TW593703B - High-strength copper alloy - Google Patents

High-strength copper alloy Download PDF

Info

Publication number
TW593703B
TW593703B TW092112387A TW92112387A TW593703B TW 593703 B TW593703 B TW 593703B TW 092112387 A TW092112387 A TW 092112387A TW 92112387 A TW92112387 A TW 92112387A TW 593703 B TW593703 B TW 593703B
Authority
TW
Taiwan
Prior art keywords
item
content
copper alloy
mass
scope
Prior art date
Application number
TW092112387A
Other languages
Chinese (zh)
Other versions
TW200404102A (en
Inventor
Keiichiro Oishi
Isao Sasaki
Junichi Otani
Original Assignee
Sambo Copper Alloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sambo Copper Alloy Co Ltd filed Critical Sambo Copper Alloy Co Ltd
Publication of TW200404102A publication Critical patent/TW200404102A/en
Application granted granted Critical
Publication of TW593703B publication Critical patent/TW593703B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/025Composite material having copper as the basic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Conductive Materials (AREA)

Abstract

This invention relates to a high-strength copper alloy which is excellent in mechanical properties, processability, corrosion resistance, etc. and is satisfactory in profitability. It is a rolled material which has an alloy composition comprising 4 to 19 mass% zinc, 0.5 to 2.5 mass% silicon, and copper as the remainder, the contents of zinc and silicon satisfying the relationship, Zn-2.5xSi=0 to 15 (mass%), and which has a crystal structure having an average crystal grain diameter D of 0.3 to 3.5 mum and has a 0.2% proof stress of 250 N/mm<2> or higher in the recrystallized state.

Description

593703 狄、發明說明: 【發明所屬之技術領域】 旦本發明係關於適合做為電氣、電子、通訊、資訊、測 =機器或汽車等所使用之導線、_、連接器、繼電器: /月動片等構成材之高強度鋼合金。 【先前技術】 一般而言,係使用高強度合金銅做為在電氣、電子 :訊、資訊、糧器或汽車等所使用之導線、開關、連 。。 月助方寺之構成材’由於伴隨著近年來機 二之小型化、輕量化、高性能化’該等所使用之導線、開 連接器等之構成材料,也被要求有很嚴格的特性改善 ::如,連接器之彈簧接點部係使用極⑸反,而構成如此 二專板之南強度銅合金中…謀求薄化而需要高度的強 又,更要求具有以強度料曲加卫性為首之與延性之高度 平衡,生產性、經濟性優良,以及在導電性、耐姓性(财 ^力腐触破裂、耐脫鋅腐触、耐遷移),應力緩和特性、 焊接性、耐磨損性等不會發生問題。 然而’做為高強度銅合金’一般而言,以鈹銅、鈦銅 1铭青銅、磷青銅、鋅白銅、黃銅或添加sn、Ni之黃銅為 小所知’但是該等一般的有下述的問豸,無法滿足上述的 要求。 亦即,皱銅雖是在銅合金中擁有最高強度者,但鈹對 豆非吊的有害(特別是’在熔融狀態下,鈹蒸氣即使極 6 u里也非常危險),所以鈹銅製 睾虛裡γ从 /、〜表口口的廢 Μ (特別是焚化處理)是很困難的,製造時所使用之 定的特广 本變得極高。因此,為了得到既 、f而在製造之最終階段需要熔體化處理, 造成本之經濟性也有問題。 且包3製 所以:要:ΐ::有之強度僅次於鈹銅,但鈦為活性元素, 大 叩貝的熔解設備,熔解時的品質、良率有問題。 因此如同鈹銅般,在製造之最終階段需要溶體化處理, 且經濟性也有問題。 塊是:困2銅由於銘為活性元素,戶斤以要得到完整的鑄 Α 、的’而且也有焊接性差的問題。 、“又’石粦青銅、辞白銅之熱加工性差,藉由熱壓延之梦 =為困難’所以__般而t,係藉由橫式連續鑄造來、 能源成本高,1率也差。又,在高強度 、口口種—弹黃用磷青銅或彈簧用鋅白銅中,含 旦 昂貴之夕里 黃銅以及添加sn、Nk黃銅雖然低廉 滿足,耐蝕性f庙士爵左丄丄 攻反上無法 (應力腐餘破裂以及脫鋅腐幻有問題,做為 ,。 迷小型化、高性能化之製品構成材是不適當的 夕仏口此則述一般的高強度銅合金,終究無法滿足前述 1工里化、兩性能化之各種機器的零件構 成材,而強烈的需要新的高強度銅合金之開發。“牛構 593703 【發明内容】 本發明者,著眼於〇. 2%安全限應力(永久變形為〇. 2% 時之強度’以下有時也稱為「安全限應力」)依結晶粒徑D 之-1/2次方(D_1/2)的比例上升之霍爾•佩其(Hall—petch) 之關係式(參照 Ε· 〇. Hall,Proc. Phys. Soc. London. 64 ( 1 951 ) 747·以及 N· J_ Petch, J· Iron Steel593703 D. Description of the invention: [Technical field to which the invention belongs] Once the invention relates to wires, connectors, relays, etc. suitable for use in electrical, electronic, communication, information, testing, machinery or automobiles: High-strength steel alloys such as sheets. [Previous technology] Generally speaking, high-strength alloy copper is used as wires, switches, and connectors in electrical, electronic: telecommunications, information, food equipment, or automobiles. . The structural materials of Tsukisuke-ji Temple “are accompanied by the miniaturization, weight reduction, and high performance of the second machine in recent years, and they are also required to have very strict characteristics to improve the structural materials such as wires and open connectors. :: For example, the spring contact part of the connector is extremely inverse, and the south-strength copper alloy that constitutes the two special plates is required to be thin and high-strength, and it is also required to have the strength of the material. Leaded by a high balance with ductility, excellent productivity and economy, as well as electrical conductivity and survivability (financial corrosion cracking resistance, dezincification corrosion resistance, migration resistance), stress relaxation characteristics, weldability, wear resistance No damage will occur. However, as a high-strength copper alloy, in general, beryllium copper, titanium copper, bronze, phosphor bronze, zinc copper, brass, or brass with sn and Ni are known. The following questions cannot meet the above requirements. That is, although wrinkled copper has the highest strength among copper alloys, beryllium is harmful to beans (especially 'in the molten state, beryllium vapor is very dangerous even in extreme 6 u). It is very difficult for γ to dispose of wastes (especially incineration treatment) from the surface of the mouth, and the special features used in manufacturing become extremely high. Therefore, in order to obtain both f and f, melt processing is required in the final stage of manufacturing, which also causes economic problems. And the package 3 system So: to: ΐ :: the strength is second only to beryllium copper, but titanium is the active element, the melting equipment of large scallops, the quality and yield of melting have problems. Therefore, like beryllium copper, a solution treatment is required in the final stage of manufacturing, and the economy is also problematic. The block is: due to the inscription of copper as an active element, households must obtain a complete cast Α, and also have poor weldability. , "Also, the hot workability of Shijie Bronze and Cixi Copper is poor. The dream of hot rolling = difficult. Therefore, __ is generally t, which is achieved by horizontal continuous casting. The energy cost is high, and the rate is also poor. In addition, in high-strength, mouth-type-phosphor bronze for spring yellow or zinc-white copper for spring, including expensive brass and the addition of sn, Nk brass, although low-priced, the corrosion resistance of the f Unable (There is a problem with stress corrosion cracking and dezincification corrosion. As a result, the miniaturization and high performance of the product are not suitable. The general high-strength copper alloy is not described here. After all, it cannot meet the foregoing. 1 gongli, dual performance of various machine parts and components, and the development of new high-strength copper alloys is strongly needed. "牛 Structure 5937703 [Summary of the invention] The inventor focused on 0.2% safety limit stress (The strength at the time of permanent deformation of 0.2% is sometimes referred to as "safety limit stress" below.) Hall Peck, which increases in proportion to the -1/2 power (D_1 / 2) of the crystal grain size D (Hall-petch) relationship (see E. 〇. Hall, Proc. Phys. Soc London. 64 (1951) 747 and NJ Petch, J. Iron Steel

Inst. 1 74 ( 1 953)25·),想到藉由使晶粒微細化,可得到 滿足上述現今要求之高強度銅合金,而對晶粒微細化進行 了種種的研九、κ驗。其結果,發現依添加元素之種類可 使銅合金再結晶而實現晶粒之微細化,藉由使晶粒(再結 晶粒)微細化到某種程度以下,而可使以0.2%安全限應力 為主之強度、員著增力口 ’晶粒可變小,伴隨之強度也增加。 更且,針對晶粒微細化中之添加元素的影響進行各種實驗 之結果得知:對Cu—Zn合金而言,Si的添加有使成核位置 增加的效果,而對於㈣―Si合金而言,c〇的添加有抑 制晶粒成長的效果,蕤由 、工 曰由利用14些效果,可得到具有微細 的晶粒之Cu-Zn-Si系人么 v&gt; r n 〇孟,或Cu-Zn-Si-Co系合金。亦即 ’成核位置的增加’可想成因添力口 si使積層缺陷能量降 :=!粒成長之抑制’可想成因添加c “使微細之 析出物生成之故。 夂 本發明’係基於該判明事項 種機械性質、加工性、而……目的在於棱供- ^ ώ 耐姓性等優良’經濟性也沒有門0首 之新穎高強度銅合金,特別Hm “也,又有問碭 ,±τ&lt; 〇 _ 、疋可適虽的做傾向於小型化 輕置化、尚性能化之各 1化 钺之芩件構成材,可供廣泛 8 用途使用而極富實用性。 需要::弟1 ’本發明主要的目的在於,提供-種對於 二=Γ材(板材、條材、線材等)或其加工材( 稱:「:口:弓曲加工品)為適宜之高強度銅合金(以下, 稱為弟1發明銅合金」)。又,叮、ώ人、— 金做為構成材來使用之事口 以弟1發明銅合 文用&lt; I 口口、零件中,有要求薄化、扭旦 化之攜帶型、小型通訊機哭 二里 mu ^電㈣較用之電子機器零 :、醫療機器零件、服飾零件、機械零件、熱交換器的管 、错由海水冷卻之冷卻裝置或在小型船舶等上之海水取 =穴Γ出口之構成零件,配線機器零件、汽車用的各種 L零件、測量機器零件、遊戲用具以及曰用品等,且體 而言’可舉出連接器、繼電器、開關、插座、彈篑、齒輪 銷墊片、遊戲用代幣、鑰匙、轉筒(tumble小钮扣、 鉤子、止動金屬件、隔膜、波紋f (bellQWS)、滑動片、轴 承、音量用滑動片、套筒、溶斷器夾、導線架、儀表板等 又,第2,本發明主要的目的在於提供一種適於做為 強度無須達到帛1發明銅合金所要求之程度、但強度與導 電性需達高度平衡之壓延材(板材、條材、線材)或其加 」才(加壓成形品、彎曲加工品)之高強度銅合金(以下 :為「第2發明銅合金」)。又’可適合以第2發明銅合 金做為構成材來使用之製品、零件中,有汽車用之各種機 =零件、需要導電性之資訊機器零件、測量機器零件、家 電用品零件、熱交換器之管板、藉由海水冷卻之冷卻裝置 593703 或在小型船舶等上之海水取入口 械零件、遊戲零件以及日用品,呈體而丄“零件、機 、開關1電器、套筒、溶斷器夹、導二:可::連接器 鑰匙、轉筒、4 ¥線木、配線器具、 4轉问、鈕扣、鉤子、止動 滑動片、轴承、遊戲用代幣等。 波紋管、 帛3,本發明之主要目的在於提供一種適合做為 而要與弟1發明銅合金同等 口為 面圓形之…::度之两強度性的延線材(截 ,口二广線材、截面形狀為方形(正方形等 形(/、角形等)等之定型線材)或其加工材 等)來使用之高強产铜人八f 弓曲加工品 … 強度銅合金(以下稱為「第3發明銅合金 」)。又,可適合以第3發明銅 制口、焚杜由^ j 口金做為構成材來使用之 衣口口零件中,有醫療機器零件、建 、機械零件、遊戲零件、汽車用之久=零件、服飾零件 哭焚株以;,又車用之各種機器零件、測量機 = 电子、電氣機器零件,具體而言,可舉出,連Inst. 1 74 (1 953) 25 ·), it is thought that by refining the grains, a high-strength copper alloy that meets the above-mentioned current requirements can be obtained, and various researches on grain refining have been conducted. As a result, it was found that depending on the type of the additive element, the copper alloy can be recrystallized to achieve grain refining. By refining the grains (recrystallized grains) to a certain degree or less, the safety limit of 0.2% can be achieved. As the main strength, the grain size becomes smaller, and the accompanying strength also increases. In addition, the results of various experiments on the effects of added elements in grain refining show that for Cu—Zn alloys, the addition of Si has the effect of increasing the nucleation sites, and for ㈣—Si alloys The addition of C0 has the effect of inhibiting the growth of crystal grains. By using these effects, it is possible to obtain Cu-Zn-Si series with fine grains. V &gt; rn〇Mn, or Cu-Zn -Si-Co based alloy. That is, 'the increase of nucleation sites' is thought to be caused by the addition of the force si to reduce the energy of the layered defects: =! The inhibition of grain growth 'is thought to be caused by the addition of c "to produce fine precipitates. 夂 This invention' is based on The identified matters are mechanical properties, processability, and ... the purpose is to provide for ^-free surname and other excellent 'economy, there are no new high-strength copper alloys, especially Hm "also, there are questions, ± τ &lt; 〇_ and 疋 适 are suitable to be used as a component material of each material, which tends to be smaller, lighter, and more functional. It can be used for a wide range of applications and is very practical. Needs :: Brother 1 'The main purpose of the present invention is to provide a kind of suitable material for two = Γ materials (plates, strips, wires, etc.) or their processed materials (called: ": mouth: bowed processed products) High-strength copper alloy (hereinafter referred to as "the first invention copper alloy"). In addition, the use of gold as a constituent material is based on the invention of the invention of the copper joints &lt; I mouth, parts, there are portable, small-sized communication devices that require thinning and twisting二 二 里 mu ^ Electrical equipment used for electronic equipment is zero: medical equipment parts, clothing parts, mechanical parts, heat exchanger tubes, cooling devices that are cooled by seawater, or seawater on small ships, etc. Export components, wiring machine parts, various L parts for automobiles, measuring machine parts, game equipment, and supplies, etc., and physical examples include connectors, relays, switches, sockets, springs, gear pin pads Tablets, game tokens, keys, reels (tumble small buttons, hooks, stop metal pieces, diaphragms, bellows f (bellQWS), sliders, bearings, volume sliders, sleeves, fuse clips, Lead frames, instrument panels, etc. Second, the main object of the present invention is to provide a rolled material (plate material) suitable for use as a strength that does not need to reach the level required by the copper alloy of 帛 1 invention, but needs to have a high balance of strength and conductivity. , Strip, wire ) Or its high-strength copper alloy (hereinafter referred to as "the second invention copper alloy") (press-molded product, bent product). It is also suitable for the second invention copper alloy as a constituent material. Among the products and parts, there are various machines for automobiles = parts, information machine parts that require electrical conductivity, measuring machine parts, home appliance parts, heat exchanger tube sheets, cooling devices cooled by seawater 5937303, or in small ships Waiting for the seawater to take in and import machine parts, game parts and daily necessities, "parts, machines, switches, 1 appliances, sleeves, fuse clips, guide two: OK :: connector key, drum, 4 ¥ Wire wood, wiring appliances, 4 relays, buttons, hooks, retaining slides, bearings, game tokens, etc. Corrugated tubes, 帛 3, the main purpose of the present invention is to provide a method suitable for the invention The copper alloy has the same surface as a circle ... :: two-strength extension wire (cut, two-wire, cross-sectional shape is square (square, etc. (/, angle, etc.), etc.) or its processing) Materials, etc.) The high-strength copper-manufactured eight-f bowed product ... A strong copper alloy (hereinafter referred to as "the third invention copper alloy"). It is also suitable to be made of the copper mouth of the third invention and the incineration made of gold. Among the parts used for clothing, there are medical machine parts, construction, mechanical parts, game parts, automotive long-time = parts, clothing parts, and various machine parts and measuring machines for electronics = electronics. , Electrical equipment parts, specifically, including

接為、鑰匙、集管愛件、4 〆A 罘吕;件、釘(迦戲機器用釘等)、墊片、 銷、螺絲、線圈彈簧、導虫累士曰 ^ . π , 平貝v螺才干、影印機的旋轉軸、金屬網 (養殖用金屬網或囍由、、叙士、人c 飞猎由海水冷部之冷卻裝置或在小型船舶 等上之海水取入口、取出口之過濾器),滑動片、轴承、 銷。 第’X月之銅合金’其基本構成係含有㈠9mass% (以6〜15maSS%為佳,以7〜13mass%更佳)之&amp;,盥 佳)之Si,並在該等含有量之間具有a—2. 5 · ^ = H5maSS%(以H2mass%為佳,以2〜9咖以更幻之關係, 10 593703 且殘部為銅,且呈現平均結晶粒 仅 U 為 0· 3/z DS 3. 5// m (以 0.3&quot;m$D$2.5//m 為佳,以 〇 q &lt; n π 丨土 M U· :3/z Dg 2/z m 更佳 )之結晶組織,再結晶狀能之n 9q/ a 日日狀L之0.2%安全限應力為25〇n/_2 以上(以300N/mm2以上為佳)。 又,弟2 |明之鋼合金,其基本構成係含有 4~17maSS% (以5〜13„mss%為佳,以6〜115_%更佳)之Connection, key, header love piece, 4 〆A 罘 Lu; pieces, nails (such as nails for Jia opera machines), gaskets, pins, screws, coil springs, insect guides ^. Π, 平 贝贝 螺 螺Talents, Rotary shafts of photocopiers, metal nets (metal nets for farming or fishing), Syria, people c. Fly hunting by the cooling device of the seawater cold department or seawater inlet and outlet filters on small ships, etc. ), Sliding blades, bearings, pins. The basic composition of the "X-Year Copper Alloy" contains Si of ㈠9mass% (preferably 6 ~ 15maSS%, more preferably 7 ~ 13mass%) &, and between these contents With a-2. 5 · ^ = H5maSS% (preferably H2mass%, 2 ~ 9 coffee for a more magical relationship, 10 593703 and the remainder is copper, and the average crystal grains only U is 0.3 / z DS 3. Crystal structure of 5 // m (preferably 0.3 &quot; m $ D $ 2.5 // m, more preferably 0q &lt; n π soil MU ·: 3 / z Dg 2 / zm), recrystallized The 0.2% safety limit stress of the energy n 9q / a sun shape L is more than 25n / _2 (preferably more than 300N / mm2). Also, the steel structure of Ming 2 | Ming's steel alloy contains 4 ~ 17maSS % (Preferably 5 ~ 13 „mss%, more preferably 6 ~ 115_%)

Zn,與 〇.卜0.8mass% ( ,乂 〇.2〜〇 6raass% 為佳,以 0.2〜〇_5一更佳)之81 ’並在該等含有量之間具有zn— 2.5.Sl = H5mass%(以 4〜12_s%為佳,以 Ho·』更 佳)之關係,且其殘部為銅’且呈現平均結晶粒徑〇為〇. 3 //π^1^3·5μΐη (以 為佳以 〇 DS 2. 5 # m更佳)之結晶組織,再結晶狀態之〇. 安全限 應力為250N/mm2以上(以3〇〇N/_2以上為佳)。 又,第3發明之銅合金,其基本構成係含有 66 76mass°/〇 (以 68〜75. 5mass% 為佳)之 Cu ,與 2卜33mass% (以 22〜31mass%為佳)之 Zn,與 〇 5 2mass%(Zn, 0.8 mass% (preferably 0.2 to 〇6raass%, more preferably 0.2 to 〇_5 a) 81 ', and zn—2.5.Sl = H5mass% (4 ~ 12_s% is preferred, Ho · "is more preferred), and the remainder is copper 'and exhibits an average crystal grain size of 0. 0.3 // π ^ 1 ^ 3 · 5μΐη (preferably With a crystalline structure of 〇DS 2. 5 # m), the safety limit stress of the recrystallized state is 250 N / mm2 or more (preferably 300 N / _2 or more). In addition, the copper alloy of the third invention has a basic composition of 66 76 mass ° / 〇 (preferably 68 to 75.5 mass%) Cu, and 2 33 mass% (preferably 22 to 31 mass%) Zn, With 〇2 2mass% (

二〇·8〜l.8mass%為佳,以卜17mass%更佳)之^,並在該 專 s 有 i 之間具有 Cu—5 · Si = 62〜67mass%(以 Cu—5 · Si =63〜66.5inass%)以及 Zn + 6 · ^=32〜38^μ%(以 Ζη+6· Si=33〜37mass%為佳)之關係,且呈現平均結晶粒徑d為 〇-3^in^D^3.5/zin(i,x 0.3/^ 〜2. 5 /z m更佳)之結晶組織,再結晶狀態之〇. 安全 限應力為250N/mm2以上(以300N/_2以上為佳)。 在各發明銅合金中’上述平均結晶粒徑D以及〇 . 2%安 11 593703 =應力’係以使該合金組織之—部份或全部再結晶之敎 結晶化處理)經過複數回時,藉由最後進行之再; 曰曰化處理(以下稱為「最終再結晶化處理」)所得到之材料 (以下,稱為「再結晶材) 入 」y〈十均結晶粒徑以及0· 2%安 王限應力所特定者。又,若只 n. 〜 _人上述再結晶化處理 日守’則理所當铁的,兮者 么田 ^ ^ …、 μ處理係取終再結晶化處理且該處理 材為再結晶材。 各發明銅合金,在較佳之實施形態中,一般而言,以 ()將鑄塊以包含熱加工(壓延、擠製、锻造等)以及 ,=加工(壓延’拉線)之塑性加工來加工成既定形狀 加卫素材在再結晶溫度區域做熱處理(退火等) 來再結晶化處理(悬r s 取、、S再、、Ό日曰化處理)所得到之再結晶材 (主要而言,帛i以及第2發明銅合金為壓延材,第3發明 銅合金為拉線材)、 &amp; (2)將上述(1)之再結晶材藉由冷加工(壓延、拉線、鍛 化)加工成既定形狀所得之冷加工材(主要而言,第丨以 及第2發明銅合金為壓延材,第3發明銅合金為拉線材) Λ ()藉由將上述(1 )之再結晶材以加壓加工,彎曲加工 等加工成既定之製品形狀所得到之製品加工材、 (4)藉由將上述(2)之冷加工材以加壓加工,彎曲加工 寺加工成既定之製品形狀所得到之製品加工材、 之任一形態來提供。 在第1發明銅合金中,為了使特性進一步提昇,以進 12 593703 步含有0.005〜〇.5mass%(以0·(Π〜〇.3mass%為佳,而以 0.02〜O.—ss%更佳)之c〇以及/或〇 〇3〜15ι^%(以 〇.711^33%為佳,而以〇 〇5〜〇.5贿33%更佳)之811之人 金組成所構成之物為佳。 σ •在此情況,Co以及Sn之含有量,在上述範圍内考慮 Sl之合有量來決定。亦即,Co之含有量,係以c〇含有量 除以Si含有量之值C0/Si成為〇〇〇5〜〇5(2 C〇/Sh〇.0卜〇·3為佳,而以c〇/s卜〇〇3〜〇·2更佳)來決定 。又,Sn之含量,係以Si含有量除以%含有量之值儀 Si/Sn成為h5以上(以Si/Sn^2為佳,而以si/sn^3更 佳)來決定。 又,在第1發明銅合金中,合金組成可進一步含有 0.005〜〇.3mass%(以 〇·〇卜〇.2mass%為佳)之 Fe 以及/或 0.005〜0.3mass%(以 〇.〇1 〜〇.2maSS%為佳)之 Ni,來做為 c〇 之代替元素或與Co共同添加之元素。 在此情況’ Fe含有量或Ni含有量,係考慮Si含有量 (與Co共同添加之情況中,為Si含有量以及c〇含有量)來 _ 決定。亦即,Fe、Ni含有量,係使包含含有c〇之情況之 合計含有量以si之含有量來除之值(Fe+Ni+c〇)/Si成為 0.005〜0.5(以(?6 + “+(:〇)/8卜〇.〇1〜0.3為佳,而以 (Fe + Ni+Co)/Si = 0· 03〜0· 2更佳)來決定。在做相關決定之 際,以使前述之合計含有量(Fe + Ni+C0)為 0.005〜0.55mass% (以 〇· 〇1 〜0· 35maSS% 為佳,而以 0.02〜0.25mass%更佳)來考慮為佳。 13 593703 在第2發明銅合金中,為了謀求特性之進一步提昇, 合金組成以進一步含有0.005〜〇 5mass%(以〇 〇1〜〇 3贴^% 為佳,而以 〇. 2〜3mass%(以 佳)之Sn為佳。 〇. 02〜0· 2mass%更佳)之c〇 1〜2. 6 mass%為佳,而以h 2〜2 以及/或 5 mass%更 在此情況,Co含有量以及Sn含有量,係考慮與$丨含 有量之關係來決定。亦即,Co含有量,係在上述範圍内, 使Co含有量以Si之含有量來除之值c〇/Si成為〇. 〇2〜ι 5 (以Co/Si=0.04〜1為佳,而以C〇/Si = 〇〇6〜〇·5更佳)來決 _ 定。又,Sn含有量,係在上述範圍内,使Si含有量除以 Sn含有量之值Si/Sn成為0.5以下(以Si/SnS0.4為佳, 而以Si/SnS 0· 3為佳)來決定。 又,關於第2發明銅合金,可在取代c〇或與c〇共同 存在下含有0·005〜0.3mass%(以〇·(Η〜〇.2mass%為佳)之Fe 以及/ 或 0.005〜0.3mass%(以 〇·〇ι 〜〇.2mass%為佳)之 Ni。 在此情況,Fe含有量或Ni含有量,係考慮Si含有量(在 與Co共同添加之情況中’為Si以及Co之含有量)來決定 _ 。亦即,Fe、Ni含有量,係以使包含含有c〇之情況之合 計含有量以Si之含有量來除之值(Fe + Ni+Co)/Si成為 0.02〜1.5 (以(Fe+Ni+Co)/Si:0.04〜1 為佳,而以 (Fe + Ni+Co)/Si = 0· 0 6〜0· 5更佳)來決定。在做相關決定之 際,使前述之合計含有量(Fe + Ni+Co)成為 〇· 005〜0·55mass% (以 0. 01〜0·35mass% 為佳,而以 0.02〜0_25mass%更佳)來考慮為佳。 14 ^^/03 又,關於第1以及第2銅合金,可依據用途上所需特 座’使其含有擇自 p、Sb、As、Sr、Mg、Y、Cr、La、Ti、 Zr In以及Hf中至少一種之元素。該等元素的含有 里個別在0· 003〜0· 3mass%之範圍内來適當決定。 在第3發明,為了謀求特性之進一步提昇,合金組成 以進一步含有〇·005〜0.3mass%(以〇·(Η〜〇.2mass%為佳,而 以〇·〇2〜o.i5mass%更佳)之c〇以及/或〇〇3ι·π%(以 〇·〇5〜0.7 maSS%為佳,而以〇 〇5〜〇·5更佳)之%為20.8 ~ 1.8mass% is better, more preferably 17mass%), and there is Cu-5 · Si = 62 ~ 67mass% (with Cu-5 · Si = 63 ~ 66.5inass%) and Zn + 6 · ^ = 32 ~ 38 ^ μ% (preferably Zη + 6 · Si = 33 ~ 37mass%), and the average crystal grain size d is 0-3 ^ in ^ D ^ 3.5 / zin (i, x 0.3 / ^ ~ 2.5 / zm is better) crystalline structure, the recrystallized state of 0. safety limit stress is 250N / mm2 or more (preferably 300N / _2 or more). In each of the copper alloys of the invention, the above-mentioned average crystal grain size D and 0.2% Ann 11 593703 = stress are used to make the alloy structure—partially or completely recrystallized—crystallized.) The material obtained from the last re-treatment (hereinafter referred to as "final recrystallization treatment") (hereinafter, referred to as "re-crystallized material") y <ten average crystal grain size and 0.2% An Wang limits the stress specified. In addition, if only the above-mentioned recrystallization treatment is performed by n. ~ _Person, it is reasonable to take iron, and the Moda ^ ^, μ treatment is the final recrystallization treatment, and the treatment material is a recrystallization material. In the preferred embodiment of each invention copper alloy, generally speaking, the ingot is processed by () including hot working (calendering, extrusion, forging, etc.) and plastic working (= rolling (drawing) wire). The recrystallized material obtained by performing a heat treatment (annealing, etc.) in a predetermined shape in the recrystallization temperature region to recrystallize (suspend, s, re, and next day) treatment (mainly, 帛i and the second invention copper alloy is a rolled material, the third invention copper alloy is a wire rod), &amp; (2) the recrystallized material of the above (1) is processed into a predetermined one by cold working (rolling, wire drawing, forging) The cold-formed material obtained from the shape (mainly, the copper alloy of the first and second inventions is a rolled material, and the copper alloy of the third invention is a wire rod). Λ () The recrystallized material (1) is processed by pressure, Product processing materials obtained by processing into a predetermined product shape such as bending processing, (4) Product processing materials obtained by pressing the cold-processed material (2) described above under pressure, bending processing into a predetermined product shape, Either form. In the copper alloy of the first invention, in order to further improve the characteristics, it contains 0.005 ~ 0.5mass% in step 12 593703 (preferably 0 · (Π ~ 0.3mass%, and more preferably 0.02 ~ O.-ss%) Good) of 〇 and / or 〇3 ~ 15ι ^% (preferably 0.711 ^ 33%, and more preferably 005 ~ 0.5 bribery 33%) of 811 Σ • In this case, the content of Co and Sn is determined in consideration of the combined amount of Sl within the above range. That is, the content of Co is calculated by dividing the content of co by the content of Si The value C0 / Si is determined to be 0.005 to 05 (2 C0 / Sh0. 0, 3, and more preferably, c0 / s, 0. 3 to 2, 2). Also, The content of Sn is determined by the value of the Si content divided by the% content. Si / Sn becomes h5 or more (preferably Si / Sn ^ 2, and more preferably si / sn ^ 3). In the copper alloy of the invention 1, the alloy composition may further contain 0.005 to 0.3 mass% (preferably 0.002 mass%) of Fe and / or 0.005 to 0.3 mass% (0.02 to 0.2maSS). % Is better) Ni as a substitute element of c0 or an element co-added with Co. Here The 'Fe content or Ni content is determined by considering the Si content (in the case of co-addition with Co, the Si content and the co content). That is, the Fe and Ni content are determined by In the case of containing c0, the total content is divided by the content of si (Fe + Ni + c〇) / Si becomes 0.005 to 0.5 (by (? 6 + "+ (: 〇) / 8 〇.〇.〇 1 ~ 0.3 is better, and (Fe + Ni + Co) / Si = 0 · 03 ~ 0 · 2 is more preferred. When making related decisions, the total content (Fe + Ni + C0) is preferably 0.005 to 0.55 mass% (preferably 〇1 to 0.35maSS%, and more preferably 0.02 to 0.25 mass%). 13 593703 In the second invention copper alloy, in order to obtain characteristics To further improve, the alloy composition further contains 0.005 ~ 〇5mass% (preferably 0.001 ~ 〇3 paste ^%, and preferably 0.2 ~ 3mass% (preferably) Sn). 0.02 ~ 0 · 2mass% is better) c0 ~ 2.6 mass%, and h 2 ~ 2 and / or 5 mass% is more in this case, the Co content and the Sn content are considered to be related to $ 丨The relationship between the amount is determined. That is, Co contains Within the above range, the value of the Co content divided by the Si content c0 / Si becomes 0.002 ~ ι 5 (Co / Si = 0.04 ~ 1 is preferred, and C〇 / Si = 〇〇6〜〇 · 5 is better)). The Sn content is within the above range, and the value of Si content divided by the Sn content Si / Sn is 0.5 or less (preferably Si / SnS0.4, and more preferably Si / SnS 0 · 3) To decide. In addition, the copper alloy of the second invention may contain Fe and / or 0.005 to 0.3 mass% (preferably 0 · (Η to 0.2 mass%)) and / or 0.005 to 0.3mass% (preferably 0. 2 to 0.2mass%) Ni. In this case, the Fe content or Ni content is based on the Si content (when co-added with Co, it is Si and Co content) to determine _. That is, the Fe and Ni content is a value obtained by dividing the total content in the case of containing c0 by the content of Si (Fe + Ni + Co) / Si 0.02 ~ 1.5 (preferably (Fe + Ni + Co) / Si: 0.04 ~ 1, and more preferably (Fe + Ni + Co) / Si = 0 · 0 6 ~ 0 · 5) At the time of the decision, the total content (Fe + Ni + Co) is considered to be 0.005 to 0.55 mass% (preferably 0.01 to 0.35 mass%, and more preferably 0.02 to 0_25 mass%). 14 ^^ / 03 For the 1st and 2nd copper alloys, it can be selected from p, Sb, As, Sr, Mg, Y, Cr, La, Ti according to the special seat required for the application. , Zr In, and Hf. At least one of these elements contains It is appropriately determined within the range of 0.003 ~ 0.3mass%. In the third invention, in order to further improve the characteristics, the alloy composition further contains 0.005 ~ 0.3mass% (with 〇 · (Η ~ 0.2mass) % Is better, and 〇2 ~ o.i5mass% is more preferred) c0 and / or 〇3ι · π% (more preferably 0.005 ~ 0.7 maSS%, and more preferably 0.005 ~ 〇 · 5 is better)%

佳0 在此丨月况C〇、Sn含有量,係在上述範圍内考慮s i 含有量來決定。亦即’ Co含有量,使其以Si之含有量來 除之值Co/Si成為0.005〜〇 4 (以C〇/Si=〇 〇i~〇 2為佳, 而以Co/Si = 0.02〜〇.15更佳)來決定。又,Sn含有量,係 使Sl含有量除以Sn含有量之值Si/Sn成為1以上(以 Si/Sngl.5為佳,而以Si/Sn^2更佳)來決定。Good 0 Here, the monthly C0 and Sn content are determined in consideration of the si content within the above range. That is, the Co content is such that the value of Co / Si divided by the Si content becomes 0.005 ~ 〇4 (It is better to use C〇 / Si = 〇〇i ~ 〇2, and Co / Si = 0.02 ~ 〇.15 is better) to decide. The Sn content is determined by dividing the content of Sn by the content of Si / Sn to 1 or more (preferably Si / Sng1.5, and more preferably Si / Sn ^ 2).

又,在第3發明銅合金中,可含有〇 〇〇5 〇 3ma邮 以 〇_〇H.2mass%為佳)之 F&quot;乂及/或 〇 〇5 〇 3mass%(以 0. 0H. 2 —)之Ni做為c〇之代替元素或與c〇共同添加 之元素。 在此情況’ Fe含有量或旧含有量係考慮Si含有量( 在與Co共同添加之情況中,為Si以及c〇之含有量)來決 定。亦即曰,Fe、Ni含有量’係使包含含有Co之情況之合 。十3有里以Si之含有量來除之值(Fe + Ni+c〇)/si成 0.005-0.4 (a (Fe + Ni+C〇)/Si = 〇.01.〇.2 ^ ^ , ^ ^ 15 593703 (Fe + Ni+Co)/Si = 0.02~0.15更佳)來決定。做相關決定之際_ ,使月·』述之合計含有量(Fe + Ni+c〇)為〇· 〇〇5〜〇. 55mass% ( 以〇.〇1〜0.25maSS%為佳,而以〇·〇2〜〇2mass%更佳)來考慮 為佳。 ^ 又’關於第3發明銅合金,合金組成可根據用途上所 需特性進一步含有擇自含量分別為〇 〇〇5 〇 2mass%2 p、In addition, the copper alloy of the third invention may contain F &quot; and / or 〇05 〇3mass% (about 0.00H. 2) —) Ni as a substitute element of c0 or an element added together with c0. In this case, the Fe content or the old content is determined in consideration of the Si content (in the case of co-addition with Co, the content of Si and co). That is, the content of Fe and Ni is a combination of the cases where Co is contained. The value divided by Si content (Fe + Ni + c〇) / si is 0.005-0.4 (a (Fe + Ni + C〇) / Si = 0.01.〇.2 ^ ^, ^ ^ 15 593703 (Fe + Ni + Co) / Si = better 0.02 ~ 0.15). When making relevant decisions_, make the total content (Fe + Ni + c〇) stated in the month "" be 0.005 ~ 0.555mass% 〇2. 〇2mass% is more preferred). ^ Again 'With regard to the copper alloy of the third invention, the alloy composition may further contain a content of 0.0005% 2mass% 2 p,

Sb與As以及含量分別為〇.0〇3~〇.3mass%2訐、Mg、γ、Sb and As, and the content are 0.03 ~ 0.33 mass% 2 讦, Mg, γ,

Cr、La、Ti、Μη、Zr、In以及Hf中至少一種之元素在 :有P、Sb以及As中至少-種之情況中,使該等合計含有 _ 里成為 0.005〜〇.25mass%。 然而,如前述,由於晶粒(再結晶粒)之微細化,強 度’特別A 0.2%安全限應力增加’但本發明者們根據實驗 確認後,發現若平均結晶粒徑D在3.5//m以下,則相較於 超過3. 5/zm之情況,可確認到顯著的安全限應力提昇。又 ,平均結晶粒徑D從3· 5 # m開始逐漸變小,在到達3 #爪 二2· 5#m、m之時,可確認到安全限應力提昇度激烈地 變化。根據如此之實驗所確認的事項來看,為了確保電氣馨 、電子、通訊、測量機器等之零件構成材所需之安全限應 力(―般而言,以250N/_2以上為佳,而以3〇〇 N/mm2 : 上更佳),平均結晶粒徑D在3· 5 “ m以下為必要在要求 2度的強度(安全限應力)之情況中,以在以下為 佳,而在要求更高強度之情況,以在2· 5 # m以下為佳特 別是,為了在可能的範圍内使強度顯著的增加,使平均結 曰曰粒k D纟2 &quot; m以下為佳。另一方面’隨著平均結晶粒 16 593703 徑D變小,安全限應力雖然增加,但藉由實驗確認到平均 結晶粒徑最小為〇· 3 # m,而預測未滿〇· 3 # m者,在實用 等級上是難以取得的。 從該點來看,關於第丨〜第3發明銅合金,為了確保 250N/IM12以上(以3〇〇 N/_2以上為佳)之安全限應力^ 0 _ 3 // m S D $ 3 · 5 // m之再結晶組織為必要者。亦即,在再 結晶狀態(最終再結晶化處理後之狀態)中,平均結晶粒 徑D為〇.3//mgDs3e5//m且〇·2%安全限應力為25〇n/_2 X上為必要。再者,在第2以及第3發明銅合金中,要求 更高強度之情況中,以0.3//mSDg 3//m為佳,而以〇· 3 更佳。另一方面,在較第2以及第3發明 銅合金更需要供給於高強度用途之第1發明銅合金中,以 為佳,而以 〇.3#mgDg2//m 更佳。 又,第1〜第3發明銅合金,係藉由適當之熱處理(一 :為L火)使其再結晶,而實現如上述之晶粒之微細化之 物,該晶粒之微細化係藉由使其成為前述之合金組成而達 成。 亦即’在第1〜第3發明銅合金中,Zn、S i所具功能為 •降低積層缺陷能量、增高差排密度、增加再結晶粒成核 位置(場所)、促進晶粒之微細化之功能、以及固溶於&amp; 基體而促進材料強度提昇之功能(以τ,將此兩功能稱為 晶粒微細化、強度提昇功能」),該等含有量係如下述 之理由,如前述而決定。 亦即,主要做為壓延材或其製品加工材來使用之第i 17 593703 以及第2發明銅合金中,為了充分發揮含有Zn所產生之 · 晶粒微細化、強度提昇功能,使Zn含有量在4mass%以上 乃為必要’為了使該功能更充分的發揮,謀求強度之大幅 提昇,在第1發明銅合金中以6mass%以上(最好在7mass% 以上)為佳’而與第1發明銅合金相比,可容許強度性略 差之第2發明銅合金中以5mass%以上(最好在6mass%以上) 為佳。另一方面’若Zn含有量過多,則應力腐蝕破裂性 感受性增加,彎曲加工性也變差。因此,考慮與具有壓延 材之用途以及應力腐蝕破裂性之抑制功能之S i含有量之 _ 關係,則Zn含有量,在第i發明銅合金中以i9mass%以下 (以15mass%以下為佳,13mass%以下更佳),第2發明銅合 金以17mass%以下(以i3mass%以下為佳,u 5mass%以下更 佳)為必要。 另一方面’藉由含有S i所產生之晶粒微細化、強度提 幵功能’相較於Zn僅需極少量即可發揮,此乃由於與zn 之相互作用之故。又,藉由Si與Zn之共同添加,有改善 、抑制應力腐蝕破裂性之作用。然而,s丨的過度添加,會參 使導電性降低。因此若考慮這些要點,著眼於強度提昇以 及晶粒微細化之第1發明銅合金中,使Si含有量在 〇.5mass/以上為必要,而以在〇.gmass%以上(在 以上更佳)為佳。然而,在第1發明銅合金中,若添加S i 超過2. 5mass%,則導電性、熱加工性以及冷加工性變差, 為了更充刀確保该等特性,&amp;含量以在2· gmass% &amp;下為佳 而在2. 2mass%以下更佳。另一方面,在重視強度與導電 18 性之平衡之第2發明銅合金中’為了得到既定的強度而使. 必要之晶粒微細化效果發揮,Si含有量至少需有Q.imass% ’而以在0.2贿%以上為佳'然而,為了考慮與強度的平 衡並確保既定之導電率,需使Si含有量在〇 8raass%以下 ’為了平衡用途而確保充分的導電性,以在〇6mass%以下 (在〇· 5mass%以下更佳)為佳。 更且在第1以及第2發明銅合金中,共同添加Zn、In the case where at least one of Cr, La, Ti, Mn, Zr, In, and Hf includes at least one of P, Sb, and As, the total content of these elements is 0.005 to 0.25 mass%. However, as described above, due to the miniaturization of crystal grains (recrystallized grains), the strength is 'especially A 0.2% increase in safety limit stress'. However, the inventors confirmed through experiments that if the average crystal grain size D is 3.5 // m Below, compared with the case where it exceeds 3.5 / zm, a significant increase in safety margin stress can be confirmed. In addition, the average crystal grain size D gradually became smaller from 3. 5 # m, and when it reached 3 # claw two 2.5 # m, m, it was confirmed that the degree of safety limit stress increase drastically changed. According to the matters confirmed by such experiments, in order to ensure the safety limit stress required for the components and materials of electrical components, electronics, communications, and measuring equipment (in general, 250N / _2 or more is preferred, and 3 〇〇N / mm2: better), if the average crystal grain size D is less than 3 · 5 "m, it is necessary to use 2 degrees of strength (safety limit stress), and it is better to be below. In the case of high strength, it is preferable to be below 2.5 m. In particular, in order to increase the strength significantly within the possible range, it is better to make the average grain size k D 纟 2 &quot; m below. 'As the average crystal grain size 16 593703 becomes smaller, although the safety limit stress increases, it has been experimentally confirmed that the minimum average crystal grain size is 0.3 m and the prediction is less than 0.3 m, which is practical. It is difficult to obtain the grade. From this point of view, regarding the copper alloys of the third to third inventions, in order to ensure a safety limit stress of 250N / IM12 or more (preferably 300N / _2 or more) ^ 0 _ 3 / / m SD $ 3 · 5 // The recrystallized structure of m is necessary. That is, in the recrystallized state ( In the state after the final recrystallization treatment), it is necessary that the average crystal grain size D is 0.3 // mgDs3e5 // m and the 0.2% safety margin stress is 25n / _2 X. Furthermore, in the first In the copper alloys of the second and third inventions, when higher strength is required, 0.3 // mSDg 3 // m is more preferable, and 0.3 is more preferable. On the other hand, copper is more than the second and third inventions. The alloy needs to be supplied to the copper alloy of the first invention for high-strength applications, and more preferably 0.3 # mgDg2 // m. The copper alloy of the first to third inventions is subjected to appropriate heat treatment ( One: It is L fire) to recrystallize, and to achieve the above-mentioned micronization of the crystal grains, the micronization of the crystal grains is achieved by making it into the aforementioned alloy composition. That is, 'in the first ~ In the copper alloy of the third invention, the functions of Zn and Si are to reduce the energy of laminated defects, increase the differential density, increase the nucleation location (place) of recrystallized grains, promote the miniaturization of crystal grains, and solid solution. &amp; the function of the matrix to promote the enhancement of the strength of the material (referred to as τ, these two functions are referred to as grain miniaturization and strength enhancement function). The amount of the following reasons based, as previously determined. In other words, in the copper alloy i 17 593703 and the second invention, which are mainly used as rolled materials or processed products thereof, in order to fully exert the functions of Zn-containing grain refinement and strength enhancement, the Zn content is increased. 4mass% or more is necessary. 'In order to make the function more effective, and to increase the strength significantly, the copper alloy of the first invention should preferably be 6mass% or more (preferably 7mass% or more).' Compared with the copper alloy, the copper alloy of the second invention having a slightly lower allowable strength is preferably 5 mass% or more (preferably 6 mass% or more). On the other hand, when the Zn content is too large, the stress corrosion cracking sensitivity increases, and the bending workability also deteriorates. Therefore, considering the relationship between the Si content and the application of rolled materials and the function of suppressing stress corrosion cracking, the Zn content is i9mass% or less (preferably 15mass% or less in the copper alloy of the i-th invention). 13mass% or less is better), the second invention copper alloy needs 17mass% or less (preferably i3mass% or less, u 5mass% or less) as necessary. On the other hand, the function of 'fine grains and strength enhancement by containing Si' requires only a small amount compared with Zn, which is due to the interaction with zn. In addition, the combined addition of Si and Zn has the effect of improving and suppressing stress corrosion cracking. However, excessive addition of s 丨 can reduce the conductivity. Therefore, if these points are taken into consideration, the copper alloy of the first invention, which focuses on strength improvement and grain refinement, needs to have a Si content of 0.5 mass / s or more, and more than 0.0 gmass% (preferably above). Better. However, in the copper alloy of the first invention, if Si is added in excess of 2.5 mass%, the electrical conductivity, hot workability, and cold workability are deteriorated. In order to ensure these characteristics more fully, the content of &amp; % &amp; is better and below 2.2mass% is better. On the other hand, in the copper alloy of the second invention, which emphasizes the balance between strength and electrical conductivity, 'in order to obtain a predetermined strength. The necessary grain refining effect is exerted, and the Si content needs to be at least Q.imass%'. It is better to be 0.2% or more. However, in order to consider the balance with strength and ensure a predetermined conductivity, the Si content must be 〇8raass% or less. To ensure sufficient electrical conductivity, balance the use to 〇6mass%. The following (more preferably 0.5 mass% or less) is preferred. Furthermore, in the copper alloys of the first and second inventions, Zn,

Si時’必須取得晶粒微細化之效果與應力腐蝕破裂性以及 強度之平衡’為了達成此目的,僅將Zn、Si含有量在上述鲁 範圍内個別獨立決定是很不充分的,所以必須使Zn、su 有量之相互關係特定為 7n n r 〇 . ^ 付疋马Zn—2· 5 · Si,並使該關係式之值 在疋範圍内。亦即,為了藉由晶粒微細化來確保既定 的強度’在第1 S明銅合金中,需滿足Zn—2· 5 · Si -〇maSS%,而以 Zn—2.5 · Si ^ lmass%( Zn—2.5 · Si 2 Μ更佳)為佳,在&quot;發明銅合金中,Zn—2.5.Si&gt; 2一為必要,而以 Zn-2.5.Si“mass%(Zn—2.5.Si 2 5mass〇/。更佳)為佳。另一方面第(以及第2發明銅合金鲁 者若Zn—2. 5 · Si &gt; 15mass%,則顯著地發生應力 腐破裂,所以 7n C . A « 汀以Zn,Si含有量需定為Zn—2· 5 · Si $ 15mass% , ffq ^ T ^ ^ ^ ., 爲了 4未更有效地抑制應力腐蝕破裂,使For Si, it is necessary to balance the effect of grain refinement with stress corrosion cracking and strength. In order to achieve this, it is not sufficient to independently determine the content of Zn and Si only within the above-mentioned ranges. Therefore, it is necessary to make The relationship between the amounts of Zn and su is specified as 7n nr 〇 ^ Fu Ma Zn-2 · 5 · Si, and the value of this relationship is within the range of 疋. That is, in order to ensure a predetermined strength by grain refinement, in the 1 S bright copper alloy, Zn-2 · 5 · Si-〇maSS% must be satisfied, and Zn-2.5 · Si ^ lmass% ( Zn—2.5 · Si 2 M is more preferred). In the "invented copper alloy, Zn-2.5.Si" 2 is necessary, and Zn-2.5.Si "mass% (Zn-2.5.Si 2 5mass 〇 /. Even better) is better. On the other hand, if the Zn—2.5 · Si &gt; 15mass% of the copper alloy of the second invention, the stress corrosion cracking will occur remarkably, so 7n C. A «ting The content of Zn and Si needs to be set to Zn-2 · 5 · Si $ 15mass%, ffq ^ T ^ ^ ^. In order to prevent stress corrosion cracking more effectively,

Zn Si $ 12mass% (最好是在第1發明銅合金中, ΖΠ Sl $ 9mass% ’在第2發明銅合金中,Zn—2. 5 ·Zn Si $ 12mass% (preferably in the copper alloy of the first invention, ZΠ Sl $ 9mass% ′ in the copper alloy of the second invention, Zn-2. 5 ·

Si - 10mass°/〇為佳。 又,關於第3發明銅合金,Zn含有量,當然與在第1 19Si-10mass ° / 〇 is preferred. Regarding the copper alloy according to the third invention, the Zn content is naturally the same as that in the first 19

、曰=第2纟明銅合金中相同,必須考慮晶粒微細化、強度 提幵功靶’更且’由於帛3發明銅合金主要以拉線材或其 製品加工材來使用,所以需要考慮熱擠壓性來決定,相較 於壓延材之第丨以及第2發明銅合金應為多量,為了充分 確保熱擠壓性,以在21mass%以上為必要。為了使熱擠壓 -拉線更良好,Zn含有量以在22咖%以上為佳。又,第 :發:銅合金,相較於帛1以及第2發明銅合金,由於Zn 有里夕所以耐應力腐蝕破裂性較差,但相較於一般之UThe same as in the 2nd Ming Ming copper alloy, it is necessary to consider the refinement of grain size and the strength improvement target. Moreover, since the 3rd invention copper alloy is mainly used for wire rods or processed products, it is necessary to consider heat. It is determined by the compressibility. Compared with the rolled copper alloy, the copper alloys of the first and second inventions should be in a large amount. In order to fully ensure the hot compressibility, it is necessary to be 21 mass% or more. In order to make the hot-extruded wire better, the Zn content is preferably 22% or more. In addition, the first: copper alloy, compared with the copper alloy of 发明 1 and the second invention, Zn has poor stress corrosion cracking resistance due to the presence of Zn, but compared with the general U

—Ζί1 系合金(例如,JIS—C2700 (65Cu- 35Zn) ),Zn 含琴—Zί1 series alloy (for example, JIS—C2700 (65Cu-35Zn)), Zn contains piano

量少’在做為線材等的用途上,也可充分滿㈣應力腐食 皮4 f生然而,在第3發明銅合金中,為了確保做為線和 必要且充分之耐應力腐蝕破裂性以及冷加工性,需要使z 含量在以下。亦即,若Zn含有量超過33maSS%, 則/5相、r相容易殘留’對冷加工性有不好的影響,又名 應力腐蝕破裂性以及脫鋅腐蝕方面也有問題。為;一邊与 ㈣應力㈣破裂性以及冷加卫性’—邊更良好地進㈣ 擠壓一拉線,Ζη含有量以在31mass%以下為佳。在第3卷 明銅合金中,為了確保熱擠壓性、冷加工性,也必須考^ Cu含有1,若Cu含有量不到66mass%,則冷相、γ相容^ 殘留’冷加工性有問題,相反的,若超過76mass%,則南 擠壓困難。因此,Cu含有量需在66〜76mass%,為了充分^ 保冷加工性、熱擠壓性,則以68〜75 5mass%為佳。刀’ 又,si,係如前述所示,藉由與Zn之共同添加 揮晶粒微細化、強度提昇功能以及應力腐蝕破裂性之改』 20 593703 、抑制功能。因此’做為拉線材之第3發明銅合金中,若 著眼於晶粒微細化、強度提昇功能,則也與第1發明銅合 金相同,需使Si含有量在〇· 5mass%以上,若考慮其做為 拉線材,則以〇.8mass%以上為佳,而以在imass%&amp;上最適 合。然而,若Si含有量超過2mass%,則阻礙冷加工性之 最重要原因之r相、/3相會析出。因此,為了確保冷加工 性,Si含有量必須在2mass%以下,考慮含有大量Zn的情 況下,則以在l.Smass%以下為佳,而以在17mass%以下更 佳。 更且,在第3發明銅合金中,為了充分確保熱擠壓性 、冷加工性以及耐應力腐蝕破裂性,只將Cu、s i、Zn含有 量個別獨立來決定是不充分的,有必要考慮Si含有量與 Cu含有量以及Zn含有量之關係來決定,在Cu、Si含有量 之相互關係中,必須使Cu—5Si = 62〜67mass%且在Zn、si 含有量之相互關係中使Zn+ 6 · Si= 32〜38mass%而來決定 Cu、Sl、Zn之含有量。亦即,即使Cu、Si、Zn之含有量 個別在上述範圍内,若Cu、Si含有量之相互關係為Cu— 5Si&gt;67mass%,或Zn、Si含有量之相互關係為zn+ 6.si &lt; 32maSS%,則無法確保良好之熱加工性,相反的,若 5Si &lt; 62mass/〇或 Zn+ 6 · Si &gt; 38mass%,則在晶界之 zn 、Si濃度變高,或沒相、r相容易殘留所以冷加工性變差 而且谷易產生應力腐蝕破裂,根據不同用途也容易產生 脫辞靠之問冑。而且,為了不使如此之問題發生,而更 充刀的確保冷加工性、耐應力腐餘破裂性等,使Cu—5si 21 593703 = 63〜66.5mass%1^Zn+6u〜37mass%i^Cu 、Si、Zn之含有量為佳。 然而,晶粒係隨著溫度上升或時間之經過而成長,在 再結晶過程中,並非全部的部分同時再結晶,而是從容易 2結晶之部分開始再結晶化,直到組織全區之再結晶結束 2要長打間。因此,在再結晶過程之初期即發生再結晶之 日日粒’成長會持續到再結晶過程結束時,到組織全區完全 之時刻,已經過相當成長。因此,為了在組織全區 之再結晶粒均一地分布,在再結晶過程中抑制再姓 晶,之成長為佳。有此抑制再結晶粒成長之功能,在第 ^ 3發人明銅合金中,添加c〇之理由即為此。亦即,C〇 ”1 口,形成微細之析出物(〇·1㈣左右之c〇2Si等) 制二?制晶粒之成長。A了發揮co所產生之晶粒成長抑 制功此’Co含有量以在0.005mass%以上為必要。然而,添 二C〇全量並非全部參與上述析出物之形成,藉由一部 =之C〇,使基體之财熱性提昇且應力緩和特性提昇。 口^為了充分發揮如此之耐熱性、應力緩和特性 功迠’在第卜第3發明銅合金中之任 :在°.一以上為佳,而以在&quot;2_二 0.2面在弟1以及第2發明銅合金中,即使Co添加超過For a small amount of use, it can be fully filled with stress rotten skin 4 f for use as a wire material, etc. However, in the copper alloy of the third invention, in order to ensure the necessary and sufficient stress corrosion cracking resistance and cold working to be used as a wire It is necessary to keep the z content below. That is, if the Zn content exceeds 33maSS%, the / 5 phase and the r phase are likely to remain ', which adversely affects the cold workability, which is also known as stress corrosion cracking and dezincification corrosion. It is better to carry out ㈣stress㈣rupture and cold-guarding performance while squeezing a pull wire, and the content of Zη is preferably 31 mass% or less. In the volume 3 bright copper alloy, in order to ensure hot extrusion and cold workability, it is necessary to consider that ^ Cu contains 1, if the Cu content is less than 66 mass%, the cold phase and γ are compatible. On the contrary, if it exceeds 76 mass%, it is difficult to squeeze south. Therefore, the Cu content needs to be 66 to 76 mass%. In order to fully maintain the cold workability and hot extrusion properties, it is preferably 68 to 75 5 mass%. Knife 'and si are as described above. By adding Zn together with Zn, the grain size is reduced, the strength is improved, and the stress corrosion cracking is improved. ”20 593703, suppression function. Therefore, in the copper alloy of the third invention as the wire rod, if the focus is on the function of crystal grain refinement and strength enhancement, it is also the same as the copper alloy of the first invention, and the Si content needs to be more than 0.5 mass%. As the drawing wire, it is preferably 0.8 mass% or more, and it is most suitable for imass% &. However, if the Si content exceeds 2 mass%, the r-phase and the / 3-phase, which are the most important factors hindering cold workability, will precipitate. Therefore, in order to ensure cold workability, the Si content must be 2 mass% or less. When considering a large amount of Zn, it is preferably 1 mass% or less, and more preferably 17 mass% or less. Furthermore, in the copper alloy of the third invention, in order to sufficiently ensure hot extrusion properties, cold workability, and stress corrosion cracking resistance, it is not sufficient to determine the contents of Cu, si, and Zn individually, and it is necessary to consider Si. The relationship between the content, the Cu content, and the Zn content is determined. In the correlation between the Cu and Si content, it is necessary to set Cu-5Si = 62 to 67 mass% and to make Zn + 6 in the correlation between the Zn and si content. · Si = 32 ~ 38mass% to determine the content of Cu, Sl, and Zn. That is, even if the contents of Cu, Si, and Zn are individually within the above ranges, if the relationship between the contents of Cu and Si is Cu-5Si> 67mass%, or the relationship between the contents of Zn and Si is zn + 6.si & lt 32maSS%, it cannot ensure good hot workability. On the contrary, if 5Si &lt; 62mass / 〇 or Zn + 6 · Si &gt; 38mass%, the concentration of zn and Si at the grain boundary becomes high, or there is no phase or r. Phases are easy to remain, so cold workability is poor, and valleys are prone to stress corrosion cracking. Depending on the application, disengagement can easily occur. In addition, in order to prevent such problems from occurring, and to ensure cold workability and stress corrosion cracking resistance, Cu-5si 21 593703 = 63 ~ 66.5mass% 1 ^ Zn + 6u ~ 37mass% i ^ Cu The content of Si, Si and Zn is better. However, the grain system grows with increasing temperature or time. In the recrystallization process, not all parts are recrystallized at the same time, but the recrystallization starts from the part that is easy to crystallize, until the entire area is recrystallized. End 2 is a long fight. Therefore, at the beginning of the recrystallization process, the growth of the daily grains' will continue until the end of the recrystallization process, and when the entire area of the organization is complete, considerable growth has passed. Therefore, in order to uniformly distribute the recrystallized grains throughout the tissue, the growth of the recrystallized grains is suppressed during the recrystallization process. With this function of suppressing the growth of recrystallized grains, the reason why c0 is added to the third-generation bright copper alloy is this. In other words, a fine precipitate (such as cO2Si, etc. of about 0.1 mm) is formed at the mouth of Co., and the growth of the grains is made. The amount is necessary to be 0.005mass% or more. However, the total amount of C2 added is not all involved in the formation of the above-mentioned precipitates. With one = C0, the financial and thermal properties of the substrate are improved and the stress relaxation characteristics are improved. Give full play to such heat resistance and stress relaxation properties. 'Any of the copper alloys in the third invention: at least one or more, and in the 2nd and 2nd 0.2 face in the 1st and 2nd inventions. In copper alloys, even if Co is added more than

〇 3 ^。。’又,在第3發明銅合金中,即使Co添加超過 〇· 3mass%,用途上必要 H 性之改盖效果^ 曰曰粒成長抑制效果、應力緩和特 文y文果已達極限,無法進一步提昇,經濟上报浪費 而析出物之粗大化或由於析出物量過多使彎曲加工 22 593703 眭楚差之虞。因此,c含右曰 3有$,在弟1及第2發明銅合金 y ’以0· 5mass%以下為必| ^ — tl n 卜馮义要,又,在第3發明銅合金中, M 〇· 3mass%以下為必、i&amp; π。i ”、要為了更有效地發揮上述各功能且 充刀確保在用途上為必要 弓曲加性’在帛1及第2發 更:…’:0.3—下為佳,而更以0.2一^ 土’又’在弟3發明銅合金中,以〇.2maSS%以下為佳, 更以0.15mass%以下更佳。 八 7 υυ …人β求晶粒之微細化上與^ #有緊密的關係 ” 0 3有置有必要在與Si含有量之關係中來決定,為 旦错由晶粒微細化而求得用途上必要之強度提昇,c I ’對於該Si含有詈之tl_ | r /c. + &amp; 人八士 各有里之比率Co/Sl在第1以及第3發明銅 中,必須為U05以上,又,在第2發明銅合金中必 ^為〇· 2以上。亦即,若Co/Si值沒有到達該等值,則上 乂析出物的形成少’且晶粒成長之抑制效果無法發揮,要 得到該發明銅合金之用途上所需強度會有困難。再者 使晶粒之成長抑制效果充分發揮而謀求強度之進一步提昇 ’ C〇/Si在第1以及第3發明銅合金中以〇〇1以上為佳, 而以0 · 0 2以上f祛。又,A钕0 w 更仫又在弟2發明銅合金中以〇·〇4以 上為佳,而以0 · 0 6以上更佳。 2此’ Co與Si含有量之關係中,c〇/Si應如上述設定 在疋值以上,但若Co/Si較必要以上還大,則導致上述 析出物之粗大化、’曾量化,而會阻礙彎曲加工性。例如, 在做為壓延材之第i發明銅合金中若祕超過〇·5,又 在做為拉線材或其製品加工材之第3發明銅合金中, 23 593703〇 3 ^. . 'In addition, in the copper alloy of the third invention, even if Co is added in excess of 0.3 mass%, the H-reforming effect is necessary for use ^ It is said that the effect of suppressing grain growth, stress relaxation, and special effects have reached the limit and cannot be further It can be raised, the economy reports waste and coarsening of the precipitate, or the bending process 22 593703 may be poor due to the excessive amount of precipitate. Therefore, "c" contains 3 and "$". In the first and second inventions, the copper alloy y 'must be 0.5 mass% or less. ^ — Tl n Bu Fengyi Yao, and in the third invention copper alloy, M 〇 · 3mass% or less is required, i &amp; π. i ”, in order to play the above functions more effectively and ensure that the use of the knife is necessary for the purpose of bowing, it is necessary to add the bow in the first and second rounds:… ': 0.3-down is better, and more preferably 0.2- ^ In the third invention of the copper alloy, the soil is more preferably 0.2maSS% or less, and more preferably 0.15mass% or less. 8 7 υυ… The micronization of the grains of β is closely related to ^ # It is necessary to determine the relationship between the content of Si and the content of Si. In order to obtain the necessary strength improvement for the purpose of using Si to reduce the size of the crystal grains, c I 'tl_ | r / c + &amp; The ratio of each person to eight miles Co / Sl must be U05 or more in the first and third invention copper, and must be 0.2 or more in the second invention copper alloy. That is, if the Co / Si value does not reach these values, the formation of upper precipitates is small and the effect of suppressing grain growth cannot be exerted, and it is difficult to obtain the strength required for the use of the copper alloy of the present invention. Furthermore, the effect of suppressing the growth of the crystal grains is fully exerted and the strength is further improved. In the copper alloys of the first and third inventions, C0 / Si is more preferably 0.001 or more, and 0. 02 or more f is eliminated. In addition, A neodymium 0 w is more preferable, and in the second invention copper alloy, it is more preferably 0.04 or more, and more preferably 0. 06 or more. 2 In the relationship between the content of Co and Si, c0 / Si should be set above the threshold value as described above, but if Co / Si is larger than necessary, it will lead to the coarsening of the above-mentioned precipitates. Impairs bendability. For example, if the copper alloy of the i-th invention as a rolled material exceeds 0.5, and the copper alloy of the third invention as a wire rod or processed product thereof, 23 593703

Co/Si超過〇· 4,則彎曲加工性急速降低。又,即使用於不 需要將強度提昇到第1發明銅合金所要求的程度之用途的 第2發明銅合金中,若c〇/Si超過1.5,則要確保必要之 最低限度的彎曲加工性是困難的。因此,c〇/Si之上限值 應該一邊考慮此點與co所產生之晶粒成長抑制效果、一 邊考慮該發明銅合金所供應之用途、加工經歷、形狀來決 定,具體而言,Co/Si之範圍如下述來決定。亦即,c〇/Si 之上限,在第1發明銅合金中使Co/Si $〇·5為必要,使 C〇/SiS 0.3為佳,而使c〇/Si $0.2更佳。又,在第2發 明銅合金中使Co/Si$1.5為必要,使Co/Si$i為佳,而 使Co/Si $0.5最為適當。在第3發明銅合金中使c〇/Si &lt; 〇· 4為必要,使Co/Si $ 0· 2為佳,而使c〇/Si $ 〇. 15最為 適當。When Co / Si exceeds 0.4, the bending workability decreases rapidly. In addition, even in the copper alloy of the second invention, which is used for applications that do not need to increase the strength to the level required by the copper alloy of the first invention, if c0 / Si exceeds 1.5, the minimum necessary bendability is ensured difficult. Therefore, the upper limit of c0 / Si should be determined while considering the grain growth suppression effect produced by this point and co, and considering the application, processing experience, and shape provided by the copper alloy of the invention. Specifically, Co / Si The range of Si is determined as follows. That is, the upper limit of c0 / Si is necessary to make Co / Si $ 0.5 in the copper alloy of the first invention, C0 / SiS 0.3 is better, and c0 / Si $ 0.2 is more preferable. In the copper alloy of the second invention, Co / Si $ 1.5 is necessary, Co / Si $ i is more preferable, and Co / Si $ 0.5 is most suitable. In the copper alloy of the third invention, c0 / Si &lt; 0.4 is necessary, Co / Si $ 0.2 is more preferable, and c0 / Si $ 0.15 is most suitable.

Fe、Ni係發揮與Co相同之晶粒抑制效果(更正確的 來說,Fe、Ni之該效果,係在Co同等級或以下)之物。因 此,Fe、Ni可做為Co之代替元素來含有。當然,藉由將 Fe、Ni與Co共同添加,可期待上述的效果更加提以Fe and Ni are those exhibiting the same grain suppression effect as Co (more precisely, the effect of Fe and Ni is at or below the same level as Co). Therefore, Fe and Ni can be contained as substitute elements of Co. Of course, by adding Fe, Ni, and Co together, it is expected that the above effects will be further enhanced.

Fe以及/或Ni取代Co,或與Co共同添加之情況,由於可 降低昂貴之Co之含有量,所以經濟效 …況中,…含有量以…有量有之::係 (Co + Fe + NO/Si,對於Co含有量以&amp; Si含有量之㈣ Co/Si,以與前述相同的理由、根據來看,在第卜第3發 明銅合金之任-當中’*Fe、Nl含有量同於c〇含有量: 並使(Fe舰〇)/Sl同於Co/Sl。亦即,鋒+c〇)/si, 24 593703 在第1發明銅合金為〇. 〇〇5 0· 002〜〇· 2更佳),在第2 0· 04〜1為佳,以 〜0.5(以〇·01〜〇·3為佳,以 發明銅合金為0. 02〜1. 5(以 0·06〜〇·5更佳),在第 0.005 〜0·4(以 0.01 〜0.2 為佳, 方面,Fe、N i係Co之代替元素 發明銅合金為 以〇· 02〜〇· 15更佳)。另一 ’係發揮與Co相同之功能 之物,所以即使在共同添加“,、。…種以上之情況 中:其合計含有量’應等同於只單獨添加c〇 t情況之含 有前述Co之含有量)。但是,在共同添加Fe、Ni、c〇 之2種以上之情況中’若考慮固溶、析出,貝Fe、Ni、c〇 之共同添加含有# (合計含有量)之上限值可容許擴大到較 C〇含有量還多0.05mass%左右。從此點來看,在共同添加 Fe、Ni、c。之2種以上之情況中,合計含有量(Fe+Ni+c〇) 對於Co έ有畺,使其上限值擴大〇 . 〇5mass%2範圍為 佳。亦即,該合計含有量(Fe + Ni+c〇),在第i以及第2發 明鋼合金中為〇·〇〇5〜〇 55mass%(以〇 〇1〜〇 35贴為佳 ,以〇·〇2〜0.25mass%更佳)為佳,在第3發明銅合金中,In the case where Fe and / or Ni replaces Co or is added together with Co, it can reduce the content of expensive Co, so it is economically effective. In the case, the content is based on the amount of: :: 系 (Co + Fe + For NO / Si, the Co content is equal to the &amp; Si content. Co / Si, for the same reason and basis as described above, in the "-Fe and Nl content of the copper alloy of the third invention" Same as the content of c〇: Let (Fe 舰 〇) / Sl be the same as Co / Sl. That is, Feng + c〇) / si, 24 593703 In the first invention, the copper alloy is 0.005. 0 · 002 02 ~ 1. 5 , 为 0. 04〜1 是 为 , 0.5 (为 0.01〜〇 · 3 is better, and the invention copper alloy is 0. 02 ~ 1. 5 (以 0 · 06 ~ 〇 · 5 is better), 0.005 ~ 0 · 4 (preferably 0.01 ~ 0.2, in terms of Fe, Ni, Co as a substitute element of the invention, the copper alloy is more preferably 0.02 ~ 0 · 15) The other 'is a thing that performs the same function as Co, so even in the case of adding ", ..., etc. together: its total content' should be equivalent to the case where the above-mentioned Co is only added separately. Content). However, in common In the case where two or more kinds of Fe, Ni, and c are added, 'If solid solution and precipitation are taken into consideration, the upper limit of the common addition content # (total content) of Fe, Ni, and c 0 may be allowed to be expanded to C. The content is about 0.05 mass% more. From this point of view, when two or more kinds of Fe, Ni, and c are added together, the total content (Fe + Ni + c〇) has a problem with Co, so that It is preferable that the upper limit value is extended by 0.05 mass% 2. That is, the total content (Fe + Ni + c〇) is 0.05 to 5555 mass% in the i-th and second invention steel alloys. (Preferably 0.001 to 035, more preferably 0.02 to 0.25 mass%). In the copper alloy of the third invention,

u 0.005〜0.35 mass%(以 〇.〇卜〇25 mass% 為佳,以 〇· 〇2〜〇· 2 mass%更佳)。u 0.005 ~ 0.35 mass% (preferably 0.025 mass%, more preferably 0.002 ~ 0.2 mass%).

Sn係發揮強度提昇功能、晶粒微細化功能,以及應力 緩和特性、耐蝕性、耐磨損性之提昇功能之物。然而,在 第1以及第3發明銅合金中,為了使強度提昇功能、晶粒 微細化功能、基體之耐熱性提昇功能、應力緩和特性、对 餘性、耐磨損性之提昇功能充分發揮,使Sn含有量在 〇· 03 mass%以上為必要,而以在〇. 〇5 mass%以上為佳。鈇 25 593703 而’ Sn含有量,若在做為壓延材之第1發明銅合金中超過 1 · 5 mass%,與在做為拉線材之第3發明銅合金中若超過1 mass%,則折彎加工性急遽變差。因此,為了確保彎曲加工 性,Sn含有量,在第}發明銅合金中使其在15爪犯以以 下’在第3發明銅合金中使其在lmass%以下是必要的。又 ,不管疋在第1以及第3發明銅合金之任一種中,為了更 充分的確保彎曲加工性,則使Sn含有量在〇. 7mass%以下 為佳,而使其在〇.5mass%以下最為適合。 另一方面,在所要求之最低強度較第1以及第3發明 _ 銅合金低之第2發明銅合金中,考慮與Si含有量之關係 ,藉由添加Sn來求得強度提昇、晶粒微細化、應力緩和 4寸性提昇、耐應力腐蝕破裂性、耐蝕性、耐磨損性之提昇 為仏口此品要使Sn含有量為〇 . 2 mass%以上,根據所 要求之強度,使其在lmass%以上,甚至在12mass%以上為 佳。但是,若Sn添加超過3mass%,則會阻礙熱加工性、 彎曲加工性也會變差。因此,為確保此加工性/%含有量 必須在3maSS%以下,為了確保更良好之熱加工性、彎曲加_ 工性,使其在2.6maSS%以下為佳,而以在2.5_以以下更 佳。 又’在添加Sn之情況中,必須考慮Sn含有量與si含 有量之關係(si/Sn)。在以強度提昇為著眼點之第u明銅 合金中’欲增加si含有量來得到高強度之情況,若si/Sn &lt;1.5未滿’則以、彎曲加工性為首之延性顯著降低。因此 ’在第1發明銅合金中,有必要使Sn含有量成為Si/Sr^ 26 593703 :充分確保上述延性1 Si/心2為佳,而以 係抑:二取為適當。又’如含有量相較於第1發明銅合金 由、J在稍微少量之第3發明銅合金中,由上述相同的理 伴:如含有量需使其以心1來決定,為了充分確 '、述2性,使Si/Sr^.5為佳,而Si/Sn^2更佳。 另一方面,要求導電性能與強度平衡之第2發明銅合 =中,由於Si之添加有受到限制,因此為了不使延性損 失太大亚確保高強度,有必要使Sn含有量與Sn is a substance that exerts the functions of improving strength, miniaturizing grains, and improving functions of stress relaxation properties, corrosion resistance, and abrasion resistance. However, in the copper alloys of the first and third inventions, in order to give full play to the strength-enhancing function, the function of crystal grain miniaturization, the heat-resistant improvement function of the matrix, the stress relaxation characteristic, and the improvement function of margin and wear resistance, It is necessary to set the Sn content to 0.03 mass% or more, and it is preferable to set the Sn content to 0.05 mass% or more.鈇 25 593703 And if the Sn content exceeds 1 · 5 mass% in the copper alloy of the first invention as a rolled material, and if it exceeds 1 mass% in the copper alloy of the third invention as a wire rod, The bendability deteriorates sharply. Therefore, in order to ensure the bending workability, the Sn content is required to be 15 claws or less in the copper alloy of the third invention 'and it is necessary to make it lmass% or less in the copper alloy of the third invention. Regardless of whether in the copper alloys of the first and third inventions, in order to more fully ensure the bending workability, the Sn content is preferably set to 0.7 mass% or less, and set to 0.5 mass% or less. Most suitable. On the other hand, in the second invention copper alloy having the lowest required strength lower than the first and third inventions_ the copper alloy of the second invention, considering the relationship with the content of Si, the strength is increased by adding Sn, and the grains are fine 4 inch improvement in stress relaxation, stress corrosion cracking resistance, corrosion resistance, and abrasion resistance are improved. This product should have a Sn content of 0.2 mass% or more. According to the required strength, make it Above lmass%, even above 12mass% is preferred. However, if Sn is added in an amount of more than 3 mass%, hot workability and bending workability are impaired. Therefore, in order to ensure the workability /% content, it must be less than 3maSS%. In order to ensure better hot workability and bending workability, it is better to be less than 2.6maSS%, and to be more than 2.5_SS. good. In addition, when adding Sn, the relationship between the content of Sn and the content of si (si / Sn) must be considered. In the case of the u-th bright copper alloy with a focus on strength improvement, when the content of si is to be increased to obtain high strength, if si / Sn &lt; 1.5 is less than, the ductility including bending workability is significantly reduced. Therefore, in the copper alloy of the first invention, it is necessary to set the Sn content to Si / Sr ^ 26 593703: It is better to ensure the ductility 1 Si / core 2 as described above, and it is appropriate to restrain: two. Also, 'If the content is smaller than that of the copper alloy of the first invention, J is a slightly smaller amount of the copper alloy of the third invention, from the same reasoning as above: If the content is to be determined with the heart 1, in order to fully determine' As mentioned above, Si / Sr ^ .5 is better, and Si / Sn ^ 2 is better. On the other hand, the second invention, copper alloy, which requires a balance between conductive properties and strength, has limited addition of Si. Therefore, in order to ensure high strength without causing too much ductility loss, it is necessary to make the Sn content and

關係中,使Si/Sn&lt; 〇 5。為了佶证w A 一 馮了使延性、強度更提昇,使In the relationship, Si / Sn &lt; 05 was used. In order to prove that w A-Feng has improved the ductility and strength, so that

Sl/Sns〇.4為佳,而使Si/Sns〇 3最為適當。 P、Sb、AS、Sr、Mg、Y、Cr、U、Ti、Mn、Zr、In、Sl / Sns 0.3 is preferable, and Si / Sns 03 is most suitable. P, Sb, AS, Sr, Mg, Y, Cr, U, Ti, Mn, Zr, In,

Hf係根據該合金之料而添加之物,主要而言,係發揮晶 粒微細化、熱加工性之改善、耐餘性之改善、將因不可避 免而混入之有害微量元素(S等)無害化之作用,以及應力 緩和特性之提昇等的效果。該效果,在該各元素含有量未 滿〇.〇〇31^%之情況,幾乎無法期待,相反的,即使添加 超過〇.3maSS%’也無法得到對應於添加量之效果,成為經 濟上的浪費’且反而有損彎曲加工性。但是,纟&amp;含有 量多之第3發明銅合金中’特別是P、Sb、As,係以耐脫 鋅腐蚀性、财應力腐钮破裂性之提昇為目的而添加。做為 如此之目的而添加之p、Sb、As之效果’係與上述情況相 同,未滿G._之添加幾乎不發揮功能。另-方面,若p 含量㈣則反而對冷、^加工性有損害。因此 ’在第3 I明銅口 *中’添加p、Sb、紅之情況中,需要 27 使該含有量在0.005〜0. 2mass%之間,共同添加P、Sb、As 2種以上之情況中,需使合計含有量在0 005〜〇.25mass%。 然而,用以得到再結晶材之熱處理(再結晶化處理), 一般而言,係採用前述(1)所提及之藉由將塑性加工素 材保持在200〜600°C中20分鐘〜10小時而進行退火。該熱 处里 通^疋以批次方式進行,但熱處理時間長的情況, 在熱處理之初期階段再結晶者,即使藉由添加Co而發揮 結晶成長抑制效果,仍會緩緩成長,而有妨礙晶粒之均一 地微細化之虞。然而,在有該顧慮的情況,藉由將成形材 以較一般的退火溫度還高溫(成形材之物體溫度)進行短時 間之熱處理(急速高溫加熱處理),在添加c〇之情況下當然 不用。兒,即使疋未添加的情況,也可以防止初期再結晶粒 之成長,可良好地進行藉由再結晶之晶粒的微細化。亦即 ,藉由使高熱能源短時間作用,在更多的成核位置中可短 時間且使其大致同時再結晶化,而不給予結晶成長之時間 上的餘裕。具體而言,例如,將前述塑性加工素材,藉由 在450〜75(TC,卜1 000秒之條件下熱處理(急速高溫處理) ,來使該成形材之結晶組織完全地再結晶化。 又,第卜第3發明鋼合金,一 a 乂、+、 、 工 为又而έ ,如刖述,以做 為(1)之再結晶材、(2)之a , · 之冷加工材或(3)(4)之製品加工材 來製造,藉由在該製程中附力 1加下述之處理,可使強度等之 合金特性更提昇。 ^ 例如,若在得到再壯曰从 、, 亍』丹、、口日日材之前之冷加工中使其加工 在3 0%以上(以60%以上為佳), 丄 j具體而g,得到(1)所說之 28Hf is added based on the alloy's material. It is mainly used to make crystal grains finer, improve hot workability, improve residual resistance, and harmless trace elements (S, etc.) which are unavoidably mixed. Effects such as reducing stress and improving stress relaxation properties. This effect can hardly be expected when the content of each element is less than 0.0003%. On the contrary, even if it exceeds 0.3maSS% ', the effect corresponding to the added amount cannot be obtained, and it becomes economical. 'Waste' and detrimental to bendability. However, in the copper alloy of the third invention with a high content of 纟 &amp;, particularly P, Sb, and As are added for the purpose of improving the resistance to dezincification and the cracking of the stress corrosion button. The effects of p, Sb, and As added for this purpose are the same as those described above, and the addition of less than G._ hardly functions. On the other hand, if the p content is ㈣, the cold and cold workability will be damaged. Therefore, in the case of adding p, Sb, and red 'in the third I copper port *', 27 is required so that the content is between 0.005 and 0.2 mass%, and two or more kinds of P, Sb, and As are added together. It is necessary to make the total content be 0 005 to 0.25 mass%. However, the heat treatment (recrystallization treatment) to obtain the recrystallized material is generally performed by maintaining the plastically processed material at 200 to 600 ° C for 20 minutes to 10 hours as mentioned in (1) above. Instead, annealing is performed. The heat treatment is carried out in batches, but if the heat treatment takes a long time, those who recrystallize in the initial stage of heat treatment will slowly grow even if the crystal growth suppression effect is exerted by the addition of Co, which is a hindrance. The crystal grains may be uniformly refined. However, when there is such a concern, the molding material is subjected to a short-term heat treatment (rapid high-temperature heating treatment) at a higher temperature than the general annealing temperature (object temperature of the molding material). Of course, it is not necessary to add c0. . Even in the case where rhenium is not added, growth of recrystallized grains at the initial stage can be prevented, and fine grains can be finely refined by recrystallization. That is, by applying a high thermal energy source for a short period of time, it is possible to recrystallize in a large number of nucleation sites for a short period of time and to recrystallize them at the same time, without giving time margin for crystal growth. Specifically, for example, the aforementioned plastically-processed material is completely recrystallized by heat treatment (rapid high-temperature treatment) under conditions of 450 to 75 ° C. (1,000 seconds). , The third invention steel alloy, a, a, a, +,, and work for another, as described, as (1) of the recrystallized material, (2) of a, cold working material or (3 ) (4) is manufactured by processing the product. By adding force 1 and adding the following treatments in this process, the alloy properties such as strength can be improved. ^ For example, if you get stronger, you can say, "亍" In the cold processing before Dan, Kou, and Japanese materials, the processing is more than 30% (preferably more than 60%), 丄 j is specific and g, and 28 of (1) is obtained.

2 f生加工素材之製程中,藉由進行壓延率或拉線率在⑽ 乂亡(以60%以上為佳)之冷加工,可促進晶粒之微細化, 可藉由晶粒之微細化更有效果地謀求強度提昇。亦即,為 了使晶粒微細化,該成核位置為必要者,#由如上述加工 率=之2加工來增加成核位置,該加工率愈高,成核位置 之增加量愈多H,再結晶係藉由應變能量之釋放所造 成曰所以藉由上述冷加工使剪切應變增加,可得到更微細 之::’其結果’ 由晶粒之微細化可更有效果地謀求強 棱昇另方面,做為最終再結晶化處理之塑性加工素 材,平:結晶粒徑(再結晶前之平均結晶粒徑)小者為佳:、 '體而5,平均結晶粒徑在2G“以下(以lG//m以下為佳 )為仏再結晶刚平均粒徑愈小,在接下來所進行之熱處 理^成為再結晶核之位置增加,特別是在晶界之差排密 :忍w ’愈谷易成為成核位置。但是,由於平均結晶粒锃 J貝丨強度:t回’製造南強度銅合金所需要之能源成本高 ’也花費製造時間。因此,在⑴所說之塑性加工材素材 =平均結晶粒徑,以兼顧前述加工率來決定為佳。又,用 逆上’在再結晶材的狀態下強度不足之情況下,藉由對該 再結晶材施以加工率10〜60%之冷壓延或冷拉線,可得到更 高之強度。 正更且,在得到前述塑性加工素材之情況,實施一回壓 延加卫或拉線加工之情況’將τ壓率或拉線率設定較大 (15%以上(以25%以上為佳))為佳。藉由下壓率、拉線率高 的冷加工,可謀求剪切應變以及成核位置之增加,可實現 29 再結晶粒之更微細化。又,若以小口徑輥或相反地口徑極 大之輮來進行壓延加工,或以模具角度大之拉線模具或相 反地以模具角度極大之極小拉線模具來進行拉線加工,在 茱农成核位置或局部的應變能量之增加、實現再結晶粒之 更微細化上為有效。更且,即使是以異周速壓延方法來進 订壓延加工,亦即藉由使用直徑相異之上下輥,一邊改變 速度一邊以壓延輥進行壓延,也可以對被壓延材給予大的 剪切應變,而可謀求再結晶粒之微細化。 又各發明銅合金,根據其用途,藉由施以不使其再 _ 結晶之適當之熱處理(一般而言,150~600t,i秒〜4小時 之L火),可使彈黃極限值以及應力緩和特性顯著提昇。 具體來說,對(2)之冷加工材(包含在(4)所說之冷加工材) 或對(3)(4)之製品加工材,以20(rc,2小時之條件或6〇〇 C,3秒的條件施以熱處理。 【實施方式】 做為實施例1,將表1〜表4所示組成之銅合金在大氣 _ 中解’知到厚35_、寬80mm、長200mm之方柱狀鑄塊。 然後’將此鑄塊進行85(TC之熱壓延(4次),得到厚6_之 中間板材,將其酸洗後,再以冷壓延壓成厚lmm之最終板 材後,將各最終板材,以其會行1〇〇%再結晶之溫度(以下 稱為「再結晶溫度」)熱處理(退火)丨小時,亦即施以組織 之完全再結晶化處理,來得到第1發明銅合金Νο· 1〇卜No. 186。又,於進行再結晶化處理之際,事前,將從 30 593703 各最終板材採取下來之試片(一邊為2〇mm&amp;右之正方形板 材片)’從300°C開始,以每5(rc為單位保持i小時之條^ 退火,找出該試片完全再結晶時之最低溫度,以此做為上 述之再結晶溫度(參照表1 5〜表1 7 )。 … 再來,藉由與上述相同之製程,來得到合金N〇.丄Μ Ν〇· 107、Ν〇· 111、Ν〇154、Ν〇· 18〇 之構成素材與同 質(相同形狀、相同組成)之最終板材後,將該最終板材以 相異於上述之處理條件做再結晶化處理,得到ν〇· 1〇2、 Ν〇· 1G7、N〇. 111、ν〇·154、Νο· 175 以及組成分別與前 述相同之 No. 1〇2Α、Νο· 1〇7Α、Ν〇· 111Α、Ν〇·154Α、Ν〇 亦即,第!發明如⑽^如麗^⑴八、· No· 154A、No. 180A係藉由將最終板材,以遠高於其再結 曰:曰溫度之高溫短時間加㉟,來再結晶化處理之物(急速高 /JEL加熱處理),其溫度a(°C )以及加熱時間b(秒),係如表 15表17之「再結晶溫度」攔中「a(b)」所記載。例如, 在表15中,No. 102A之「再結晶温度」欄中記載「 480(20)」,此意味著將最終板材在48〇〇(:加熱保持2〇秒 〇 &gt;又L做為實施例2,將表5〜表8所示組成之銅合金在 冬中合解,得到厚35_、寬80mm、長200mm之方柱狀鑄 塊。然後,將此鑄塊進行85〇乞之熱壓延(4次),得到厚 田炊之中間板材,將其酸洗後,再以冷壓延壓成厚lmm之 最,、、板材後,將各最終板材,以其會行100%再結晶之溫度 亦即再結晶溫度來熱處理(退火)丨小時(再結晶化處理) 31 來知到第2發明銅合金No· 201〜No. 281。又,再結晶溫 · 度’係在事前與第1實施例相同之方式來決定(參照表丨8〜 表 20)。 再者,藉由與上述相同之製程,來得到合金No. 202 No· 209、Νο· 250、Ν〇·265之構成素材與同質之最終板 材後’將該最終板材施以前述之急速高溫加熱處理來再結 晶化,而得到 Νο· 202、No· 209、No· 250、No. 265 以及 、、且成分別與前述相同之N〇. 2〇2A、Ncx 209Α、Νθ. 250A、 Ν〇· 265Α。亦即,得到各合金 Ν〇· 2〇2α、ν〇· 209Α、Νο· φ 250A、No· 265A之急速高溫加熱處理條件(溫度)以及 加熱時間b(秒)),係以與表15〜表17同樣之記載方式, 以a(b)」記載於表18〜表20之「再結晶溫度」欄。 又,做為實施例3,係將表9〜表12所示組成之合金在 大氣中熔解,得到直徑95_,長18〇_之圓柱狀鑄塊。將 此鑄塊加熱至78(rc,藉由擠壓機(5〇〇t),來得到12_之 圓棒材。冑此圓棒材洗淨後,拉線加工到直# 8随,進而 在50CTC、i小時之條件熱處理後,洗淨、拉線加工成春 直徑之線材(成形材)。然後,將各線材,以其會行1〇〇%再 結晶之溫度、亦即再結晶溫度來熱處理(退火)〗小時(再結 晶化處理),來得到第3發明銅合金Ν〇· 3(η〜Ν〇·397。又 ,於進行再結晶處理之際,係事前將從各線材所採取之試 片(長20mm(直徑4_)左右的線材片),從3〇(rc開始,以 每5(TC為單位保# i小時之條件退火,找出該試片完全再 結晶時之最低溫度,以此做為上述之再結晶溫度(參照表 32 593703 21〜表24)。 又,藉由與上述相同之製程,來得到合金No. 302、 Νο· 314、ν〇· 338之構成素材與同質之最終線材(成形材) 後’將該最終板材施以前述之急速高溫加熱處理來再結晶 化’而得到No. 302、No· 314、No· 338以及組成分別與前 述相同之No. 302A、No. 314A、No· 338A。得到各合金 Ν〇·302Α、Νο· 314Α、Νο· 338A之急速高溫加熱處理條件 (溫度a(°c)以及加熱時間b(秒)),係藉由同於表15〜表 17之之記載方式,以「a(b)」記載於表2i~24之「再結晶 溫度」之攔中。 做為比較例1,藉由同於第丨實施例之製程,得到表 13所示組成之第!比較例合金N〇. 4〇i〜n〇. 422。又,做 為比車乂例2,藉由同於第3實施例之製程,得到表μ所示 組成之第2比較例合金Ν〇. 423〜Ν〇. 431。又,第丨比軟 例合金No. 401〜Ν〇. 4〇7,係個別與川規格之⑶〇〇、乂 :2〇:、⑵00、議、C2_、咖。以及⑽&quot;目同組 盥jis賴:2 ^車乂例口金N〇. 423以及N〇. 424,係分別 人JIS規格之C2600以及C27〇〇相 1本1 9 士 人士 U、、且成之物。又,在表 表12中,3有c〇而不含有!^ Μ. Λ/ς. ★主—l 上 1 者’係將「(Co+ Fe +In the production process of 2 f raw processing materials, by performing cold working with a reduction rate (e.g., more than 60%) of the rolling rate or wire drawing rate, the grain size can be promoted, and the grain size can be further refined by the grain size. Effectively seek to increase strength. That is, in order to make the crystal grains fine, the nucleation position is necessary. # The nucleation position is increased by processing as described above with the processing rate = 2; the higher the processing rate, the more the increase amount of nucleation position H, Recrystallization is caused by the release of strain energy. Therefore, by increasing the shear strain by the above-mentioned cold working, more fine-grained results can be obtained: 'Results' From the miniaturization of crystal grains, a stronger rise can be achieved more effectively. On the other hand, as a plastic processing material for the final recrystallization treatment, flat: the crystal grain size (average crystal grain size before recrystallization) is preferably smaller, the volume is 5, the average crystal grain size is less than 2G lG // m or less is preferred) The smaller the average grain size of the recrystallized steel is, the more the heat treatment will be performed in the next step, and the position of the recrystallized nuclei will increase, especially the dense packing between the grain boundaries: w'Yugu It is easy to become a nucleation site. However, due to the average crystal grain size, the strength: t times 'the energy cost required to manufacture a high-strength copper alloy' also takes manufacturing time. Therefore, the material of plastic working materials described in ⑴ = Average crystal grain size If the strength is insufficient in the state of the recrystallized material, the cold rolling or cold drawing line with a processing rate of 10 to 60% can be applied to the recrystallized material. In addition, in the case of obtaining the aforementioned plastic processing material, when a rolling calendering or wire drawing process is performed, 'the τ pressure rate or the wire drawing rate is set to be larger (15% or more (25% or more) Good)) is better. By cold working with a high reduction rate and high draw ratio, the increase in shear strain and nucleation position can be achieved, and the 29 recrystallized particles can be further refined. In addition, if a small caliber roll or Conversely, the caliber is extremely large for calendering, or the wire drawing is performed with a wire drawing mold with a large mold angle, or the wire drawing is performed with a very small wire drawing mold with a very large mold angle. It is effective to increase and realize the refining of the recrystallized grains. Furthermore, even if the calendering process is performed by a different-circle-speed calendering method, that is, by using upper and lower rolls with different diameters, the rolls are changed while changing the speed. Rolling, or The rolled material is given a large shear strain, and the recrystallized grains can be miniaturized. In addition, according to the purpose of each invention, the copper alloy is subjected to an appropriate heat treatment that does not recrystallize it (generally, 150 ~ 600t, L fire from i seconds to 4 hours), can significantly improve the elastic yellow limit value and stress relaxation characteristics. Specifically, for the cold-worked materials (2) (including the cold-worked materials mentioned in (4)) or (3) The processed product of (4) is heat-treated under the conditions of 20 (rc, 2 hours or 600 ° C, 3 seconds.) [Embodiment] As Example 1, Tables 1 to 4 The copper alloy of the composition shown was solved in the atmosphere. 'I know a square column ingot with a thickness of 35_, a width of 80mm, and a length of 200mm. Then' this ingot was subjected to hot rolling (85 times of TC (4 times) to obtain a thick After pickling the intermediate sheet, it is cold rolled and rolled into a final sheet with a thickness of 1 mm. Each final sheet is then recrystallized at a temperature at which it can be 100% (hereinafter referred to as "recrystallization temperature"). ”) Heat treatment (annealing) 丨 hour, that is, a complete recrystallization treatment of the structure is performed to obtain the copper alloy N of the first invention · 1〇 BU No. 186. In the recrystallization process, beforehand, test pieces taken from each of the final plates of 30 593703 (one side is a 20mm &amp; right square plate piece) 'are started from 300 ° C, and the temperature is changed every 5 (rc Hold the strip for i hours ^ annealing, find the lowest temperature when the test piece is completely recrystallized, and use this as the recrystallization temperature (refer to Table 1 5 to Table 17).… Again, by using and After the same process as above, to obtain the final materials of the same material (same shape and same composition) as the final materials of the alloys No. 107, No. 111, No. 111, No. 154, No. 18o, etc., The final sheet was recrystallized under conditions different from those described above to obtain ν〇 · 102, Ν〇 · 1G7, No. 111, ν〇 · 154, Νο · 175, and the compositions were the same as those described above. No. 1〇2Α, No. 1〇7A, No. 111A, No. 154A, No. That is, the first! Invention such as ⑽ ^ 如 丽 ^ ⑴ 八, · No. 154A, No. 180A is by Refining the final sheet at a temperature much higher than the reheating temperature: the temperature is increased for a short time to recrystallize the material (rapidly high / JEL plus Treatment), its temperature a (° C) and heating time b (seconds) are as described in "a (b)" in the "recrystallization temperature" column of Table 15 and Table 17. For example, in Table 15, No. "480 (20)" is described in the column "Recrystallization temperature" of 102A, which means that the final sheet is kept at 4800 (heating and holding for 20 seconds) and L is used as Example 2 and Tables 5 to Table The copper alloy with the composition shown in Fig. 8 was disintegrated in winter to obtain a square column-shaped ingot having a thickness of 35 mm, a width of 80 mm, and a length of 200 mm. Then, the ingot was subjected to hot rolling (4 times) at 85 ° to obtain Houda. After pickling the middle plate, it is cold-rolled and rolled to a thickness of 1 mm. After the plate, each final plate is heat-treated at a temperature at which it can recrystallize 100%, that is, the recrystallization temperature ( Annealing) 丨 hours (recrystallization treatment) 31. The copper alloy No. 201 to No. 281 of the second invention is known. The recrystallization temperature and degree are determined in the same manner as in the first embodiment beforehand (see Table 丨 8 to Table 20) Furthermore, the constituent materials and alloys of Alloy No. 202 No. 209, No. 250, and No. 265 were obtained by the same process as above. After a homogeneous final sheet, the final sheet is subjected to the aforementioned rapid high-temperature heat treatment to recrystallize, to obtain No. 202, No. 209, No. 250, No. 265, and, and the same as the above No. 2〇2A, Ncx 209A, No. 250A, No. 265A. That is, rapid high-temperature heat treatment of each alloy No. 2〇2α, ν〇 · 209A, No. φ 250A, and No. 265A was obtained. The conditions (temperature) and heating time b (seconds) are described in the same manner as in Table 15 to Table 17, and are listed in the "recrystallization temperature" column of Tables 18 to 20 as "a (b)". In Example 3, an alloy having a composition shown in Tables 9 to 12 was melted in the atmosphere to obtain a cylindrical ingot having a diameter of 95 mm and a length of 180 mm. This ingot was heated to 78 (rc, and an extruder (500 t) was used to obtain a round rod of 12 mm. 胄 After the round rod was washed, the wire was processed to straight # 8 随, and then After heat treatment at 50 CTC and i hours, the wires are washed and drawn into spring-shaped wires (formed materials). Then, each wire is recrystallized at a temperature at which it can be 100%, that is, the recrystallization temperature. The heat treatment (annealing) is performed for one hour (recrystallization treatment) to obtain the third invention copper alloy No. 3 (η to No. 397. In addition, when the recrystallization treatment is performed, the wire rod will be removed from each wire rod beforehand. The test piece (a wire piece with a length of about 20mm (diameter 4_)) is annealed from 30 (rc) and kept for 5 hours (TC units) to find the lowest value when the test piece is completely recrystallized. The temperature was used as the recrystallization temperature mentioned above (refer to Table 32 593703 21 to Table 24). The constituent materials of alloy No. 302, No. 314, and ν〇 · 338 were obtained by the same process as above. After the final wire of the same quality (forming material), the final plate is subjected to the aforementioned rapid high temperature heat treatment to recrystallize 'To obtain No. 302, No. 314, No. 338, and No. 302A, No. 314A, and No. 338A, which have the same composition as above, and obtain the rapidity of each alloy No. 302A, No. 314A, and No. 338A. The high-temperature heat treatment conditions (temperature a (° c) and heating time b (seconds)) are described in the same manner as in Tables 15 to 17 and described in "a (b)" in Tables 2i to 24. Recrystallization temperature ". As Comparative Example 1, the same process as in Example 丨 was used to obtain the composition of Table 13! Comparative Example Alloy No. 4〇i ~ n〇. 422. Also As a comparative example, the second comparative example alloy No. 423 ~ No. 431 having the composition shown in Table μ was obtained by the same process as that of the third embodiment. Also, the first comparative example soft alloy No. 401 ~ No. 4〇7, which is the same as the individual specifications of CDO〇, 乂: 2〇 :, ⑵00, Yi, C2_, coffee. And ⑽ &quot; 目 同 组 组 jislai: 2 ^ car 乂 example The gold No. 423 and No. 424 are C2600 and C27OO phases of the JIS standard, respectively, 1 and 19 persons U, and completed products. Also, in Table 12, 3 has c0 and Does not contain! ^ Μ. Λ / ς. ★ 1 by the -l 'the system "(Co + Fe +

Ni)/Si」之表不改為「c〇/Si」。 另一方面,關於比較例合金N〇 427、版431,在製程_產生下述之、如.425、版 後續製程,所以放棄製作。,亦即 ’而無法進行之 塊熱壓延之階段中產生大的 於No· 421,在將鑄 大的破裂,關於知· 425為無法熱 33 593703 擠壓,關於No. 427以及No· 431為在拉線製程中破裂, ▲ 不管是哪一者都無法進行之後之製程之故,而放棄製作。 然後’針對第1發明銅合金No· 10卜No. 186、No· 102A 、 No· 107A 、 No. 111A 、 No. 154A 、 No. 180A ,第 2 發明銅合金 No· 201 〜No. 281、No. 202A、No· 209A、No· 250Α、Ν〇·265Α以及第3發明銅合金No. 3(H〜No. 397,"Ni) / Si" is not changed to "c0 / Si". On the other hand, regarding the alloy No. 427 and plate 431 of the comparative example, the following processes, such as .425 and plate, were produced in the process_, so the production was abandoned. , That is, the stage of hot rolling that cannot be carried out produces a large Yu No. 421, a large crack in the casting, about 425 is unable to heat 33 593703 extrusion, about No. 427 and No. 431 In order to break in the drawing process, ▲ no one can carry out the subsequent process, and give up production. Then 'for the first invention copper alloy No. 10, No. 186, No. 102A, No. 107A, No. 111A, No. 154A, No. 180A, and the second invention copper alloy No. 201 to No. 281, No. 202A, No. 209A, No. 250A, No. 265A, and the third invention copper alloy No. 3 (H ~ No. 397,

No. 3 02A、No. 3i4A、No. 338A以及第1及第2發明比較 例銅合金No. 401〜No· 431(不計放棄製作之Νο·421 'No-425 、 No· 427 、 No. 431) 之再結晶組織中平均結晶粒徑 9 D(// m),基於使用光學影像之切斷法(JIS-H050 1 )來測定 。其結果,如表15〜表2 6所示。 又,對第1發明銅合金No· 101〜No. 186、No. 102A 、No· 、No. 111A、No. 154A、No· 180A,及第 2 發 明銅合金 No· 201A〜No. 281A、No. 202A、No. 209A、No. 25〇A、N〇.265A以及第1比較例銅合金No. 401〜No. 421( 不計No· 421),測定導電率。其結果,如表15〜表20以及 表25所示。又,導電率(% I ACS)係將國際標準軟銅之體積 _ 比電阻(1 7. 241 X 1 0-9 // Ω · m)除以該合金之體積比電阻 值之百分率比。No. 3 02A, No. 3i4A, No. 338A, and copper alloy No. 401 to No. 431 of Comparative Examples of the first and second inventions (excluding No. 421 'No-425, No. 427, No. 431, waiving production) The average crystal grain size in the recrystallized structure of 9) was 9 D (// m), and was measured based on a cutting method (JIS-H050 1) using an optical image. The results are shown in Tables 15 to 26. In addition, the first invention copper alloy No. 101 ~ No. 186, No. 102A, No ·, No. 111A, No. 154A, No. 180A, and the second invention copper alloy No. 201A ~ No. 281A, No. 202A, No. 209A, No. 25〇A, No. 265A and the first comparative example copper alloy No. 401 to No. 421 (excluding No. 421), and the conductivity was measured. The results are shown in Tables 15 to 20 and 25. In addition, the conductivity (% I ACS) is the percentage ratio of the volume specific resistance of the international standard soft copper (1 7. 241 X 1 0-9 // Ω · m) divided by the volume specific resistance of the alloy.

又,對第1發明銅合金No· 1〇卜No. 186、No· 102A Λ Νπ • 1〇7Α、No· 111Α、No. 154Α、No· 180Α,及第 2 發 日月鋼 合金 Ν〇·201Α 〜No. 281Α、Νο· 202Α、Ν〇· 209Α、Ν〇· 2 5 〇 δ Ν〇.265Α以及第1比較例銅合金Νο· 401〜No. 421( Ν〇· 421),用阿姆斯勒(Armsler)型萬能試驗機來進 34 行拉伸試驗,測定安全限應力(0· 2%安全限應力),拉伸強 度以及延伸率。更且,將各合金冷壓延到厚度0.7_(3⑽ 壓延),針對該壓延材(以下稱為「後加工材」),進行同 於上述之拉伸試驗,測定安全限應力(0· 2%安全限應力), 拉伸強度以及延伸率,並進行彎曲加工性之評價以及應力 腐蝕破裂實驗。其結果,如表15〜表2〇以及表託所=。 又,將第1發明銅合金N〇· 1〇1〜N〇. 186、N〇· i〇2a、No- mNo· 1ιια、ν〇. 154Α、Ν〇· 18〇A ,及第 2 發明銅人 金 Ν〇·201Α〜Νο. 281Α、Ν〇· 2〇2A、Ν〇· 2〇gA、&amp; 25〇/ Ν〇· 進行30%壓延所得到之後加工材,當然亦為本發明 之n強度銅合金。 弓 σ工性之評價,係將自後加工材以對壓延 向做垂直切取所得之試片折彎成W字狀,藉由發生破裂 之折曲度R/t (R:在折曲部中内周側之曲率半徑(mm), :試片之板厚(随))來進行。在们2〜表17以及表22中 t 0. 5日守不產生破裂者,為彎曲加工性優良者,以In addition, for the first invention copper alloy No. 10B No. 186, No. 102A Λ Νπ • 107A, No. 111A, No. 154A, No. 180A, and the second sun-drum steel alloy No. 201A to No. 281A, No. 202A, No. 209A, No. 2 5 〇δ No. 265A, and the first comparative example copper alloy No. 401 to No. 421 (No. 421), using Arm The Armsler universal testing machine performs 34 tensile tests to determine the safety limit stress (0.2% safety limit stress), tensile strength and elongation. Furthermore, each alloy was cold-rolled to a thickness of 0.7_ (3⑽), and this rolled material (hereinafter referred to as "post-processed material") was subjected to the same tensile test as described above to determine the safety limit stress (0.2%). Safety limit stress), tensile strength and elongation, and evaluation of bending workability and stress corrosion cracking test. The results are shown in Tables 15 to 20 and Tables =. In addition, the copper alloys No. 1101 to No. 186, No. 102, No. 1a, No. 154A, No. 18OA of the first invention, and the second invention copper Renjin No. 201A ~ No. 281A, No. 2〇2A, No. 20gA, &amp; 25〇 / Ν〇 · After 30% calendering, the processed material obtained is of course also the n of the present invention Strength copper alloy. The evaluation of the bow σ workability is to bend the test piece obtained from the post-processed material in the vertical direction to the rolling direction to bend into a W shape, and the fracture degree R / t (R: in the bending part) The radius of curvature (mm) on the inner peripheral side is the thickness of the test piece (with). In 2 ~ Table 17 and Table 22, those who did not break at t 0.5 days were those with excellent bending workability.

◎」表示,在R/t = 1 e^ 1· 5 %不產生破裂,但在〇. R/t :.:產生破裂者,為具有良好彎曲加工性者(實用上沒有 以「〇」表示,在^ = 2.5日寺不產生破裂,但. 1· 5$ R/ts 2· 5 產生破烈 土 ^ d者’為具有一般的彎曲加工性者 雖有問題但可實用) 到4 … /△」表示,在R/t-2.5產生; 4者,為彎曲加工性 丨王不k者(貫用困難),以「X」表示。 又’應力腐♦虫破裂4 _ A 衣4驗’係使用JIS H3250所規定: 式驗容器與試驗液來谁 木遵仃’使用將等量之氨水與水混合二 35 面:,“广%&lt;境暴露時間與應力緩和率(對後加工材表 上,附加該後加工材t g 係中,、^材之女全限應力值之80%之應力)之 二,進灯耐應她破裂性之評價。在表…以及 ;中’暴露時間75切且應力緩和率為m以下者, 為耐腐蝕破裂性優良者, 露π丨卩士 ± ◎」表不,應力缓和率在暴 下者’7之%超過2〇%,在暴露時間30小時之時為20%以 下者’為耐腐钱破裂性良好者(實用上沒有問題),以「〇 」表不’在暴露時間12小時之時為2⑽下者 般之耐腐蝕破裂性者(可能有 ’&quot;、八 厂 、J月匕有問碭但貫用上沒有問題),以 △」表示’在暴露時間12小時之時超過㈣者,為 蝕破裂性不佳者(實用困難),以「X」表示。 、、 又’針對第3發明銅合金No. 301〜Ν〇·397、ν〇· 4 Ν〇· 314Α、Ν〇· 338Α以及第2比較例合金No. 〜〇· 431(不計放棄製作之Ν〇·仍、n〇.奶、版 使用阿姆斯勒型萬能試驗機來進行拉伸試驗,測定安 全限應力(G. 2%安全限應力),拉伸強度以及延伸率。進一 乂將各合金拉線到直徑為3· 35_,對於該拉線材(以下稱 為「後加工材」),進行同於上述之拉伸試驗,測定安全 限應力、拉伸強度以及延伸率,並進行彎曲加工性之評價 以及應力腐蝕破裂試驗。其結果,如表2卜表24以及表2、6 所不。又’將第3發明銅合金如.3〇卜如.397、版 3〇2A N〇· 314A、No· 338A拉線加工所得之後加工材,當 然亦為本發明之高強度銅合金。 又,;曲加工性之評價,係以使用v型塊將後加工材 36 593703 做90度彎折之際,破裂產生時之折曲度R/t (R :在折曲 部中内周側之曲率半徑(_),d ••試片之板厚(_))來進行 。在表18〜表22中,R/d = 〇時不產生破裂者,為彎曲加 工ιά良者’以「◎」表示,在R/d = 〇·25時不產生破裂 ,但在O‘R/d^O.25產生破裂者,為具有良好 者(實用上沒有問題),以「〇本一 —d 」以°」表不,在R/d = 〇·5時不 皮衣仁在〇.25^R/t^0·5產生破裂者,為呈有一般 的彎曲加工性者(雖右n y ^ 、有飯 R/t&gt;n&quot;/(雖有問過但可實用),以「△」表示,在 ~ · 生破裂者,為彎曲加工性不佳者(實用 以「X」表示。 个U有(貝用困難), 工、應力腐蝕破裂試驗,係對於上述之使用於彎曲加 使之後加工材進行過R/d=1·5之90度彎曲者, 使用JIS H3250所痏宋夕4 A X &lt;曲# 將等量之氨水盥水、、3人之二,容器與試驗液來進行,使用 腐敍破裂性之評價。在;;二硯祭有無破裂,進行财應力 間小時沒有破^ ^表2〇以及表25巾,暴露時 有皮衣者,為耐腐蝕破 」表示’暴露40小時之時產生破 者’以◎ 日,之時沒有產生破裂者,為耐腐钮破路時間15小 沒有問題),以「〇 # ^丨生良好者(實用上 破裂,但在暴露時間為6小^日=間15、時之時產生 有-般之耐腐蝕破裂性者(可二沒有產生破裂者,為具 」表示’在暴露時間6小時但可實用)’#「△ 裂性不佳者(實用困難), 了生破裂者,為耐腐蝕破 X」表示。 37 593703 從表15〜表26可知··第1〜第3發明銅合金相對於在開 始時即不具有特定之合金組成以及再結晶組織之第丨以及 第2比較例合金,可謀求晶粒之微細化,可使包含安全限 應力之機械性質以及彎曲加工性等大幅提昇,即使是以往 之高強度合金難以使用之用途中,也可適合做為板材、條 材、線材來使用。又,已知藉由急速高溫加熱處理來進行 再結晶化處理,可進一步謀求晶粒D之微細化與強度提昇 。又,在表15〜表26中雖沒有記載,惟已確認:針對前述 之後加工材(將再結晶化後之壓延材、拉線材進一步做;人 壓延、拉線加工者)在150〜600°C,1秒〜4小時做熱處理| ’其彈簧極限值以及應力緩和特性可大幅提昇。◎ "indicates that no cracking occurs at R / t = 1 e ^ 1.5%, but those with cracking at 〇.R / t:.: Are those with good bending workability (not indicated by" 〇 "in practice In ^ = 2.5, the temple does not produce cracks, but. 1 · 5 $ R / ts 2 · 5 produces cracked earth ^ d 'is a person with ordinary bending workability, although there are problems, but it is practical) to 4… / “△” indicates that it is generated at R / t-2.5; 4 indicates bending workability 丨 Wang Buk (difficult to use), and “X” indicates. Also, the "stress rot worm rupture 4 _ A clothing 4 test" is specified in JIS H3250: the test container and the test solution come from the wood, and use the same amount of ammonia and water mixed with 35 sides: "" &lt; Environmental exposure time and stress relaxation rate (on the post-processed material table, the stress of the post-processed material tg is 80% of the full limit stress value of the female of the post-processing material). In the table ... and; the exposure time of 75 cuts and the stress relaxation rate is m or less, is the one with excellent corrosion resistance and crack resistance, exposed π 丨 卩 士 ± ◎ "shows that the stress relaxation rate is under the exposure '% Of 7 exceeds 20%, and 20% or less at the time of 30 hours of exposure' are those with good anti-corrosive money rupture properties (there is no problem in practical use). Those who are 2 times below the corrosion resistance (may have '&quot;, Hachichang, J Yuejian have asked, but there is no problem in using them), △ "said' exceeded at 12 hours of exposure time Those with poor rupture (practical difficulty) are indicated by "X". For the third invention, the copper alloy No. 301 to No. 397, ν〇. 4 No. 314A, No. 338A, and the second comparative example alloy No. to No. 431 (excluding the N of abandoned production) 〇 · still, n〇.milk and version use an Amsler type universal testing machine to perform a tensile test to determine the safety limit stress (G. 2% safety limit stress), tensile strength, and elongation. The alloy wire is drawn to a diameter of 3.35_. For this wire (hereinafter referred to as "post-processed material"), the same tensile test as described above is performed to determine the safety limit stress, tensile strength, and elongation, and bend processing is performed. Evaluation of the properties and stress corrosion cracking test. The results are as shown in Table 2 and Table 24 and Tables 2 and 6. The copper alloy of the third invention such as .30, such as .397, and version 3.02A No. 314A, No. 338A drawn wire after processing, of course, is also the high-strength copper alloy of the present invention. The evaluation of bending workability is to use a V-shaped block to bend the post-processed material 36 593703 90 degrees In this case, the degree of bending R / t (R: radius of curvature (_) of the inner peripheral side in the bent portion) at the time of rupture •• The sheet thickness (_)) of the test piece is used. In Tables 18 to 22, when R / d = 〇, no crack will occur, and those who are good for bending processing are indicated by "◎", and R / d = 〇 · 25, no rupture occurs, but the rupture occurred at O'R / d ^ O.25, which is a good one (there is no problem in practical use), which is indicated by "〇 本 一 -d" ° ", in When R / d = 0.5, the person who has no leather clothes and ruptures at 0.25 ^ R / t ^ 0 · 5 is a person with ordinary bending workability (though right ny ^, with rice R / t &n; n &quot; / (Although it has been asked, but it is practical), it is indicated by "△", and those who have fractured ~ are those with poor bending workability (Practical are indicated by "X". U has (difficulty to use), labor, The stress corrosion cracking test is for the above-mentioned 90-degree bending of the processed material after bending and adding R / d = 1.5, using JIS H3250 Song Xi 4 AX &lt; 曲 # equal amount of ammonia water Toilets, two persons, three persons, containers and test liquids were used to evaluate the rupture of the rot. In; whether the two burnt offerings were cracked, and there was no break during the time of financial stress ^ ^ Table 20 and Table 25 towels, When exposed The wearer is resistant to corrosion and breakage "means 'breaker when exposed for 40 hours' in ◎ days, without breakage at that time, it is no problem if the break time of the corrosion-resistant button is 15 minutes), with" 〇 # ^ 丨 生Good person (practical rupture, but when the exposure time is 6 hours ^ day = time 15, there is a general-like corrosion cracking resistance (can be no rupture, it is with "" at the exposure time 6 Hours but practical) '# "△ Poor cracking (difficult to apply), and those who have cracked are corrosion resistant X". 37 593703 It can be seen from Table 15 to Table 26 that the first to third invention copper alloys can be obtained with respect to the first and second comparative example alloys that do not have a specific alloy composition and recrystallization structure at the beginning. The miniaturization can greatly improve the mechanical properties including the safety-limiting stress and the bending workability. It can be used as a plate, a bar, or a wire even in applications where conventional high-strength alloys are difficult to use. In addition, it is known that the recrystallization treatment can be performed by rapid high-temperature heating treatment to further refine the grain D and increase the strength. In addition, although it is not described in Tables 15 to 26, it has been confirmed that the following processed materials (re-crystallized rolled materials and wire rods are further processed; human calenders and wire rod processors) are at 150 to 600 °. C, heat treatment from 1 second to 4 hours | 'The spring limit value and stress relaxation characteristics can be greatly improved.

38 593703 【Ls38 593703 [Ls

合金組成(ma s s%) (Co+Fe+Ni)/Si 0. 108 0.079 0.079 0.056 | 0.070 0.055 0.060 0.005 0.040 | 0.213 0.044 o 0.071 0.020 | ο. ιοί | 0.066 Zn-2.5Si 丨 7.550 6.550 o CO ΙΛ (•d s CD LT&gt; LO cs LO lo CSI &lt;〇 CO 4.350 LO Csi LO 一 LO CSi LO 七 LO 05 〇 14.275 s 6.400 Ο Xj· &lt;d 8.200 in in 5.075 Ο in 〇 CVJ 6,425 Ο CO CD 〇 IT) oo o 14.625 10.450 6.475 in 寸 ai &lt;x&gt; CO 0.03 JO 0.03 ώ 〇 &gt;- 0.02 0. 05 cu 〇 0.03 0.07 0.12 0. 11 0. 12 CM o m o 〇 o 对 ο 5 〇 0. 06 CO CVI o o o 0. 09 0.98 S S CO lO CO &lt;〇 csi csi CO CO csi CO o s CM LO Csj lO E〇 o csi Csi CO csi CM LO m oo LO 〇&gt; CO csj 5 〇&gt; CO o CO r5 10.0 CO 〇 CO 〇 CO ai d LO 00 cy&gt; 0¾ 00 &lt;6 CQ o o eg 〇 CSI d 00 a&gt; O LO 〇 CN4 o c〇 〇&gt; CO 00 CO CO eg O CM oa CO &lt;5 殘部 殘部 殘部 殘部| 殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 J部」 I殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 合金材 No. o s 102 A s 3 s 107A g o 二 111A CM CO 寸 LO &lt;〇 卜 00 〇&gt; CO CSJ 39 593703 【CVJ撇】 (o/os S BE)^S&lt;^如 Si/Sn 4.824 I 1.545 22.400 o oo 5. 095 寸 Csi δ xr 5. 241 5.433 6. 680 Z s s 〇 s CO s s o Ο 若 in :LO s 〇 5 o g s oo s CO CO § s s CO &lt;£&gt; o σ&gt; LO o s CM + 〇 o o o o 〇 o o ο d d o’ o o o o o o o o o o d 〇 CO LO eg LO CM CO uo 夺 o s g o LO rj- LO CM cn o § s 〇〇 s LO CVJ UD p- o o o 8 LO CSJ 卜 LO CO o s LO § CO o 8 o § LO o LO 05 LO o JO o § ΙΛ CM LO LO CM CO rS ΙΛ ur&gt; co LT&gt; CD &lt;b in co a&gt; cd — — eg 00 lO to evi to cd &lt;d cb 10 LO c 0. 03 ivj S 〇 S δ o Ο s o’ o 容 a&gt; CM to ΓΟ CD CVJ s U&gt; eg o o o o o o 〇 ο O 2: 04 呂 CNJ s CVi g 5 O s § O’ o 〇 o o 〇 o o o o o o o g 〇&gt; s 04 g o s o d 〇 〇 d o o o o o 〇&gt; CO g o s g CD g 二 s o g o CSi r- S ο o 〇 o o o o 〇 o o o o o o o o &lt;D ο o CO un CT&gt; 0. 88 04 CO o 04 c〇 CO 艺 OQ in &lt;£&gt; CO CO CVJ CO CO CO o CO CSi CO 石 o s s CM 04 对 csi 0. 57 之 eg to 2 &lt;〇 〇6 10. 3| CO ur&gt; oi 10.0 〇r&gt; 〇〇 O CO ai 00 04 CSO 卜 σ&gt; 00 cb 〇6 CO uS CNi o 对 ai 〇&gt; CO &lt;〇 o 04 od CO &lt;〇 oo o CO o &lt;£&gt; 〇i 00 ai 3 §Q 插 插 插 §n 插 §□ 插 锸 插 镝 插 §□ 插 插 镝 镝 镝 §a §□ 插 §□ 激 燄 m m 燄 m 激 燄 燃 激 激 m 激 燄 m * m m * m m m 激 m m 激 0 CM CO CS4 CM S 04 ΓΟ CO CO 5 ΙΟ CO CO CO CO 00 CO 0¾ CO o 5 CO 5 &lt;o CO § s in z 40 593703 【s】 合金組成(ma s s%) Si/Sn 4.969 8.000 6.286 6.286 3.447 4.317 16. 250 8.050 5.286 10.111 6.885 | o CO 4. 786 4.182 6.400 5.500 19.875 12.083 9· 000 | 14.364 10.714 8.167 10.333 5. 321 6. 200 6.154 10.045 (Co+Fe+Mi)/Si 0.069 0.011 0.034 0.034 0.051 0.338 0. 050 0.072 0. 066 0.045 0.068 0.060 0.203 0.050 0. 055 0.069 0.028 0.037 0.070 0.053 0.068 0.218 0.074 0.057 0.050 0.050 Zn-2. 5Si 4.675 o 〇 4.300 S 〇&gt; 七 5.475 6. 850 5.475 10.525 S CO CO 0. 425 5.600 4.975 7.850 o s LO LO to L〇 6.525 7.675 4. 850 S CO iO 6.250 9. 525 o 卜 5.975 to OJ CO L〇 5.300 4. 675 0.02 rvi o o 0.02 | 003 Ml 卜 0.08 | 0.04 | 0.07 0. 02 0.08 0. 05 CL· 0.03 0. 32 0.23 CO C\l o 0. 28 0.47 0. 41 0. 08 j 0. 20 | o 0.18 0.26 | 0. 82 I 0.42J 0.33 0. 25 0.30 0. 08 o o 0.12 0. 28 0. 25 0.26 0. 22 4.12 0.28 0. 08 0.06 002 0.01 0.04 0.05 CM 〇 0.08 0.09 s o Ml 0.03 0.04 0.05 0.05 &lt;s 0.11 0.02 0.06 0.06 ! 0 09 Ϊ 0.44j 0.08 0.08 0.06 | 0.04 | 0.03 | 0.03 0.07 0.03 0.05 0.21 0.09 0.08 0. 04 006 CO 1.59 1.84 1.76 CO 〇g &lt;〇 &lt;〇 二 CsJ 00 &lt;N CO ο csi 00 CO S to CO a&gt; la Csl CO τ— CO to s CVI 5 LO in 1.60 2. 21 rS 10.7 σ&gt; to 卜 CO 卜 00 O σ&gt; 〇&gt; cr&gt; LO ai CO CO CNJ CO σ&gt; σ&gt; οα ο ο CO o O) 卜 ai LO o CO σ&gt; GO 00 cri o o CN CO CO cri ir&gt; a&gt; CO cn CNJ o 3 殘部 殘部 殘部 殘部 殘部 殘部 殘部; 殘部i 殘部i 殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 合金材 No. cvi LO s s 154A in LO CO LC 〇〇 LO r— in § τ— 3 s s IX&gt; &lt;〇 I s r— § σ&gt; CO t— o CO LO CO r-* 卜 41 593703 【表4】 合金材 合金組成(m a s s 1 %) No. Cu Zn Si Co Fe Ni Sn Zn-2.5Si (Co+Fe+Ni〉/Si Si/Sn 178 殘部 6. 9 1. 19 0. 15 0. 14 0. 54 3.925 0.244 2.204 179 殘部 8.9 1.68 0.09 0.02 0. 09 4.700 0.065 18. 667 180 殘部 14.2 1.65 0. 03 0.09 0.20 10. 075 0.073 8.250 宵 180A 殘部 14.2 1.65 0.03 0.09 0.20 10. 075 0.073 8. 250 施 181 殘部 9,4 1.62 0. 06 0.01 0.02 0. 18 5.350 0.056 9.000 例 182 殘部 10.1 0.89 0 03 0. 02 0.01 0.24 7. 875 0.067 3. 708 1 183 殘部 11.8 1.45 0,01 0,03 0.02 0.33 8.175 0.041 4. 394 184 殘部 8.3 1.20 0.31 0. 07 0.05 5.300 0.317 24.000 185 殘部 9.5 1.70 0. 15 0. 07 5.250 0.129 186 殘部 9.5 1.70 0.10 0.30 5.250 0.059 5.667 42 593703 【9懶】 ? φ φ &lt;0 ί 班 &lt;η 0) U. b 00 to o 〇 o CM o o CVJ o CM cr&gt; 〇 § o CVJ u&gt; o’ CO CO CO o 00 oo OJ o CO o s 〇 s o LO 〇 CO o o s Csl C&gt; &lt;〇 CO o a&gt; 00 o’ s o i s Cj4 M 8 〇&gt; in 卜 oo 卜 oo in CO cri 8 &lt;0 in CNi o m 04 〇&gt; uo csl CT&gt; S 卜 00 s r- od s Cvi 〇0· s in s 〇&gt; to oo 00 l〇 o oo s o 呀· LO &lt;NJ 卜·· § cJ 8 CVJ a&gt; in CM in 〆 LA Csl OO cd IA 〇r&gt; 8 &lt;S» 卜’ m 00 a &lt;P s 00 04 〇 二 s o ώ 〇 v5 S o' Q. s o O s o g o l£ S o S o g O s o s O s d CM O CM O o o § o g o o o o o s 〇 o § o g o a O oo s o 5 o σ&gt; o to o 〇 CM LO 〇 cr&gt; CO O ar&gt; T—* o o o m o s o CSI to o s o JO o CO CO o CO o o o CO o o o CM to 〇 rj o 〇&gt; CO o p o o CO o s o oo T-· o rS o o o o o o 〇&gt; to 〇 卜 o — CsJ o cn a&gt; o o o o LO 〇&gt; oo CD CO o 卜 a&gt; σ&gt; oo LO ir&gt; oo CO ΙΛ o 卜 CO oo a&gt; oo ai CO od oo CN od 〇&gt; od &lt;3 激 锸 m 插 m 铌 激 插 激 激 插 激 插 激 m 激 §n m 镝 燄 激 §n 激 s m ffi m 插 m 镝 m §n 激 插 m 激 插 m Sn m 燄 §§ m 激 燄 §n 燄 尨· 娟〇 &lt;α ζ s s CM 5 s CO 8 tr&gt; S s CM g CsJ S s c&lt;\ &lt; g o 04 CO 寸 ΙΛ &lt;〇 卜 cs CO Csl σ&gt; s CSJ a 04 Csl CM CO Oi csl CNJ Ά CM fc镅蓬w 43 593703 【9«】 合金組成(ma s s%) Si/Sn 0.305 0. 090 0.101 0.073 ! 0.108 0.451 0.474 0.183 0.183 0.169 0.173 0.146 0.146 0.467 (Co+Fe+NO/Si 1.200 0.918 0.211 0.554 0.316 0.136 0.167 0.128 ! 0.460 0.191 0.286 〇0 o 0.140 0.344 0.273 0. 400 0.345 0.179 Οϊ o 0.171 Zn-2. 5Si 8.450 7.275 6.850 8. 700 10. 325 8.050 7.600 13.825 | 3,550 7.325 9. 300 7.000 9.375 8. 625 3 卜 8.000 7.325 ! 8.525 11.025 9.350 8 6.375 6. 750 8. 400 8.400 | 8.650 S d rvi δ o 0.03 卜 0. 07 &gt;» I 0.05 | s o 0.02 0.03 o cvi σ&gt; a&gt; cvi CM csi CO 00 CO o LO s OO &lt;x&gt; CVJ σ&gt; Si s - | 0.02 0.06 ! 0.04 I 0.03 I 0.02 0.05 0.02 I 0.03 | s o £ s 〇 0. 06 0.05 0.02 0.21」 | 0.04 0.02 0.02 0.05 0.36 0.45 0. 02 0.26 0.04 | 0,03 0. 04 0.04 I 0.03 I 0.01 〇 0.09 | Csj r-· o o o g o 0.05 [ C4 O oo 0.30 0. 49 0.38 0.56 0.19 CO to o 0. 48 〇&gt; CO o s o 0.47 | 0.28 ' 0.44 LO o CO o 00 o s o LO 1— o 0 23 0.51 '0.18 0. 32 CO CO o 0. 30 0. 29 0. 28 0.28 | 0.70 r5 CNI cr&gt; L〇 CO 00 卜’ Τ Ο 00 o 卜 a&gt; 00 00 〇0 — CO 七 LO ΌΟ 10.0 CXD oo o 卜 a&gt; C\J 00 LT&gt; OO 卜 cr&gt; CO csi CO σ&gt; CT&gt; C\l 卜 LD 〇&gt; cri σ&gt; 对 o 3 殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部: 殘部i 殘部| 殘部 殘部 殘部 殘部 殘部 殘部」 殘部 殘部 殘部 I殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 龙. 〇 2 CO c\i cvi 卜 CSI CM 00 C\J CSi CNI CM o CO csi CO CN CVI CO CM CO CO &lt;NI m CO CM c〇 CO CM CO oo CO CVJ σ&gt; CO &lt;N o CVJ CNI CO s CM ΙΛ &lt;Ν s CO s 〇&gt; o to 04 I 250A jAlloy composition (ma ss%) (Co + Fe + Ni) / Si 0. 108 0.079 0.079 0.056 | 0.070 0.055 0.060 0.005 0.040 | 0.213 0.044 o 0.071 0.020 | ο. Ιοί | 0.066 Zn-2.5Si 丨 7.550 6.550 o CO ΙΛ (• ds CD LT &gt; LO cs LO lo CSI &lt; 〇CO 4.350 LO Csi LO-LO CSi LO Seven LO 05 〇14.275 s 6.400 〇 Xj · &lt; d 8.200 in in 5.075 Ο in 〇CVJ 6,425 〇 CO CD 〇IT ) oo o 14.625 10.450 6.475 in inch ai &lt; x &gt; CO 0.03 JO 0.03 FREE 〇 &gt;-0.02 0. 05 cu 〇0.03 0.07 0.12 0. 11 0. 12 CM omo 〇o to ο 5 〇0. 06 CO CVI ooo 0. 09 0.98 SS CO lO CO &lt; 〇csi csi CO CO csi CO os CM LO Csj lO E〇o csi Csi CO csi CM LO m oo LO 〇 &gt; CO csj 5 〇 &gt; CO o CO r5 10.0 CO 〇CO 〇CO ai d LO 00 cy &gt; 0¾ 00 &lt; 6 CQ oo eg 〇CSI d 00 a &gt; O LO 〇CN4 oc〇〇 &gt; CO 00 CO CO eg O CM oa CO &lt; 5 Residual Residual Residual Residual | Residual Residual Residual Residual Residual Residual Residual Residual Residual Residual Remains 107A go II 111A CM CO inch LO &lt; 〇 卜 00 〇 &gt; CO CSJ 39 593703 [CVJ skimming] (o / os S BE) ^ S &lt; ^ such as Si / Sn 4.824 I 1.545 22.400 o oo 5. 095 inch Csi δ xr 5. 241 5.433 6. 680 Z ss 〇s CO sso 〇 If in: LO s 〇5 ogs oo s CO CO § ss CO &lt; £ &gt; o σ &gt; LO os CM + 〇oooo 〇oo dd o 'ooooooooood 〇CO LO eg LO CM CO uo wins osgo LO rj- LO CM cn o § s 〇〇s LO CVJ UD p- ooo 8 LO CSJ LO CO os LO § CO o 8 o § LO o LO 05 LO o JO o § ΙΛ CM LO LO CM CO rS ΙΛ ur &gt; co LT &gt; CD &lt; b in co a &gt; cd — — eg 00 lO to evi to cd &lt; d cb 10 LO c 0. 03 ivj S 〇S δ o Ο s o 'o capacity a &gt; CM to ΓΟ CD CVJ s U &gt; eg oooooo 〇ο O 2: 04 CN CNJ s CVi g 5 O s § O' o 〇oo 〇ooooooog 〇 &gt; s 04 gosod 〇〇dooooo 〇 &gt; CO gosg CD g two sogo CSi r- S ο o 〇oooo 〇oooooooo &lt; D ο o CO un CT &gt; 0. 88 04 CO o 04 c〇CO art OQ in &lt; £ &gt; CO CO CVJ CO CO CO CO CO Si Si CO oss CM 04 vs csi 0.57 eg to 2 &lt; 〇〇6 10. 3 | CO ur &gt; oi 10.0 〇r &gt; 〇〇O CO ai 00 04 CSO σ &gt; 00 cb 〇6 CO uS CNi o to ai 〇 &gt; CO &lt; 〇o 04 od CO &lt; 〇oo o CO o &lt; £ &gt; 〇i 00 ai 3 §Q Insertion §n Insertion § □ Insertion 锸Insertion § □ Insertion 镝 镝 镝 §a § □ Insertion § □ Flame mm flame m flame flame m m * mm * mmm Stimulation mm Stimulation 0 CM CO CS4 CM S 04 ΓΟ CO CO 5 ΙΟ CO CO CO CO 00 00 CO 0¾ CO o 5 CO 5 &lt; o CO § s in z 40 593703 [s] Alloy composition (ma ss %) Si / Sn 4.969 8.000 6.286 6.286 3.447 4.317 16. 250 8.050 5.286 10.111 6.885 | o CO 4. 786 4.182 6.400 5.500 19.875 12.083 9 · 000 | 14.364 10.714 8.167 10.333 5. 321 6. 200 6.154 10.045 (Co + Fe + Mi) / Si 0.069 0.011 0.034 0.034 0.051 0.338 0. 050 0.072 0. 066 0.045 0.068 0.060 0.203 0.050 0. 055 0.069 0.028 0.037 0.070 0.053 0.068 0.218 0.074 0.057 0.050 0.050 Zn-2. 5Si 4.675 o 〇4.300 S 〇 &gt; Seven 5.475 6. 850 5.475 10.525 S CO CO 0. 425 5.600 4.975 7.850 os LO LO to L〇6.525 7.675 4. 850 S CO iO 6.250 9. 525 o Bu 5.975 to OJ CO L〇5.300 4. 675 0.02 rvi oo 0.02 | 003 Ml Bu 0.08 | 0.04 | 0.07 0. 02 0.08 0. 05 CL · 0. 03 0. 32 0.23 CO C \ lo 0. 28 0.47 0. 41 0. 08 j 0. 20 | o 0.18 0.26 | 0. 82 I 0.42J 0.33 0. 25 0.30 0. 08 oo 0.12 0. 28 0. 25 0.26 0. 22 4.12 0.28 0. 08 0.06 002 0.01 0.04 0.05 CM 〇0.08 0.09 so Ml 0.03 0.04 0.05 0.05 &lt; s 0.11 0.02 0.06 0.06! 0 09 Ϊ 0.44j 0.08 0.08 0.06 | 0.04 | 0.03 | 0.03 0.07 0.03 0.05 0.21 0.09 0.08 0.04 006 CO 1.59 1.84 1.76 CO 〇g &lt; 〇 &lt; 〇2 CsJ 00 &lt; N CO ο csi 00 CO S to CO a &gt; la Csl CO τ— CO to s CVI 5 LO in 1.60 2. 21 rS 10.7 σ &gt; to COCO 卜 00 O σ &gt; 〇 &gt; cr &gt; LO ai CO CO CNJ CO σ &gt; σ &gt; οα ο ο CO o O) buai LO o CO σ &gt; GO 00 cri oo CN CO CO cri ir &gt; a &gt; CO cn CNJ o 3 Residuals Residuals Residuals Residuals Residuals Residuals; Residuals i Residuals Residuals Residuals Residuals Residuals Residuals Residuals Residuals Residuals Residuals Residuals Residuals Residuals Residuals Residuals Alloys No. cvi LO ss 154A in LO CO LC 〇〇LO r— in § τ— 3 ss IX &gt; &lt; 〇I sr— § σ &gt; CO t— o CO LO CO r- * Bu 41 593703 [Table 4] Alloy composition (mass 1%) No. Cu Zn Si Co Fe Ni Sn Zn- 2.5Si (Co + Fe + Ni〉 / Si Si / Sn 178 stub 6. 9 1. 19 0. 15 0. 14 0. 54 3.925 0.244 2.204 179 stub 8.9 1.68 0.09 0.02 0. 09 4.700 0.065 18. 667 180 stub 14.2 1.65 0. 03 0.09 0.20 10. 075 0.073 8.250 Xiao 180A stub 14.2 1.65 0.03 0.09 0.20 10. 075 0.073 8. 250 181 stub 9.4 1.62 0. 06 0.01 0.02 0. 18 5.350 0.056 9.000 Example 182 stub 10.1 0.89 0 03 0. 02 0.01 0.24 7. 875 0.067 3. 708 1 183 stub 11.8 1.45 0,01 0,03 0.02 0.33 8.175 0.041 4. 394 184 stub 8.3 1.20 0.31 0. 07 0.05 5.300 0.317 24.000 185 stub 9.5 1.70 0. 15 0. 07 5.250 0.129 186 stub 9.5 1.70 0.10 0.30 5.250 0.059 5.667 42 593703 [9 lazy]? Φ φ &lt; 0 ί class &lt; η 0) U. b 00 to o 〇o CM oo CVJ o CM cr &gt; 〇 § o CVJ u &gt; o 'CO CO CO o 00 oo OJ o CO os 〇so LO 〇CO oos Csl C &gt; &lt; 〇CO o a &gt; 00 o 'sois Cj4 M 8 〇 &gt; in oo oo oo in CO cri 8 &lt; 0 in CNi om 04 〇 &gt; uo csl CT &gt; S bu 00 s r- od s Cvi 〇0 · s in s 〇 &gt; to oo 00 l〇o oo so LO &lt; NJ BU · § cJ 8 CVJ a &gt; in CM in 〆LA Csl OO cd IA 〇r &gt; 8 &lt; S »BU 'm 00 a &lt; P s 00 04 〇 二 so ώ 〇v5 S o 'Q. so O sogol £ S o S og O sos O sd CM O CM O oo § ogooooos 〇o § ogoa O oo so 5 o σ &gt; o to o 〇CM LO 〇 cr &gt; CO O ar &gt; T— * ooomoso CSI to oso JO o CO CO o CO ooo CO ooo CM to 〇rj o 〇 &gt; CO opoo CO oso oo T- · o rS oooooo 〇 &gt; to 〇 卜 o — CsJ o cn a &gt; oooo LO 〇 &gt; oo CD CO o bu a &gt; σ &gt; oo LO ir &gt; oo CO ΙΛ o bu CO oo a &gt; oo ai CO od oo CN od oo &gt; od &lt; 3 Niobium Interferential Interferential Interferential Interferential Excitation §nm 镝 Flame Excitatory §n Interferential Sm ffi m Interfering m 镝 m §n Interferential Interfering m Interfering Interfering m Sn m Flame §§ m Interfering Flame §n 尨 尨 · Juan 〇 &lt; α ζ ss CM 5 s CO 8 tr &gt; S s CM g CsJ S s c &lt; \ &lt; go 04 CO inch ΙΛ &lt; 〇 卜 cs CO Csl σ &gt; s CSJ a 04 Csl CM CO Oi csl CNJ Ά CM fc 镅 pon w 43 593703 [9 «] Alloy composition (ma ss%) Si / Sn 0.305 0. 090 0.101 0.073! 0.108 0.451 0.474 0.183 0.183 0.169 0.173 0.146 0.146 0.467 0.467 (Co + Fe + NO / Si 1.200 0.918 0.211 0.554 0.316 0.136 0.167 0.128 ! 0.460 0.191 0.286 〇 0 o 0.140 0.344 0.273 0. 400 0.345 0.179 〇ϊ o 0.171 Zn-2. 5Si 8.450 7.275 6.850 8. 700 10. 325 8.050 7.600 13.825 | 3,550 7.325 9. 300 7.000 9.375 8. 625 3 Bu 8.000 7.325 ! 8.525 11.025 9.350 8 6.375 6. 750 8. 400 8.400 | 8.650 S d rvi δ o 0.03 BU 0.07 &gt; »I 0.05 | so 0.02 0.03 o cvi σ &gt; a &gt; cvi CM csi CO 00 CO o LO s OO &lt; x &gt; CVJ σ &gt; Si s-| 0.02 0.06! 0.04 I 0.03 I 0.02 0.05 0.02 I 0.03 | so £ s 〇0. 06 0.05 0.02 0.21 '' | 0.04 0.02 0.02 0.05 0.36 0.45 0. 02 0.26 0.04 | 0,03 0. 04 0.04 I 0.03 I 0.01 〇0.09 | Csj r- · ooogo 0.05 [C4 O oo 0.30 0. 49 0.38 0.56 0.19 CO to o 0 48 〇 &gt; CO oso 0.47 | 0.28 '0.44 LO o CO o 00 oso LO 1— o 0 23 0.51' 0.18 0. 32 CO CO o 0. 30 0. 29 0. 28 0.28 | 0.70 r5 CNI cr &gt; L 〇CO 00 'Τ Ο 00 o aa &gt; 00 00 〇0 — CO Seven LO Ό〇 10.0 CXD oo o a &gt; C \ J 00 LT &gt; OO crcr &gt; CO csi CO σ &gt; CT &gt; C \ l LD 〇 &gt; cri σ &gt; To o 3 stub stub stub stub stub stub stub stub: stub stub | stub stub stub stub stub stub stub stub stump CSI CM 00 C \ J CSi CNI CM o CO csi CO CN CV I CO CM CO CO &lt; NI m CO CM c〇 CO CM CO oo CO CVJ σ &gt; CO &lt; N o CVJ CNI CO s CM ΙΛ &lt; N s CO s 〇 &gt; o to 04 I 250A j

44 593703 【卜術】44 593703 [Arithmetic]

合金組成(ma s s%) Si/Sn 0.203 0.127 0.200 0.142 0.140 0.100 0.483 0. 205 5 〇 0.173 0.229 0.216 0.454 0.129 0.129 0.122 0.135 I 0.202 0.228 0.328 0.215 0. 262 0.236 0.116 J 0.169 0.228 0.180 (Co+Fe+Ni)/Si 0.563 0.556 0.286 0. 048 0.344 0.333 0. 357 0.219 0.286 0. 261 0.150 0.229 0.108 0.346 0.346 0. 333 0.322 0.500 0.194 0.316 0.250 0.136 0.212 0.364 0.214 0.217 0.244 Zn-2.5Si ! 7. 700 7. 125 丨 6.525 8.275 7,600 LO CM 10.250 14、300 〇 CO 8.625 8、000 4. 025 6. 450 7. 050 7. 050 6. 425 I 7.625 | 5,800 j 7.900 | 8.825 7.000 10. 200 :7.875 10.050 7.000 5. 900 11.475 0.06 &gt;- 0.02 0.02 0. 05 Ml 1.58 2.12 in 〇〇 CM cvi JZ OJ 0.29 j m oo 00 CO CO ΙΛ S S 2.02 s c\i CM CSJ csi ^00」 CO c\i S 0.58 S 〇 S &lt;jD S 2. 28 - 0.06 0. 08 0.08 s o 0. 05 1 0.03 1 0.05 s o 0. 03 0. 01 0.05 〇 o g o 0.06 〇 0.02 0.03 0.01 0.01 | 0.05 | 0.02 0.06 0.03 0.02 0.05 0.18 0.15 0.10 0.01 0.11 0. 09 0.05 j 0.07 0.07 0.06 0.08 I 0· 21 0.02 ! 0.04 0.03 0.03 0.05 0.12 CO 0.32 0.27 LO CO o CD 0.32 1 1 eg 〇 o CM CO d OO o CO CM o 0.40 LO CO 〇 d CO CvJ o &lt;£&gt; eg 〇 o o o 0.36 〇 0.32 0.44 CO CO o CM CM 〇 CO CSJ O 0.36 0.41 i〇 od CO 卜 00 OD CO 〇〇 &lt;〇 O LO oo od CSJ σ&gt; Ο σ&gt; 〇r&gt; xr CO oo 卜 卜’ 卜 卜· 卜· CO 00 σ&gt; co 00 CO CO 〇&gt;· OO 卜· CO 卜 od CD 〇 卜 OO &lt;0 LO oi 8 殘部 殘部 殘部 殘部 殘部 殘部 殘部: 殘部: 殘部! 殘部丨 j 殘部 殘部 殘部 殘部 殘部 殘部 殘部 丨殘部 殘部 i殘部 殘部 殘部 殘部 殘部 殘部 殘部 殘部 确0 &lt;αζ CvJ to CM CO LO CSJ tn LO CM CO LO CM r- LO CM 00 s σ&gt; uo CM 1 04 CO Csl ro CO C^J to &lt;〇 &lt;N 265A ΙΟ r^. CO CM oo CO CSJ 〇&gt; to CN4 o CM δ CSJ CO CSJ ID CO CM CM 45 593703 【表8】 合金材 No. 合金組成(m a s s %) Cu Zn Si Co Fe Ni Sn P Sb Zn-2. 5Si (Co+Fe+Ni)/Si Si/Sn 施 例 2 278 殘部 7.7 0.26 0.01 0. 04 0.02 1.77 7.050 0.269 0.147 279 殘部 8.3 0. 34 0.09 0. 03 1.73 0.05 0. 03 7.450 0.353 0.197 280 殘部 9.0 0.35 0. 13 2.10 8.125 0.371 0.167 281 殘部 9.0 0.40 0,26 2.00 8.000 0.650 0.200 cn S s oo 3 5 00 s o s 〇 § § s s s &lt;〇 τ- co o s CO o 04 s I OJ a&gt; CM ① Ll. o o o’ o o o o 〇 o o o o o Ο o o o o 〇 o 〇 CO S g &lt;£&gt; CP s CO CN OO CO in s CM ir&gt; 00 CO &lt;J〇 oo &lt;〇 oo 呂 CO &lt;〇 另 oo Ch a CO CQ S 〇 + r5 ιη CO &lt;ό CO CO to CO ui co LO CO CO 00 &lt;x&gt; CO CO c6 oo ui co s ιό CO to CO cS S s ΙΛ CO s P&gt; CO CO 1 S Cf&gt; 8 σ&gt; s 05 o cs s XT 8 00 8 00 o o CO § 另 s CO s CO O to LO s o g o S OQ o s &lt;〇 S CM 〇 〇&gt; 5 g s s o o 8 S CO CO s s s s CP &lt;£&gt; CO LO &lt;£&gt; ΙΛ &lt;·〇 cvj &lt;£&gt; CO co s uS CO to CO S ui CD s to &lt;〇 LO &lt;〇 s s LO &lt;〇 s s LO &lt;〇 Ξ s o Φ CM (Λ o (0 S ε o &lt;α s o s o 呂 o o o o § &lt;N CN o s 若 o o 〇 o c&gt; o o s s CO eg 二 CO s g ra s s o CO o o o o ο 〇 o o o o o o o o o Ίλ CO CO co CO CO uo to oo &lt;£&gt; s CO CO 00 CO CO &lt;a to to uo in co ιο o CM co 5 5; s ΙΛ i〇 一 产 产 产 o’ 严 产 产 r- 产 产 产 一 r- r— r- o' 产 o 严 r— 产 o’ γ5 〇〇 00 ΙΟ o σ&gt; o CO Γ- σ&gt; CO LO LO o CNJ a&gt; 卜 o l〇 卜 CO o 00 κ s K S in cvj 00 CvJ 00 CM C£&gt; CSI ui CVJ , CNJ cvj c\i &lt;〇 c\i ur&gt; c\i uS CNi &lt;d CM id C\i cd CSI to &lt;N cd CM o c\l csi s s 3 — 〇〇 00 r- to &lt;〇 CVI o LO 产 OJ uo CVJ 卜 σ&gt; 〇&gt; xr 严 &lt;〇 CO oo CO CVI CO 对 F: 00 CO 厂 〇 co f: in 04 evi co c^i 00 CD 5 ui csi 00 &lt;〇 啪〇 Au z s CO s o co CO S co L〇 CO P— g CO σ&gt; o CO co CNJ CO CO CO &lt; CO LO &lt;〇 CO 卜 co oo co 〇&gt; co s CO s CN CN CO CO eg co s CO LO cs co 1«;進革co 46 593703 【0 i】Alloy composition (ma ss%) Si / Sn 0.203 0.127 0.200 0.142 0.140 0.100 0.483 0. 205 5 〇0.173 0.229 0.216 0.454 0.129 0.129 0.122 0.135 I 0.202 0.228 0.328 0.215 0. 262 0.236 0.116 J 0.169 0.228 0.180 (Co + Fe + Ni ) / Si 0.563 0.556 0.286 0. 048 0.344 0.333 0. 357 0.219 0.286 0. 261 0.150 0.229 0.108 0.346 0.346 0. 333 0.322 0.500 0.194 0.316 0.250 0.136 0.212 0.364 0.214 0.217 0.244 Zn-2.5Si! 7. 700 7. 125 丨6.525 8.275 7,600 LO CM 10.250 14,300 〇CO 8.625 8,000 4. 025 6. 450 7. 050 7. 050 6. 425 I 7.625 | 5,800 j 7.900 | 8.825 7.000 10. 200: 7.875 10.050 7.000 5. 900 11.475 0.06 &gt;-0.02 0.02 0. 05 Ml 1.58 2.12 in 〇〇CM cvi JZ OJ 0.29 jm oo 00 CO CO ΙΛ SS 2.02 sc \ i CM CSJ csi ^ 00 ″ CO c \ i S 0.58 S 〇S &lt; jD S 2. 28-0.06 0. 08 0.08 so 0. 05 1 0.03 1 0.05 so 0. 03 0. 01 0.05 〇ogo 0.06 〇 0.02 0.03 0.01 0.01 | 0.05 | 0.02 0.06 0.03 0.02 0.05 0.18 0.15 0.10 0.01 0.11 0.09 0.05 j 0.07 0.07 0.06 0.08 I 0 · 21 0.02! 0.04 0.03 0.03 0.05 0.12 CO 0.32 0.27 LO CO o CD 0.32 1 1 eg 〇o CM CO d OO o CO CM o 0.40 LO CO 〇d CO CvJ o &lt; £ &gt; eg 〇ooo 0.36 〇0.32 0.44 CO CO o CM CM 〇CO CSJ O 0.36 0.41 i〇od CO 0000 OD CO 〇〇 &lt; 〇O LO oo od CSJ σ &gt; 〇 σ &gt; 〇r &gt; xr CO oo bu bu bu bu · bu · CO 00 σ &gt; co 00 CO CO 〇 &gt; · OO bu · CO od CD 〇 OO OO &lt; 0 LO oi 8 Remnant Remnant Remnant Remnant Remnant Remnant: Remnant: Remnant! Stub 丨 j stub stub stub stub stub stub stub stub stub i stub stub stub stub stub stub 0 &lt; αζ CvJ to CM CO LO CSJ tn LO CM CO LO CM r- LO CM 00 s σ &gt; uo CM 1 04 CO Csl ro CO C ^ J to &lt; 〇 &lt; N 265A ΙΟ r ^. CO CM oo CO CSJ 〇 &gt; to CN4 o CM δ CSJ CO CSJ ID CO CM CM 45 593703 [Table 8] Alloy No. Alloy composition (mass%) Cu Zn Si Co Fe Ni Sn P Sb Zn-2. 5Si (Co + Fe + Ni) / Si Si / Sn Example 2 278 Residual 7.7 0.26 0.01 0. 04 0.02 1.77 7.050 0.269 0.147 279 Residual 8.3 0. 34 0.09 0. 03 1.73 0.05 0. 03 7.450 0.353 0.197 280 stub 9.0 0.35 0. 13 2.10 8.125 0.371 0.167 281 stub 9.0 0.40 0,26 2.00 8.000 0.650 0.200 cn S s oo 3 5 00 sos 〇 § § ssss &lt; 〇τ- co os CO o 04 s I OJ a &gt; CM ① Ll. oo o 'oooo 〇ooooo 〇 oooo 〇o 〇CO S g &lt; £ &gt; CP s CO CN OO CO in s CM ir &gt; 00 CO &lt; J〇oo &lt; 〇oo 吕 CO &lt; 〇 Another oo Ch a CO C QS 〇 + r5 ιη CO &lt; ό CO CO to CO ui co LO CO CO 00 &lt; x &gt; CO CO c6 oo ui co s ι CO CO to CO cS S s ΙΛ CO s P &gt; CO CO 1 S Cf &gt; 8 σ &gt; s 05 o cs XT 8 00 8 00 oo CO § Another s CO s CO O to LO sogo S OQ os &lt; 〇S CM 〇〇 &gt; 5 gssoo 8 S CO CO ssss CP &lt; £ &gt; CO LO &lt; £ &gt; ΙΛ &lt; · 〇cvj &lt; £ &gt; CO co s uS CO to CO S ui CD s to &lt; 〇LO &lt; 〇ss LO &lt; 〇ss LO &lt; 〇Ξ so Φ CM ( Λ o (0 S ε o &lt; α soso 吕 oooo § &lt; N CN os if oo 〇o c &gt; ooss CO eg two CO sg ra sso CO oooo ο 〇ooooooooo Ίλ CO CO co CO CO uo to oo &lt; £ &gt; s CO CO 00 CO CO &lt; a to to uo in co ιο o CM co 5 5; s ΙΛ i〇 one production o 'strict production r- production Producing r- r— r- o ′ Producing o Strict r— Producing o ′ γ5 〇0000 ΙΟ o σ &gt; o CO Γ- σ &gt; CO LO LO o CNJ a &gt; olol〇 卜 CO o 00 κ s KS in cvj 00 CvJ 00 CM C £ &gt; CSI ui CVJ, CNJ cvj c \ i &lt; 〇c \ i ur &gt; c \ i uS CNi &lt; d CM id C \ i cd CSI to &lt; N cd CM oc \ l csi ss 3 — 〇〇00 r- to &lt; 〇CVI o LO OJ uo CVJ Bu σ &gt; 〇 &gt; xr strict &lt; 〇CO oo CO CVI CO to F: 00 CO factory 〇co f: in 04 evi co c ^ i 00 CD 5 ui csi 00 &lt; 〇〇〇Au zs CO so co CO S co L〇CO P— g CO σ &gt; o CO co CNJ CO CO CO &lt; CO LO &lt; 〇CO co co oo co 〇 &gt; co s CO s CN CN CO CO eg co s CO LO cs co 1 «; Jin co 46 593703 [0 i]

(%s s e οι)迆辟畢α C CO CO oo 卜 Csl g csi oo 卜 in CM Csi CO CM c\i o 8 uo c\4 &lt;〇 〇&gt; CSJ csi CO 5 o in &lt;Ni l〇 〇0 T&quot;· to CO CO 00 s &lt;〇 &lt;·〇 ai s CO 00 § o 00 CSI LO 00 CO CNJ CM CsJ CVJ ζ ΐ&gt; lu b CO o &lt;£&gt; in o o 3 o o c\i 若 o s o LO s o s o o in s o LO g o oo g o oo CO o o S o Csi CO o d o o 〇&gt; s o o CO s o Γ— 〇 l〇 o s o o CO O o s d CM S 〇 S o CO CO 十 r5 g L〇 CO g LO CO s ui oo s LO CO g K § to CO g ub CO 00 m ub CO 另 cd CO &lt;£&gt; CSJ σ&gt; CN CO &lt;N ui CO s s s g CsJ 05 s s s CO CO &lt;〇 CO ΙΛ CO 芬 CO CO CO CO 〇 LO CO CNJ CO id CO o &lt;〇 CO iO &lt;£&gt; OJ ur&gt; CO &lt;〇 CO LO 1 3 to 00 s CO CO s 0¾ CsJ s s s CN CO o s s s’ o CO s S co CO CVJ CD to CD LO CO CN &lt;x&gt; t K ub &lt;JD R; i0 CO s LO 2 CM C7&gt; s &lt;£&gt; CD IX&gt; CO in s' csi &lt;0 &lt;£&gt; in &lt;〇 s s 〇2 s CO CO CO in CD &lt;〇 &lt;〇 s 5 ud &lt;〇 s o’ 仁 艺 o Μ s 〇 o o JO s 〇 &gt;- s o s o Cs4 CSJ o CO d g o CO o oo o o o g o CO o CO CM o g o CO 〇 o LO O’ 8 o r— r— o o &lt;〇 o § o ζ s o o o s o CO o o o s o s o’ o O s O’ s o o s o 呂 o 芒 o s d s o LO o o 〇 O’ g O o' 〇 S O s o g d s o s o s d s d o d 给 o s o g o g o ur&gt; CD o CO o CO CO uo CM 5 ΙΛ 00 uo LO L〇 TO CO CO uo uo 5 CSJ to CD L〇 σ&gt; LO g £ σ&gt; to CsJ 00 s O) r— lO m ιο o; 5 〇&gt; uS CM 00 csi o K CO cb CM &lt;£&gt; LO CD CVi Osi &lt;〇 csi CO s o to s 00 CO cvl CD CM 〇 ub csi o id CM CSi in CM to to C\J CO 16 CM 00 csi csl a&gt; cd eg o &lt;d CM CO CSi CO CD CVI ui 04 S 对 &lt;£&gt; CM 卜 csi &lt;N 5 CO c^i CO o LO f: r- CM Csi 卜 CO o 卜 CVi c〇 CVJ 〇2 o CO 00 csi σ&gt; pi to in 厂 00 卜 〇&gt; 厂 LO eg CvJ 卜 CO 00 厂 to te . &lt;α ζ CO CM CO 卜 CM CO 00 CN CO 0¾ &lt;Ni CO R CO CO CO CVJ CO CO CO CO CO CO LC CO CO CO CO CO ζ〇 CO 00 CO CO s CO CO σ&gt; CO CO o CO CO CO 5 CO ΙΛ CO CD CO CO § oo § CO s ro E CO 47 593703 【L 一術】(% sse οι) 迤 迤 α C CO CO oo Csl g csi oo in CM Csi CO CM c \ io 8 uo c \ 4 &lt; 〇〇 &gt; CSJ csi CO 5 o in &lt; Ni l〇〇 0 T &quot; · to CO CO 00 s &lt; 〇 &lt; · 〇ai s CO 00 § o 00 CSI LO 00 CO CNJ CM CsJ CVJ ζ ΐ &gt; lu b CO o &lt; £ &gt; in oo 3 ooc \ i if oso LO sosoo in so LO go oo go oo CO oo S o Csi CO odoo 〇 &gt; soo CO so Γ— 〇l〇osoo CO O osd CM S 〇S o CO CO rr5 g L〇CO g LO CO s ui oo s LO CO g K § to CO g ub CO 00 m ub CO Another cd CO &lt; £ &gt; CSJ σ &gt; CN CO &lt; Nui CO sssg CsJ 05 sss CO CO &lt; 〇CO ΙΛ CO FIN CO CO CO CO 〇LO CO CNJ CO id CO o &lt; 〇CO iO &lt; £ &gt; OJ ur &gt; CO &lt; 〇CO LO 1 3 to 00 s CO CO s 0¾ CsJ sss CN CO oss s' o CO s S co CO CVJ CD to CD LO CO CN &lt; x &gt; t K ub &lt; JD R; i0 CO s LO 2 CM C7 &gt; s &lt; £ &gt; CD IX &gt; CO in s' csi &lt; 0 &lt; £ &gt; in &lt; 〇ss 〇2 s CO CO CO in CD &lt; 〇 &lt; 〇s 5 ud &lt; 〇s o 'Ren Art o Μ s 〇oo JO s 〇 &gt;-soso Cs4 CSJ o CO dgo CO o oo ooogo CO o CO CM ogo CO 〇 LO O '8 or— r— oo &lt; 〇o § o ζ soooso CO ooosos o 'o O s O' sooso oo 芒 osdso LO oo 〇O 'g O o' 〇SO sogdsososdsdod to osogogo ur &gt; CD o CO o CO CO uo CM 5 ΙΛ 00 uo LO L〇TO CO CO uo uo 5 CSJ to CD L〇σ &gt; LO g £ σ &gt; to CsJ 00 s O) r— lO m ιο o; 5 〇 &gt; uS CM 00 csi o K CO cb CM &lt; £ &gt; LO CD CVi Osi &lt; 〇csi CO so to s 00 CO cvl CD CM 〇ub csi o id CM CSi in CM to to C \ J CO 16 CM 00 csi csl a &gt; cd eg o &lt; d CM CO CSi CO CD CVI ui 04 S pair &lt; £ &gt; CM bu csi &lt; N 5 CO c ^ i CO o LO f: r- CM Csi bu CO o bu CVi c〇CVJ 〇 2 o CO 00 csi σ &gt; pi to in plant 00 bu 〇 &gt; plant LO eg CvJ Bu CO 00 Factory to te. &Lt; α ζ CO CM CO Bu CM CO 00 CN CO 0¾ &lt; Ni CO R CO CO CO CVJ CO CO CO CO CO CO LC CO CO CO CO CO ζ〇CO 00 CO CO s CO CO σ &gt; CO CO o CO CO CO 5 CO ΙΛ CO CD CO CO § oo § CO s ro E CO 47 593703 [L Yishu]

Si/Sn 6.905 11.429 8. 778 13.583 17.889 CO CO 10.286 13. 583 6. 273 8.947 un co ur&gt; 卜 cc&gt; s CO σ&gt; CM 9.333 12. 600 ! (Co+Fe+Ni)/Si | 0.062 0.056 0.063 0.055 0.062 0. 041 0.063 0. 043 0.159 0.053 0.063 0.064 0.160 0.075 0.060 0.286 0.042 0.052 0.047 0.081 0.048 0.074 0.044 0.048 0.054 Zn+6Si 35.30 34. 50 34.78 34.58 34. 76 33.18 34.84 35. 28 35.08 35.40 32.44 34.86 33.10 33.46 34. 98 36.08 34.70 I 35.00 | 35.38 ! 35. 32 35.20 35. 96 34.92 34. 82 35. 08 35.16 34. 78 1 合金組成(ma s s%) Cu_5S ί 64.400 65. 270 64.920 65.170 65.013 66.152 64.930 64.530 64.480 64.320 66.550 | 64.840 I 66.250 65.700 64.740 63.690 65.270 64.860 64.552 64.470 64.680 63.840 64.930 65.030 64.763 64.730 65. 090 0.02 | Λ o o &gt; 0. 03 0.02 &lt;h 0.02 Q- s 〇 0,14 o o 0.12 0.05 | 0二 07 0.08 0.06 | 0.09 | 0.03 1 0.04 〇 〇 oo o CM 〇 g 〇 cn to o 〇 CNJ 〇 OJ CN 〇 &lt;y&gt; o 04 〇&gt; o CN4 〇 CO o CM 00 o 0.18 0.05 - O o 0.04 0.05 s o s o 0.06 0.05 o o 0.02 〇 o o 0.03 5 〇 ιί 005 007 0. 07 0.05 1 0. 06 CO o 0.06 0.03 0.02 0.02 007 0.04 Ί 0.13 0.02 0.05 0 03 s o 0.02 0,03 0.04 0.04 o 0.05 0 02 0.02 CN 〇 § o 0.02 0.12 0.06 0.09 0.07 0.07 0.06 005 GO |Λ S CO LO CO &lt;〇 CO oo CO CO CO o 5 ΙΛ 〇 00 CO &lt;JO o o to &lt;〇 T— CO S r— rj &lt;NI CM s s 2 r5 &lt;〇 CSi 〇&gt; s CO ib CM CO s to CM 〇&gt; CVi CM LO LO CN oo C£&gt; CVI CM uo CM 00 oo C\J 26.4 28.6 s CO CN4 CO 26.3 LO CVi 26.8 25.0 26.2 26.3 «£&gt; CN to 5 25.9 ! 25.2 24.7 3 卜 卜 CO CO 00 og CO CO CO in 04 卜 cvi 寸 CO csi oo CO σ&gt; 70.0 o CO OO cb C£&gt; ro c6 c6 CM 〇&gt; CO 亡 72.4 o CO ID CO ¢. 娟ο 如z CNJ CO CO CO 〇〇 lO CO in LO CO CO LO CO to co CO LO CO cr&gt; uo CO S CO s CO &lt;N CO CO CO CO CO i LO cr&gt; CO CO r^ CO CO oo c〇 Γ0 a&gt; &lt;〇 CO 〇 CO CO CO CO CO L£&gt; CO &lt;£&gt; CO r- K 00 00 M崔莩wSi / Sn 6.905 11.429 8. 778 13.583 17.889 CO CO 10.286 13. 583 6. 273 8.947 un co ur &gt; Bucc &gt; s CO σ &gt; CM 9.333 12. 600! (Co + Fe + Ni) / Si | 0.062 0.056 0.063 0.055 0.062 0. 041 0.063 0. 043 0.159 0.053 0.063 0.064 0.160 0.075 0.060 0.286 0.042 0.052 0.047 0.081 0.048 0.048 0.074 0.044 0.048 0.054 Zn + 6Si 35.30 34. 50 34.78 34.58 34.76 34.76 33.18 34.84 35. 28 35.08 35.40 32.44 34.86 33.10 33.46 34.46 . 98 36.08 34.70 I 35.00 | 35.38! 35. 32 35.20 35. 96 34.92 34. 82 35. 08 35.16 34. 78 1 Alloy composition (ma ss%) Cu_5S ί 64.400 65. 270 64.920 65.170 65.013 66.152 64.930 64.530 64.480 64.320 66.550 | 64.840 I 66.250 65.700 64.740 63.690 65.270 64.860 64.552 64.470 64.680 63.840 64.930 65.030 64.763 64.730 65. 090 0.02 | Λ oo &gt; 0. 03 0.02 &lt; h 0.02 Q- s 〇0,14 oo 0.12 0.05 | 0.27 0.08 0.06 | 0.09 | 0.03 1 0.04 〇 oo o CM 〇g 〇cn to o 〇CNJ 〇OJ CN 〇 &lt; y &gt; o 04 〇 &gt; o CN4 〇CO o CM 00 o 0.18 0.05-O o 0.04 0.05 soso 0.06 0.05 oo 0.02 〇oo 0.03 5 〇ιί 005 007 0. 07 0.05 1 0. 06 CO o 0.06 0.03 0.02 0.02 007 0.04 Ί 0.13 0.02 0.05 0 03 so 0.02 0,03 0.04 0.04 o 0.05 0 02 0.02 CN 〇§ o 0.02 0.12 0.06 0.09 0.07 0.07 0.06 005 GO | Λ S CO LO CO &lt; 〇CO oo CO CO CO o 5 ΙΛ 〇00 CO &lt; JO oo to &lt; 〇T- CO S r- rj &lt; NI CM ss 2 r5 &lt; 〇CSi 〇 &gt; s CO ib CM CO s to CM 〇 &gt; CVi CM LO LO CN oo C £ &gt; CVI CM uo CM 00 oo C \ J 26.4 28.6 s CO CN4 CO 26.3 LO CVi 26.8 25.0 26.2 26.3 «£ &gt; CN to 5 25.9! 25.2 24.7 3 CO CO 00 00 og CO CO CO in 04 Cvi inch CO csi oo CO σ &gt; 70.0 o CO OO cb C £ &gt; ro c6 c6 CM 〇 &gt; CO 72.4 o CO ID CO ¢. Juan Such as z CNJ CO CO CO 〇〇lO CO in LO CO CO LO CO to co CO LO CO cr &gt; uo CO S CO s CO &lt; N CO CO CO CO CO i LO cr &gt; CO CO r ^ CO CO oo c〇 Γ0 a &gt; &lt; 〇 CO 〇 CO CO CO CO CO L £ &gt; CO &lt; £ &gt; CO r- K 00 00 M

48 59370348 593703

【CVJLS 合金組成(ma s s%) Si/Sn 5.536 1.519 10. 67 19,25 CO 7.818 8. 471 [14.36 I 7.684 4.571 1-938 | 3.378 2,125 7.048 (Co+Fe+Ni)/Si 0,057 0. 050 0.032 0.056 0.086 0.047 0.057 0, 088 0.056 0.065 0.045 0.048 0.064 0.052 0.054 Zn+6Si | 35.80 32.78 35.10 35.94 34.50 33.52 33.74 35.08 35.16 35.20 34.80 34. 96 35.18 35.50 | 35.40 34.56 | 33.70 34.28 | 35. 58 Cu-5Si 63. 860 66. 300 64.610 63. 850 65. 270 66. 052 65. 943 64. 660 64.472 64. 750 65.100 64.900 64. 700 64. 350 64 200 64. 700 65.750 64.850 64· 100 0.07 0.03 0.06 T~ o l〇. 02 004 〇 *r— 〇 0.02 s o 0.08 0. 07 s o CL 0. 06 I 0.04 0.06 0.08 006 0.08 0.06 j 0.05 | 0.06 0.05 0.03 0,28 j 0.81 uo Τ Ο 0.08 0.14 0.22 0. 17 Ί—^ o σ&gt; T&quot;·· o ΙΛ CO 〇 LO &lt;£&gt; o 〇 C&gt;4 〇 O - 〇 丨 0.06 ] 0. 03 0.04 0. 05 0.07 Τ Ο I 0.03 〇 o 0.08 0.02 0.07 0,08 0. 02 0.01 0. 06 0.09 g o 0. 11 I 0 07 I 0.06 0.06 s o CO CVI *?— s s g r— CN T·&quot;- 5 S r— un LO r— O CD CVJ CO CO LO in r—- g &lt;〇 CS1 lo CSJ CO in T—· CO 26.5 25.4 25.5 卜 &lt;£5 Csl 24.9 CN CO &lt;N T1&quot;&quot; L〇 CN 25.6 26.4 25.9 24.6 id CM &lt;NJ CSJ | 25.8 27.0 CSJ QD CSi r··* LO CM 26.7 &lt;5 CO jr*^ uo r—^ CO 卜 CO 卜 «3 CN 00 厂 uo &lt;〇 CO CM VW Cvj CM o 72.0 LO Csj in 1?. 〇 &lt;Q Z 0¾ CO § CO T— GO CO Cvf 00 CO CO 00 CO 呀 00 CO uo 00 CO &lt;£) CO CO r^ 00 CO CO 〇〇 CO a&gt; 00 CO 〇 σ&gt; CO T&quot;&gt;* OD CO &lt;N4 0¾ CO CO σ&gt; co CO L〇 〇&gt; CO a&gt; CO r·'» cn CO[CVJLS alloy composition (ma ss%) Si / Sn 5.536 1.519 10. 67 19,25 CO 7.818 8. 471 [14.36 I 7.684 4.571 1-938 | 3.378 2,125 7.048 (Co + Fe + Ni) / Si 0,057 0. 050 0.032 0.056 0.086 0.047 0.057 0, 088 0.056 0.065 0.045 0.048 0.064 0.052 0.054 Zn + 6Si | 35.80 32.78 35.10 35.94 34.50 33.52 33.74 35.08 35.16 35.20 34.80 34. 96 35.18 35.50 | 35.40 34.56 | 33.70 34.28 | 35. 58 Cu-5 860 66. 300 64.610 63. 850 65. 270 66. 052 65. 943 64. 660 64.472 64. 750 65.100 64.900 64. 700 64. 350 64 200 64. 700 65.750 64.850 64 · 100 0.07 0.03 0.06 T ~ ol〇. 02 004 〇 * r— 〇0.02 so 0.08 0. 07 so CL 0. 06 I 0.04 0.06 0.08 006 0.08 0.06 j 0.05 | 0.06 0.05 0.03 0,28 j 0.81 uo Τ Ο 0.08 0.14 0.22 0. 17 Ί— ^ o σ &gt; T &quot; ... o ΙΛ CO 〇LO &lt; £ &gt; o 〇C &gt; 4 〇O-〇 丨 0.06] 0.03 0.04 0. 05 0.07 Τ Ο I 0.03 〇o 0.08 0.02 0.07 0,08 0. 02 0.01 0. 06 0.09 go 0. 11 I 0 07 I 0.06 0.06 so CO CVI *? — Ssgr— CN T · &quot;-5 S r— un LO r— O CD CVJ CO CO LO in r—- g &lt; 〇CS1 lo CSJ CO in T— · CO 26.5 25.4 25.5 &&lt; £ 5 Csl 24.9 CN CO &lt; N T1 &quot; &quot; L〇CN 25.6 26.4 25.9 24.6 id CM &lt; NJ CSJ | 25.8 27.0 CSJ QD CSi r · ** LO CM 26.7 &lt; 5 CO jr * ^ uo r— ^ CO 卜 CO 卜 3 CN 00 Factory uo &lt; 〇CO CM VW Cvj CM o 72.0 LO Csj in 1 ?. 〇 &lt; QZ 0¾ CO § CO T— GO CO Cvf 00 CO CO 00 CO Ye 00 CO uo 00 CO &lt; £) CO CO r ^ 00 CO CO 〇〇CO a &gt; 00 CO 〇σ &gt; CO T &quot; &gt; * OD CO &lt; N4 0¾ CO CO σ &gt; co CO L〇〇 &gt; CO a &gt; CO r · '»Cn CO

49 593703 【CoLs 合金組成(ma s s%) Si/Sn 4.720 6.857 0.297 | ir&gt; a&gt; 0,571 0.189 0. 257 (Co+Fe+Ni)/Si 0.063 0.096 0.063 0.250 0.031 0.522 0.504 I 0.764 I_ 0. 527 0.059 0.106 1.556 Zn-2.5Si to 10.20 14. 90 20. 60 30.10 34. 80 s 〇r&gt; 16-80 -0.85 | ------- i 16.30 16. 60 s s oo 4. 38 00 in S 00 s od CO ΙΛ &lt;0 00 CO cb S 8.15 7.68 O- 0.08 12·10 I 0. 25 丨0.21」 in 00 CM r— 1.33 3. 50 j£&gt; - in to o 0. 26 | 0.28 0.62 | 0.26 &lt;s 0.09 0.05 0. 03 δ o 0.08 0.59 | 0.17 0.09 0,07 0.42 Ίλ 0. 32 00 5 t— CSJ LO 〇 0. 48 0.04 S cvi CO T— CO CVJ r— CN O’ CO in CO o 0.66 ΙΛ 〇 r5 CO iri CM O &lt;J&gt; 00 lO CT&gt; c〇 c\i 〇&gt; CT&gt; &lt;y&gt; oo csi OO CJi o o CQ o oo σ&gt; CM 〇 σί 00 OO 00 &lt;3 94. 70 89.80 | 85.10 i 79.40 69. 90 65.20 88.32 82. 08 96. 47 78.36 79.78 96. 69 LT&gt; CO 5; 86.41 | 87. 88 | 87.05 | 88,43 88.20 I 86.90 88.51 85· 97 88.30 ί?. 铜〇 &lt;πζ o CNJ o CO o I o g o g o 〇 5 5 CN T— CO 5 5 in 5 &lt;〇 5 卜 5 oo 5 σ&gt; 5 § τ— 50 593703 【表1 4】 合金材 No. 合金組成(m a s s %) Cu Zn Si Co Sn Cu-5Si Zn+6Si (Co+Fe+Ni)/Si Si/Sn 比 423 69.80 30.2 69.80 30.20 424 64.90 35.1 64.90 35.10 425 74.97 23.8 1.23 68.82 31.18 426 66.81 31.9 1.25 0.04 60.56 39.40 0.032 較 例 2 427 74.74 23.0 2.21 0. 05 63.69 36.26 0.023 428 65.85 32.8 1,25 0. 10 59,60 40.30 0.080 429 67, 12 32.5 0. 35 0. 03 65.37 34. 60 0.086 430 68.80 29.3 0. 92 0. 05 0.95 64.20 34.82 0. 054 0. 968 431 73.31 23.7 1.80 0. 04 1,15 64.31 34,50 0.022 1.56549 593703 [CoLs alloy composition (ma ss%) Si / Sn 4.720 6.857 0.297 | ir &gt; a &gt; 0,571 0.189 0. 257 (Co + Fe + Ni) / Si 0.063 0.096 0.063 0.250 0.031 0.522 0.504 I 0.764 I_ 0. 527 0.059 0.106 1.556 Zn-2.5Si to 10.20 14. 90 20. 60 30.10 34. 80 s 〇r &gt; 16-80 -0.85 | ------- i 16.30 16. 60 ss oo 4. 38 00 in S 00 s od CO ΙΛ &lt; 0 00 CO cb S 8.15 7.68 O- 0.08 12 · 10 I 0. 25 丨 0.21 ″ in 00 CM r— 1.33 3. 50 j £ &gt;-in to o 0. 26 | 0.28 0.62 | 0.26 &lt; s 0.09 0.05 0. 03 δ o 0.08 0.59 | 0.17 0.09 0,07 0.42 Ίλ 0. 32 00 5 t— CSJ LO 〇0. 48 0.04 S cvi CO T— CO CVJ r— CN O 'CO in CO o 0.66 ΙΛ 〇r5 CO iri CM O &lt; J &gt; 00 lO CT &gt; c〇c \ i 〇 &gt; CT &gt; &lt; y &gt; oo csi OO CJi oo CQ o oo σ &gt; CM 〇σί 00 OO 00 &lt; 3 94 . 70 89.80 | 85.10 i 79.40 69. 90 65.20 88.32 82. 08 96. 47 78.36 79.78 96. 69 LT &gt; CO 5; 86.41 | 87. 88 | 87.05 | 8 8,43 88.20 I 86.90 88.51 85 · 97 88.30 ί ?. Copper 〇 &lt; πζ o CNJ o CO o I ogogo 〇 5 5 CN T— CO 5 5 in 5 &lt; 〇5 5 5 oo 5 σ &gt; 5 § τ — 50 593703 [Table 1 4] Alloy material No. Alloy composition (mass%) Cu Zn Si Co Sn Cu-5Si Zn + 6Si (Co + Fe + Ni) / Si Si / Sn ratio 423 69.80 30.2 69.80 30.20 424 64.90 35.1 64.90 35.10 425 74.97 23.8 1.23 68.82 31.18 426 66.81 31.9 1.25 0.04 60.56 39.40 0.032 Comparative example 2 427 74.74 23.0 2.21 0. 05 63.69 36.26 0.023 428 65.85 32.8 1,25 0. 10 59,60 40.30 0.080 429 67, 12 32.5 0. 35 0. 03 65.37 34. 60 0.086 430 68.80 29.3 0. 92 0. 05 0.95 64.20 34.82 0. 054 0. 968 431 73.31 23.7 1.80 0. 04 1,15 64.31 34,50 0.022 1.565

51 593703 【s Ls 掛 m m CO Ο ί &lt;〇 cvj CSJ Cn4 csi CM C\J o O o &lt;〇 CO cn CO CO 二 o CO 卜 CO CO CO σ&gt; «〇 二 Oi CO m •R m 雜 m 鑑 〇 〇 o o o 〇 〇 @ ◎ ◎ &lt;3 o © ◎ ❾ © ◎ o @ ◎ ◎ &lt; o o o o @ ◎ 〇 (Q 劫 η S 撕 S Η S S @ o O o o ◎ o &lt;1 o &lt; O ◎ © ◎ ◎ &lt; &lt; 〇 〇 Ο o &lt; 〇 o &lt; &lt; &lt;1 &lt;3 o ϊ M- s: M vn 二 CM 二 : CO CM CO OO σν CM CO CO CO CO o o Ο Ok CO 二 二 oo a&gt; 00 OO o s Η 另 Μ m m 滋 錐 \ E ',. 2 m m 盎 Csj tn CO Si &lt;£&gt; CO oo &lt;〇 IA €0 to 〇g Q0 OO oo &lt;〇 卜 m r- ir&gt; cs| r-^ i un c〇 s n S s &lt;〇 1 60 s» CO CO to CM Ο &lt;〇 〇&gt; CO &lt;〇 in oa o CO eh in s 〇 〇&gt; CO to LO &lt;0 \ E ·、 z m m i in r- vn Csi O CO at ur&gt; CSI 〇» m &lt;〇 in ο r- 2 09 Oi WO CO 1Λ CO CVJ U) CO (〇 to CSi &lt;〇 &lt;〇 €\J ① u&gt; iO 卜 U) &lt;〇 CO CO o LO CM CM 09 s ΙΛ CO m o «σ C\J (〇 iO s CO tx&gt; CO OO oo u&gt; ii&gt; iO 鲰 m η 5 I #: in 5 Ln 右 5 5 5 c〇 〇 o o ci 5 &lt;h c〇 〇 o CO CO oo n ?; CO e〇 Οϊ ΓΟ cT ε E 、 z 制 m 最 &lt;〇 cn Ol CO σ&gt; CO 00 CQ 09 CS| ΙΑ OJ 4Λ 00 ir&gt; CM «〇 00 〇&gt; s ΙΛ CM \r&gt; eg s m 〇0 ir&gt; U) o t〇 〇&gt; S CM i〇 2 CO 00 in Oi LO CO 〇&gt; LO CO CD in s 00 m ① in 〇 5 E 、 z 鹏 00 CO C\J n s CO 〇&gt; CO CO GO CM w C3 s CO s ▼ ir&gt; ir&gt; c〇 cr&gt; CO CO u*&gt; CO 5 5 卜 00 CO i cn CO ro CM Ch 〇&gt; CO Oi O u&gt; 呂 s CO o o o CO la 〇&gt; CO σ&gt; C4 吾 卜 ro Ci m m bS 坡 w 5 g CO g CO s 1 § o S CO s S CO g CO S CO S ΓΟ o o CO S L〇 O o o o S cn o o o o s c〇 o 〇 S o s g SJ Η 、一 csi &lt;N| 00 〇 〇 σ&gt; 卜 〇 CvJ 卜 m 1« &lt;〇 «〇 csi 卜 严 CO CO CNJ ir&gt; QO o CNI CM eg u&gt; σ&gt; 钵 4» &lt;α 0 z 〇 s &lt; s s s o g g s o - &lt; CM ro ΙΛ c〇 〇0 Ch %£&gt; 卜 0051 593703 [s Ls hanging mm CO Ο ί &lt; 〇cvj CSJ Cn4 csi CM C \ J o O o &lt; 〇CO cn CO CO 2 o CO CO CO CO σ &gt; «〇 二 Oi CO m • R m Miscellaneous m Jian〇〇〇oooo 〇〇 @ ◎ ◎ &lt; 3 o © ◎ ❾ © ◎ o @ ◎ ◎ &lt; oooo @ ◎ 〇 (Q ηη S SS Η SS @ o O oo ◎ o &lt; 1 o &lt; O ◎ © ◎ ◎ &lt; &lt; 〇〇〇 o &lt; 〇o &lt; &lt; &lt; 1 &lt; 3 o ϊ M- s: M vn two CM two: CO CM CO OO σν CM CO CO CO CO oo Ο Ok CO 二 aoo a &gt; 00 OO os Μ Another MM mm cone \ E ',. 2 mm Csj tn CO Si &lt; £ &gt; CO oo &lt; 〇IA € 0 to 〇g Q0 OO oo &lt; 〇 卜 m r- ir &gt; cs | r- ^ i un c〇sn S s &lt; 〇1 60 s »CO CO to CM 〇 &lt; 〇〇 &gt; CO &lt; 〇in oa o CO eh in s 〇〇 &gt; CO to LO &lt; 0 \ E ·, zmmi in r- vn Csi O CO at ur &gt; CSI 〇 »m &lt; 〇in ο r- 2 09 Oi WO CO 1Λ CO CVJ U) CO (〇to CSi &lt; 〇 &lt; 〇 € \ J ① u &gt; iO UU) &lt; 〇CO CO o LO CM CM 09 s ΙΛ CO mo «σ C \ J (〇iO s CO tx &gt; CO OO oo u &gt; ii &gt; iO 鲰 m η 5 I #: in 5 Ln right 5 5 5 c〇〇oo ci 5 &lt; hc〇〇o CO CO oo n?; CO e〇〇ϊ Γ〇 cT ε E, z m &lt; 〇cn Ol CO σ &gt; CO 00 CQ 09 CS | ΙΑ OJ 4Λ 00 ir &gt; CM «〇00 〇 &gt; s ΙΛ CM \ r &gt; eg sm 〇0 ir &gt; U) ot〇〇 &gt; S CM i〇 2 CO 00 in Oi LO CO 〇 &gt; LO CO CD in s 00 m ① in 〇5 E, z Peng 00 CO C \ J ns CO 〇 &gt; CO CO GO CM w C3 s CO s ▼ ir &gt; ir &gt; c 〇cr &gt; CO CO u * &gt; CO 5 5 0000 CO i cn CO ro CM Ch 〇 &gt; CO Oi O u &gt; ss CO ooo CO la 〇 &gt; CO σ &gt; C4 卜 ro Ci mm bS slope w 5 g CO g CO s 1 § o S CO s S CO g CO S CO S ΓΟ oo CO SL〇O ooo S cn oooosc〇o 〇S osg SJ Η, a csi &lt; N | 00 〇〇σ &gt; Bu 〇 CvJ 卜 m 1 «&lt; 〇« 〇csi BU Yan CO CO CNJ ir &gt; QO o CNI CM eg u &gt; σ &gt; Bowl 4 »&lt; α 0 z 〇s &lt; sssoggso-&lt; CM ro ΙΛ c〇〇0 Ch% £ &gt; Bu 00

52 593703 【9 r撇】 導電率 (%IAGS) 二 CO LO CSJ CNi CSJ CM co CM CO CO csl 二 CO o 二 OO 04 CM CM cvl C\J 二 二 CSi c&gt;4 耐應力腐 蝕破裂性 ◎ ◎ 〇 ◎ ◎ ◎ O o ◎ ◎ ◎ ◎ ◎ ◎ ◎ 〇 ◎ ◎ o ◎ ◎ ◎ ◎ ◎ ύ ◎ ◎ ◎ ◎ o ◎ 鸷曲加工性1 (後加工材) &lt; ◎ ◎ ◎ ◎ &lt; 〇 &lt; o ◎ &lt; ◎ ◎ o &lt;1 ◎ &lt;3 &lt;1 ◎ 〇 ◎ ◎ ◎ ◎ 〇 〇 o 〇 o &lt; ◎ | 機械性質 (後加工材) |延伸率(%) CNJ CS - 〇&gt; 〇&gt; a&gt; 〇&gt; CM r- in CvJ 〇&gt; CO CO o 二 二 CM - CM CSJ 二 o . - |拉伸強度(N/mm2 ) CO CSJ s iO 卜 s S 卜 CO § 〇&gt; 甘 s «〇 〇&gt; 00 &lt;〇 s s CO o oo a CO § m 窆 CO LO Γ- S 卜 o 卜 S CO s 卜 CM &lt;〇 a&gt; &lt;〇 to m 卜 cT ε ε ζ •R Am m CO &lt;a to &lt;£&gt; ci (O a&gt; s g s &lt;〇 00 &lt;〇 i CO 沿 o K CM CNJ to s CO 00 m in S 8 CN Γ*· ¢^4 eg m o &lt;£&gt; LO 沿 s s§ CO § &lt;〇 00 LO ς〇 s u&gt; § s &lt;〇 I mm 1延伸率(%) 00 η o Ο o 筅 o V〇 CO o co o o 00 CO CSj o to 兑 o CO § 1拉伸強度(N/mm2 ) 呀 s CN S CO t— CO s in s m o l〇 s in s σ&gt; ΙΛ LO i£&gt; m 对 〇&gt; α&gt; &lt;N 对 i CO 8 s s u&gt; Ώ s r- s CNi to in s m CO m CO LA § LO Ε Ε 2 m CSI Csl an co LO co CO CO CO co 8 5 对 对 CO Γ^· LO CO σ&gt; 00 CO LO CSI CO m &lt;〇 g CQ CO 5 o l〇 夺 s CTJ 04 ? CO CO &lt;〇 CO 〇&gt; cS I 再結晶溫度 (°C) i 〇 o § i o 穿 i o 1 1 s o 穿 o § s CO S co S CO O 导 i 〇 穿 i Ο 5 o i o 穿 1 i 710(5) | o iO o i s o 穿 平均結晶粒徑 (U m) LO LO 卜 CO CO 04 CO 寸 CO o CO 〇&gt; 卜 CO csi CO 严 CO csi CM CO CO CO OJ cs c^i CO 00 CO 合金材 No. 5 g 5 2 &lt;〇 CO CO &lt;31 CO § 5 CO 5 ΪΛ TO ο s s s s s 154A | g s K s52 593703 [9 r skimming] Electrical conductivity (% IAGS) Two CO LO CSJ CNi CSJ CM co CM CO CO csl Two CO o 200 00 CM CM cvl C \ J Two CSi c &gt; 4 Stress corrosion cracking resistance ◎ ◎ 〇 ◎ ◎ O o ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ o ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ o ◎ Twisting workability 1 (post-processed material) &lt; ◎ ◎ ◎ ◎ o ◎ &lt; ◎ ◎ o &lt; 1 ◎ &lt; 3 &lt; 1 ◎ 〇 ◎ ◎ ◎ ◎ ◎ 〇〇o 〇o &lt; ◎ | Mechanical properties (post-processed material) | Elongation (%) CNJ CS-〇 &gt; 〇 &gt; a &gt; 〇 &gt; CM r- in CvJ 〇 &gt; CO CO o two two CM-CM CSJ two o.-| Tensile strength (N / mm2) CO CSJ s iO BU s S BU CO § 〇 &gt; Gans «〇〇 &gt; 00 &lt; 〇ss CO o oo a CO § m 窆 CO LO Γ- S 卜 o S CO s CM &lt; 〇a &gt; &lt; 〇to m cT ε ε ζ • R Am m CO &lt; a to &lt; £ &gt; ci (O a &gt; sgs &lt; 〇00 &lt; 〇i CO along o K CM CNJ to s CO 00 m in S 8 CN Γ * · ¢ ^ 4 eg mo &lt; £ &gt; LO along ss§ CO § &lt; 〇00 LO ς〇s u &gt; § s &lt; 〇I mm 1 elongation (%) 00 η o Ο o 筅 o V〇CO o co oo 00 CO CSj o to o CO § 1 tensile strength (N / mm2) y CN S CO t— CO s in smol〇s in s σ &gt; ΙΛ LO i £ &gt; m pair 0 &gt; α &gt; &lt; N pair i CO 8 ss u &gt; Ώ s r- s CNi to in sm CO m CO LA § LO Ε Ε 2 m CSI Csl an co LO co CO CO CO co 8 5 Pair CO Γ ^ · LO CO σ &gt; 00 CO LO CSI CO m &lt; 〇g CQ CO 5 ol〇s CTJ 04? CO CO &lt; 〇CO 〇 &gt; cS I recrystallization temperature (° C) i 〇o § io wear io 1 1 so wear o § s CO S co S CO O guide i 〇 wear i 〇 5 oio wear 1 i 710 (5) | o iO oiso Wear average crystal grain size (U m) LO LO Bu CO CO 04 CO Inch CO o CO 〇 &gt; Bu CO csi CO Strict CO csi CM CO CO CO OJ cs c ^ i CO 00 CO Alloy No. 5 g 5 2 &lt; 〇CO CO &lt; 31 CO § 5 CO 5 ΪΛ TO ο ssssss 154A | gs K s

53 593703 u i】 i) 肼&amp;嫌 m ΤΓ53 593703 u i] i) Hydrazine &amp; suspect m ΤΓ

Icol MΤΓ © w H lol lol M lol diw H H H Hw H lol Hw H H N H H H H H H H d— sum o lol 1^. ◎ H H lol lol H H 叫 M d— dl ◎ ◎ H &quot;V lol H N &quot;5&quot; (%)褂#:闻 -1L 1^1 ΊΓ oi M ΤΓIcol MΤΓ © w H lol lol M lol diw HHH Hw H lol Hw HHNHHHHHHHH d— sum o lol 1 ^. ◎ HH lol lol HH is called M d— dl ◎ ◎ H &quot; V lol HN &quot; 5 &quot; (%) #: 闻 -1L 1 ^ 1 ΊΓ oi M ΤΓ

Icol hi &quot;ΤΓ CNIl oi hi ΤΓ zi m^.00 UJUi/z)乸網¾¾ 0089 ss 1/N)14af (%}掛%劁 loou m § 80卜 5 h卜 C5 i § § εεζ. § Icnlu 1S19 s卜 01^1 § Igl os卜 69卜 so卜 i — lol卜 ssl la9 i C9S i s i 5 0 εΐ9 § 9U § § IUP119 § ICOIS9 s i i1§1 s 59 § i 1819 091101 §Icol hi &quot; ΤΓ CNIl oi hi ΤΓ zi m ^ .00 UJUi / z) 乸 网 ¾¾ 0089 ss 1 / N) 14af (%) Hanging% 劁 loou m § 80b 5 hb C5 i § § εεζ. § Icnlu 1S19 s 01 01 1 § Igl os 69 69 so i — lol ssl la9 i C9S isi 5 0 εΐ9 § 9U § § IUP119 § ICOIS9 si i1§1 s 59 § i 1819 091101 §

MIT MM 1^1 MMIT MM 1 ^ 1 M

穿 MM M~^T~5TWear MM M ~ ^ T ~ 5T

-iL H SS H&quot;IF&quot;~TT~ 1^1 &quot;IF M#l讓-iL H SS H &quot; IF &quot; ~ TT ~ 1 ^ 1 &quot; IF M # l 让

tE/z) 0S l£s Is § Isgls s 6 IS i 畜 0¾ § 66S 5 OS 61S s 6s a9 Is slal § 寸5 ms ois 9IS1 § 111 Z151 i l)ul (oo) (E5 gsnls煺STH- 0 2 sl^rl § § 9εε i srl § Islc § 6F1 S9 slcol 8P1 oo寸 0^ § § § arl § § s 暮 ggg ICNll' i osi os寸 I I I 1£ο1)0ε9 i I QS寸 i 馨 馨 馨 馨 i i 00寸 i 00寸 § i I OS寸 111 I I § itE / z) 0S l £ s Is § Isgls s 6 IS i animal 0¾ § 66S 5 OS 61S s 6s a9 Is slal § inch 5 ms ois 9IS1 § 111 Z151 il) ul (oo) (E5 gsnls 煺 STH- 0 2 sl ^ rl § § 9εε i srl § Islc § 6F1 S9 slcol 8P1 oo inch 0 ^ § § § arl § § s ggg ICNll 'i osi os inch III 1 £ ο1) 0ε9 i I QS inchi 00 inch i 00 inch § i I OS inch 111 II § i

on 691 891 卜91 991 ltn9l Isll Isll Islt 191 091 6SI sst m 0 0 ISl 養 § lq&gt;la loola s 汔一 sa ί m 0 W SI- 54 593703on 691 891 bu 91 991 ltn9l Isll Isll Islt 191 091 6SI sst m 0 0 ISl support § lq &gt; la loola s 汔 a sa ί m 0 W SI- 54 593703

【οοί】 導電率 (%!ACS) c5 CT&gt; CN S5 C^J 〇&gt; CM s Si cO CM Si IX) OJ s to C»4 &lt;〇 OJ ?5 耐應力腐 蝕破裂性 0 〇 〇 〇 〇 〇 &lt; 〇 o o 〇 〇 〇 〇 〇 ◎ &lt; o &lt; 〇 〇 〇 0 0 &lt;1 〇 〇 〇 〇 «5 irs ◎ ◎ ◎ ◎ ◎ ◎ 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 〇 o ◎ o ◎ ◎ ◎ &lt;1 ◎ ◎ ◎ ◎ &lt; &lt;1 1 機械性質(後加工材) fe伸率(%) 1 LO 寸 ΙΛ CO - CM o CVJ CO c〇 CO 〇 a&gt; oo &lt;NI eg &lt;Λ Γ0 CM c\i CM 〇&gt; cn 1拉伸強度(N/mm2 ) I S 另 to iO 馨 in XT 笃 CSJ ΙΛ s LO o uo CO L〇 S o m lO CO to s g o m oo s CO s CM in CM s ΙΟ m S 〇 m s Csl Csf s 二 E £ '、、 Z -P Am m s S Γ^- 5 % 对 s ΙΩ 00 寸 8 LO to lO LA S s uo 〇 s 对 寸 s to s oo CQ QD 5 a&gt; co CO LO oo 贫 i ΙΛ to | 機械性質 1延伸率(%) CJ 茺 〇 o ; o i? § VO CO 穿 § CO LO Γ0 1拉伸強度(N/mm2 ) cS CO 器 〇&gt; CO s CO s ro a&gt; g CO $ CO &lt;N CO eg CO C\J 贫 s oo s 对 CO CNJ s 04 J〇 CO ϊ 寸 〇 CO CO LT3 CO a&gt; o &lt;〇 CO OO 〇&gt; CO § s CO 1 Q0 CO Μ Ε ε 、、. ζ -R 4m m δ ίο &lt;N| s C\J J£&gt; CSi s C^J s CM S Csi 〇0 &lt;〇 CM 0^4 CM CO LO s n CM w CSJ 04 CM s CO &lt;〇 CM g CO CVJ 卜 L〇 CVJ in Csj CM CM CO &lt;〇 in CM CO 00 CM s C\J § 1 s CO 再結晶溫度 (°C) s CO s CO 53005) i i s CO s CQ I g s 对 520 0 00) s S o 馨 寒 s s CO i i § i o 穿 i i i 1 o 穿 5 平均結晶粒徑 (/i m) CS&lt; CO CO csj CO csj 00 00 CO co c\i &lt;N eg 00 c\i c\i CSJ V eg in CM* LO c\i &lt;\i CO Csi o c\i O CO GO evi 寸 00 evi &lt;NJ 合金材 No, g s CM 202A s CM I in s 1 § oo s § ca 209A o &lt;νϊ 04 OJ CO 04 u&gt; OJ 04 卜 CN oo CM 〇&gt; OJ s CNJ &amp; csl Csj cv» CM s C\i eg % Csl C\J 55 593703 【6 ί】[Οοί] Conductivity (%! ACS) c5 CT &gt; CN S5 C ^ J 〇 &gt; CM s Si cO CM Si IX) OJ s to C »4 &lt; 〇OJ? 5 Stress corrosion cracking resistance 0 〇〇〇〇 〇〇 &lt; 〇oo 〇〇〇〇〇〇 ◎ &lt; o &lt; 〇〇〇0 0 &lt; 1 〇〇〇〇 5 irs ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ○ o ◎ o ◎ ◎ ◎ &lt; 1 ◎ ◎ ◎ ◎ &lt; &lt; 1 1 mechanical properties (post-processed material) fe elongation (%) 1 LO inch ΙΛ CO-CM o CVJ CO c〇CO 〇a &gt; oo &lt; NI eg &lt; Λ Γ0 CM c \ i CM 〇 &gt; cn 1Tensile strength (N / mm2) IS other to iO 馨 in XT JCSJ ΙΛ s LO o uo CO L〇S om lO CO to sgom oo s CO s CM in CM s ΙΟ m S 〇ms Csl Csf s II E £ ',, Z -P Am ms S Γ ^-5% to s ΙΩ 00 inch 8 LO to 10 LA S s uo 〇s to s to s oo CQ QD 5 a &gt; co CO LO oo lean ΙΛΛ | mechanical properties 1 elongation (%) CJ 茺 〇o; oi? § VO CO wear § CO LO Γ0 1 tensile strength (N / mm2) cS CO device &gt; CO s CO s ro a &gt; g CO $ CO &lt; N CO eg CO C \ J lean s oo s to CO CNJ s 04 J〇CO 寸 inch 〇CO CO LT3 CO a &gt; o &lt; 〇CO OO 〇 &gt; CO § s CO 1 Q0 CO Μ Ε ε 、. ζ -R 4m m δ ο, &lt; N | s C \ JJ £ &gt; CSi s C ^ J s CM S Csi 〇0 &lt; 〇CM 0 ^ 4 CM CO LO sn CM w CSJ 04 CM s CO &lt; 〇CM g CO CVJ Bu LoCVJ in Csj CM CM CO &lt; 〇in CM CO 00 CM s C \ J § 1 s CO recrystallization temperature (° C) s CO s CO 53005) iis CO s CQ I gs to 520 0 00) s S o Xinhan ss CO ii § io wear iii 1 o wear 5 average crystal grain size (/ im) CS &lt; CO CO csj CO csj 00 00 CO co c \ i &lt; N eg 00 c \ ic \ i CSJ V eg in CM * LO c \ i &lt; \ i CO Csi oc \ i O CO GO evi inch 00 evi &lt; NJ alloy No, gs CM 202A s CM I in s 1 § oo s § ca 209A o &lt; νϊ 04 OJ CO 04 u &gt; OJ 04 Bu CN oo CM 〇 &gt; OJ s CNJ &amp; csl Csj cv »CM s C \ i eg% Csl C \ J 55 593703 [6 ί]

1導鼋率ι | (HiACS) 1 CO LO CM 1Λ CM CO CM GO eg CM CSI Cv| Qb CO CM 耐應力腐 1蝕破裂性| ◎ 〇 〇 o O 0 ◎ o c o 0 o o o 0 〇 o 〇 ◎ ◎ ◎ ◎ o o O O ◎ ◎ |彎曲加工性 | (後加工材)| ◎ ◎ ◎ ◎ ◎ 〇 〇 ◎ ◎ @ ◎ o 〇 〇 ◎ ◎ o ◎ ◎ 0 o ◎ ◎ ◎ &lt; ◎ 0 ◎ | 機械性質(後加工材) I 1延伸率(%〉| 二 〇 CO CO = CO CO CO CO CNi - Csi CM 二 二 CO ro n - CM 〇r&gt; = o - E E m m #: CO 吞 a&gt; u〇 ur&gt; 〇&gt; xr oo LO to 00 m 寒 u&gt; CM LO o LO CO U) LO 含 ΙΟ m LO 含 L〇 ο &lt;〇 CVi u&gt; 1 s &lt;x&gt; ΙΛ &lt;〇 穿 co to s s co CO Cp CO K〇 CO CO %〇 &lt;〇 w E ε z •P m to 荽 〇〇 5 eg i u&gt; K p· | 474 I a&gt; σ&gt; co CM uo 另 LO 〇 lS CO LO ί; U-&gt; lO 5 i oo s 1 σ&gt; σ&gt; ir&gt; QO 00 LO i 卜 &lt;〇 s LO Ob un g *〇 I 機械性質 |延伸率(%) o CO 夺 n 〇 Ojl o o ο &lt;n 泛 CO CO 00 n 穿 00 M |拉伸強度(N/mm 2 ) &lt;〇 1 04 V CO σ&gt; s CO eg OJ 兮 CO 男 LO CO CD CO o 兮 CO 8 兮 〇&gt; to co &lt;v&gt; 5 3 GO to cn CO ro 1 co 每 iM E 8 .、、、 z •F m m s 00 σι uo CSi § 8 CM CM s CSJ to CM to CM CO ς〇 (NJ CO CO co CO ro CO ίο Γ〇 co CO in CN s CO CO m co co &lt;〇 CO s CO u&gt; a&gt; co Lf&gt; o CO s CO I再結晶温度 i°C) 8 o 5$ 1 i 1 8 对 s s 8 寸 8 § s CO 8 § 8 s 对 s CO s CO 1 8 i § I 520(20) | I 馨 § 1 圏 i 一 ? E (5 Csl csi cn csi &lt;N 00 CO 对 CO CO CO cn 〇 CO 00 c\i 00 csi 卜 csi CO CO CO 00 00 CO 卜 卜 00 I合金材 0 z ?5 CV4 §3 eg 窝 CNJ cs CO CSJ CM LO Csi ^£&gt; CO CM 卜 ro CM oo η CSI CSI § S CM CVJ co csi 3 to OJ s GO CM Ol CM s CJ 250A | ίο C\J s CSI CO eg 3 CVJ 56 593703 【03術】 m § m i to 04 CNi CO CM CN ?2 g OO s CM 04 m CM ro 04 CS&gt; CM r&gt; cnj ro mm 0 0 〇 〇 &lt;3 〇 O 0 ◎ ◎ 〇 〇 ◎ ο ◎ 〇 〇 〇 〇 o 〇 〇 ◎ 〇 ◎ ◎ ◎ ◎ 1¾ srS ◎ ◎ &lt;1 ◎ &lt;1 〇 ◎ o ◎ &lt; ◎ ◎ 〇 ◎ Ο ◎ ◎ ◎ o ◎ ◎ ◎ ◎ 〇 ◎ O ◎ 〇 i H H m 每 m 1 寸 CM 〇 二 CO C\J CM C\J 〇&gt; CM eg CM CO 二 C»J 对 CO CM CO CM Csi : 〇&gt; ro = &lt;NJ σ&gt; (s〇iUJ/N&gt;萆藤封冴| CM m &lt;J&gt; VO s (O o to 〇D LO CM n &lt;〇 s uo 00 CO CD 2 to s (O s c〇 8 卜 cp in g LO s c〇 % m «〇 兮 00 Ln c〇 00 ΙΛ s s &lt;〇 〇 $ s Γ ε ε ri m 細 异 rr § «〇 &lt;〇 s s to oo tr&gt; R u&gt; to to s 寸 CO tr&gt; to m 铝 to s to OO CO €〇 oo to s CO s CM 75 s to S 茭 UD L〇 CM ϊΰ s un 1 in 茺 CO 鲰 m π I ί u 5- - o fj CV| o o § 穿 Ο o 穿 穿 n LT3 CO cv ε E 、、 z m 親 to CP CO cn Cvj s ξ 5 1 § S I f s 1 a 1 ^r CO i CO l〇 g o 节 LO i 寒 lf&gt; CNrf 〇&gt; N Ε Ε 、、、 ΐ Am m s CO (〇 〇&gt; CO i 3 CSJ i s ers s CO m s CO iO s s CO CO § CO Γ0 s 8 CO S CO s CO o c〇 § CO CO CSI CO CO s § s CO 茬 CO iS P m s CO i i i 1 1 i I s i i s § 寒 o LO i 8 i i 1 I i I § i I i s 寸 (uii〇 s猓習鞞刼壶 ro 卜 oo CSl o CM o iT&gt; OO 卜 卜 卜 00 〇 CO o evi 卜 cr&gt; eg o eg GO to o csi 卜 卜 CO t?. 祛〇 ^α z LO U) CM s CM in eg s CM s CM s CN4 s CNJ s CN cs 茬 CM &lt;〇 CM Ο) &lt;〇 CM s CM s o Csi δ CM CSl CSi in «Ν4 CO OJ 00 CM Λ CM s C\J oo eg 57 5937031 lead ratio ι | (HiACS) 1 CO LO CM 1Λ CM CO CM GO eg CM CSI Cv | Qb CO CM stress corrosion resistance 1 corrosion cracking | ◎ 〇〇o O 0 ◎ oco 0 ooo 0 〇o 〇 ◎ ◎ ◎ ◎ oo OO ◎ ◎ | Bending workability | (Post-processed material) | ◎ ◎ ◎ ◎ ◎ 〇〇 ◎ ◎ @ ◎ o 〇〇 ◎ ◎ o ◎ ◎ 0 o ◎ ◎ ◎ &lt; ◎ 0 ◎ | Mechanical properties ( Post-processed material) I 1 elongation (%〉 | 〇CO CO = CO CO CO CO CNi-Csi CM 二 CO Ro n-CM 〇r &gt; = o-EE mm #: CO swallow a &gt; u〇ur &gt; 〇 &gt; xr oo LO to 00 m uu &gt; CM LO o LO CO U) LO with 10 m LO with L〇ο &lt; 〇CVi u &gt; 1 s &lt; x &gt; ΙΛ &lt; 〇through co to ss co CO Cp CO K〇CO CO% 〇 &lt; 〇w E ε z • P m to 荽 〇〇5 eg i u &gt; K p · | 474 I a &gt; σ &gt; co CM uo Another LO 〇lS CO LO ί; U- &gt; lO 5 i oo s 1 σ &gt; σ &gt; ir &gt; QO 00 LO i & &lt; 〇s LO Ob un g * 〇I Mechanical properties | elongation (%) o CO nn 〇Ojl oo ο &lt; n General CO CO 00 n wear 00 M | tensile strength ( N / mm 2) &lt; 〇1 04 V CO σ &gt; s CO eg OJ Xi CO Male LO CO CD CO o Xi CO 8 Xi &gt; to co &lt; v &gt; 5 3 GO to cn CO ro 1 co per iM E 8. 、, z • F mms 00 σι uo CSi § 8 CM CM s CSJ to CM to CM CO ς〇 (NJ CO CO co CO ro CO ίο Γ〇co CO in CN s CO CO m co co &lt; 〇CO s CO u &gt; a &gt; co Lf &gt; o CO s CO I recrystallization temperature i ° C) 8 o 5 $ 1 i 1 8 to ss 8 inch 8 § s CO 8 § 8 s to s CO s CO 1 8 i § I 520 (20) | I Xin § 1 圏 i a? E (5 Csl csi cn csi &lt; N 00 CO to CO CO CO cn 〇CO 00 c \ i 00 csi bu csi CO CO CO 00 00 CO bu Bu 00 I alloy 0 z? 5 CV4 §3 eg nest CNJ cs CO CSJ CM LO Csi ^ £ &gt; CO CM ro ro CM oo η CSI CSI § S CM CVJ co csi 3 to OJ s GO CM Ol CM s CJ 250A | ίο C \ J s CSI CO eg 3 CVJ 56 593703 【03 术】 m § mi to 04 CNi CO CM CN? 2 g OO s CM 04 m CM ro 04 CS &gt; CM r &gt; cnj ro mm 0 0 〇〇 &lt; 3 〇O 0 ◎ ◎ 〇〇 ◎ ο ◎ 〇〇〇〇〇o 〇〇 ◎ 〇 ◎ ◎ ◎ ◎ 1¾ srS ◎ ◎ &lt; 1 ◎ &lt; 1 〇 ◎ o ◎ &lt; ◎ ◎ 〇 ◎ 〇 ◎ ◎ ◎ o ◎ ◎ ◎ ◎ ◎ ◎ ◎ ○ i HH m 1 inch per m CM 〇2 CO C \ J CM C \ J 〇 &gt; CM eg CM CO two C »J to CO CM CO CM Csi: 〇 &gt; ro = &lt; NJ σ &gt; (s〇iUJ / N &gt; 萆 藤 封 冴 | CM m &lt; J &gt; VO s (O o to 〇D LO CM n &lt; 〇s uo 00 CO CD 2 to s (O sc〇8 Bu cp in g LO sc〇% m «〇〇00 Ln c〇00 ΙΛ ss &lt; 〇〇 $ s Γ ε ε ri m rr § «〇 &lt; 〇ss to oo tr &gt; R u &gt; to to s inch CO tr &gt; to m aluminum to s to OO CO € 〇oo to s CO s CM 75 s to S 茭 UD L〇CM ϊΰ s un 1 in 茺 CO 鲰 m π I ί u 5--o fj CV | oo § Wear 0 o Wear n LT3 CO cv ε E, zm Proto CP CO cn Cvj s ξ 5 1 § SI fs 1 a 1 ^ r CO i CO l〇go section LO i Han lf &gt; CNrf 〇 &gt; N Ε Ε ,,, ΐ Am ms CO (〇〇 &gt; CO i 3 CSJ is ers s CO ms CO iO ss CO CO § CO Γ0 s 8 CO S CO s CO oc〇§ CO CO CSI CO CO s § s CO stub CO iS P ms CO iii 1 1 i I siis § cold LO i 8 ii 1 I i I § i I is inch (uii〇s 猓 习 鞞 刼 鞞 刼 ro oo CSl o CM o iT &gt; OO 卜 卜 00 〇CO o evi cr &gt; eg o eg GO to o csi 卜卜 CO t ?. Remove 〇 ^ α z LO U) CM s CM in eg s CM s CM s CN4 s CNJ s CN cs stub CM &lt; 〇CM 〇) &lt; 〇CM s CM so Csi δ CM CSl CSi in «Ν4 CO OJ 00 CM Λ CM s C \ J oo eg 57 593703

【t 3術】 (SOVI%) CO CO CO CO CO Osi &lt;〇 IX&gt; Γ0 CN4 C\j - CO CNJ CSI csl CM C\| P— eg CO 二 Csl CNJ 00 Csi m iy mm 雇截 &lt; 0 &lt; &lt; 0 〇 &lt;1 &lt; &lt; 〇 〇 〇 0 〇 〇 〇 〇 〇 &lt; 〇 &lt; 〇 &lt; 〇 &lt; 〇 &lt; 〇 Si S H S e 4|W »r S 〇 〇 〇 〇 o 〇 〇 〇 o &lt; 〇 &lt; &lt; 〇 o o o 〇 o O o 〇 0 o o 〇 &lt; o H •S 1¾ m n m 1 t: «Q «〇 to CO CO &lt;〇 in &lt;〇 to in CO CO r- &lt;〇 &lt;〇 卜 &lt;〇 LA &lt;〇 ur&gt; &lt;〇 &lt;0 (zUjuj/N)萆藤靱冴1 Oi CM &lt;a to oo CD IjO p* (O 卜 i 卜 CNi &lt;〇 卜 cS oo z s oo 斉 〇% 04 CM oo &lt;2 &lt;M cn oo CO &lt;〇 to s eg s 委 § i N E ε -P m m u&gt; CO to oo in (O CO s CO in 00 CO m 00 CO 〇&gt; s eg CQ KO &lt;0 CO p: O) OJ CM § &lt;〇 in CNJ 00 CM CO CO o &lt;〇 S a&gt; LO uo U) &lt;〇 1 CO LO CO CO Csl 窆 m co oo 赋 m % m ? U t: 域 CO CO ΙΛ CO CO to ro LO CO CO CO cn CO ΓΟ n to CO LO CO C£&gt; CO &lt;〇 CO to Γ0 l/&gt; CO Cst co 〇&gt; CO &lt;£&gt; CO 茺 LO CO to ΓΟ cS CO in co CM E ,ε 2 m 網 CN in 00 ίο ΙΛ ro s o ir&gt; ID s e&gt; ur&gt; 寸 LO 5 in σ&gt; LO § to s ΙΛ ςρ s ID S «〇 〇&gt; l〇 m CO &lt;〇 in &lt;n to CO to CO 5 15 Ln to m s s 笃 Ln CM E E .、 z -P m m o 奸 csi oo 这 CO in CO C\J LO CO I s &lt;Ni LO 另 ΓΟ S CO CO CO s CO &lt;£J n s CO CM CO |£&gt; co &lt;D CO oo CO CO σ&gt; co co LO C\i σ&gt; co o s CM 〇 CSI s CO CO 〇&gt; CM s m m ^ 〇8 P m 8 〇 i LO 霞 〇 l〇 co s CO 1 〇 g Cl s 0¾ s CO s c^&gt; s n s co s CO s CO 0 1 m S CO s CO s CO 〇 § 1 s CO s CO § s CO s CO s CO s CO (Uirt) CM o 〇&gt; oo O) CO cn r^- CM CO 〇&gt; &lt;〇 co 04 CO csl cn oi csi CO 卜 cv CO c^i oo c\i «〇 csi oo c\i c\i 诨. 铜〇 &lt;n z i 8 s CO s co LO CO o % CO S o o &lt;r&gt; C\J CO 〇5 «! to co ?〇 r- 60 &lt;Λ s co CO CM CO Si c〇 in eg co s CO 58 593703[T 3 operation] (SOVI%) CO CO CO CO CO Osi &lt; 〇IX &gt; Γ0 CN4 C \ j-CO CNJ CSI csl CM C \ | P— eg CO two Csl CNJ 00 Csi m iy mm 0 &lt; &lt; 0 〇 &lt; 1 &lt; &lt; 〇〇〇〇 〇〇〇〇〇〇 &lt; 〇 &lt; 〇 &lt; 〇 &lt; 〇 &lt; 〇Si SHS e 4 | W »r S 〇〇〇 〇o 〇〇〇o &lt; 〇 &lt; &lt; 〇ooo 〇o O o 〇0 oo 〇 &lt; o H • S 1¾ mnm 1 t: «Q« 〇to CO CO &lt; 〇in &lt; 〇to in CO CO r- &lt; 〇 &lt; 〇b &lt; 〇LA &lt; 〇ur &gt; &lt; 〇 &lt; 0 (zUjuj / N) 萆 藤 靱 冴 1 Oi CM &lt; a to oo CD IjO p * (O b i bu CNi &lt; 〇bu cS oo zs oo 斉 〇% 04 CM oo &lt; 2 &lt; M cn oo CO &lt; 〇to s eg s § i NE ε -P mm u &gt; CO to oo in (O CO s CO in 00 CO m 00 CO 〇 &gt; s eg CQ KO &lt; 0 CO p: O) OJ CM § &lt; 〇in CNJ 00 CM CO CO o &lt; 〇S a &gt; LO uo U) &lt; 〇1 CO LO CO CO Csl 窆 m co oo Assign m% m? U t: Domain CO CO ΙΛ CO CO to ro LO CO CO CO cn CO ΓΟ n to CO LO CO C £ &gt; CO &lt; 〇CO to Γ0 l / &gt; CO Cst co 〇 &gt; CO &lt; £ &gt; CO 茺 LO CO to ΓΟ cS CO in co CM E, ε 2 m network CN in 00 ίο ΙΛ ro so ir &gt; ID s e &gt; ur &gt; inch LO 5 in σ &gt; LO § to s ΙΛ ςρ s ID S «〇〇 &gt; l〇m CO &lt; 〇in &lt; n to CO to CO 5 15 Ln to mss LLn CM EE., Z -P mmo ccsi oo This CO in CO C \ J LO CO I s &lt; Ni LO and ΓΟ S CO CO CO s CO &lt; £ J ns CO CM CO | £ &gt; co &lt; D CO oo CO CO σ &gt; co co LO C \ i σ &gt; co os CM 〇CSI s CO CO 〇 &gt; CM smm ^ 〇 〇8 P m 8 〇i LO Xia 〇co s CO 1 〇g Cl s 0¾ s CO sc ^ &gt; sns co s CO s CO 0 1 m S CO s CO s CO 〇§ 1 s CO s CO § s CO s CO s CO s CO (Uirt) CM o 〇 &gt; oo O) CO cn r ^-CM CO 〇 &gt; &lt; 〇co 04 CO csl cn oi csi CO 卜 cv CO c ^ i oo c \ i «〇csi oo c \ ic \ i 诨. Copper 〇 &lt; nzi 8 s CO s co LO CO o% CO S oo &lt; r &gt; C \ J CO 〇5 «! To co? 〇r- 60 &lt; Λ s co CO CM CO Si c〇in eg co s CO 58 593703

【3ZS 導電率 (%{ACS) CO CM CM Cs&lt; Cj CO CM 二 二 OsJ CM CM CM CM - CM co cn OJ CNJ 二 CN 二 CM CM 耐應力腐 蝕破裂性 &lt;3 &lt; 〇 &lt; 〇 0 &lt;3 o o 〇 〇 〇 0 〇 〇 〇 〇 &lt; 〇 &lt; O o 〇 〇 〇 〇 〇 〇 彎曲加工性 (後加工材) 0 o 0 &lt;1 0 o 〇 0 0 o 0 〇 0 〇 o 〇 &lt; o 〇 &lt; 0 〇 〇 o 0 &lt; 〇 0 | 機械性質 (後加工材〉 1 1延伸率(%) | CO CO VO to ir&gt; CO uo LO CO «〇 Γ- «〇 &lt;a 对 CO m to C£3 LO CO ur&gt; I拉伸強度(N./mm2) &lt;〇 in CM &lt;y&gt; s 8 00 s CO s CO CO 〇&gt; oo § 卜 i CD 〇&gt; (〇 s 努 oo Cxi S3 CO CO 00 〇&gt; CM OO LO UP oo r^- s p- s 1 σ&gt; 卜 oo 〇 00 〇 co oo ✓**N CSJ ε ε ζ R m m m to CO σ&gt; TO CO CO 〇&gt; CO &lt;D oo Cf&gt; CO $ C£&gt; o 卜 eo CD CO oo &lt;D a〇 00 &lt;〇 2; eg 卜 CO CVJ OO 卜 s 卜 g s QD LO s s co &lt;〇 O) s ⑦ CQ ς〇 § s § 1 機械性質 1延伸率(%) &lt;〇 ro u&gt; CO WO ro CM ΓΓ) tn CO in CO CO CO LO CO &lt;〇 cn CO ro &lt;x&gt; CO 荛 CM CO cn kO CO co co to CO co co CO 茗 o co 1拉伸強度(N/mm2 ) ιο i£&gt; CO LQ 〇&gt; 穿 to S 泛 U&quot;&gt; ir&gt; c; m un LT5 CD LO ΙΛ &lt;SJ s A u&gt; in LA § eo QD Cb CO in LO s ur&gt; LO &lt;〇 CO ΙΛ ΙΛ s 00 ffi s CO s P^ CSI in 1A O in m CM CO ur&gt; Ε Ε -、、 Ζ p m m cn CM CO 泽 CO 笃 CO s CO % n s CO S CO ς〇 Pi ro CD CO CSJ LO CO L〇 &lt;〇 CO i in CO CO oo o CO &lt;〇 &lt;〇 CO 吞 ert 等 CO s CO s CO co 09 s CO co C9 CO (O O) Ln 07 再結晶溫度 &lt;°〇 〇 m CO s CO s ΓΟ s CO s CO S g CO s CO s CO s ro s CO s CO 640(5) s CO s CO 〇 ur&gt; co o o 〇 in ro s co s CO s CO s CO 〇 in CO s co s CO o s CO s CO 平均結晶粒徑 (/i m) CO cvi CO cvi in 寸 to &lt;Q 00 Csj oo c\i 卜 c\i CO csi CV 〇j CSI cvi CSi CSJ 04 cvi 00 ro csi &lt;£&gt; cvi o co csi tn cvi oo C&gt;4 奸 c\i 卜 csi 〇&gt; in cvi CNi c\i 合金材 No, CO CO CM c〇 σ&gt; CSI ro r〇 co CM CO ro CO CO CO CO CO 浣 CO co CO CO CO ro 茺 ro 338A CO § s C? ro co &lt;y&gt; u&gt; co &lt;〇 OO S 芽 C7 cn c? s CSI LO CO 〇〇 ΙΛ[3ZS conductivity (% (ACS) CO CM CM Cs &lt; Cj CO CM 22 OsJ CM CM CM CM-CM co cn OJ CNJ 2 CN 2 CM CM stress corrosion cracking resistance &lt; 3 &lt; 〇 &lt; 〇0 &lt; 3 oo 〇〇〇〇〇〇〇〇〇〇 &lt; 〇 &lt; O o 〇〇〇〇〇〇〇 bending workability (post-processed material) 0 o 0 &lt; 1 0 o 〇 0 0 o 0 〇0 〇o 〇 &lt; o 〇 &lt; 0 〇〇o 0 &lt; 〇0 | Mechanical properties (post-processed material> 1 1 Elongation (%) | CO CO VO to ir &gt; CO uo LO CO «〇Γ-« 〇 &lt; a CO m to C £ 3 LO CO ur &gt; I tensile strength (N./mm2) &lt; 〇in CM &lt; y &gt; s 8 00 s CO s CO CO 〇 &gt; oo § Bu CD 〇 &gt; (〇s Nuo Cxi S3 CO CO 00 〇 &gt; CM OO LO UP oo r ^-s p- s 1 σ &gt; Bu oo 〇00 〇co oo ✓ ** N CSJ ε ε ζ R mmm to CO σ &gt; TO CO CO 〇 &gt; CO &lt; D oo Cf &gt; CO $ C £ &gt; o eo CD CO oo &lt; D a〇00 &lt;〇2; eg VCO CVJ OO ss ggs QD LO ss co &lt; 〇O) s ⑦ CQ ς 〇 § s § 1 Mechanical properties 1 Elongation (%) &lt; 〇ro u &gt; CO WO ro CM ΓΓ) tn CO in CO CO CO LO CO &lt; 〇cn CO ro &lt; x &gt; CO 荛 CM CO cn kO CO co co to CO co co CO 茗 o co 1Tensile strength (N / mm2) i £ &gt; CO LQ 〇 &gt; Wear to S PAN U &quot; &gt; ir &gt;c; m un LT5 CD LO ΙΛ &lt; SJ s A u &gt; in LA § eo QD Cb CO in LO s ur &gt; LO &lt; 〇CO ΙΛ ΙΛ s 00 ffi s CO s P ^ CSI in 1A O in m CM CO ur &gt; Ε Ε-, 、 z pmm cn CM CO 泽 CO 笃 CO s CO% ns CO S CO ςPi CD CD CS CSJ LO CO L〇 &lt; 〇CO i in CO CO oo o CO &lt; 〇 &lt; 〇CO Tung et al. CO s CO s CO co 09 s CO co C9 CO (OO) Ln 07 Recrystallization temperature &lt; ° 〇〇m CO s CO s ΓΟ s CO s CO S g CO s CO s CO s ro s CO s CO 640 (5) s CO s CO 〇ur &gt; co oo 〇in ro s co s CO s CO s CO 〇in CO s co s CO os CO s CO average crystal Particle size (/ im) CO cvi CO cvi in inch to &lt; Q 00 Csj oo c \ i bu c \ i CO csi CV 〇j CSI cvi CSi CSJ 04 cvi 00 ro csi &lt; £ &gt; cvi o co csi tn cvi oo C &gt; 4 cc \ i bu csi 〇 &gt; in cvi CNi c \ i Alloy No, CO CO CM c〇σ &gt; CSI ro r〇co CM CO ro CO CO C O CO CO CO CO co CO CO CO 茺 ro 338A CO § s C? Ro co &lt; y &gt; u &gt; co &lt; 〇 OO S bud C7 cn c? S CSI LO CO 〇〇 ΙΛ

59 593703 【ε3«】59 593703 [ε3 «]

導電率 (%IACS) CM CVJ CVI 二 CM C\J c\&lt; 二 CNi CO 寸 二 &lt;〇 csj 04 0*4 &lt;M CSJ CM CO CNj csi CM eg Csj C\4 耐應力腐 蝕破裂性 〇 〇 〇 〇 〇 〇 &lt; o o 〇 &lt; &lt; 〇 &lt; o O O 〇 o o o 〇 〇 o O o o o 彎曲加工性 (後加工材) o 〇 o &lt; O 〇 o o &lt; o o &lt; ο &lt; o o o o o o o o o o O 0 &lt; o I 機械性質(後加工材) _率(%) m LO m c〇 (〇 l〇 CO CO LO &lt;〇 CO CO &lt;〇 to &lt;x&gt; LO &lt;〇 CO &lt;〇 &lt;0 CO &lt;〇 m |拉伸強度(N/mm2 ) i〇 CO 00 &lt;〇 CO CO m CO 00 00 1 s 00 § i OO 5 卜 s LO (O 00 CO cn &lt;〇 卜 S3 卜 g CO CO 00 s QD w s o 卜 CO o s CO CSI CO 00 r- CSJ s co 00 Γ E E 、、 -P 細 m LO 04 CM co CO σ&gt; 苕 容 oo 〇&gt; § § in 〇&gt; LO &lt;〇 CO to 07 eg &lt;〇 I 〇 &lt;0 00 &lt;〇 tr&gt; CO 〇&gt; 8 &lt;〇 &lt;〇 窆 s CNJ &lt;〇 &lt;〇 tn o &lt;〇 § | 機械性質 延伸率(%) CO CO 荛 un CO CO n CM ro 荔 00 CO &lt;JD 07 r- CO c〇 co (〇 CO in ro ro CO m to CO to oo LO 00 荛 CO ro CO CO |拉伸強度(N/mm2 ) o to CSi IT) QO in O Q〇 in s ΙΩ s &lt;£&gt; to in 令 s LT3 s 1 Ln CO ΙΛ CO o s s CO CO in lf&gt; to 00 s 卜 ts CO m CO to 0¾ s 00 tn lo in &lt;〇 CO LO CO in m &lt;〇 s CM ε 2 Am m oo J£) CO 卜 S 00 s 00 QO CO 00 to CD 00 CO to CO 5 CO in s 卜 〇&gt; CVi CO σ&gt; co CO ; 00 CO CO LC 00 in CO co CO 窝 CO to 00 co 〇&gt; ro CO CD CO CO 再結晶溫度 (0〇 s o s CO s CO CO s CO s CO s CO o U7 CO s cn o u&gt; C5 s CO s s CO o U3 CO I s CO s CO 〇 to CO s co s CO 〇 CO s CO o m CO o to co s CO s CO S CO s CO 平均結晶粒徑 (μ m) CJ CO xr Γ0 xf 对 CO CD CVI ro CNi CNJ CO σ&gt; csi 卜 csi LO eg CO CXI evi to c^i &lt;Q C^j OO 04 csi 呀 C\J CO c\i 卜 c\i 卜 evi c\j 合金材 No. s o to to LO CO in co 00 s CO s CO &lt;〇 CO CM ro c〇 V c〇 &lt;s ro &lt;〇 &lt;〇 ro 卜 o s CO a&gt; &lt;〇 ro 〇 co ro cr&gt; co 艺 r〇 LO CO &lt;〇 ro 00 c〇 o CO O oo CO W辑医COConductivity (% IACS) CM CVJ CVI Two CM C \ J c \ &lt; Two CNi CO Inch Two &lt; 〇csj 04 0 * 4 &lt; M CSJ CM CO CNj csi CM eg Csj C \ 4 Stress corrosion cracking resistance 〇〇〇〇〇〇〇 &lt; oo 〇 &lt; &lt; 〇 &lt; o OO 〇ooo 〇〇o O ooo Bending workability (post-processed material) o 〇o &lt; O 〇oo &lt; oo &lt; ο &lt; oooooooooo O 0 &lt; o I Mechanical properties (post-processed material) _ rate (%) m LO mc〇 (〇l〇CO CO LO &lt; 〇CO CO &lt; 〇to &lt; x &gt; LO &lt; 〇CO &lt; 〇 &lt; 0 CO &lt; 〇m | Tensile strength (N / mm2) i〇CO 00 &lt; 〇CO CO m CO 00 00 1 s 00 § i OO 5 s LO (O 00 CO cn &lt; 〇 S3 BU CO CO 00 s QD wso BU CO os CO CSI CO 00 r- CSJ s co 00 Γ EE, -P fine m LO 04 CM co CO σ &gt; capacity oo 〇 &gt; § § in 〇 &gt; LO &lt; 〇CO to 07 eg &lt; 〇I 〇 &lt; 0 00 &lt; 〇tr &gt; CO 〇 &gt; 8 &lt; 〇 &lt; 〇 窆 s CNJ &lt; 〇 &lt; 〇tn o &lt; 〇§ | Mechanical properties Elongation (%) CO CO 荛 un CO CO n CM ro Li 00 CO &lt; JD 07 r- CO c〇co (〇CO in ro ro CO m to CO to oo LO 00 荛 CO ro CO CO | Tensile strength (N / mm2) o to CSi IT) QO in OQ〇in s ΙΩ s &lt; £ &gt; to in order LT3 s 1 Ln CO ΙΛ CO oss CO CO in lf &gt; to 00 s ts ts CO m CO to 0¾ s 00 tn lo in &lt; 〇CO LO CO in m &lt; 〇s CM ε 2 Am m oo J £) CO S 00 s 00 QO CO 00 to CD 00 CO to CO 5 CO in s 〇 &gt; CVi CO σ &gt; co CO; 00 CO CO LC 00 in CO co CO nest CO to 00 co 〇 &gt; ro CO CD CO CO recrystallization temperature (0〇sos CO s CO CO s CO s CO s CO o U7 CO s cn o u &gt; C5 s CO ss CO o U3 CO I s CO s CO 〇to CO s co s CO 〇CO s CO om CO o to co s CO s CO S CO s CO Average crystal grain size (μm) CJ CO xr Γ0 xf CO CD CVI ro CNi CNJ CO σ &gt; csi bu csi LO eg CO CXI evi to c ^ i &lt; QC ^ j OO 04 csi ya C \ J CO c \ i bu c \ i bu evi c \ j Alloy No. so to to LO CO in co 00 s CO s CO &lt; 〇CO CM ro c〇V c〇 &lt; s ro &lt; 〇 &lt; 〇ro bu os CO a &gt; &lt; 〇ro 〇co ro cr &gt; co art r〇LO CO &lt; 〇ro 00 c〇 CO O oo CO W Medical CO

60 593703 【寸3撇】60 593703 [inch 3 skimming]

導電率 (%IACS) CNi CM 二 CM CM C\l CM CXJ CO CM CNi csi CO 二 csl 耐應力腐 蝕破裂性 〇 〇 〇 o 〇 〇 o 〇 &lt; 〇 〇 〇 〇 〇 〇 〇 3H »pS 〇 〇 &lt;3 o 〇 〇 0 o 〇 &lt; 〇 o &lt;1 〇 &lt;3 〇 1 機械性質(後加工材) 1 I延伸率(%) CO CO ur&gt; C£&gt; CO (D &lt;〇 &lt;£&gt; &lt;〇 LO LO in to uo |拉伸強度(N/mm2 ) 1 CM OO CD uo GO ΓΟ S s OO σ&gt; CSJ OO o ΙΛ 卜 s 幻 OO OO 〇&gt; w 聲 s OO in OO &quot;ε Ζ •Ρ m m CM a&gt; CD &lt;J〇 r- co GO 〇&gt; CD s CI7 Ln r- 00 CO CO OO g? 宕 LO CS 卜 1/) 00 &lt;£&gt; CO CD CO CD i/d Ui r- S 1 機械性質 1延伸率(%) n CO Pi CO LO CO Pi cn r&gt; CO c? CM CO in co P&gt; CO io CO 1拉伸強度(N/mm2 ) 〇&gt; CO m m 00 l〇 l〇 CO LO LD cs CO LO 异 LO in to in cs in CO CO LO CM tr&gt; ΙΛ m to o m i 这 in cT E z -P Am m g in σ&gt; 茺 to CO σϊ L〇 CO OO (O CO OO CO ΓΟ Csl 努 CO Csl g s CO CO lO CO CSJ LO CO CO 导 S CO 再結晶温度 (°C) s CO s CO s CO s co s CO g CO i 1 s CO s CO s Γ0 s CO s ro s OO s CO s ro 平均結晶粒徑 (pm) in CN m cvi CVJ CO cvi 对 C'J CVJ o CO σ&gt; c\i 卜 CO csi cvi CO cvi CO c\i c\j a&gt; LO csi 合金材 No. CO co OO CO 兮 CO CO UP&gt; 00 CO 00 CO OO CO CO OO ro σ&gt; CO CO § cn 5&gt; CO CVJ 〇&gt; OO CO 〇&gt; CO 兮 σ&gt; ro 〇&gt; CO s CO s&gt; CO 61 593703 【93»】 m £ CM CO s CO 04 L〇 CNJ CM ς〇 GO CO &lt;a m CM I mm 雇趄 ◎ 〇 &lt; X X X &lt; X © X X ◎ 〇 〇 〇 〇 o o 〇 〇 1 〇 hr Ig irS ◎ ◎ ◎ o o &lt; &lt; 〇 ◎ X X ◎ ◎ X X X X X X X 1 X H 赋 a n 鷀 S i 最 u CO nt CSJ o 00 卜 CSI LO in to &lt;〇 CO LO CO m LO oo 1 L〇 cT E E 、、 z 龈 00 茺 LO CM 对 s 卜 s LA CO m in oo in § 对 GO a&gt; f: &lt;〇 CO 兮 to ? s 00 CM 卜 o CO CM to 卜 oo 〇&gt; 卜 CO s 1 00 N E E 2 m m m Ά 00 CO u&gt; 令 co 5; § to to CSJ LD ^sr 3 OO GO &lt;〇 CM CO cn O CO a&gt; CO 卜 CNJ s &lt;2 &lt;〇 CO CO (Ο i in CO to 1 s ς〇 舾 m m m I if t: 截 5 in o 穿 CO CO CO CO m CO «Ο CSJ CO ?; 00 CO 1 CM CO C4 E 5 m m &lt;〇 CS| CM cs n CO m CD CQ 〇&gt; &lt;〇 1 00 OO CO s CO 00 〇&gt; IX&gt; &lt;M CM u&gt; 00 CNj CO CO CM «£&gt; o in § OO CO to to CM IX) 1 o i? CVJ ε 、E z 細 m oo CJ&gt; s CM o og CSI s CM TO CM i: CO CO o cn CO 1 &lt;£&gt; «〇 CO LO (P CO 对 r^· k〇 CQ I LO 〇&gt; CO m Rl ^ 罐p m w w S CO S co s CO s CO 1 § s CO s cr&gt; S o § o 导 o 导 s ro o s s o s 对 o 穿 s CO 1 s &lt; E m 5i 迎w in &lt;d O 一 in tn LO LA o 〇 ¥ in Cvi CO in tn m 二 CO CO &lt;〇 CM CSI o c\j 1 &lt;£&gt; 芘. 销Ο &lt;α ζ i s | s 1 i i o CM CO L〇 &lt;〇 r- CO a&gt; 寸 s 62 593703 【9 3麻】 導電率 (%IACS) oo cvj 1 ro I CO CM 1 耐應力腐 蝕破裂性 X X 1 X I X X &lt;J 1 彎曲加工性 (後加工材) 〇 o 1 X 1 X o X 1 | 機械性質(後加工材) 1 1延伸率(%) ί 1 cs 1 csi 卜 csi 1 1拉伸強度(N/mm2 ) 1 σ&gt; s 1 CO l£&gt; 1 CO m &lt;£&gt; &lt;〇 卜 1 cT ε 、弓 ζ -Ρ m m CO C9 ID ΙΛ 1 LO s 1 SB c〇 C\4 LC 1A CO c〇 1 | 機械性質 1延伸率(%)J OO CO 1 oo c\i 1 〇&gt; eg 1 ㈧ Ε ε ζ m m 闼 〇&gt; 1 in 1 s I 1 Ε 、Ε 5 Am 鹏 CO CO CSJ CO Csj 1 CO CO CO 1 CO C7 oo &lt;Q CO CO 1 再結晶温度 (°〇 1 § 1 s CO 1 s CO s CO s CO 1 平均結晶粒徑 (i/ m) in to 1 oo csi 1 卜 o 〇&gt; csi 1 合金材 No. CO CM 5 § CD CM s OO CSI 〇&gt; CM i 5 沒擗Sex 63Electrical conductivity (% IACS) CNi CM two CM CM C \ l CM CXJ CO CM CNi csi CO two csl Stress corrosion cracking resistance 〇〇〇〇〇〇o 〇 &lt; 〇〇〇〇〇〇〇〇3H »pS 〇〇 &lt; 3 o 〇〇0 o 〇 &lt; 〇o &lt; 1 〇 &lt; 3 〇1 mechanical properties (post-processed material) 1 I elongation (%) CO CO ur &gt; C £ &gt; CO (D &lt; 〇 &lt; £ &gt; &lt; 〇LO LO in to uo | Tensile strength (N / mm2) 1 CM OO CD uo GO ΓΟ S s OO σ &gt; CSJ OO o ΙΛ bu s OO OO OO 〇 &gt; w sound s OO in OO &quot; ε ž • mm mm CM a &gt; CD &lt; J〇r- co GO 〇 &gt; CD s CI7 Ln r- 00 CO CO OO g? LO LO CS BU 1) 00 &lt; £ &gt; CO CD CO CD i / d Ui r- S 1 Mechanical properties 1 Elongation (%) n CO Pi CO LO CO Pi cn r &gt; CO c? CM CO in co P &gt; CO io CO 1 tensile strength (N / mm2) 〇 &gt; CO mm 00 l〇l〇CO LO LD cs CO LO isoLO in to in cs in CO CO LO CM tr &gt; ΙΛ m to omi this in cT E z -P Am mg in σ &gt; 茺 to CO σϊ L 〇CO OO (O CO OO CO ΓΟ Csl Nu CO Csl gs CO CO lO CO CSJ LO CO CO S CO Recrystallization temperature (° C) s CO s CO s CO s co s CO g CO i 1 s CO s CO s Γ0 s CO s ro s OO s CO s ro average crystal particle size (pm) in CN m cvi CVJ CO cvi vs. C'J CVJ o CO σ &gt; c \ i CO CO csi cvi CO cvi CO c \ ic \ j a &gt; LO csi Alloy No. CO co OO CO Xi CO CO UP &gt; 00 CO 00 CO OO CO CO OO ro σ &gt; CO CO § cn 5 &gt; CO CVJ 〇 &gt; OO CO 〇 &gt; CO σσ &gt; ro 〇 &gt; CO s CO s &gt; CO 61 593703 [93 »] m £ CM CO s CO 04 L〇CNJ CM ς〇GO CO &lt; am CM I mm 趄 ◎ 〇 &lt; XXX &lt; X © XX ◎ 〇〇〇〇oooo 〇〇1 〇hr Ig irS ◎ ◎ ◎ oo &lt; &lt; 〇 ◎ XX ◎ ◎ XXXXXXX 1 XH Fu an 鹚 S i i CO nt CSJ o 00 CSI LO in to &lt; 〇CO LO CO m LO oo 1 L〇cT EE, z00 茺 LO CM to s LA CO m in oo in § to GO a &gt; f: & lt 〇CO toto s 00 CM oo CM CM to oo oo &gt; COCO s 1 00 NEE 2 mmm Ά 00 CO u &gt; Order co 5; § to to CSJ LD ^ sr 3 OO GO &lt; 〇CM CO cn O CO a &gt; CO 卜 CNJ s &lt; 2 &lt; 〇CO CO (Ο i in CO to 1 s 〇〇mmm I if t: cut 5 in o through CO CO CO CO m CO «Ο CSJ CO?; 00 CO 1 CM CO C4 E 5 mm &lt; 〇CS | CM cs n CO m CD CQ 〇 &gt; &lt; 〇1 00 OO CO s CO 00 〇 &gt; IX &gt; &lt; M CM u &gt; 00 CNj CO CO CM «£ &gt; o in § OO CO to to CM IX) 1 oi? CVJ ε, E z Fine m oo CJ &gt; s CM o og CSI s CM TO CM i: CO CO o cn CO 1 &lt; £ &gt; «〇CO LO (P CO vs r ^ · k〇CQ I LO 〇 &gt; CO m Rl ^ Tank pmww S CO S co s CO s CO 1 § s CO s cr &gt; S o § o guide o guide s ro ossos pair o wear s CO 1 s &lt; E m 5i welcome w in &lt; d O one in tn LO LA o 〇 ¥ in Cvi CO in tn m CO CO &lt; 〇CM CSI oc \ j 1 &lt; £ &gt; 芘. Pin 0 &lt; α ζ is | s 1 iio CM CO L〇 &lt; 〇r- CO a &gt; inch 62 593703 [9 3 hemp] Electrical conductivity (% IACS) oo cvj 1 ro I CO CM 1 Stress corrosion cracking resistance XX 1 XIXX &lt; J 1 Bending workability (post-processed material) 〇o 1 X 1 X o X 1 | Mechanical properties (post-processed material) 1 1 Elongation (%) ί 1 cs 1 csi Bu csi 1 1 Tensile strength (N / mm2) 1 σ &gt; s 1 CO l £ &gt; 1 CO m &lt; £ &gt; &lt; 〇b 1 cT ε, bow ζ-ρ mm CO C9 ID ΙΛ 1 LO s 1 SB c〇C \ 4 LC 1A CO c〇1 | Mechanical properties 1 Elongation (%) J OO CO 1 oo c \ i 1 〇 &gt; eg 1 ㈧ Ε ε ζ mm 闼 〇 &gt; 1 in 1 s I 1 Ε, Ε 5 Am Peng CO CO CSJ CO Csj 1 CO CO CO 1 CO C7 oo &lt; Q CO CO 1 recrystallization temperature (° 〇1 § 1 s CO 1 s CO s CO s CO 1 average crystal grain size (i / m) in to 1 oo csi 1 b o 〇 &gt; csi 1 Alloy No. CO CM 5 § CD CM s OO CSI 〇 &gt; CM i 5 擗 Sex 63

Claims (1)

593703 拾、申請專利範圍: 1. 一種高強度銅合金’其特徵在於:合金組成係含有 4〜19mass%之Zn與0.5〜2.5mass%之Si(該等含有量之門具 有Zn-2.5 · Si=〇〜15maSS%之關係),且殘部為銅;呈現平 均結晶粒徑D為〇· 3//mg D ^3.5//m之結晶組織,在再結 曰日狀怨之0 · 2%安全限應力為2 5 0 N/mm2以上。593703 Patent application scope: 1. A high-strength copper alloy 'characterized in that the alloy composition contains 4 to 19 mass% of Zn and 0.5 to 2.5 mass% of Si (the gates of these contents have Zn-2.5 · Si = 〇 ~ 15maSS%), and the remainder is copper; it has a crystalline structure with an average crystal grain size D of 0.3 // mg D ^ 3.5 // m, and it is safe at the end of the resentment. The limiting stress is above 250 N / mm2. 2.如申請專利範圍第1項之高強度銅合金,其中,爷 合金組成係進一步含有0.005~〇 5mass%之c〇,使c〇含= 量除以Si含有量之值Co/Si成為〇 〇〇5〜〇.5。 3·如申請專利範圍第丨項之高強度銅合金,其中,該 合金組成係進一步含有0.03〜1.5mass%之Sn,使Si含有量 除以Sn含有量之值si/Sn成為15以上。 4·如申請專利範圍帛2項之高強度銅合金,其中,該 =金組成係進一步含有0,03〜l 5mass%2 Sn,使&amp;含^ 量除以Sn含有量之值Si/Sn成為ι 5以上。 5·如中請專利範圍帛1項之高強度銅合金,其中,該2. The high-strength copper alloy according to item 1 of the scope of patent application, wherein the composition of the master alloy further contains 0.005 to 0.005 mass% of c0, so that the value of c0 content divided by Si content Co / Si becomes 0. 〇〇5〜〇.5. 3. The high-strength copper alloy according to item 1 of the patent application range, wherein the alloy composition further contains 0.03 to 1.5 mass% of Sn, so that the value of the Si content divided by the Sn content becomes si / Sn of 15 or more. 4. If the high-strength copper alloy according to item 2 of the patent application scope, wherein the gold composition system further contains 0,03 ~ l 5mass% 2 Sn, the value of &amp; content divided by the content of Sn Si / Sn Become ι 5 or more. 5. High-strength copper alloys, such as in the scope of patent, item 1, where: σ至組成係進—步含有005~0. 3mass%Fe以及/或 U05〜0.3隱叙Nl,使該等合計含有量除以以含有量 之值(Fe + Ni)/Si 成為 〇· 005〜〇 6·如申明專利乾圍第3項之高強度銅合金,其中,該 合金組成係進—步含有〇. 005〜0. 3maSS%Fe以及/或 0.005〜〇.3議叙Nl,使該等合計含有量除以si含有量 之值(Fe + Ni)/Si 成為 〇〇〇5〜〇5。 7·如申明專利乾圍帛2工員之高強度銅合金,其中,該 64 593703 合金組成係進一步含有〇· 005〜〇· 3mass%Fe以Ώ 、 及/或 0.005〜0.3mass%之Ni,使該等與c〇之合計含有量除以s· 含有量之值(Fe + Ni+Co)/Si成為0005〜0.5。 8·如申請專利範圍第4項之高強度銅合金,意 涔中,該 合金組成係進一步含有〇· 0〇5〜〇· 3mass%Fe以Ώ 及/或 0. 00 5〜0· 3mass%之Ni,使該等與c〇之合計含有| ^ |除以S i 含有量之值(Fe + Ni+Co)/Si成為〇·〇〇5〜〇·5。 9. 一種高強度銅合金,其特徵在於:合金組成係含有 4〜17mass%之Zri與0· 1〜0· 8maSS%之Si(該等含有量之間具 _ 有Ζη-2.5 · Si=0〜15mass%之關係),且殘部為銅,呈現平 均結晶粒徑D為0.33.5//m之結晶組織,在再結 晶狀態之0· 2%安全限應力為250N/mm2以上。 10·如申請專利範圍第9項之高強度銅合金,其中,合 金組成係進一步含有〇〇〇5〜〇.5mass%i c〇,使c〇含有量 除以Si含有量之值c〇/Si成為〇· 〇2〜1· 5。 11.如申請專利範圍第9項之高強度銅合金,其中,合 金組成係進一步含有〇· 2〜3mass%之Sn,使Si含有量除以鲁 Sn含有量之值Si/Sn成為〇 5以下。 12_如申請專利範圍第1〇項之高強度銅合金,其中, 合金組成係進一步含有〇·2〜3mass%之Sn,使Si含有量除 以Sn含有量之值Si/Sn成為〇·5以下。 ” 1 3·如申請專利範圍第9項之高強度銅合金,其中,合 金組成係進一步含有〇· 〇〇5〜〇· 3mass%Fe以及/或 〇·〇〇5〜0.3mass%之Ni,使該等合計含有量除以Si含有量 65 之值(Fe + Ni)/Si 成為 〇_〇2〜i 5 14 ·如申請專利範圍第】 巳W弟11項之高強度銅合金,其中, 合金組成係進一步令右 a ^ 0·005〜〇·3mass%Fe 以及 / 或 〇· 005〜0. 3mass%之Ni,传兮每入 4合計含有量除以Si含有量 之值(Fe + Ni)/Si成為0.02〜1已 1 5 ·如申請專利蔚圊篦Ί n 视国弟1〇項之高強度銅合金,其中, 合金組成係進一步含右 η 3 ^ 0· 005〜0. 3massG/〇Fe 以及 / 或 0· 005〜0· 3mass%之 Ni,佶兮# pσ to the composition system-further containing 005 ~ 0.3mass% Fe and / or U05 ~ 0.3 hidden Nl, so that the total content divided by the value of the content (Fe + Ni) / Si becomes 0.005 ~ 〇6. As stated in the patent claim 3, a high-strength copper alloy, wherein the alloy composition is further-further containing 0.005 ~ 0.3maSS% Fe and / or 0.005 ~ 0.3 to discuss Nl, so that The value obtained by dividing the total content by the content of si (Fe + Ni) / Si is set to 0.005 to 0.05. 7. As stated in the patented high-strength copper alloy for workers, the 64 593703 alloy composition further contains 0.005 to 0.003 mass% Fe with Ώ, and / or 0.005 to 0.3 mass% Ni, so that A value obtained by dividing the total content of these with c0 by the content of s · (Fe + Ni + Co) / Si becomes 0005 to 0.5. 8. If the high-strength copper alloy according to item 4 of the scope of the patent application, in the meaning, the alloy composition further contains 0.005 ~ 0 · 3mass% Fe and 或 and / or 0.005 ~ 0 · 3mass% Ni is such that the total of these and c0 contains | ^ | divided by the Si content (Fe + Ni + Co) / Si is set to 0.005 ~ 0.5. 9. A high-strength copper alloy, characterized in that the alloy composition contains 4 ~ 17mass% of Zri and 0 · 1 ~ 0 · 8maSS% of Si (there is _ηZη-2.5 · Si = 0 between these contents) (Relationship of ~ 15mass%), and the remainder is copper, exhibiting a crystalline structure with an average crystal grain size D of 0.33.5 // m, and the 0.2% safety limit stress in the recrystallized state is 250N / mm2 or more. 10. The high-strength copper alloy according to item 9 in the scope of the patent application, wherein the alloy composition further contains 0.005 to 0.5 mass% ic0, and the value of the content of c0 divided by the content of Sic0 / Si It becomes 〇 · 〇2 ~ 1.5. 11. The high-strength copper alloy according to item 9 of the scope of the patent application, wherein the alloy composition further contains Sn of 2 to 3 mass%, so that the value of Si content divided by the Sn content Si / Sn becomes 0 or less. . 12_ The high-strength copper alloy according to item 10 of the scope of the patent application, wherein the alloy composition further contains Sn of 0.2 to 3 mass%, and the value of Si content divided by Sn content is Si / Sn to be 0.5 the following. "1 3. The high-strength copper alloy according to item 9 of the scope of the patent application, wherein the alloy composition further contains 0.005 to 0.3 mass% Fe and / or 0.005 to 0.3 mass% Ni, A value obtained by dividing the total content by the Si content 65 (Fe + Ni) / Si is 〇_〇2 ~ i 5 14 · As in the scope of the patent application] 弟 W 11 high-strength copper alloy, where: The alloy composition is further to the right a ^ 0 · 005 ~ 〇3mass% Fe and / or 0.005 ~ 0.3mass% Ni, and the value of the total content divided by the Si content (Fe + Ni) ) / Si becomes 0.02 ~ 1 already 1 5 · As applied for a patent Wei Wei n high-strength copper alloy according to item 10, where the alloy composition further contains right η 3 ^ 0 · 005 ~ 0. 3massG / 〇Fe and / or 0 · 005 ~ 0.3mass% of Ni , 佶 兮 # p 使邊寺與Co之合計含有量除以Si 含有量之值(Fe + Ni+Co)/Si成為〇〇2〜15。 16 ·如申請專利範圍第]9 。4丄 祀图乐12項之鬲強度銅合金,其中, 合金組成係進一步含有〇. 005〜0. 3mass%Fe以及/或 0.005〜0.3maSS%i N!,使該等與c〇之合計含有量除以以 含有量之值(Fe + Ni+Co)/Si成為〇 〇2〜15。 17·如申請專利範圍第!工員、第2項、第3項、第4項 、第5項、第6項、第7項、第8項、第9項、第i 〇項、 第11項、第12項、第13項、第丨4項、第丨5項或第i 6The value of the total content of the side temple and Co divided by the content of Si (Fe + Ni + Co) / Si is set to 0.02 to 15. 16 · As for the scope of patent application] [9]. 4 丄 Tule 12 copper alloy of high strength, wherein the alloy composition further contains 0.005 ~ 0.3mass% Fe and / or 0.005 ~ 0.3maSS% i N !, so that the total of these and c0 contains The value divided by the content (Fe + Ni + Co) / Si becomes 0.02 to 15. 17 · If the scope of patent application is the first! Workers, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, i0, 11th, 12th, 13th , Item 丨 4, item 丨 5, or i 6 項之局強度銅合金’其中,合金組成係進一步含有各 0· 003〜0· 3mass %之擇自 P、Sb、As、Sr、Mg、Y、Cr、La 、Ti、Mn、Zr、In以及Hf中至少一種之元素。 18· —種高強度銅合金,其特徵在於:合金組成係含有 66〜76mass%之 Cu 與 21 〜33mass%之 Ζη 與 0.5〜2mass%之 Si( 該等含有量之間具有Cu—5.Si = 62〜67mass%以及Ζη + 6· Si二32〜38mass%之關係),呈現平均結晶粒徑d為0· 3 // D $ 3· 5 // m之結晶組織,在再結晶狀態之〇. 2%安全限應力 66 593703 為 250N/mm2 以上。 · 19.如申請專利範圍第18項之高強度銅合金,其中, 合金組成係進一步含有〇·〇〇5〜〇 3mass%2 C〇,使c〇含有 量除以si含有量之值C0/Si成為〇 〇〇5〜〇·4。 2〇·如申請專利範圍第18項之高強度銅合金,其中, 合金組成係進一步含有〇. 〇3〜lmass%之%,使Si含有量除 以Sn含有量之值Si/Sn成為1以上。 21·如申請專利範圍第19項之高強度銅合金,其中, 合金組成係進一步含有〇· 03〜lmass%2 Sn,使si含有量除擊 以Sn含有量之值Si/Sn成為1以上。 22.如申請專利範圍第18項之高強度銅合金,其中, 合金組成係進一步含有〇· 005〜0. 3mass%Fe以及/或 0.005〜0.3mass%之Ni,使該等之合計含有量除以Si含有 量之值(Fe + Ni)/Si成為〇0〇5〜〇4。 23·如申請專利範圍第2〇項之高強度銅合金,其中, 合金組成係進一步含有〇· 005〜0· 3mass%Fe以及/或 0.005〜0.3mass%之Ni,使該等合計含有量除以Si含有量籲 之值(Fe + Ni)/Si 成為 0〇〇5〜〇4。 24·如申請專利範圍第19項之高強度銅合金,其中, 合金組成係進一步含有〇. 〇〇5 〇· 3mass%Fe以及/或 0.005〜0.3maSS%之Ni ’使該等與c〇之合計含有量除以Si 含有ϊ之值(Fe + Ni+C〇)/Si成為〇〇〇5〜〇4。 25·如申請專利範圍第21項之高強度銅合金,其中, 合金組成係進一步含有〇· 〇〇5 〇· 3mass%Fe以及/或 67 593703 〇· 〇〇5〜〇· 3mass0/〇之Ni,使該等歲 &gt;、C〇之合計含有量除以si 有量之值(Fe + Ni+Co)/Si成為〇 含有量之值(Fe + Ni+Co)/Si成為〇〇〇5〜〇4。 丨.如申請專利範圍第18項 ' s、第19項、第20項、第 篦谓、镇頂、结。 26. 、 乐iy項、弟項、第 91讀、弟22項、弟23項、第〜 21貝 昂24項或第25項之高強度銅 1 &amp;,其中,該合全細成仫&amp; 1 ▲貝驭第zt)項怎尚強度銅 &gt;金,其中,該合金組成係進〜&gt; 口、 步含有擇自含量分別為 〇 〇〇5~0.2maSS % 之 P、Sb 與 As 以及 ^ 〇 〇03〜〇·3mass%之 Sr 、 Mg 、 γ 、 Γ υ· w χ La 、 Τι 、 Μη 與以中至少一種之元素,在含有P、sb、As中至少一種之 情況下,該等之含有量成為〇.0〇5〜〇.25刪3%。 27·如申請專利範圍第1項、替 弟2項、第3項、第4項 、第5項、第6項、第7項、第8 ^ &amp; δ項、第9項、第1 〇項、 頊、第12項、第13項、箓π Η 弟14項、第15項、第16 、第18項、第19項、第2〇項 斤0 貝、弟21項、第22項、第 谓、弟24項或第25項之高強声如人人 / , Α &amp;銅合金,其係對藉由塑 工〔包含加工率在30%以上之;人1 、 令加工)所得到之塑性加 素材進仃再結晶化處理而成之再处曰 J 、、、〇日日布才 〇 汰如申請專利範圍第27項之高強度銅合金,立係將 =力::素材以彻,。。、1〜1_秒之條件做熱處理來 冉、、、口日日化而形成之再結晶材。 2 9 ·如申請專利範圍第2 7項之 再結晶材、* 一、 难度銅合金,其係對 進行冷壓延加工或冷拉線加工 。 而形成之冷加工材 3〇.如申請專利範圍第29項之高 令加工# U n r 度銅合金,其俜將 材从150〜600°c、1秒〜4小時之伙Μ 糸將 之條件做熱處理所得 及含量分別為 Zr、In # 第I1 頊 23頊 性力口 工 68 593703 者。 31. 如申請專利範圍第29項之高強度銅合金,其係將 冷加工材加工成既定之製品形狀之製品加工材。 32. 如申請專利範圍第31項之高強度銅合金,其係將 製品加工材以150〜600°C、1秒〜4小時之條件做熱處理所 得者。 33. 如申請專利範圍第1項、第2項、第3項、第4項 、第5項、第6項、第7項、第8項、第9項、第10項、 第11項、第12項、第13項、第14項、第15項或第16 Φ 項之高強度銅合金,其係壓延材或將其加工成既定之製品 形狀之製品加工材。 34. 如申請專利範圍第18項、第19項、第20項、第 21項、第22項、第23項、第24項或第25項之高強度銅 合金,其係拉線材或將其加工成既定之製品形狀之製品加 工材。The local strength copper alloy according to the above item, wherein the alloy composition further contains 0.003 to 0.3 mass% of each selected from P, Sb, As, Sr, Mg, Y, Cr, La, Ti, Mn, Zr, In, and An element of at least one of Hf. 18 · — A high-strength copper alloy, characterized in that the alloy composition contains 66 to 76 mass% of Cu and 21 to 33 mass% of Zn and 0.5 to 2 mass% of Si (these contents have Cu-5.Si = 62 ~ 67mass% and Zη + 6 · Si (32 ~ 38mass%)), showing a crystalline structure with an average crystal grain size d of 0.3 / D $ 3 · 5 // m, in the state of recrystallization. 2% safety limit stress 66 593703 is 250N / mm2 or more. · 19. The high-strength copper alloy according to item 18 of the scope of the patent application, wherein the alloy composition further contains 0.005 ~ 3 mass% 2 C0, and the value of the content of c0 divided by the content of si C0 / Si becomes 0.005 to 0.4. 20. The high-strength copper alloy according to item 18 of the scope of the patent application, wherein the alloy composition further contains 0.03 to lmass%, so that the value of the Si content divided by the Sn content becomes Si or more than 1 . 21. The high-strength copper alloy according to item 19 of the scope of application, wherein the alloy composition further contains 0.03 to lmass% 2 Sn, and the Si content is divided by the value of the Sn content Si / Sn to be 1 or more. 22. The high-strength copper alloy according to item 18 of the scope of patent application, wherein the alloy composition further contains 0.005 ~ 0.3mass% Fe and / or 0.005 ~ 0.3mass% of Ni, so that the total content thereof is divided The value of the Si content (Fe + Ni) / Si is 0.0005 to 0.4. 23. The high-strength copper alloy according to item 20 of the patent application scope, wherein the alloy composition further contains 0.005 to 0.3 mass% Fe and / or 0.005 to 0.3 mass% Ni, so that the total content is divided The value (Fe + Ni) / Si based on the Si content is set to 0.05 to 0.4. 24. The high-strength copper alloy according to item 19 of the patent application scope, wherein the alloy composition further contains 0.05 mass% Fe and / or 0.005 to 0.3maSS% Ni ′, so that the The value obtained by dividing the total content by the Si content ϊ (Fe + Ni + Co) / Si becomes 0.05 to 0.4. 25. The high-strength copper alloy according to item 21 of the patent application scope, wherein the alloy composition further contains 0. 005. 3mass% Fe and / or 67 593703 0. 5 ~ 0. 3mass 0 / 〇 of Ni Let the total content of these years &gt; and C0 be divided by the value of si (Fe + Ni + Co) / Si to be the value of (Fe + Ni + Co) / Si to 〇005 ~ 〇4.丨. For example, the scope of patent application for item 18's, item 19, item 20, item predicate, town crest, knot. 26. High-strength copper 1 &amp; of Leiy item, young item, 91st reading, 22 item, 23 item, ~ 21 Beyon 24 item or 25 item, among which, the total is detailed into 仫 &amp; 1 ▲ Bei Yu's zt) item how strong copper &gt; gold, where the alloy composition is ~ &gt; Mouth, step contains P, Sb and As content of 0.005 ~ 0.2maSS% respectively And ^ 〇〇03〜〇 · 3mass% of Sr, Mg, γ, Γ υ · w χ La, Ti, Μη and at least one of the elements, in the case of containing at least one of P, sb, As, the Wait until the content becomes 0.05% ~ 0.25% and delete 3%. 27. If the scope of the patent application is No. 1, No. 2, No. 3, No. 4, No. 5, No. 6, No. 7, No. 8 &amp; δ, No. 9, No. 1 Item, 顼, item 12, item 13, 箓 π Η brother item 14, item 15, item 16, item 18, item 19, item 20 kg 0 item, item 21, item 22, The high-sounding voice of the first, 24th, or 25th item is Renren /, Α &amp; copper alloy, which is obtained by plastic working (including processing rate of 30% or more; person 1, order processing) Plasticity is added to the material and recrystallized. J ,,,, and 0 are only available on the day. The high-strength copper alloy such as the 27th in the scope of patent application, will be = force :: material to complete, . . The recrystallized material is formed by heat treatment at a temperature of 1 ~ 1_ seconds. 2 9 · If the recrystallized material in item 27 of the patent application scope, * I. Difficulty copper alloy, it is cold rolled or cold drawn. The formed cold-worked material 30. For example, the high-order processing # U nr degree copper alloy of item 29 of the patent application scope, the material of the material is from 150 ~ 600 ° c, 1 second to 4 hours. The content and content of the heat treatment are Zr, In # I1 顼 23 顼 sexual force workers 68 593703. 31. If the high-strength copper alloy in item 29 of the scope of patent application is applied, it is a processed product made of cold-worked material into a predetermined product shape. 32. If the high-strength copper alloy according to item 31 of the patent application scope is obtained by subjecting the processed material to heat treatment at 150 to 600 ° C for 1 second to 4 hours. 33. If the scope of application for patents is 1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 9, 10, High-strength copper alloys according to item 12, item 13, item 14, item 15 or item 16 Φ, which are rolled materials or processed products processed into a predetermined product shape. 34. If you apply for a high-strength copper alloy with the scope of items 18, 19, 20, 21, 22, 23, 24, or 25, it is a wire rod or Product processing material processed into a predetermined product shape. 拾壹、圖式: 無 69First, schema: None 69
TW092112387A 2002-09-09 2003-05-07 High-strength copper alloy TW593703B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263125 2002-09-09

Publications (2)

Publication Number Publication Date
TW200404102A TW200404102A (en) 2004-03-16
TW593703B true TW593703B (en) 2004-06-21

Family

ID=31973177

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092112387A TW593703B (en) 2002-09-09 2003-05-07 High-strength copper alloy

Country Status (8)

Country Link
US (1) US20040234412A1 (en)
EP (2) EP1538229A4 (en)
JP (1) JP3961529B2 (en)
KR (1) KR100565979B1 (en)
CN (1) CN1284875C (en)
AU (1) AU2003236001A1 (en)
TW (1) TW593703B (en)
WO (1) WO2004022805A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2563094C (en) * 2004-08-10 2012-03-27 Sanbo Shindo Kogyo Kabushiki Kaisha Copper-based alloy casting in which grains are refined
WO2007043101A1 (en) * 2005-09-30 2007-04-19 Sanbo Shindo Kogyo Kabushiki Kaisha Melted-solidified matter, copper alloy material for melting-solidification, and process for producing the same
US7788073B2 (en) * 2005-12-13 2010-08-31 Linde Aktiengesellschaft Processes for determining the strength of a plate-type exchanger, for producing a plate-type heat exchanger, and for producing a process engineering system
DE502005002181D1 (en) * 2005-12-14 2008-01-17 Kemper Gebr Gmbh & Co Kg Use of a low-migration copper alloy and components made from this alloy
EP1801250B1 (en) * 2005-12-22 2017-11-08 Viega Technology GmbH & Co. KG Parts made from copper alloy with low migration for conduits conveying fluids or drinking water
WO2007148712A1 (en) * 2006-06-23 2007-12-27 Ngk Insulators, Ltd. Copper-based rolled alloy and method for producing the same
JP5053242B2 (en) * 2007-11-30 2012-10-17 古河電気工業株式会社 Method and apparatus for producing copper alloy material
CN101952465B (en) * 2008-01-31 2012-09-19 古河电气工业株式会社 Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
CN101440445B (en) * 2008-12-23 2010-07-07 路达(厦门)工业有限公司 Leadless free-cutting aluminum yellow brass alloy and manufacturing method thereof
US20100155011A1 (en) * 2008-12-23 2010-06-24 Chuankai Xu Lead-Free Free-Cutting Aluminum Brass Alloy And Its Manufacturing Method
EP2290114A1 (en) 2009-08-04 2011-03-02 Gebr. Kemper GmbH + Co. KG Metallwerke Water-guiding component
WO2012032155A2 (en) 2010-09-10 2012-03-15 Raufoss Water & Gas As Improved brass alloy and a method of manufacturing thereof
JP5665186B2 (en) * 2011-01-28 2015-02-04 三井住友金属鉱山伸銅株式会社 Copper-zinc alloy strip
JP4913910B1 (en) * 2011-01-29 2012-04-11 サンエツ金属株式会社 Manufacturing method of wire drawing material for pachinko nails
US8211250B1 (en) 2011-08-26 2012-07-03 Brasscraft Manufacturing Company Method of processing a bismuth brass article
US8465003B2 (en) 2011-08-26 2013-06-18 Brasscraft Manufacturing Company Plumbing fixture made of bismuth brass alloy
WO2013042678A1 (en) * 2011-09-20 2013-03-28 三菱伸銅株式会社 Copper alloy sheet and method for producing copper alloy sheet
CN104212996A (en) * 2013-05-30 2014-12-17 株式会社藤仓 Wiredrawing rod manufacturing method
CN103555993B (en) * 2013-11-20 2016-07-06 苏州天兼新材料科技有限公司 A kind of leadless environment-friendly acid bronze alloy rod and manufacture method thereof
CN104032169B (en) * 2014-05-12 2016-10-05 蚌埠市宏威滤清器有限公司 A kind of containing cerium lead-free easy-to-cut zinc-white copper alloy material and preparation method thereof
JP6686293B2 (en) 2015-04-21 2020-04-22 株式会社オートネットワーク技術研究所 Copper alloy wire, copper alloy stranded wire, coated wire and wire harness
CN105018782B (en) * 2015-07-23 2017-09-26 宁波博威合金板带有限公司 A kind of copper alloy of the silicon containing cobalt
CN105002394B (en) * 2015-07-28 2019-02-12 宁波博威合金板带有限公司 A kind of precipitation strength type brass alloys and preparation method
CN106191519B (en) * 2016-08-15 2018-06-01 北京金鹏振兴铜业有限公司 Hexa-atomic complex brass alloy
US11293084B2 (en) * 2016-10-28 2022-04-05 Dowa Metaltech Co., Ltd. Sheet matertal of copper alloy and method for producing same
CN108285988B (en) * 2018-01-31 2019-10-18 宁波博威合金材料股份有限公司 Precipitation strength type copper alloy and its application
JP7195054B2 (en) * 2018-03-09 2022-12-23 Dowaメタルテック株式会社 Copper alloy sheet material and manufacturing method thereof
MX2019000947A (en) 2019-01-22 2020-07-23 Nac De Cobre S A De C V Copper-zinc alloy free of lead and resistant to the marine environment.
US11427891B2 (en) * 2019-07-24 2022-08-30 Nibco Inc. Low silicon copper alloy piping components and articles
CN110724851A (en) * 2019-12-07 2020-01-24 和县卜集振兴标准件厂 Heat-resistant corrosion-resistant alloy for switch socket and preparation method thereof
CN114196844B (en) * 2020-09-02 2022-05-24 中国兵器科学研究院宁波分院 Preparation method of high-strength piston pin hole bushing
CN115466875A (en) * 2022-09-26 2022-12-13 陕西科技大学 High-strength high-conductivity copper alloy material for rocket engine and preparation method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1658186A (en) * 1925-02-21 1928-02-07 Electro Metallurg Co Copper alloy and process of producing and treating the same
JPH02170953A (en) * 1988-12-22 1990-07-02 Nippon Mining Co Ltd Production of copper alloy having good bendability
JPH0368731A (en) * 1989-08-08 1991-03-25 Nippon Mining Co Ltd Manufacture of copper alloy and copper alloy material for radiator plate
JPH03291344A (en) * 1990-04-09 1991-12-20 Furukawa Electric Co Ltd:The Copper alloy for heat exchanger header plate
JPH04224645A (en) * 1990-12-26 1992-08-13 Nikko Kyodo Co Ltd Copper alloy for electronic parts
JP3230685B2 (en) * 1991-01-30 2001-11-19 同和鉱業株式会社 Copper base alloy for heat exchanger
JPH06192771A (en) * 1992-12-25 1994-07-12 Nikko Kinzoku Kk High strength and high electric conductivity copper alloy
JP3739214B2 (en) * 1998-03-26 2006-01-25 株式会社神戸製鋼所 Copper alloy sheet for electronic parts
JP2000096164A (en) * 1998-09-28 2000-04-04 Furukawa Electric Co Ltd:The Copper alloy for electronic apparatus
JP3734372B2 (en) * 1998-10-12 2006-01-11 三宝伸銅工業株式会社 Lead-free free-cutting copper alloy
US6413330B1 (en) * 1998-10-12 2002-07-02 Sambo Copper Alloy Co., Ltd. Lead-free free-cutting copper alloys
JP4294196B2 (en) * 2000-04-14 2009-07-08 Dowaメタルテック株式会社 Copper alloy for connector and manufacturing method thereof
JP2002030364A (en) * 2000-07-19 2002-01-31 Sumitomo Light Metal Ind Ltd High strength free cutting brass
JP4441669B2 (en) * 2000-09-13 2010-03-31 Dowaメタルテック株式会社 Manufacturing method of copper alloy for connectors with excellent resistance to stress corrosion cracking

Also Published As

Publication number Publication date
EP1538229A4 (en) 2005-08-03
KR20040041539A (en) 2004-05-17
AU2003236001A1 (en) 2004-03-29
EP2230323A1 (en) 2010-09-22
JP3961529B2 (en) 2007-08-22
JPWO2004022805A1 (en) 2005-12-22
TW200404102A (en) 2004-03-16
EP1538229A1 (en) 2005-06-08
CN1516748A (en) 2004-07-28
CN1284875C (en) 2006-11-15
US20040234412A1 (en) 2004-11-25
KR100565979B1 (en) 2006-03-30
WO2004022805A1 (en) 2004-03-18

Similar Documents

Publication Publication Date Title
TW593703B (en) High-strength copper alloy
JP4563495B1 (en) Copper alloy sheet and manufacturing method thereof
CN111733372B (en) Elastic copper-titanium alloy and preparation method thereof
TW200823302A (en) Cu-Ni-Si alloy
TW201233818A (en) Copper alloy for electronic and/or electrical device, copper alloy thin plate, and conductive member
JP2012046810A (en) Copper alloy sheet material and manufacturing method thereof
JP2011001593A (en) Method for producing copper alloy, and copper alloy
JP2000328158A (en) Copper alloy sheet excellent in press punchability
TW201142050A (en) Cu-Si-Co based alloy for electronic material and manufacturing method thereof
JP2007100145A (en) Copper-alloy sheet material with improved bendability and fatigue characteristic
CN108384986A (en) A kind of Cu alloy material and its application
JP2000073130A (en) Copper alloy sheet excellent in press punchability
JP5534610B2 (en) Cu-Co-Si alloy strip
JP5297855B2 (en) Copper alloy sheet and manufacturing method thereof
CN109338151A (en) A kind of electronic electric equipment copper alloy and purposes
JP5787935B2 (en) Aluminum alloy plate for current-carrying parts and manufacturing method thereof
JP4259828B2 (en) Manufacturing method of high strength copper alloy
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
TW201217550A (en) containing 2.0-4.0 mass% of Ti, 0.01-0.15 wt% of one or more of Fe, Co, Ni, Cr, V, Nb, Mo, Mn, Zr, Si, Mg, B and P in total and the remainder containing Cu and unavoidable impurities, and having excellent strength and bendability
JP2005089843A (en) High-strength copper alloy sheet and manufacturing method therefor
CN111647768A (en) High-strength copper alloy sheet and method for producing same
JP4653239B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
JP6522677B2 (en) Cu-Ni-Co-Si alloy for electronic parts
CN116083750A (en) Copper alloy strip, preparation method, lead frame and connector
JPS60169535A (en) Heat mechanically treated beryllium copper alloy and treatment

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees