檢測,基 些檢測結果,求修正關於各圖案形成區域p A丄〜p 的位移、定標及旋轉等像特性之修正參數(步驟s B 3) 這裏,第1列的調正標誌檢測後,為了檢測第2列 調正標誌,感光基板P要對調正單元11進行掃描,但是,、 此時調正單元u中在γ軸方向並列之多個基板檢測系 0 a〜6 0 g的每一個,在X軸方向以所定距離間隔檢、、則 感光基板P的表面高度位置。即,感光基板P的表面内声 位置在棋盤格狀的多個位置被檢測,這些基板Af檢剛= 1278% 46pifl N T 0二制S 的檢測結果被輪出到控制裝置C〇 〜pU:: 光基板?的圖案形成區域ρΑ1 A3 口個的表面形狀(步驟SB4)。 然而,如上所述,在多個調正系统A L 1 A T R Φ 的外側2個調正系統系統AL1及 :=中 測系蛴fi Π。^ A L 6上’基板A F檢 n、先60 a及6〇g鄰接設置 板AF檢測系統6〇3 =稭由一面利用基 向之位wII 〇 拴感光基板P在Z軸方 處3 :二面利用調正系統進行調正處理,在調正 向2軸二基板p從投影光學系統的成像面 工向=偏叙狀態進行調正處理的不良情況。 而且在调正糸統A L 1〜a Τ β ία ππ门ο 迟,设有探測用的低倍率調受 ㈤所 的高倍率調正受井“…先系統8 8和精密調正用 高倍率調正受光系統8 =因此’例如當不能進行使用 低倍率調正受光8、隹:周,f檢測時,藉由切換為 檢測成為μ = ;_正標誌檢測,使調正標言志 系統進行調:二= ALi〜Ai β 了^先系統&必要設於所有的調正系統 Αί β AL6 少設於外側2個調正Ματ 1芬 A L 6。當然即使在 系、=L i及 行設置也並無不可。 η糸^ L1〜A L 6上進 修二Z=0NT£於藉由步驟…求得之 像祕後,-面藉由鐳射干涉儀pyi及p 42 1278722 1 1 246pif1 x 1 面進 一 2進行基板载物台PSτ的位置檢測,一 行對圖案形成區域PA1的曝光處理(步驟SB5)。 物二P (^圖1 QC所不,控制裝置C 〇ΝΤ移動基板載 ^ I,投影光學系統P L和圖案形成區域P A 1 的+ X側末端對向。同時’控制裝置c〇NT也將圖丄〇 C中不圖7F的支援光罩Μ之鮮載物台mSm_x側移 動’並使光罩Μ對感光基板P位置吻合。然後,藉由一面 使光罩Μ和感光基板ρ對投影光㈣統p l在+ ^方向上 同步移動’-面以曝光光E L照明光物,對圖案形成區 域P A 1進行曝光處理。圖i⑽所示為對酸形成區域 P A 1之掃描曝光結束後陳態。這裏,基於藉由步驟S B4求得之感光基板p(圖案形成區域pAi)的表面形 狀資料,為了使投影絲系制成像邮感光基板?的表 面一致,一面使基板載物台以丁在以由方向或m Y方向上雜’控佩絲板P的姿式,—面進行掃描曝 光。另外,多個投影光學系統PL a〜p L g中,不使用 的投影光學系統(例如從圖案形成區域pA丄超出之投影 光學系統P L a、P L g等)藉由照明快門6遮蔽並光程。 /接著,控制裝置C〇NT基於修正參數修正像特性 後’ 一面藉由鐳射干涉儀p yl及Ρχΐ、ρχ2進行夷 板載物台P ST的位置檢測,-面進行對随形成 A 1的曝光處理(步驟SB 6)。 即,如圖1 1A所示,控制裝置c〇N丁在—γ方向 步進移動基板載物台P s T以使投影絲系統p L和圖案 43 1278722 】1 246pif1 向。此時,物台Μ 可基本:====吻合只進行微動, P二 面使和感光基板P對 先予祕PL在—U向上同步移動,—面以曝 罩M,對圖案形成區域PA2進行曝。 圖11B所示為對圖案形成區域PA2之掃描曝光 即使在對圖案形成區域PA2之掃描曝光時 =由㈣_SB:4求得之圖案形成區域pA2的表面形狀 :二告丨可囟進仃感光基板卩在2軸方向的位置控制及調 平控制一面進行掃描曝光。 =裏’在對圖案形成區域p A i的掃描曝光處理時, 感先基板P在+ X方向掃描,在對圖案形成區域pA工鄰 f=成區域PA2的掃描曝光處理時,感光基板p 即’採用在與沿Y轴方向並列的圖案形 ^ Α 3的每-個對應之X軸方向上的2處 位置檢測調正標認後,藉由在沿γ軸方向鄰接的多個圖荦 =區^Α1、ΡΑ2上彼此逆向的同步移動而曝光感 光基板^之構成。藉此可提高曝光裝置整體的生產能力。 =原“對1個圖案形成區域的曝光處理結束後,為了進 ㈣fit形成_的曝光處理’必須使光罩Μ在掃描 動以返回初始狀態’但是本實施例在對1個 t ίΐ,,光處理結束後’在對下一圖案形成區域 進理時無需大幅移動光罩(光罩載物台),所以 能夠亥光罩的移動時間,從而提高生產能力。而且在 44 1278722 1 1 246pif 1 本實施例中,圖案形成區域在 大小比掃描方向(X軸方向描方向(Y轴方向)的 向上大幅移動相比,如圖i 〇D:=吏:罩在掃描方 基板:進移動對縮 接=控制裝置C0NT基於修正 3 士勺 後,一面错由鐳射干涉儀Py i "像4^生 板載物台P ST的位置檢測, Ρχ2進行基 A3的曝光處理(步驟SB?)。仃、、圖案形成區域Ρ 即’如圖1 1C所示,控制震置 =基板載物台PST以使 = 形成區域p A 3的+ χ側末 :糸、、先P L和圖案 =使先罩鳴二=== 可基本不移動。然後,藉由nt進灯被 Ρ對投影光學系統PIj在+ 和感光基板 光光EL昭明弁&白上问步移動,—面以曝 理。圖/;'===成區域ΡΑ3進行曝光處 ,後的㈣1録對圖=^^^\33之=曝光結 可’基於猎由步驟s β 4求得之卿 之知描曝光 面形狀資料,可_面進行感光^,區域ΡΑ2的表 制及調平控制—面進行婦描2轴方向的位置控 對圖案形成區域ΡΑ3 = —情況下,也採用 成對鄰接之圖荦形成巴上3 ,的掃描方向,被設定 之逆方向的的曝光處理時的掃描方向 上述步驟SB 1〜S R 其此秦、 7之基板载物台ps丁在又軸 45 1278722 1 l246pifi 方向的位置檢測,即對多個圖案形成區域P A 1〜p A 3 ^分區BR1)之調正處理及曝光處理中χ軸方向的位置 $測’如圖1 〇A、B、C、D及圖1 1A、B、C、D所示, 1由,射干涉儀P x 1、P x2進行,在Y轴方向的位置 檢測藉由鐳射干涉儀Py i進行。即,在χ軸方向多個並 列之鐳射干涉儀p y1〜p y 3中用於位置檢測的鐳射干 涉儀為1個py1。然後,藉由該1個鐳射干涉儀Py工 進行位置檢測,並基於該鐳射干涉儀p y i的位置檢測值 進仃調正標誌檢測且進行光罩“和感光基板p的調正處理 後,光罩Μ的圖案被曝光于圖案形成區域p A丄〜p A 3。而且,這裏在Y軸方向多個並列之圖案形成區域p A 1〜P A 3的每一個被依次連續曝光,同時在該連續曝光 中’多個鐳射干涉儀Py丨〜Py3中與圖案形成區域p A 1〜PA 3 (分區BRi)對應之特定的鐳射干涉儀p y1形成可被用於位置檢測之構成。 接著,如圖1 2A所示,控制裝置C〇NT一面移動 基,載物台P ST,-面使設於感光基板p之從_χ側開 始弟3列的調正標誌i〜m 6的每—個與調正系統A l 1〜A L 6的每-個對向。然後,控制裝置c〇Ν τ選擇 多個錯射干涉儀P y i〜p y 3中與圖案形成區域ρα 4 〜PA6 (分區BR2)對應之2個錯射干涉儀p y 2。 控制裝置CONT伴隨基板熱台psi^x軸方向之位 置的移動,制於基板載物台p S T在γ軸方向的位置檢 測之错射干涉儀,從错射干涉儀py i切換為該選擇的错 46 Ι2787226ρίη 射干涉儀Pyg(步㈣㈣卜 制裝置⑶Ντ利祕射干涉儀Ρχΐ、p 的位置:、同時:=、'!; PST在x軸方向及…向 τ在γ轴方向的位制義基=物台p s 涉儀檢測基板载物m3C0NT —面猎由鐳射干 L 1〜A L Π S T的位置,-面以使調正系統A 6的每-個對:二側開始第3列的調正標誌m i〜m 之圖案形成ϊ=區:;,以轴方向多個並列 應之調正桿社m彳' "5 A4〜PA 6的每一個對 二知wm1〜m6 (步驟SBg)。 在將鐳射干涉儀從Pyl 置檢測結果被用於_二;= 核測。具體來說,控制裝置 X義p y 2的位置 1切換為飾干涉❹y 2 8 f赠射干涉儀P y 由鐘射干涉儀p y 1之基板p == 斤定次數的藉 的同時,也進行所定 2 S T的位置檢測動作 载物台PST的位置檢測動’:由 值的差。然後,以該束彳θ 亚求故些檢測結果的平均 進行藉由错射干涉儀ρ =值’並基於該修正值 測動作。這樣,在關於分區Β 3載2p s 丁的位置檢 〜P A 6 )之調正處理的—部分二=成區域P A 4 置檢測動作中,用到了, ’田射干涉儀P y 2的位 案形成區域PAl〜p$由方f鄰接之分區BR1 (圖 干涉儀Py 1的位置檢測結果的°周正結果的-部分即錯射 1278722 1 1246pifl V 1 射干涉儀? y 2動作,計測鐳射干涉儀p 台p s° τ: γ:ί ί1記憶。以後’基板栽物 移1而求得。射干涉儀Py2的計測值和偏 ’如圖1 2B所示,控制裝置C〇NT在-X方 向和動基板載物台p sT,並使設於感光基板pf shot:, the interval of Pyl ~ Py3 is formed according to the closing area P; the length of D4, PA7 in the x-axis direction is set to be different, # ==;, the length of the moving mirror 3 4 _axis direction: == in the X-axis direction The length is short, the moving mirror 3 - C, D ~ Figure 1 5 A, B, C, the surface of the correction processing program and the following side of the reference to Figure 10A, B, D and Figure 16, Figure 17, the flow chart _ light The processing program will explain. 39 1278722 1 1246pif1 After performing baseline measurement as described with reference to FIGS. 8A, B, and C, as shown in FIG. 1A, the micro-position (3) NT moves the substrate stage pST, and the slave substrate P is disposed on the photosensitive substrate P. The adjustment of the i-th column starting from the side marks each of the melons 1 to m 6 and each phase S of the alignment system AL丄~AL 6. As described above, the present embodiment sets the arrangement (interval) of the alignment systems AL1 to A6 based on the alignment (the interval of 1 to m6) formed on the photosensitive substrate P. Then, the control device _τ The position of the stage p ST in the x-axis direction and the 0 z direction is detected by using radium meter=px1, px2, and a plurality of laser-dried two-eight σ yl~Py3 and pattern forming regions pA丄~PA3 are selected at the same time. ^1) Corresponding to the ... the clock interferometer py 1, and the position of the substrate in the direction of the ¥ axis with the laser interferometer P yi tf to ^ clockfire interferometer P 7 2, P y 3 and the moving mirror 3 4 _ onboard ίΡ3:=〇ΝΤ-face by the interferometer to check the position of ΔT. ST, one side to adjust the system Al work ~ eve shape / Bu X side start the first column alignment mark, m 1 to m 6 opposite (the direction of the axis of the exposure zone ί a pattern of the formation regions 彳 1 to ΡΑ 3 corresponding to each of the alignment marks m 丄 m 6 (step sb 1 ). m 5 speech m , JU Ρ Λ 1 ^ — ~Ί7Τ> The W m domain is arranged with 1 two alignment systems AL5 and AL6, and J is arranged with two alignment marks 3 in the pattern formation area pA. Two alignment marks m5m4 are arranged on the domain PA2, and two alignment m fi are arranged on the pattern formation area PA3, corresponding to the alignment marks, and the pattern formation area pair pattern is opened 40^278722 1 l246pif] =: In the second two, two adjustment systems η △ are arranged, and the area = two is followed by two in the form of inR, fr- 。. The stage PST starts at the X side of the substrate on the X=NT of the control unit C〇NT.帛 2 move 'money set to U red P from - system = mark fml ~ m6 each and adjust ^ ρ,, α 1 L6 mother a relative direction, in the laser to kill the second = test substrate The object ps τ is in the γ-axis direction. ί=:=ρχ1, ρχ2 Detects the position of the substrate stage 2 in the working direction, and simultaneously detects each correction 2 m 6 (step S Β 2). The control device C0NT detects the positions of the pattern forming areas PA1 to PA3 at intervals of _2 positions in the X-axis direction, the correction marks of the j1 column, and the correction marks of the second column. As a result of the detection, correction parameters for the image characteristics such as displacement, scaling, and rotation of each pattern forming region p A 丄 p are corrected (step s B 3 ). Here, after the correction flag of the first column is detected In order to detect the second column alignment mark, the photosensitive substrate P is to be scanned by the modulating unit 11, but at this time, each of the plurality of substrate detecting systems 0a to 600g arranged in the γ-axis direction in the modulating unit u at this time One is measured at a predetermined distance in the X-axis direction, and the surface height position of the photosensitive substrate P. That is, the acoustic position in the surface of the photosensitive substrate P is detected at a plurality of positions in a checkerboard shape, and these substrates Af are just = 1278 The detection result of the % 46pifl NT 0 binary system S is rotated to the surface shape of the pattern forming region ρΑ1 A3 of the control device C〇~pU:: light substrate (step SB4). However, as described above, the two correction system systems AL1 and the := medium measurement system 蛴fi 在 are located outside the plurality of alignment systems A L 1 A T R Φ . ^ AL 6 on 'substrate AF inspection n, first 60 a and 6 〇g adjacent setting plate AF detection system 6〇3 = straw from one side using the base position wII 〇拴 photosensitive substrate P at the Z axis side 3: two sides The adjustment process is performed by the alignment system, and the correction of the positive two-axis two-substrate p from the imaging plane of the projection optical system to the paraphrase state is performed. Moreover, in the correction of the AL 1~a Τ β ία ππ gate ο, the low-rate adjustment for the detection (five) of the high-magnification adjustment of the well "... first system 8 8 and precision adjustment with high magnification Positive light receiving system 8 = Therefore 'For example, when it is not possible to use low magnification to adjust the received light 8, 隹: week, f detection, by switching to detection becomes μ = ; _ positive flag detection, so that the adjustment mark system is adjusted : Two = ALi~Ai β The first system & must be set in all the adjustment system Αί β AL6 is less than the outer 2 adjustments Ματ 1 fen AL 6. Of course even in the system, =L i and line settings It is not impossible. η糸^ L1~AL 6 on the second repair Z=0NT£ by the steps...Improved the image, the surface by the laser interferometer pyi and p 42 1278722 1 1 246pif1 x 1 face into a 2 The position detection of the substrate stage PSτ is performed, and the exposure processing of the pattern forming area PA1 is performed in one row (step SB5). The object 2 P (^ Figure 1 QC does not, the control device C 〇ΝΤ moves the substrate carrier I, the projection optical system PL And the + X side end of the pattern forming area PA 1 is opposite to each other. At the same time, the 'control device c〇NT will also be in FIG. Support the movement of the mSm_x side of the fresh stencil of the reticle ' and make the position of the reticle Μ to the photosensitive substrate P. Then, by aligning the reticle Μ and the photosensitive substrate ρ with the projection light (4) in the +^ direction Moving the '-surface to illuminate the light with the exposure light EL, and exposing the pattern forming area PA 1 to Fig. i (10) shows the state after the scanning exposure of the acid forming region PA 1 is completed. Here, based on the step S B4 The surface shape data of the photosensitive substrate p (pattern forming region pAi) is obtained so that the surface of the projection silk-based image-sensing substrate is uniform, and the substrate carrier is immersed in the direction or the m Y direction. 'The posture of the control panel P, the surface is scanned and exposed. In addition, among the plurality of projection optical systems PL a to p L g , the projection optical system that is not used (for example, the projection optical system from the pattern formation region pA丄) PL a, PL g, etc.) are shielded by the illumination shutter 6 and optical path. / Next, the control device C〇NT corrects the image characteristics based on the correction parameters, and the surface is loaded by the laser interferometers p yl and Ρχΐ, ρ χ 2 Position detection of the P ST, The surface is subjected to exposure processing along with the formation of A 1 (step SB 6). That is, as shown in FIG. 11A, the control device c〇N moves the substrate stage P s T in the −γ direction to make the projection wire System p L and pattern 43 1278722 】 1 246pif1 direction. At this time, the object Μ can basically: ==== anastomosis only to perform micro-motion, P two sides and the photosensitive substrate P to the first secret PL in the -U upward synchronous movement, The surface is exposed to the pattern forming area PA2 by the mask M. Fig. 11B shows the scanning exposure of the pattern forming region PA2 even when scanning exposure to the pattern forming region PA2 = the surface shape of the pattern forming region pA2 obtained by (4) _SB: 4: two notices can be applied to the photosensitive substrate 卩Scanning exposure is performed while controlling the position and leveling control in the 2-axis direction. In the scanning exposure processing of the pattern forming region p A i , the sensing substrate P is scanned in the +X direction, and in the scanning exposure processing of the pattern forming region pA adjacent to the region PA2, the photosensitive substrate p is 'After detecting the correction mark at two positions in the X-axis direction corresponding to each of the pattern patterns of the pattern lines juxtaposed along the Y-axis direction, by a plurality of patterns adjacent in the γ-axis direction = The regions ^1 and ΡΑ2 are synchronously moved in opposite directions to each other to expose the photosensitive substrate. Thereby, the productivity of the entire exposure apparatus can be improved. = Originally, "After the exposure processing for one pattern forming region is finished, the exposure processing for forming the (four) fit" must cause the photomask to be scanned to return to the initial state', but this embodiment is in the case of 1 t ίΐ, After the end of the process, it is not necessary to move the mask (mask stage) significantly when the next pattern forming area is processed, so that the movement time of the mask can be increased, thereby increasing the productivity. Moreover, in 44 1278722 1 1 246pif 1 In the embodiment, the pattern forming area is larger than the scanning direction (the X-axis direction (Y-axis direction) is greatly moved upward, as shown in FIG. 〇D:=吏: the cover is on the scanning substrate: the moving pair is contracted = After the control device C0NT is corrected based on the 3 scoops, the laser interferometer Py i " is used to detect the position of the plate stage P ST, and the Ρχ 2 performs the exposure process of the base A3 (step SB?). , pattern formation area Ρ ie, as shown in FIG. 1 1C, the control is set to the substrate stage PST so that = the formation of the region p A 3 + χ side end: 糸, first PL and pattern = first hood === can basically not move. Then, by nt into the light is smashed The optical system PIj moves in + and the light-sensitive substrate EL light illuminates & white, and the surface is exposed. Figure /; '=== into the area ΡΑ 3 for exposure, after (4) 1 recording = ^^ ^\33=Exposure knot can be based on the shape of the exposure surface shape obtained by the step s β 4, which can be used for sensitization ^, the surface system of the ΡΑ 2 and the leveling control - face painting 2 In the case of the positional control of the axial direction, the pattern forming area ΡΑ3 = - in the case of the paired adjacent pattern, the scanning direction of the upper surface 3 is formed, and the scanning direction at the time of the exposure processing in the reverse direction is set. SR, the substrate stage ps of the Qin and 7 is detected in the direction of the axis 45 1278722 1 l246pifi, that is, the alignment processing and the exposure processing of the plurality of pattern forming regions PA 1 to p A 3 ^ partition BR1) The position of the x-axis direction is measured as shown in Fig. 1 〇A, B, C, D and Fig. 1 1A, B, C, and D, and 1 is performed by the interferometer P x 1 and P x2 in the Y-axis direction. The position detection is performed by the laser interferometer Py i, that is, for position detection in a plurality of juxtaposed laser interferometers p y1 to py 3 in the x-axis direction The laser interferometer is one py1. Then, the position detection is performed by the laser interferometer Py, and based on the position detection value of the laser interferometer pyi, the aligning mark detection is performed and the reticle and the photosensitive substrate are performed. After the alignment process of p, the pattern of the mask Μ is exposed to the pattern formation regions p A 丄 p p A 3 . Further, each of the plurality of juxtaposed pattern forming regions p A 1 to PA 3 in the Y-axis direction is sequentially successively exposed while being in the plurality of laser interferometers Py丨 to Py3 and the pattern forming region p in the continuous exposure. The specific laser interferometer p y1 corresponding to A 1 to PA 3 (partition BRi) forms a configuration that can be used for position detection. Next, as shown in FIG. 12A, the control device C〇NT moves the base, and the stage P ST and the surface of the photosensitive substrate p are arranged on the _χ side of the photosensitive substrate p from the alignment marks i to m 6 of the third column. Each one is aligned with each of the alignment systems A l 1 to AL 6. Then, the control means c τ τ selects two misalignment interferometers p y 2 corresponding to the pattern formation regions ρα 4 to PA6 (partition BR2) among the plurality of misalignment interferometers P y i to p y 3 . The misalignment interferometer for detecting the position of the substrate stage p ST in the γ-axis direction with the movement of the control unit CONT in accordance with the position of the substrate hot stage psi^x axis, switching from the mis-interference interferometer py i to the selected Error 46 Ι 2787226ρίη Interferometer Pyg (step (four) (four) device (3) Ν 利 秘 秘 秘 秘 Ρχΐ Ρχΐ, p position:, at the same time: =, '!; PST in the x-axis direction and ... τ in the γ-axis direction of the base = 台台 ps instrument detection substrate load m3C0NT - face hunting by laser dry L 1~AL Π ST position, - face to make adjustment system A 6 each pair: two sides start the third column of the adjustment The pattern of the mark mi~m is formed by ϊ=zone:;, in the axial direction, a plurality of juxtaposed rods are aligned with each of the two pairs of wm1 to m6 (step SBg). The result of detecting the laser interferometer from Pyl is used for _2; = nuclear test. Specifically, the position 1 of the control device X py 2 is switched to the trimming interference ❹ y 2 8 f. The radiating interferometer P y is interfered by the clock. The substrate of the instrument py 1 is p == The number of times the pin is counted, and the position detection operation of the fixed position ST is also performed. Then, the average of the detection results of the beam 彳 θ is performed by the misalignment interferometer ρ = value ' and the action is measured based on the correction value. Thus, the position detection is performed on the partition Β 3 carrying 2p s ~PA 6) Correction processing - Part 2 = Formation area PA 4 In the detection operation, it is used, 'the field formation area PAl~p$ of the field interferometer P y 2 is adjacent to the partition BR1 of the square f ( The position of the interferometer Py 1 is detected as the result of the positive result of the ° week, that is, the misalignment of 1277822 1 1246pifl V 1 interferometer? y 2 action, measuring the laser interferometer p ps ° τ: γ: ί ί1 memory. The substrate implant is shifted by 1. The measured value and the deviation of the interferometer Py2 are as shown in FIG. 12B, and the control device C〇NT is in the -X direction and the movable substrate stage p sT, and is disposed on the photosensitive substrate. p
側開始第4列的調正;I:® 士士 m 1 · 土 X AL卜! ^1〜"16的每-個與調正系統 、、母一個對向,在藉由鐳射干涉儀Py? 核測基板載物台P 3丁在巧由方向之 ^ 射干涉儀Pxl、Px2檢制其叱魏7川%精由鐳 XA測基板載物台P ST在X軸方 二。 °之位置’亚同時檢測這些調正標誌ml〜m 6的母一個(步驟s B丄〇)。 m —控制裝置CONT對圖案形成區*PA4〜p 每-ΊΧ軸方向上間隔所定距離的2處位置,進望 1列的調正標諸及第2列的調正標言志的位置檢泪n 些檢測結果,求修正關於各圖案形成區域ρΑ4〜 之移位、定標及旋轉等像特性的修正參數(步驟 1)〇 丄 這裏,在第3列的調正標認檢測後,為Start the adjustment of the fourth column on the side; I:® Sergeant m 1 · Earth X AL! Each of ^1~"16 is aligned with the calibration system, and the mother is in the opposite direction. The laser interferometer Py? is used to check the substrate stage P 3 in the direction of the interference interferometer Pxl, Px2. The inspection of its Wei Wei 7 Sichuan% fine by the radium XA measured the substrate stage P ST in the X-axis side two. At the position of °, the mothers of these correction marks ml~m6 are simultaneously detected (step s B丄〇). m - control device CONT checks the position of the pattern forming area *PA4~p at a distance of a predetermined distance in the direction of the x-axis, and looks at the position of the alignment mark of the first column and the position of the second column of the alignment mark. n The detection results are corrected to correct the image parameters such as shift, scaling, and rotation of each pattern forming region ρΑ4~ (step 1). Here, after the correction correction in the third column,
基板Ρ要對調正單元Uit行掃描U 方向並列之多個基板af檢測系統 6 0 a〜6 0 g的母一個’在χ軸方向上以所定距 檢測感光基板P之表面的高度位置。這些基板A ^ 統6 0 a〜β 0 g的各個檢測結果被輸出到控制裝ϋ〇 48 1278722 1 】246pifl N Ll控制裝置C Q N T基於基板檢測系統6◦a〜6 Ο g的檢測結果,屯$伞其士 ^ AR久㈣主核祕板?的圖案形成區域PA4〜P 八6各個的表面形狀(步驟SB12)。 的修數由步驟SB11求得 Ρν1 Ώ 像^^生後面猎由錯射干涉儀Py2及 安开,^ 2檢測基板載物台P s T的位置,-面進行 對圖木形成區域PA4的曝光處理(步驟SB13)。 你么^如圖丄^所不’控制裝置⑶^移動基板載 ^^了以使投影光學系統^和圖案形成區邮^ p側末端對向。然後’藉由—面使光罩Μ和感光基板 ^投影光學系統PLhX方向同步移動一面以曝光光 明光罩M,對圖案形成區域p A 4進行曝光處理。 二? S為對圖案形成區域P A 4之掃描曝光結束後 :、=°&裏’基於藉由步驟SB 12求得之感光基板p ^圖木形成區域PA4)的表面形狀資料,為了使投影光 成像面和感光基板Μ表面—致…面使基板載 :S τ在ζ軸方向或θ X、6> Υ方向上移動而控制感 光土板Ρ的姿式,一面進行掃描曝光。 接著,控制裝置C0NT基於修正參數修正像特性 後’一面藉由翻干涉儀P y 2及P x i、P X 2檢測基 板載物台PST的位置’-面進行對圖案形成區域pA5 的曝光處理(步驟S B 1 4)。 即,如圖1 3A所示,控制裝置c〇NT在一γ方向 步進移動基板賴纟P S T贿郷光學純p L和圖案 49 1278722 "246pif1 域PA5的—χ側末端對向。此時,光罩載物台Μ :了使光罩M和感光基板p的位置吻合只進行微動, 移動。然後’藉由—面使光_和感光基板?對 =予糸統PL^_X方向上同步移動,—面以曝光光 ==明光罩Μ,對圖案形成區域P A 5進行曝光處理。 ^^所不為對圖案形成區郎心之掃描曝光結束後 的狀恶。 接著,控制裝置c 〇 N 丁基於修正參數修正像特性 藉由鐳射干涉<APyMpxl、Px2_& 板載物σΡST的位置,一面進行對圖案形成區域pA6 的曝光處理(步驟SB1 5)。 即,如圖1 3C所示,控制裝置〇〇]^1>在—γ方向 步進移動基板载物台P S Τ以使投影光學系統p L和圖案 形成區域P A 6的+ X側末端對向。此時,光罩载物台M S T為了使光罩M和感光基板p的位置吻合也只進行微 動,可基本不移動。然後,藉由一面使光罩Μ和/感光基板 Ρ對投影光學系統p L在+ Χ方向上同步移動,一面以曝 光光E L照明光罩μ,對圖案形成區域p a 6進行曝光處 理。圖1 3D所示為對圖案形成區域pa 6之掃插^光二 束後的狀態。 | ° 上述步驟SB9〜SB15之基板載物台p s 丁在χ 軸方向的位置檢測藉由錯射干涉儀Ρ X 1、ρ χ 2進行, 在Υ轴方向的位置檢測藉由鐳射干涉儀p y 1進行。即, 在X軸方向多個並列之鐳射干涉儀P yl〜py3中用於 50 1278722 1 1 246pif1 1置檢測的鐳射干涉儀為丄個p y 2。然後,藉由該丄個 鐳射干涉儀P y 2進行位置檢測,並基於該鐳射干涉儀p y 2的位置檢測值進行調正標誌檢測且進行光罩μ和感光 基板Ρ的调正處理後,光罩Μ的圖案被曝光于圖案形成區 域ΡΑ4〜ΡΑ6。而且,這裏也是在γ軸方向多個並列 =圖案形成區域P A 4〜P A 6的每一個被依次連續曝 光,同時在該連續曝光中,多個鐳射干涉儀py丄〜卩又 圖案形成區域PA4〜PA6(分區BR2)對應 =特定的II射干涉儀P y 2形成可被用於位置檢測之構 成0 ’控制裝置CC>NT將使用的鐳射干涉儀從? y 2刀換為P y 3 (步驟s B 1 6)。 基板載物台,控制裝置cont-面移動 始第 ,面使设於感光基板P之從一X側開 1°〜A 1' 調正標諸m 1〜m 6的每—個與調正系統A L 多個錯射2^,向;/然後,控制裂置⑶NT選擇 〜PAcwl 7 73中與®案形成區域PA7 控制裝置=BR3)對應之1個鐳射干涉儀Py 3。 置的移動,將用二板載物台p s τ在X軸方向之位 測之録射干二 ==P S…轴方向的位置檢 射干涉❹”(步驟SB二:2切換為該選擇的鐳 舰㈣基板載物0ST在X軸方向及“方^ 1278722 1 1 246pi f1 6的每-個對向側=第5列的調正標如卜m 之圖案形成區域(m或;m::向多個並列 應之調咖I-次二7二9的每一個對 此日才’使録射干涉儀The substrate is aligned with the plurality of substrate af detecting systems 6 0 a to 6 0 g in the U direction of the alignment unit Uit. The height position of the surface of the photosensitive substrate P is detected at a predetermined distance in the z-axis direction. The respective detection results of the substrate A^6 0 a~β 0 g are output to the control device 48 1278722 1 246pifl N Ll control device CQNT based on the detection result of the substrate detection system 6◦a~6 Ο g, 屯$ Umbrella ^ AR long (four) the main nuclear secret board? The pattern forms the surface shapes of the respective regions PA4 to P8 (step SB12). The number of repairs is obtained by step SB11. 像ν1 Ώ The image is hunted by the misfire interferometer Py2 and opened, the position of the substrate stage P s T is detected, and the exposure of the substrate forming area PA4 is performed. Processing (step SB13). If you do not control the device (3), move the substrate so that the projection optical system and the pattern forming area are opposite to each other. Then, the mask forming area p A 4 is subjected to exposure processing by moving the mask Μ and the photosensitive substrate ^ projection optical system PLhX in the same direction by the exposure light mask M. Second, S is the surface shape data after the scanning exposure of the pattern forming region PA 4 is completed: , and the photosensitive substrate p ^ the wood forming region PA4 obtained by the step SB 12 is used for the projection. The light imaging surface and the surface of the photosensitive substrate — are such that the substrate is loaded with S τ in the z-axis direction or θ X, 6 > Υ direction to control the posture of the photosensitive earth plate, and scanning exposure is performed. Next, after the control device C0NT corrects the image characteristics based on the correction parameters, the exposure processing of the pattern formation region pA5 is performed by detecting the position '-plane of the substrate stage PST by the interferometers P y 2 and P xi, PX 2 (steps). SB 1 4). That is, as shown in Fig. 13A, the control unit c〇NT moves the substrate 纟 纟 P S 郷 郷 郷 郷 郷 和 和 和 和 和 和 和 和 和 和 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 246 。 246 246 246 246 246 At this time, the reticle stage 吻合 aligns the position of the reticle M and the photosensitive substrate p with only a slight movement and movement. Then 'by using - surface light _ and photosensitive substrate? The patterning area P A 5 is subjected to exposure processing by synchronously moving in the direction of the ^ PL PL^_X, and the surface is exposed by the light == ray mask 。. ^^ is not the ugly after the end of the scanning exposure of the pattern forming area Langxin. Next, the control device c 〇 N adjusts the image characteristics based on the correction parameters by performing the exposure processing of the pattern forming region pA6 by the laser interference <APyMpx1, Px2_& onboard σΡST (step SB15). That is, as shown in Fig. 13C, the control device 步进1^> steps the substrate stage PS 步进 in the -γ direction so that the projection optical system p L and the + X side end of the pattern forming region PA 6 face each other. . At this time, the mask stage M S T is only slightly moved in order to match the positions of the mask M and the photosensitive substrate p, and substantially does not move. Then, while the mask Μ and/or the photosensitive substrate Ρ are moved in the + Χ direction in synchronization with the projection optical system p L , the mask μ is illuminated with the exposure light E L to expose the pattern forming region p a 6 . Fig. 1 3D shows a state in which the pattern forming region pa 6 is swept in and out. | ° The position detection of the substrate stage ps in steps SB9 to SB15 in the x-axis direction is performed by the misalignment interferometer Ρ X 1 and ρ χ 2, and the position detection in the x-axis direction is detected by the laser interferometer py 1 get on. That is, the laser interferometer for detecting 50 1278722 1 1 246pif1 1 in a plurality of parallel laser interferometers P y1 to py3 in the X-axis direction is one p y 2 . Then, the position detection is performed by the one of the laser interferometers P y 2 , and the correction mark detection is performed based on the position detection value of the laser interferometer py 2 , and the adjustment of the mask μ and the photosensitive substrate 进行 is performed. The pattern of the cover is exposed to the pattern forming regions ΡΑ4 to ΡΑ6. Further, here, in the γ-axis direction, each of the plurality of juxtaposition=pattern forming regions PA 4 to PA 6 is sequentially successively exposed, and in the continuous exposure, the plurality of laser interferometers py丄 to 图案 pattern forming regions PA4 〜 PA6 (Partition BR2) Correspondence = Specific II-ray interferometer P y 2 forms a laser interferometer that can be used for position detection 0 'Control device CC> NT will use? Replace y 2 with P y 3 (step s B 1 6). The substrate stage, the cont-plane of the control device is moved, and the surface of the photosensitive substrate P is opened from the X side by 1° to A1', and each of the m1 to m6 is adjusted. AL multiple misalignment 2^, direction; / then, control split (3) NT select ~ PAcwl 7 73 with the ® formation area PA7 control device = BR3) corresponding to one laser interferometer Py 3. Set the movement, will use the two-plate stage ps τ in the X-axis direction to measure the position of the shot 2 == PS ... axis direction of the interference ❹" (step SB 2: 2 switch to the selected blade (4) The substrate load 0ST is in the X-axis direction and the pattern forming area of each of the opposite sides of the square ^ 1278722 1 1 246pi f1 6 = the fifth column (m or m:: Each of the parallel adjustments of the coffee I-second two 7 2 9 each of these days to make the recording interferometer
2和P y 3的差分作為偏y ,作,將鐳射干涉儀? y S 丁座標可藉由録軒$ §己,。以後,基板載物台P 移2而求得。 Wapy3的計測值、偏移丄、偏 w裏’在將録射干涉儀從py2 置檢測結果也被_^ = 二關於分區BR3(圖案形成區域Py 分: 向移Ξ:板ΪΞ=Γ、:Γ裝置_7在-x方 側開始第6二;正ρΓ Γ 感光基之從1 A L1〜A L R f㈣1〜m 6的每一個與調正系統 檢測基板载物台P:;3=藉由鍾射干:儀::” 射干涉儀P X i、P x 2檢測基板==在; 52 1278722 1 1246pifl Z方向之位置,並同時檢測這些調正標諸 6的母一個(步驟sB 1 8)。 控制裝置CONT對圖案形成區域PA7〜 個」«軸方向上間隔所定距_2處位置,j 5列的調正標誌、及帛6列的調正標賴位置檢測,= 些檢測結果’求修iL關於各圖案形成區域p A 7〜= 之移位、定標及旋轉等像特㈣修正參數(步驟s 9 ) 〇 丄 ’在第5列的調正標諸檢測後,為了檢測第6列 =正雜,在感光基板P對調正單元U進行掃描;^ Γ轴方向並列之多個基板AF檢測系統6〇a〜6〇 =一個丄在X軸方向上以咐距離間隔檢測感光基板口之 、面的南度位置。這些基板AF檢測系統6 Q a〜6 〇 的各個檢測結果被輪出到控制〇Ντ,控制 基於基板&測糸統6◦a〜6 0 g的檢測結果,求 板p的圖案形成區域PA7〜pA9 狀(步驟S B 2 0)。 沾役接著,控制裝置C〇NT基於藉由步驟S B 1 8求得 p 1茶數修正像特性後,—面藉由鐳射干涉儀p y 3及 X、P x 2檢測基板載物台P S T的位置,-面進行 請案形成區域PA7的曝光處理(步驟sb2i)。 仏/^^^代所示嗜制震置⑶财移動基板載 : W使投影光料統P L和ffl案形祕域P A 7 、側端對向。然後,藉由一面使光罩M和感光基板 53 1278722 1 1246pifl E T a::#:系統P [在+又方向同步移動—面以曝光光 =鮮Μ,案形成區域p A 7進行曝光處理。 為對圖案形成區域PA 7之掃描曝光結束後 ,基於藉由步驟S B 1 9求得之感光基板? ;圖案形成區域PA7)的表面形狀資料,為了使投影光 ,糸統的成像面和感光基板P的表面_致,— =,軸方向或θ',方向上移動而控制感 九基板Ρ的奂式,一面進行掃描曝光。 接著’控钱置⑶ΝΤ基郷轉歸正像特性 ,^ p S T的位置’-面進行對圖案形成區域p A 8 的曝光處理(步驟SB 2 2)。 即,如圖1 5A所示,控制裳置⑶訂在―γ方向 二=動基板載物台P S Τ以使投影光學魏p L和圖案 A8的-X側末端對向。此時,光罩載物台M :了使光罩Μ和感光基板p的位置吻合只進行微動, ㈣。然後’藉由—面使光賴和感光基板Ρ對 糸統PL在_χ方向上同步移動,—面以曝光光 明光罩Μ,對圖案形成區域ρΑ8進行曝光處理。 所示為對圖案形成區域ΡΑ8之掃描曝光結束後 料,控縣置⑶NT基郷轉祕正像特性 二由鐳射干涉儀P y 3及? x1、PX 2檢測基 °pst的位置,-面進行對_形成區域pA9 54 1278722 1 1246pifl 的曝光處理(步驟S B 2 3 )。 即,如圖1 5C所示,控制裝置(:〇1^丁在—γ方向 步進移動基板餘台p S τ以使投影光料統p L和时 形成區域P A 9的+ X側末端對向。此時,光罩載物A M ST為了使光罩M和感光基板p的位置 移動。然後’藉由-面使咖和感光^ ,十投衫光予糸統PL在+X方向上同步移動,一面以腠 ^光EL㈣光罩M,對圖案形絲κρΑ ^ 师刪形成區域ΡΑ9之掃描曝光結 上述步驟SB17〜SB23之基板載物台pH在 X軸方向的位置檢測,即對多個圖案形成區域pA7〜p :【^區B R 3 )之調正處理及曝光處理中X軸方向的 仏測’如圖 i 4A、B、C、D 及圖 i 5a、b、c、d ^番^错射干涉❹^^進行^由方向 的位置仏測藉由錯射干涉儀Py 3進行。#,在向 射干涉儀Pyl〜Py 3中用於位置檢測的 t射t儀為1個以3。然後,藉由該1個鐳射干涉儀 y進行位置心測,並基於该错射干涉儀P y 3的位置 =值進行調正標調且進行光罩μ和:光 处理後’光罩醜被曝光于圖絲成區域PA 7〜 區2 Δ :且’廷裏也是在¥軸方向多個並列之圖案形成 ϊ ^ A 9的每—個被依次連續曝光,同時在該 連4光中’多個鐳射干涉儀p y工〜p y 3中與圖案形 1278722 1 1246pifi 成區域PA7〜PA9(分區BR3)對應之特定的錄射 干涉儀P y 3形成可被用於位置檢測之構成。 如以上說明,在對光罩Μ和感光基板p的掃描方向即 υ軸f向之交叉的非掃描方向即X軸方向上,並列配置有 6们肩正系統a L,所以可不減少應檢測之調正標誌、瓜1 m 6的數目,與原來相比就能降低調正標魏瓜1〜m 6 ,動作次數。因此,可-面維持調正精度 短調 正處理時間。 、 另外,在本實施例中,調正系統為A L· 1〜AIj β庄 是也可在Υ軸方向上至少並列配置3個,藉此減 ^周^誌、的數目’可降低調正標誌、的檢測動作次數。而 這些多個並列之調正系統,可同時計測多個_ 形成區域各個的調正標認,所以能夠提高生產能力。 李统本正系統AL為偏離中心線方向的調正 H因此’與通過投影光學系 標誌和基板調正桿址之Τττ 士二 U π冲测先罩凋正 锸尤古: 方向的調正系統相比,為- 度(在γ轴方向的長度) 自由設定。 6的配置可與光罩Μ的寬度無關而 凋正光罩的檢測為對2個圖 上隔有所定距離的2處位置進行 軸方向 罩檢測結果,可精度良好地所以基於這些光 丁凋正處理。另外,調正標 56 1278722 ^246pif] 誌檢測既可以在又勒方向 ★ 進行,也可在3處以上的任 斤疋距離的至少2處位置 置調正光罩檢測的檢測位置忍可置進行。藉由多設 當掃描曝光在Y轴方向鄰度。 時,藉由利用彼此逆方向的之圖=成區域的每-個 理,可在對第i圖案形成區域的曝^21描曝光處 =;職;域的曝先處理時也無匕二先= =广所《能夠降低該先革的移動時二= 另:’本實施例與調正同步進行ρΗ y 2 —P y 3的干涉儀切換,但是 作的位置在哪里都可以,也=疋2個干涉儀可動 這樣一來,即使是無需調正^^中途和曝光結束點。 列精度佳的曝光。 $ θ的曝光’也能成為排 偏移的制可藉岐魏行乡切 精度。另外,平均化在進行〇.十9化以棱回 效果大。 υ . 2 s e c以上時 然而,如上所述,對成 於例如4角為較佳。藉由對1個圖案形成區域設置1= 正標諸’可驗良好地求位移、定標、 :性:f度地進行,處理。而且,為了能夠同 設於4角之調正標財在Y軸方向並叫2個調正^ 對圖案形成區域的每-個’調正系統在丫轴方向上至少配 置2個為較佳。然而’因為在感光基板?上所設定的圖案 57 1278722 H 246pif1 形成區域的大小及數目根據製造元件被適當變化,所以藉 由調正系統的配置,會產生在1個圖案形成區域不配置2 個調正系統之情況。但是,藉由以感光基板P的寬度(Y 軸方向的長度)為參數而使調正系統的間隔最佳化,即使 圖案形成區域的大小及數目變化,也能對1個圖案形成區 域配置2個調正系統。 例如,當調正系統A L為A L 1〜 A L 6共6個時, 藉由設定調正系統A L 1〜A L 6的配置以滿足 •調正系統A L 1和A L 2的間隔 (2 / 7 ) X L • · · ( 1 ) •調正系統A L 3和A L 4的間隔 (1/5 ) X L ···⑵ •調正系統A L 5和A L 6的間隔 (2/7 ) X L ··· ( 3 ) •调正系統A L 1和A L 6的間隔 L ···( 4 ) 之條件,即使圖案形成區域的大小及數目變化,也能 對1個圖案形成區域配置2個調正系統。 關於此情況’一面參照圖1 8A1、m、ci、D1及圖 18A2、B2、C2、D2 -面進行說明。 圖18A1所不為將γ轴方向的寬^的感光基板以 為二’沿x軸方向™分為二,設定共計4個 在這4個圖案形成區域的每—個上形成 於曝光處理。光δ A2所示的被用 形成有N〇 ·:[,,圖案。圖1 8 1278722 1 1246pifl A1中,白圏 “rv’ 士一 /U表不被使用的調正系統,該例中對圖案 形成區域1" A2使用調正系統AL 1、AL 3,對圖案形 成區域PA1使用調正系統AL4、AL6。這裏,在感 光基板;P上形成有與調正系統A L 1〜A L 6對應之調正 標諸。調正系統AL丄〜AL 6以滿足上述⑴〜⑷ 式為目的進行配置,所以對1個圖案形成區域至少配置冑 · 2個圖1 8 A1的例為3個調正系統。這裏,各圖案形成 - 區域在Y軸方向的寬度相同。 、、圖1 8B1所示為將寬L的感光基板p沿¥軸方向一 φ /刀為二,沿X軸方向一分為二,設定共計6個圖案形成區 域,胃並在這6個圖案形成區域的每一個上形成畫面(圖案) 之場合。這裏,圖1 8B2所示的光罩μ被用於曝光處理。 . 光罩Ml形成有“Ν 〇 · 1”圖案。圖1 8Β1所示例中, ‘ 對圖案形成區域P A 3使用調正系統a L·1、A L 2,對 圖案形成區域PA 2使用調正系統AL3、AL4,對圖 案形成區域p A 1使用調正系統a L 5、A L 6。在這種 情況下,調正系統A L1〜A L· 6也以滿足上述(1 )〜 籲 (4)式為目的進行配置,所以對1個圖案形成區域配置 2個调正糸統。這裏,各圖案形成區域在γ軸方向的寬度 相同。 - 圖1 8C1所示為將寬l的感光基板p沿γ軸方向一 - 分為二,沿X轴方向一分為二,設定共計6個圖案形成區 域之場合。這裏,圖1 8C2所示的光罩M被用於曝光處 理。光罩Μ上形成有“Ν 〇 · 1”圖案和“N 〇 · 2”圖 59 1278722 1 1246pifl 案。然後’對圖案形成區域P A 1〜p A 6的每一個將“ N 0 · 1”圖案和“N 0 · 2”圖案的各個適當轉印,並在 Y軸方向上5個,在X軸方向上2個,形成共計1 〇個晝 面(圖案)。在圖18 C1所示的例中,對圖案形成區域p A 3,“N〇· Γ’圖案和“N 〇 · 2”圖案被同時形成, 此時使用調正系統AL 1、AL 2。然後對圖案形成區域 P A 2形成“Ν ο · 1”圖案,此時使用調正系統A]L 3、 AL4。另外,在圖案形成區域pa2上形成“Νο·1” 圖案時’藉由設於照明光學系統I L之遮簾(照明區域設 定裝置)等,對“No · 2”圖案之曝光光的照明被遮斷, 在圖案形成區域PA3上只形成光罩Μ的“No · 1”圖 案。這裏,調正系統AL 3和AL 4的間隔如上述(2) 式被設定’所以可使這2個調正系統a l 3、A L 4對圖 ^形成區域PA2配置。然後,對圖案形成區域PA1, N〇· 1”圖案和“N 〇 · 2”圖案被同時形成,此時 使用調正系統AL 5、AL 6。在這種情況下,調正系統 A L 1〜A L 6也以滿足上述(丄)〜(4)式為目的進 行配置’所以對1個圖案形成區域配置2個調正系統。 八圖1 8D1所示為將寬七的感光基板p沿γ軸方向一 分為三,沿X軸方向一分為二,設定共計6個圖案形成區 域之場合。這裏,圖1 8D2所示的光罩Μ被用於曝光處 理光罩Μ上形成有“ν 0 · 1,,圖案、“Ν 〇 · 2,,圖 案、Ν 0 · 3”圖案。然後,對圖案形成區域P A 1〜 ?八6的每一個將“1^〇.1,,圖案、‘%〇.2,,圖案、 60 1278722 "246pif1The difference between 2 and P y 3 is used as the y, and will the laser interferometer? The y S singular coordinates can be obtained by recording Xuan Xu. Thereafter, the substrate stage P is shifted by 2 to obtain. The measured value, offset 丄, and offset w of Wapy3 are also detected by the recording interferometer from py2. _^ = 2 on the partition BR3 (pattern formation area Py: movement: plate ΪΞ = Γ, : Γ device _7 starts at the -x square side 6th; positive ρΓ Γ photosensitive group from 1 A L1~ALR f(4) 1~m 6 and the alignment system detects the substrate stage P:; 3 = by clock Shot dry: Instrument::" Interferometer PX i, P x 2 detection substrate == at; 52 1278722 1 1246pifl Z position, and simultaneously detect the mother of these correction marks 6 (step sB 18). The device CONT detects the position of the pattern forming area PA7~"" in the axial direction by the distance _2, the correction flag of the j5 column, and the correction of the 帛6 column. = some detection results 'repair iL Regarding the shifting, scaling, and rotation of each pattern forming region p A 7 to =, the fourth (fourth) correction parameter (step s 9 ) 〇丄 'after the correction of the fifth column, in order to detect the sixth column = Orthogonal, scanning the alignment unit U on the photosensitive substrate P; a plurality of substrate AF detection systems 6〇a~6〇 juxtaposed in the x-axis direction; one 咐 distance in the X-axis direction The south position of the surface of the photosensitive substrate is detected. The respective detection results of the substrate AF detection systems 6 Q a to 6 被 are rotated out to the control 〇Ντ, and the control is based on the substrate & As a result of the detection of g, the pattern forming regions PA7 to pA9 of the plate p are obtained (step SB 2 0). Next, after the control device C〇NT determines the image characteristics of the p 1 tea number by the step SB 18 , The surface of the substrate stage PST is detected by the laser interferometers py 3, X, and P x 2, and the exposure processing of the request forming area PA7 is performed on the surface (step sb2i). 仏/^^^ Seismic (3) mobile substrate: W makes the projection light system PL and ffl form the secret domain PA 7, the side end is opposite. Then, by one side to make the mask M and the photosensitive substrate 53 1278722 1 1246pifl ET a::# : System P [in the + direction synchronous movement - surface exposure light = fresh Μ, case formation area p A 7 exposure processing. After the scanning exposure of the pattern forming area PA 7 is completed, based on the step SB IX The surface shape data of the photosensitive substrate?; pattern forming area PA7), in order to make the projection light, the imaging of the system The surface and the surface of the photosensitive substrate P are _, , =, the axial direction or θ', and the direction is shifted to control the sensation of the nine substrates, and scanning exposure is performed. Then, the control unit sets the (3) ΝΤ 郷 郷 正 正 , ^ ^ ^ ^ ^ ^ ^ ^ 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 That is, as shown in Fig. 15A, the control skirt (3) is set in the "γ direction" to the movable substrate stage P S Τ so that the projection optical Wei P L and the -X side end of the pattern A8 are opposed. At this time, the reticle stage M is configured to match the position of the mask Μ and the photosensitive substrate p with only micro-motion, (4). Then, the patterning region ρ8 is exposed by the surface of the ray in the _ χ direction by the surface of the ray and the photosensitive substrate 同步 in the _ χ direction. Shown after the scanning exposure of the pattern forming area ΡΑ8, the control of the county (3) NT 郷 郷 秘 正 二 二 由 由 由 由 由 由 由 由 由 由 由 由 镭 镭 镭 镭 镭 镭 镭 镭 镭 镭 镭 镭 镭X1 and PX 2 detect the position of the base °pst, and the - surface performs exposure processing of the _ formation region pA9 54 1278722 1 1246pifl (step S B 2 3 ). That is, as shown in FIG. 15C, the control device (steps) moves the substrate remaining p S τ in the -γ direction so that the projection light system p L and the time-forming region PA 9 are at the + X side end pair. At this time, the reticle carrier AM ST moves the position of the reticle M and the photosensitive substrate p. Then, by using the - surface to make the coffee and the sensitization ^, the ten vests are illuminating in the +X direction. Moving, one side of the illuminating EL (four) reticle M, the pattern-shaped wire κρΑ ^ division of the scanning area forming the region ΡΑ9 scanning exposure junction of the substrate stage pH of the above steps SB17 to SB23 in the X-axis direction, that is, for multiple Patterning area pA7~p: [^ area BR3) correction processing and X-axis direction measurement in exposure processing] Figure 4 4A, B, C, D and Figure i 5a, b, c, d The mis-interference interference ^ ^ ^ is performed by the positional speculation of the direction by the mis-interference interferometer Py 3 . #, In the interferometer Pyl~Py 3, the t-ray meter used for position detection is one. Then, the positional heartbeat is performed by the one laser interferometer y, and the calibration is adjusted based on the position=value of the misalignment interferometer P y 3 and the mask μ is performed: after the light treatment, the mask is ugly. Exposure to the wire forming area PA 7~ Area 2 Δ : and 'Tingri is also in the direction of the ¥ axis, a plurality of juxtaposed pattern formations ϊ ^ A 9 are successively successively exposed, and at the same time in the 4 lights The specific interferometer P y 3 corresponding to the pattern shape 1278722 1 1246pifi into the area PA7~PA9 (partition BR3) in the laser interferometer py work ~py 3 can be used for position detection. As described above, in the X-axis direction in which the scanning direction of the mask Μ and the photosensitive substrate p, that is, the non-scanning direction in which the υ axis f intersects, the shoulder positive system a L is arranged in parallel, so that it is not necessary to reduce the detection. Correction mark, the number of melon 1 m 6, compared with the original can reduce the adjustment of the standard Wei Gua 1 ~ m 6 , the number of movements. Therefore, the face-to-face maintenance adjustment accuracy is short-tuned. In addition, in the present embodiment, the alignment system is AL·1~AIjβ, and it is also possible to arrange at least three in parallel in the direction of the x-axis, thereby reducing the number of weeks, and reducing the correction mark. The number of detection actions. These multiple parallel alignment systems can simultaneously measure the calibration of each of the multiple _ formation areas, so that the production capacity can be improved. Li Tong's system AL is the deviation from the centerline direction. Therefore, 'there is a comparison with the projection optics and the substrate. Τττ 士二U π 冲先先先凋正锸尤古: Compared with the direction adjustment system , is - degrees (length in the γ axis direction) freely set. The configuration of 6 can be independent of the width of the mask 而, and the detection of the reticle is performed by detecting the axial direction cover at two positions spaced apart from each other on the two maps, and the accuracy can be accurately determined. . In addition, the adjustment mark 56 1278722 ^246pif] can be performed in the direction of the direction of the ★, or at least 2 positions of the distance between the three or more places can be adjusted. By multi-setting, the scanning exposure is adjacent to the Y-axis direction. By using the graphs of the opposite directions in the opposite direction = each of the regions of the region, the exposure of the region of the i-th pattern can be exposed to the surface of the region; = =广所"The ability to reduce the movement of the first leather two = another: 'This embodiment synchronizes with the adjustment of the interferometer ρ y y 2 - P y 3, but the position can be anywhere, also = 疋The two interferometers can be moved like this, even if there is no need to adjust the middle of the ^^ and the end of the exposure. Columns with good precision exposure. The exposure of $ θ can also be used as the offset system. In addition, the averaging is carried out in a 〇. υ . 2 s e c or more However, as described above, it is preferable to form, for example, four corners. By setting 1 = positive mark to one pattern forming region, it is possible to perform displacement, calibration, and performance: f degrees. Further, it is preferable to arrange at least two in the x-axis direction for each of the two correction systems in the Y-axis direction in order to be able to adjust the positive value of the four corners. However, because of the photosensitive substrate? The pattern set in the above 57 1278722 H 246pif1 The size and number of the formation regions are appropriately changed depending on the manufacturing elements. Therefore, by arranging the alignment system, two alignment systems are not arranged in one pattern formation region. However, by optimizing the interval of the alignment system with the width (length in the Y-axis direction) of the photosensitive substrate P as a parameter, even if the size and number of the pattern formation regions are changed, one pattern formation region can be arranged 2 A calibration system. For example, when the adjustment system AL is a total of 6 AL 1 to AL 6 , the configuration of the alignment systems AL 1 to AL 6 is set to satisfy the interval of the alignment system AL 1 and AL 2 (2 / 7 ) XL • · · ( 1 ) • Correction system AL 3 and AL 4 interval (1/5) XL ···(2) • Correction system AL 5 and AL 6 interval (2/7) XL ··· ( 3 ) • The condition of the interval L···( 4 ) between the system AL 1 and the AL 6 can be adjusted, and even if the size and number of the pattern forming regions are changed, two alignment systems can be arranged for one pattern forming region. In this case, the description will be made with reference to Figs. 18A1, m, ci, D1 and Figs. 18A2, B2, C2, and D2 - planes. In Fig. 18A1, the photosensitive substrate having a width in the γ-axis direction is divided into two in the x-axis direction TM, and a total of four are set. Each of the four pattern forming regions is formed in exposure processing. The light δ A2 is used to form N〇 ·:[,, pattern. Figure 1 8 1278722 1 1246pifl A1, the white 圏 "rv' Shi / U table is not used in the correction system, in this example for the pattern forming area 1 " A2 using the alignment system AL 1, AL 3, the pattern formation The area PA1 uses the alignment systems AL4 and AL6. Here, the alignment marks corresponding to the alignment systems AL 1 to AL 6 are formed on the photosensitive substrate; P. The alignment systems AL丄 to AL 6 are satisfied to satisfy the above (1) to (4). Since the pattern is arranged for the purpose, at least one pattern forming area is disposed in two. The example of FIG. 18 A1 is three correction systems. Here, the width of each pattern forming region in the Y-axis direction is the same. 1 8B1 shows that the photosensitive substrate p having a width L is divided into two φ/knife in the direction of the ¥ axis, and is divided into two in the X-axis direction, and a total of six pattern forming regions are set, and the stomach is in the six pattern forming regions. Here, a picture (pattern) is formed on each of them. Here, the mask μ shown in Fig. 18B2 is used for exposure processing. The mask M1 is formed with a pattern of "Ν 〇 1". In the example shown in Fig. 1 8.1, ' The patterning area PA 3 is used for the pattern forming area PA 2 using the alignment system a L·1, AL 2 The alignment systems AL3 and AL4 are used, and the alignment systems a L 5 and AL 6 are used for the pattern formation region p A 1 . In this case, the alignment systems A L1 to AL· 6 also satisfy the above (1) to ( Since the formula 4) is arranged for the purpose, two alignment systems are arranged for one pattern formation region. Here, the width of each pattern formation region in the γ-axis direction is the same. - Figure 1 shows a photosensitive substrate having a width of l. p is divided into two along the γ-axis direction, divided into two in the X-axis direction, and a total of six pattern forming regions are set. Here, the mask M shown in Fig. 1CC2 is used for exposure processing. A "Ν 〇 · 1" pattern and a "N 〇 · 2" pattern 59 1278722 1 1246pifl are formed thereon. Then, each of the pattern forming regions PA 1 〜 p A 6 will have a "N 0 · 1" pattern and "N" Each of the 0 · 2" patterns is appropriately transferred, and five in the Y-axis direction, and two in the X-axis direction, forming a total of one 昼 plane (pattern). In the example shown in Fig. 18 C1, The pattern forming region p A 3, the "N〇·Γ' pattern and the "N 〇· 2" pattern are simultaneously formed, and at this time, the alignment systems AL 1 and AL 2 are used. Then, a pattern of "Ν ο 1" is formed on the pattern forming region P A 2 , at which time the alignment systems A] L 3, AL4 are used. Further, when the "Νο·1" pattern is formed on the pattern forming region pa2, the illumination of the exposure light of the "No. 2" pattern is obscured by the blind (illumination region setting means) provided in the illumination optical system IL or the like. In the pattern forming area PA3, only the "No. 1" pattern of the mask Μ is formed. Here, the interval between the alignment systems AL 3 and AL 4 is set as described in the above formula (2). Therefore, the two alignment systems a l 3 and A L 4 can be arranged in the map forming region PA2. Then, the pattern forming area PA1, N〇·1" pattern and the "N 〇 · 2" pattern are simultaneously formed, at this time, the alignment systems AL 5, AL 6 are used. In this case, the alignment system AL 1 ~ AL 6 is also arranged for the purpose of satisfying the above formulas (丄) to (4). Therefore, two alignment systems are arranged for one pattern formation region. Eight figures 1 8D1 show that the photosensitive substrate p of the width seven is along the γ axis. The direction is divided into three, and is divided into two along the X-axis direction to set a total of six pattern forming regions. Here, the mask 所示 shown in Fig. 1D is used for the exposure processing mask to form "ν 0 · 1, pattern, "Ν 〇 · 2,, pattern, Ν 0 · 3" pattern. Then, each of the pattern forming regions P A 1 to ? 8 will be "1^〇.1,, pattern, '%〇.2,, pattern, 60 1278722 "246pif1
No · 3”圖案的各個適當轉印,並在γ軸方向上了個, 在X軸方向上2個,形成共計14個晝面(圖案)。在圖 1 8D1所示的例中,對圖案形成區域p a 3,“Ν ◦ · 圖案和“Ν 〇 · 3”圖案被同時形成,此時使用調正系統 AL1、AL2。另外,在圖案形成區域ΡΑ3上形成 〇,· 2” 、“Ν 0 · 3”圖案時,藉由遮簾等對“Ν〇· 1圖案之曝光光的照明被遮斷,在圖案形成區域ρΑ3 上只形成光罩Μ的“Ν 〇 · 2” 、“Ν 0 · 3”圖案。然 後’對圖案形成區域p A 2,“ Ν ο · 1,,圖案、“ ν 〇Each of the No. 3" patterns is appropriately transferred in the γ-axis direction, and is formed in two in the X-axis direction to form a total of 14 sides (patterns). In the example shown in Fig. 18D1, the pattern is The formation area pa 3, "Ν ◦ · pattern and "Ν 〇 · 3" pattern are simultaneously formed, at this time, the alignment systems AL1, AL2 are used. Further, when the 〇, 2", and "Ν 0 · 3" patterns are formed on the pattern forming region ΡΑ 3, the illumination of the exposure light of the Ν〇 1 pattern is blocked by the curtain or the like, and the pattern forming region ρ Α 3 is formed. Only the "Ν 〇 · 2" and "Ν 0 · 3" patterns of the mask are formed. Then, the pattern forming region p A 2, " Ν ο · 1, pattern, " ν 〇
2”圖案、“N〇· 3”圖案被同時形成,此時使用調正 系統AL3、AL4。然後,對圖案形成區域PA1,“N ^ · 1” ffi斜口 “N 〇 · 2”圖案被同時形成,此時使用 凋正系統A L5、AL6。另外,在圖案形成區域pA工 上形成“Νο,,· Γ,、“No .2”圖案時,藉由遮簾等 對“No · 3”圖案之曝光光的照明被遮斷。在這種情況 下,調正系統AL 1〜AL 6也以滿足上述(i)〜(4 ) 式為目的進行配置,所以對1個圖案形成區域配置2個古周 正系統。 口 ^在上述貫施例中,調正標誌m 1〜1116為在又軸方向 上每所㈣隔配置之構成,但也可如圖丨9所示,將附隨 于圖案形成區域1^ 1之調正標誌、m3 1、m4 1和附隨 于圖案形成區域P A 3之調正標如3 3、m4 3在¥轴 =向上亚娜置。同樣,也可將晴于圖案形成區域p A 2之調正標諸ml 2、m2 2和附隨于圖案形成區域pa 61 1278722 1 1 246pifl 4之調正標誌m1 4、m 2 4在Y軸方向上並列配置,或 將附隨于圖案形成區域P A 3之調正標誌m 3 3、m 4 3 和附隨于圖案形成區域13八5之調正標誌11135、瓜45 在Y軸方向上並列配置,或將附隨于圖案形成區域p A 4 之調正標誌、ml 4、m2 4和附隨于圖案形成區域p A 6 之調士標諸ml 6、m2 6在Y軸方向上並列配置。然後, 可將這些在Y轴方向並狀多侧正標誌巾 正標諸,藉由齡系統AL1〜AL4分別= 測。即,调正系統AL 1在其計測區域同時檢測 調正標認m22和m24,調正系統AL ㈣檢測調正標如3!和m33,調正系統= 计測區域同時檢測調正標誌'm 4 1和m4 3。藉此,可降 =正標諸檢_作的缝,提高生產能力 合也可進行蚊以縮小圖案形成區域的寬度。種每 將從側ίίϊ曝光處理時,控制裝置C〇NT首先在 A L 1」τ,土列之調正標誌的每-個藉由調正系統 個藉由調正系統^^ = J第2列之調正標諸的每— ®ΓΠΝΤΤ_^^ 1 AL4進行檢測。然後,控制裝 安%# ΡΘΡ Δ +Χ方向掃描感光基板Ρ 一面進行對圖 木幵y成區域P A 1的暖伞旁工田 描感光基板P -面進;广’』妾著’:面在-x方向掃 理。以下同樣,案形成區域P A 2的曝光處 的調正標諸後,在檢測第3列及第4列 在+ Χ方向掃描感光基板Ρ —面進行 62 Ϊ278722 "246pif1 對圖案形成區域PA 3的曝光處理,接著,一面在一χ方 向掃描感絲板P-面進㈣_形成區域p A 4的 處理。另外,控制裝置C0NT在檢測第5列及第6列的 為正標從,-面在+ X方向掃财錄板p_面進 圖案形成區域PA 5的曝光處理,接著,一面在—X方向 ^描感光基板p-面進行__成區域PA6的曝光處 另外’形成於感光基板P的調正標誌①丄〜^6的間 ΐ是根據調正系統A L1〜A L 6的配置(間隔)而被設 疋,也可將調正系統設定為可在丫轴方向移動,變更調 正系統彼此的間隔。 而且’如以上說明,將在感光基板?上曝光之圖案形 成區域PA1〜PA9分割為多個分^Ri〜br3, 在每分區進行調正處理及曝域理,蘭衫個分區br 3 3,一個依次進行該處理,所以即使感光基板 型,猎由將感光基板Ρ分割為多個分區並設置盥各 之㈣干涉儀P y 1〜p y 3,無需對1悔區 步儀’也可在每個分區進行精度良好的調正處 理及曝光處理。 、 作3 ί „中,調正系統為A L1〜A L 6共6個, ΐί斗騎日軸方向至少並列配置3個,藉此無需減少調 目,就能降低調正標誌、的檢測動作次數。而且, 區祕個並列的調正系統,可同時計測多個圖案形成 區或之母一個的調正標誌,從而可提高生產能力。 63 1278722 】1246pi f1 如上所述’錯射干涉儀p 與在x軸方向並列之圖宰 〜y w間隔(配置) 設定,者圖幸步成區拭々”成區域(分區)的每一個對應 1〜p”的配罟二個彼此鄰接時,鐳射干涉儀Py 〔去f、、二根據圖案形成區域在x轴方向的長产 小)被設定。另一方面,告方 、、又 =區域彼此分隔設定時’多個:射;y?之,案: 的配=圖案形成區域的 二23 在上述實施例中,移動 赠5又足 也可採用在基板載物台p s ^ 4 b為1個移動鏡’但是 之多個分區BR1〜:—配置與在X軸方向上並列 個)移動鏡之構成。 的每—個對應分割的多個(3 在上述實施例中的曝光壯 個投影光學系統,所謂的^置,是具有彼此鄰接之多 於投影光學系統為i個:^鏡掃描型曝光裝置’但是關 明。 ㈣型曝光裝置,也可適用本發 作為曝光裝置EX的用、余,、, 板上曝光液晶顯示元件圖案%、’,不限定於在角型的玻璃 用於例如半導體製造用的晶用的曝光裝置,也可適 曝光裝置。 *九衣置和用於製造薄膜磁頭的 本實施例的曝光展置p 6nm)、Μ(4〇5ηΧ的光源,不只是g線(43 M_KrFw〇、:,(3 6 5nm), 激態複合物鐳射(1 9 3 n田(2 4 8 n m)、a『ρ 投影光學系統P L的倍不2 1 5 7 n m )。 、不以疋等倍系統’也可為縮 J278722 "246pifj 小糸統及擴大系統的任_個。 作為投影光學系統PL,本你阳、 紫外線時,使用石英和 :、、土激態複合物鐳射等遠 續材料,當使用F 2 遇I外線的材料作為破 光學系統。 射守為反射折射系統或折射系統的 當在基板载物台卩s 丁和 絲力或電抗力之磁上浮型的任 型及利用勞倫 沿導=動的類型,也可為不設導=台既可為 田制平面電械作賴 辭 石皁元和電樞單元的任一方與载物,衣置:,可將磁 和電;由單==方設於载物台的移=側=广=單元 利早期公開之特開平Η 6 “7=二曰本專 也向地板(大地)釋放 : 义種構造的曝光裝置中也可適用。 仕/、備有 ^鮮載物台MST而產生的反作用力, 用ΓΓ 特開平8— 3 3 〇 2 2 4號公報所述,Ϊί 用框雜件機械地向地板(大地)釋放 這種構造的曝光裝置中也可適用。 月在具備有 如上所述,本申請實施例的曝光裝置,是將包含 請專利權利要求所列舉的各構成要素之各種子系統了 持所定的機械精度、電氣精度、光學精度為目的而制、 造的。為了確保這些各種精度,在該吨的前後關於 65 1278722 1 1246pif1 ί度的調整,關於各種機構系 構精度的調整,關於各種電氣 調整。從各種子系統到曝光裂置的組 ί 相互的機械的接續、電氣電路的配 iL子Hir 子系統各自的組裝工程。 ί:仵裳置的組裝工程結束後,進行综合調 t ’碟保作為曝先裝置整體料種精度。另外, 的製ϊΐί度度等被管理之淨室中進行最為理想。 + :脰兀件如圖2〇所示,經過進行元件 ==巧作基於該設計步驟的光罩(光罩原 5 ::: nT造元件的基材即基板(圓片、玻璃 曝光於基板’並將該曝光的基板顯像之基3 2Q4、7G件崎步驟(包括蝴工程、焊接工程、 包裝工程)2 0 5、檢查步驟2◦6等而被製造。 如以上說明’對在所定方向掃描之光罩和基板,在非 掃描方向上至少並列配置3個調正系統,所以不減少應檢 測的調正麟的數目,絲降低調正標諸的制動作次 數二因此,能夠-面維持調正精度—面縮短調正處理時間, 提南曝光處理的生產能力。 而且,將基板上進行曝光的曝光區域分割為多個分 區,在每分區進行調正處理及曝光處理,並將該處理關於 多個分區的每—個依次進行,所以即使基板大型化,也可 1278722 1 1246pifl 猎=將基,分割為多個分區並設置與各分區對應的位置檢 =裝置^無需對1個分區切換位置檢測裝置,就能在每個 为區進行精度良好的調正處理及曝光處理。 —雖然本發明已以較佳實施例揭露如上,然其並非 以限^本發明,任何熟習此技藝者,在不脫離本發明之 = 圍内’當可作些許之更動與潤飾,因此本發明之 保遵Ιϋ圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 因1疋表示本發明的曝光裝置之一實施例的概略斜視圖。 圖2是圖1的概略構成圖。 圖3所示為濾光器。 ® 4 τς:表示具備調正系統之調正單元的概略斜視圖。 圖5 A、5Β、5C是用於說明調正系統及a F檢測系統的圖 ^|\ 〇 圖6是調正系統的概略構成圖。 圖7是aF檢測系統的概略構成圖。 圖8A、8B、8C是用於說明基線(base line)計測程式的圖 不 〇 圖9是用於說明本發明的曝光方法的圖示。 圖1 0 A、10B、IOC、10D是用於說明本發明的曝光方法 的圖示。 圖1 1 A、11B、lie、11D是用於說明本發明的曝光方法 的圖示。 圖1 2A、12B、12C、12D是用於說明本發明的曝光方法 67 1278722 1 1246pif 1 的圖不。 圖1 3 A、13B、13C、13D是用於說明本發明的曝光方法 的圖示。 圖1 4A、14B、14C、14D是用於說明本發明的曝光方法 的圖示。 圖1 5 A、15B、15C、15D是用於說明本發明的曝光方法 的圖示。 圖16是用於說明本發明的曝光方法的流程圖。 圖17是用於說明本發明的曝光方法的流程圖。 圖 1 8 A卜 18B 卜 18C 卜 18D 卜 18A2、18B2、18C2、18D2 所不為調正糸統的配置例。 圖19所示為本發明的曝光方法的其他實施例。 圖20是表示半導體元件的製造工程之一例的流程圖。 圖2 1是表示原來的曝光裝置的斜視圖。 圖2 2A、22B、22C、22D是用於說明原來的曝光方法的 圖示。 圖2 3 A、23B、23C、23D是用於說明原來的曝光方法的 圖示。 圖2 4A、24B、24C、24D是用於說明原來的曝光方法的 圖示。 【主要元件符號說明】 2 0:視野光闌, 32 a、32b:移動鏡(位置檢測襞置), 34 a、34b:移動鏡(位置檢測裝置), 68 1278722 11246pif 1 5 0 a〜5 0 g :投影區域, 60(60a 6〇g):基板侧a ρ檢測系統, 70 (7Ga〜70d):光罩側a f檢測系統, 9 0、9 1:基線計測用的標鼓,9 2:基準構件, AL (AL1 〜AL6):調正(alignment)系統, BR1〜BR3:分區,c ONT:控制裝置, . E L:曝光光,E X:曝光裝置,μ:光罩, . H:支架,I L:照明光學系統, m 1〜m 6 ··調正標誌,M S T:光罩載物台, _The 2" pattern and the "N〇·3" pattern are simultaneously formed, at this time, the alignment systems AL3, AL4 are used. Then, for the pattern formation area PA1, the "N ^ · 1" ffi oblique "N 〇 · 2" pattern is At the same time, the positive system A L5 and AL6 are used at this time. In addition, when the pattern of "Νο,,·Γ, and "No. 2" is formed on the pattern forming area pA, "No. 3" is used by the blind or the like. The illumination of the exposure light of the pattern is blocked. In this case, since the alignment systems AL 1 to AL 6 are also arranged for the purpose of satisfying the above formulas (i) to (4), two ancient contour systems are arranged for one pattern formation region. In the above embodiment, the alignment marks m 1 to 1116 are configured for each (four) partition in the axial direction, but may be attached to the pattern forming region 1 1 as shown in FIG. The alignment mark, m3 1, m4 1 and the alignment mark accompanying the pattern forming area PA 3 such as 3 3, m4 3 are set in the ¥ axis = up to the middle. Similarly, the alignment of the pattern forming region p A 2 may be marked with ml 2, m 2 2 and the alignment marks m1 4, m 2 4 accompanying the pattern forming region pa 61 1278722 1 1 246pifl 4 on the Y axis. Arranged side by side in the direction, or the alignment marks m 3 3, m 4 3 accompanying the pattern forming area PA 3 and the alignment marks 11135 attached to the pattern forming area 13 and 5, juxtaposed in the Y-axis direction Arranging, or aligning the alignment marks attached to the pattern forming region p A 4 , ml 4 , m 2 4 , and the markers associated with the pattern forming region p A 6 in the direction of the Y-axis, juxtaposed in the Y-axis direction . Then, these positive marks on the Y-axis direction can be marked, and the age systems AL1 to AL4 are respectively measured. That is, the correction system AL 1 simultaneously detects the calibration marks m22 and m24 in its measurement area, the correction system AL (4) detects the correction marks such as 3! and m33, and the correction system = the measurement area simultaneously detects the correction mark 'm 4 1 and m4 3. Thereby, it is possible to reduce the seam of the positive inspection and the production capacity, and to increase the width of the pattern forming region. When the processing is performed from the side ̄ίίϊ, the control device C〇NT first in AL 1"τ, each of the correction flags of the soil column is adjusted by the system by the correction system ^^ = J column 2 Each of the │ _ _ ^ ^ 1 AL4 is calibrated. Then, control the mounting of the %# ΡΘΡ Δ + Χ direction scanning photosensitive substrate Ρ while performing the lining of the 幵 成 成 区域 PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA -x direction sweeping. Similarly, after the alignment of the exposure portion of the case forming region PA 2 is performed, the scanning of the photosensitive substrate in the + Χ direction in the third and fourth columns is performed to perform 62 Ϊ 278722 " 246 pif1 on the pattern forming region PA 3 The exposure processing is followed by the process of scanning the filament board P-face into the (four)-forming region p A 4 in one direction. Further, the control device C0NT detects the exposure processing of the fifth column and the sixth column as the positive target, and the - surface scans the recording plate p_ into the pattern forming region PA 5 in the +X direction, and then one side is in the -X direction. The exposure of the photosensitive substrate p-plane to the region PA6 is additionally performed. The interval between the alignment marks 1丄 to 6 of the photosensitive substrate P is based on the arrangement (interval) of the alignment systems A L1 to AL 6 . Alternatively, the adjustment system can be set to be movable in the x-axis direction, and the interval between the alignment systems can be changed. And as will be explained above, will be on the photosensitive substrate? The pattern forming areas PA1 to PA9 of the upper exposure are divided into a plurality of sub-sections Ri to br3, and the correction processing and the exposure area are performed in each sub-area, and the partitions are br 3 3, one of which is sequentially performed, so that even the photosensitive substrate type The hunting is performed by dividing the photosensitive substrate into a plurality of partitions and setting the respective (4) interferometers P y 1 to py 3, and it is also possible to perform accurate adjustment processing and exposure in each partition without the need for a 1 repentance step meter. deal with. In the case of 3 ί „, the adjustment system is 6 A L1 to AL 6 , and at least 3 are arranged side by side in the direction of the Japanese axis, so that the number of detections and the number of detections can be reduced without reducing the adjustment. Moreover, the side-by-side alignment system can simultaneously measure the correction marks of a plurality of pattern forming areas or the mother, thereby improving the production capacity. 63 1278722 】1246pi f1 As described above, the 'missing interferometer p and In the x-axis direction, the figure is slaughtered ~yw interval (configuration) setting, the figure is fortunately into the area wiper" into the area (partition) each corresponding to the 1~p" configuration of the two adjacent to each other, the laser interferometer Py [to f, and two according to the long-term production of the pattern forming region in the x-axis direction) is set. On the other hand, when the squad, and the = region are separated from each other, 'multiple: shot; y? In the above embodiment, the mobile gift 5 can also be used in the substrate stage ps ^ 4 b as a moving mirror 'but a plurality of partitions BR1~:- Each side of the X-axis direction is arranged in a moving mirror. A plurality of (3) projection optical systems in the above-described embodiments, the so-called "positions" are adjacent to each other more than the projection optical system: i: mirror scanning type exposure device 'but the same. The exposure apparatus can also be applied to the exposure apparatus EX as the exposure apparatus EX, and the on-chip exposure liquid crystal display element pattern %, ' is not limited to the angle type glass used for, for example, a semiconductor exposure apparatus. It is also suitable for exposure apparatus. * Nine clothes and the exposure spread p 6nm) and Μ (4〇5ηΧ light source of this embodiment for manufacturing a thin film magnetic head, not only the g line (43 M_KrFw〇, :, (3) 6 5nm), exciplex laser (1 9 3 n field (2 4 8 nm), a ρ projection optical system PL is not 2 1 7 7 nm). J278722 "246pifj small system and expansion system. As a projection optical system PL, when you use yang, ultraviolet light, use quartz, and:,,,,,,,,,,,,,,, The material of the outer line of I acts as a broken optical system. The shot guard is a catadioptric system or The type of the refraction system that is on the substrate stage and the magnetic force floating type of the wire force or reactance force and the type of the use of the Laurent edge can also be used as the field plane electricity. Any one of the armor and the armature unit of the sacred stone and the armature unit, clothing: magnetic and electric; from the single == side of the stage of the shift = side = wide = unit open early special open Η 6 “7=Second Edition is also released to the floor (earth): It is also applicable to the exposure device of the structure of the genus. The reaction force generated by the MST of the fresh stage is used. — 3 3 〇 2 2 4, Ϊί Applicable to an exposure apparatus that mechanically releases the structure to the floor (earth) with a frame. As described above, the exposure apparatus according to the embodiment of the present application is manufactured for the purpose of maintaining the mechanical precision, electrical precision, and optical precision of various subsystems including the constituent elements recited in the patent claims. Made. In order to ensure these various precisions, adjustments about 65 1278722 1 1246pif1 degrees before and after the ton, adjustments regarding the accuracy of various mechanism systems, regarding various electrical adjustments. From the various subsystems to the group of exposure cracks ί mutual mechanical connection, the assembly of the electrical circuit with the iL sub-Hir subsystem. ί: After the assembly work of the 仵 置 set, the comprehensive adjustment t ’ disc is used as the overall material accuracy of the exposure device. In addition, it is most desirable to manage the clean room, such as the system. + : The piece is shown in Figure 2〇, after the component == is made to be the mask based on the design step (the substrate of the original mask of the mask::: nT is the substrate (the wafer, the glass is exposed on the substrate) 'The base of the exposed substrate is 3 2Q4, 7G parts step (including butterfly engineering, welding engineering, packaging engineering) 205, inspection step 2◦6, etc. As described above, In the directional scanning reticle and the substrate, at least three alignment systems are arranged side by side in the non-scanning direction, so that the number of tuned linings to be detected is not reduced, and the number of movements of the aligning standard is reduced. The surface maintains the adjustment accuracy—the surface shortens the correction processing time and the production capacity of the exposure processing of the screen. Moreover, the exposure area exposed on the substrate is divided into a plurality of sections, and the correction processing and the exposure processing are performed in each section, and This processing is performed sequentially for each of a plurality of partitions, so even if the substrate is enlarged, it is possible to divide the base into a plurality of partitions and set the position corresponding to each partition to be detected. Partition switch position check The device can perform precision correction processing and exposure processing in each of the regions. - Although the present invention has been disclosed in the preferred embodiments as above, it is not intended to limit the invention, and anyone skilled in the art is not It is possible to make some changes and refinements within the scope of the present invention. Therefore, the scope of the patent application scope of the present invention is subject to the definition of the patent application. Fig. 2 is a schematic configuration view of Fig. 1. Fig. 2 is a schematic view showing a filter. Fig. 3 is a schematic view showing a filter unit including a correction unit. 5, 5A, 5C are diagrams for explaining the alignment system and the a F detection system. Fig. 6 is a schematic configuration diagram of the alignment system. Fig. 7 is a schematic configuration diagram of the aF detection system. 8B, 8C are diagrams for explaining a base line measurement program. Fig. 9 is a diagram for explaining an exposure method of the present invention. Fig. 10 A, 10B, IOC, 10D are for explaining the present invention. Illustration of the exposure method. Figure 1 1 A, 11B, lie, 11D is for explanation BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 2A, 12B, 12C, and 12D are diagrams for explaining the exposure method 67 1278722 1 1246pif 1 of the present invention. Fig. 1 3 A, 13B, 13C, and 13D are for explaining the present invention. 1A, 14B, 14C, and 14D are diagrams for explaining the exposure method of the present invention. Fig. 1 5 A, 15B, 15C, and 15D are for explaining the exposure method of the present invention. Fig. 16 is a flow chart for explaining the exposure method of the present invention. Fig. 17 is a flow chart for explaining the exposure method of the present invention. Fig. 1 8 A Bu 18B Bu 18C Bu 18D Bu 18A2, 18B2, 18C2, 18D2 are not examples of the configuration of the tuning system. Fig. 19 shows another embodiment of the exposure method of the present invention. 20 is a flow chart showing an example of a manufacturing process of a semiconductor element. Fig. 21 is a perspective view showing the original exposure apparatus. 2A, 22B, 22C, and 22D are diagrams for explaining the original exposure method. Fig. 2 3 A, 23B, 23C, and 23D are illustrations for explaining the original exposure method. 2A, 24B, 24C, and 24D are illustrations for explaining the original exposure method. [Description of main component symbols] 2 0: Field of view pupil, 32 a, 32b: moving mirror (position detection device), 34 a, 34b: moving mirror (position detection device), 68 1278722 11246pif 1 5 0 a~5 0 g : projection area, 60 (60a 6〇g): substrate side a ρ detection system, 70 (7Ga~70d): reticle side af detection system, 90, 9 1: standard drum for measurement, 9 2: Reference member, AL (AL1 to AL6): Alignment system, BR1 to BR3: Partition, c ONT: Control device, . EL: Exposure light, EX: Exposure device, μ: Photomask, . H: Bracket, IL: illumination optical system, m 1~m 6 ··correction mark, MST: reticle stage, _
Mxl、Mx2、Myl:鐳射干涉儀(位置檢測裝置), P:感光基板(基板), P A 1〜P A9:圖案形成區域(曝光區域), , PL (PLa〜PLg):投影光學系統, . P ST:基板載物台, P X1、P X 2 :鐳射干涉儀(位置檢測裝置), P y1〜P y 3 :鐳射干涉儀(位置檢測裝置), U:調正單元。 息 69Mxl, Mx2, Myl: laser interferometer (position detecting device), P: photosensitive substrate (substrate), PA 1 to P A9: pattern forming region (exposure region), PL (PLa to PLg): projection optical system, . P ST: substrate stage, P X1, PX 2 : laser interferometer (position detecting device), P y1 to P y 3 : laser interferometer (position detecting device), U: correction unit. Interest 69
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002148301A JP4168665B2 (en) | 2002-05-22 | 2002-05-22 | Exposure method, exposure apparatus, and device manufacturing method |
JP2002148309A JP4172204B2 (en) | 2002-05-22 | 2002-05-22 | Exposure method, exposure apparatus, and device manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200307182A TW200307182A (en) | 2003-12-01 |
TWI278722B true TWI278722B (en) | 2007-04-11 |
Family
ID=29552354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW092108905A TWI278722B (en) | 2002-05-22 | 2003-04-17 | Exposing method, exposing device and manufacturing method for device |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR100979454B1 (en) |
CN (1) | CN100524024C (en) |
TW (1) | TWI278722B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7388663B2 (en) * | 2004-10-28 | 2008-06-17 | Asml Netherlands B.V. | Optical position assessment apparatus and method |
JP5182558B2 (en) * | 2005-12-28 | 2013-04-17 | 株式会社ニコン | Pattern forming method and pattern forming apparatus, exposure method and exposure apparatus, and device manufacturing method |
TWI452437B (en) * | 2006-11-27 | 2014-09-11 | 尼康股份有限公司 | An exposure method, a pattern forming method, and an exposure apparatus, and an element manufacturing method |
US20080187871A1 (en) * | 2007-02-02 | 2008-08-07 | Fujifilm Corporation | Pattern forming apparatus and method |
US8139199B2 (en) * | 2007-04-02 | 2012-03-20 | Nikon Corporation | Exposure method, exposure apparatus, light converging pattern formation member, mask, and device manufacturing method |
TW201118509A (en) * | 2009-08-26 | 2011-06-01 | Nikon Corp | Exposure device, exposure method and manufacturing method for device |
CN101718956B (en) * | 2009-08-31 | 2013-06-05 | 四川虹欧显示器件有限公司 | Exposure method and alignment device thereof for substrate manufacturing |
CN103969958B (en) * | 2013-01-25 | 2016-03-30 | 上海微电子装备有限公司 | A kind of many exposure field splicing system and method |
CN103543615A (en) * | 2013-10-29 | 2014-01-29 | 苏州德龙激光股份有限公司 | Laser imaging processing device |
CN105527795B (en) | 2014-09-28 | 2018-09-18 | 上海微电子装备(集团)股份有限公司 | Exposure device and defocus tilt error compensation method |
CN106154760B (en) * | 2015-04-15 | 2019-01-29 | 上海微电子装备(集团)股份有限公司 | A kind of exposure device and exposure method |
US10983389B2 (en) * | 2016-03-04 | 2021-04-20 | Applied Materials, Inc. | Wire grid polarizer manufacturing method |
CN107290937B (en) * | 2016-03-31 | 2018-10-16 | 上海微电子装备(集团)股份有限公司 | A kind of projection aligner and method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4211150B2 (en) * | 1998-08-20 | 2009-01-21 | 株式会社ニコン | Laser interferometer and exposure apparatus |
JP2001023891A (en) * | 1999-07-09 | 2001-01-26 | Canon Inc | Stage device, aligner, and manufacture of device |
JP2002099097A (en) * | 2000-09-25 | 2002-04-05 | Nikon Corp | Scanning exposure method and scanning exposure device |
JP2002134392A (en) * | 2000-10-23 | 2002-05-10 | Nikon Corp | Apparatus and method for measuring position, aligner and device manufacturing method |
-
2003
- 2003-04-17 TW TW092108905A patent/TWI278722B/en not_active IP Right Cessation
- 2003-05-19 KR KR1020030031518A patent/KR100979454B1/en active IP Right Grant
- 2003-05-20 CN CNB031367305A patent/CN100524024C/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
TW200307182A (en) | 2003-12-01 |
KR100979454B1 (en) | 2010-09-02 |
CN1459671A (en) | 2003-12-03 |
KR20030091055A (en) | 2003-12-01 |
CN100524024C (en) | 2009-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW561523B (en) | Exposure device, exposure method, and manufacturing method of devices | |
TWI278722B (en) | Exposing method, exposing device and manufacturing method for device | |
CN103858208B (en) | The alignment device of exposure device and alignment mark | |
CN100463108C (en) | Exposing equipment, exposing method, and manufacturing method for element | |
TW200919106A (en) | Pattern formation method and device, exposure method and device, and device manufacturing method and device | |
JP2008263092A (en) | Projection exposure device | |
CN106104382B (en) | Sensing system, substrate transfer system and lithographic equipment | |
JPH0254103A (en) | Alignment device of exposure apparatus | |
JP4168665B2 (en) | Exposure method, exposure apparatus, and device manufacturing method | |
CN107850850A (en) | Light supply apparatus, exposure device and light source control method | |
TW201214055A (en) | Lithographic apparatus and device manufacturing method | |
JP7147738B2 (en) | Measuring device, measuring method, and exposure device | |
KR20080108226A (en) | Exposure method and apparatus, and device manufacturing method | |
CA1162777A (en) | Alignment and exposure system with an indicium of an axis of motion of the system | |
TWI316649B (en) | ||
CN107290937A (en) | A kind of projection aligner and method | |
CN107290943A (en) | Coaxial mask alignment equipment, lithographic equipment and alignment methods | |
TW201037359A (en) | Method for arranging an optical module in a measuring apparatus and a measuring apparatus | |
TW200811604A (en) | Projection exposure device and projection exposure method | |
CN102472987A (en) | Exposure apparatus, exposure method, and device manufacturing method | |
CN107810399A (en) | Manufacture the method and measuring system of the camera lens of lithographic equipment | |
KR20100106949A (en) | Exposure method and exposure device | |
JPS60186845A (en) | Aligning device of exposure device | |
JP2003272989A (en) | Exposing method and aligner | |
WO1999050893A1 (en) | Exposure method and exposure system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |