JPH03291344A - Copper alloy for heat exchanger header plate - Google Patents

Copper alloy for heat exchanger header plate

Info

Publication number
JPH03291344A
JPH03291344A JP9333190A JP9333190A JPH03291344A JP H03291344 A JPH03291344 A JP H03291344A JP 9333190 A JP9333190 A JP 9333190A JP 9333190 A JP9333190 A JP 9333190A JP H03291344 A JPH03291344 A JP H03291344A
Authority
JP
Japan
Prior art keywords
heat exchanger
header plate
copper alloy
alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9333190A
Other languages
Japanese (ja)
Inventor
Kenichi Komata
小又 憲一
Kadomasa Sato
佐藤 矩正
Minoru Igarashi
稔 五十嵐
Kishichi Nakamura
中村 喜七
Katsuhiko Takada
高田 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Denso Corp
Original Assignee
Furukawa Electric Co Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, NipponDenso Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP9333190A priority Critical patent/JPH03291344A/en
Publication of JPH03291344A publication Critical patent/JPH03291344A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a copper alloy for a heat exchanger header plate excellent in stress corrosion cracking resistance, strength and workability by regulating the size distibution of a copper alloy having a specified compsn. constituted of Zn Sn, Si and Cu into a specified one. CONSTITUTION:This copper alloy for a heat exchanger header plate contains, by weight, 5 to 30% Zn, 1 to 5% Sn and 0.25 to 3.0% Si, furthermore contains, at need, total 0.05 to 5% of one or more kinds among <=0.1% P, <=3% Ni, <=2% Al, <=2% Mn, <=1.5% Zr and <=3% Mg and the balance Cu with inevitable impurities as well as has 20 to 80mum grain size. The alloy is excellent in stress corrosion cracking resistance and has sufficient strength and workability. The above grain size distribution can be controlled by heat treatment after rolling. By using this alloy, a heat exchanger in which the thinning of sheet thickness is permitted and having high capacity and high reliability can be obtd. at low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐応力腐蝕側性に優れた熱交換器ヘッダープ
レート用銅合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a copper alloy for heat exchanger header plates that has excellent stress corrosion resistance.

〔従来の技術〕[Conventional technology]

従来熱交換器材料としては、主に放熱性や加工性に優れ
た銅合金が使用されている。熱交換器、例えば自動車用
ラジェータの構造は、第1図に示すように冷却媒体を流
通するチューブ(1)と熱を放散するフィン(2)で構
成したコア(3)と、コア(3)の両端部にヘッダープ
レート(4)を介して冷却媒体の出入口を持つタンク(
5)を取付けたもので、タンク(5)とヘッダープレー
ト(4)の結合は、図に示すようにタンク(5)とヘッ
ダプレート(4)に設けた爪部(61,(7)をステン
レスなどのかしめプレート(8)により、弾性シール材
(9)を介してかしめることにより行なっている。
Conventionally, copper alloys, which have excellent heat dissipation and workability, have been mainly used as heat exchanger materials. As shown in Figure 1, the structure of a heat exchanger, such as an automobile radiator, consists of a core (3) consisting of a tube (1) through which a cooling medium flows and fins (2) that dissipate heat. A tank (
5) is attached, and the connection between the tank (5) and header plate (4) is as shown in the figure. This is done by caulking with a caulking plate (8) such as the like through an elastic sealing material (9).

近年熱交換器は軽量化、コスト低減のため、タンクには
プラスチック製タンクを使用し、タンクとヘッダープレ
ートの結合にはステンレスなどのかしめプレートを用い
ることなく、直接ヘッダープレートの周辺部を折り曲げ
てかしめるか又はタンクに設けた爪部をヘッダープレー
トの係止部に圧入する方法が採用されている。
In recent years, in order to reduce the weight and cost of heat exchangers, plastic tanks are used for the tanks, and the tank and header plates are connected directly by bending the periphery of the header plate instead of using caulking plates such as stainless steel. A method of caulking or press-fitting a claw part provided on the tank into a locking part of the header plate is adopted.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような構造の熱交換器では、かしめ又は圧入係止に
ともなうヘッダープレートに作用する応力と汚染大気な
どの外部環境及びロングライフクーラント(L L C
)などの冷却水の腐蝕作用により、ヘッダープレートに
応力腐蝕側(SCC)が発生し易い欠点があった。特に
プラスチック製タンクを使用する場合は弾性シール材と
ヘッダープレート間の隙間構造により、腐蝕が加速され
、SCCが発生し易い傾向があり、耐SCC性に優れた
材料が要求されていた。
In a heat exchanger with such a structure, there is stress acting on the header plate due to caulking or press-fit locking, the external environment such as polluted air, and long-life coolant (LLC).
) has the disadvantage that stress corrosion (SCC) tends to occur on the header plate due to the corrosive action of the cooling water. In particular, when plastic tanks are used, corrosion tends to be accelerated due to the gap structure between the elastic sealing material and the header plate, and SCC tends to occur easily, so materials with excellent SCC resistance have been required.

このような問題を解決するため、従来ヘッダープレート
としてP、Sn、AA’、Si、Zr等の合金元素を添
加した改良黄銅が、特開昭60194033号公報や特
開昭61−542号公報により提案されている。またヘ
ッダープレートの少なくとも片面にCu、Ni、半田な
どの耐腐蝕性層を形成したものが、実開昭61−343
86号公報により提案されている。またCu−Zn合金
はZn量を低減することにより、SCC感受性が軽減さ
れることが知られており、例えば実開昭60−1059
91号公報には、ヘッダープレートの少なくとも片側表
面をZn量の少ない丹銅で被覆したものが開示されてい
る。
In order to solve these problems, improved brass to which alloying elements such as P, Sn, AA', Si, and Zr are added for conventional header plates has been proposed in JP-A-60194033 and JP-A-61-542. Proposed. In addition, a header plate in which a corrosion-resistant layer of Cu, Ni, solder, etc. is formed on at least one side of the header plate is known as
This is proposed in Publication No. 86. It is also known that the SCC susceptibility of Cu-Zn alloys can be reduced by reducing the amount of Zn; for example,
No. 91 discloses a header plate in which at least one surface is coated with red copper containing a small amount of Zn.

しかしながらヘッダープレートとしては、外部及び内部
環境によりSCCを起し難いと同時に、構造材として適
度の強度を有し、プレス成型のための加工性に優れ、更
にチューブとの半田接合性を阻害することなく、工業材
料として安価に大量生産できることが不可欠である。
However, as a header plate, it is difficult to cause SCC due to external and internal environments, has appropriate strength as a structural material, has excellent workability for press molding, and also has a property that inhibits solderability with tubes. Therefore, it is essential that it can be mass-produced at low cost as an industrial material.

ところが上記のZn量を低減する方法は、耐SCC性を
改善するも、強度と加工性が低下する欠点がある。そこ
でこの欠点を解消するためにクラッド等により複合被覆
する方法もあるが、複合に伴って工程が増加し、生産性
を低下してコストアップとなり問題であった。さらに上
記の合金元素を添加して耐SCC性を改善する方法は簡
便であるが、加工性の劣化、β相の出現による耐蝕性の
劣化、半田接合性の劣化等が避けられず、製造コスト的
にも添加元素の種類と量が制限されてしまう。
However, although the above-mentioned method of reducing the amount of Zn improves SCC resistance, it has the drawback of decreasing strength and workability. In order to overcome this drawback, there is a method of composite coating with cladding or the like, but the composite coating increases the number of steps, reduces productivity, and increases costs, which is a problem. Furthermore, the method of improving SCC resistance by adding the above-mentioned alloying elements is simple, but it does not avoid deterioration of workability, deterioration of corrosion resistance due to the appearance of β phase, deterioration of solder jointability, etc., and the manufacturing cost increases. This also limits the type and amount of added elements.

このように公知の方法では、ヘッダープレートに要求さ
れる種々の特性をバランスよく満たすことはできず、工
業的に使用されるには至っていない。
As described above, the known methods cannot satisfy the various characteristics required of the header plate in a well-balanced manner, and have not been used industrially.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記現象を詳細に調査解析の結果、従来のヘッ
ダープレートはアンモニア環境に代表される外部環境に
は強くても、冷却媒体として使用されるLLC,特に実
環境の熱や酸素などの相互作用で変質したLLCの環境
でSCCを起し易いことか判明した。即ちヘッダープレ
ート用の材料は従来の耐SCC性評価のみでは不充分で
あることを知見し、更に上述のような熱交換器の構造の
変化と、従来技術の欠点に鑑み鋭意研究の結果、新たな
熱交換器ヘッダープレート用銅合金を開発したものであ
る。
As a result of a detailed investigation and analysis of the above phenomenon, the present invention found that although conventional header plates are resistant to external environments such as ammonia environments, LLC used as a cooling medium is particularly susceptible to mutual interaction such as heat and oxygen in real environments. It has been found that SCC is likely to occur in the environment of LLC that has been altered by the action. In other words, we found that the conventional SCC resistance evaluation alone was insufficient for header plate materials, and in addition, as a result of intensive research, we developed a new We have developed a copper alloy for heat exchanger header plates.

即ち本発明合金の−っは、Zn5〜30wt%。That is, the Zn content of the alloy of the present invention is 5 to 30 wt%.

Snl 〜3wt%及びS i O,05〜3.0wt
%を含み、残部Cuと不可避的不純物からなり、かつ結
晶粒度を20〜80μmとしたことを特徴とするもので
ある また本発明合金の他の一つは、Zn5〜30vf%、S
nl 〜5v1%及びS i O,05〜3.0wt%
を含み、さらにP(1,Iwt%以下、Ni3t1%以
下。
Snl~3wt% and SiO,05~3.0wt
%, the balance consists of Cu and unavoidable impurities, and the crystal grain size is 20 to 80 μm. Another alloy of the present invention is Zn5 to 30 vf%, S
nl ~5v1% and S i O,05~3.0wt%
Contains P (1, Iwt% or less, Ni3t1% or less.

Al2wt%以下、Mn2wt%以下、  Zr  1
,5W1%以下、Mg5v1%以下の範囲内で1種又は
2種以上を合計で0.05〜3wt%(以下wt%を%
と記す)含み、残部Cuと不可避的不純物からなり、か
つ結晶粒度を20〜80μmとしたことを特徴とするも
のである。
Al2wt% or less, Mn2wt% or less, Zr 1
, 5W 1% or less, Mg 5v 1% or less, a total of 0.05 to 3 wt% of one or more types (hereinafter wt% is %)
), the remainder being Cu and unavoidable impurities, and having a crystal grain size of 20 to 80 μm.

〔作 用〕[For production]

本発明は上記組成の合金からなるものて、Zn、Sn及
びSiの添加は、充分な強度と耐SCC性を付与するた
めで、Zn含有量を5〜30%と限定したのは、5%未
満では強度及び加工性が不充分であり、30%を越える
と強度及び加工性は優れているも、耐SCC性を低下す
るためである。またSn含有量を1〜5%と限定したの
は、1%未満では強度の向上効果が不充分であると共に
、LLCに対する耐SCC性が不足し、5%を越えると
強度は向上するも耐SCC性は飽和し、原料費を高騰し
、工業材料として不適当となるためである。
The present invention is made of an alloy having the above composition, and the addition of Zn, Sn, and Si is to provide sufficient strength and SCC resistance, and the reason why the Zn content is limited to 5% to 30% is that the Zn content is limited to 5% to 30%. If it is less than 30%, the strength and workability will be insufficient, and if it exceeds 30%, although the strength and workability are excellent, the SCC resistance will decrease. The Sn content was limited to 1 to 5% because if it is less than 1%, the strength improvement effect is insufficient and the SCC resistance against LLC is insufficient, and if it exceeds 5%, the strength is improved but the resistance is insufficient. This is because the SCC property becomes saturated, the cost of raw materials increases, and the material becomes unsuitable as an industrial material.

Si含有量を0.05〜3%と限定したのは、0.05
%未満では、強度の向上が不充分であり、又、従来のア
ンモニアに対する耐SCC性が不充分の為である。3%
を越えると加工性が不充分となってしまい工業的に何ら
、意味をもたなくなってしまう。
The reason why the Si content was limited to 0.05 to 3% was 0.05%.
If it is less than %, the improvement in strength is insufficient and the conventional SCC resistance against ammonia is insufficient. 3%
If it exceeds this value, the processability will be insufficient and it will have no industrial meaning.

次にP、Ni、AI、Mn、Zr、Mgの添加は、Sn
及びSiと共存させることにより更に強度を向上し、特
にP、Ni、Mn、Zrの添加は強度向上の効果が大き
く、また外部環境からのSCCを抑制し、一方AI、M
gはLLC側のSCCを抑制するものである。そして2
011%以下、N43%以下、A12%以下。
Next, the addition of P, Ni, AI, Mn, Zr, and Mg
In particular, the addition of P, Ni, Mn, and Zr has a large strength-improving effect, and also suppresses SCC from the external environment.
g is for suppressing SCC on the LLC side. And 2
011% or less, N43% or less, A12% or less.

Mn2%以下、Zr1.5%以下、Mg3%以下の範囲
内で何れか1種又は2種以上を合計0.05〜5%と限
定したのは、0.05%未満では強度及び耐SCC向上
の効果が少なく5%を越えて添加してもその効果が飽和
するためである。
The reason why any one or more of Mn is 2% or less, Zr is 1.5% or less, and Mg is 3% or less is limited to a total of 0.05 to 5% because less than 0.05% improves strength and SCC resistance. This is because the effect is so small that even if it is added in excess of 5%, the effect will be saturated.

更に結晶粒度を20〜80μmとしたのは、耐SCC性
と強度を損なうことなく、充分な加工性を付与するため
で、20μm未満では強度は向上するも加工性が不充分
となり、プレス成形時に割れを発生することがあり、8
011mを越えると成形は可能なるも肌荒れを発生し易
く、外観不良を多発するためである。しかして結晶粒度
を20〜80μmとするためには、上記組成の合金を製
品サイズの厚さに圧延後熱処理により調整すればよい。
Furthermore, the reason why the crystal grain size is set to 20 to 80 μm is to provide sufficient workability without compromising SCC resistance and strength. If it is less than 20 μm, the strength will improve but the workability will be insufficient, and it will be difficult to process during press forming. Cracks may occur, 8
This is because if the length exceeds 0.11 m, molding is possible, but roughness is likely to occur, resulting in frequent appearance defects. In order to obtain a grain size of 20 to 80 μm, the alloy having the above composition may be adjusted to the thickness of the product size by heat treatment after rolling.

本発明は上記組成の合金について結晶粒度を20〜80
μmとすることにより、熱交換器のヘッダープレートと
して好適な強度、加工性、半田接続性と共に、外面から
の環境に対しては勿論のこと、LLCと接触する内部環
境に対しても耐SCCに優れた安価な銅合金を提供する
ことができる。尚溶解工程で使用されるPなどの脱酸剤
の通常の残留や、工業的に不可避的に混入するFe、P
b、Ag、Sなどの不純物は本発明の効果を損うもので
はない。
The present invention has a crystal grain size of 20 to 80 for the alloy having the above composition.
By using μm, it has strength, workability, and solderability suitable for a header plate of a heat exchanger, and has SCC resistance not only against the external environment but also against the internal environment that comes into contact with the LLC. We can provide excellent and inexpensive copper alloys. In addition, there is the usual residual of deoxidizing agents such as P used in the melting process, and Fe and P that are unavoidably mixed in industrially.
Impurities such as b, Ag, and S do not impair the effects of the present invention.

〔実施例〕〔Example〕

以下本発明を実施例について説明する。 The present invention will be described below with reference to Examples.

第1表に示す化学成分のインゴットを溶製し、両割後8
00℃に加熱し、熱間圧延で厚さ8閣の板にした。そし
て酸洗により表面の酸化被膜を除去した後、冷間圧延と
焼鈍を繰り返して厚さ0.8mmの板材とし、800℃
で5〜60秒の範囲で熱処理を施し、第2表に示す結晶
粒度の試料を作成した。得られた試料の機械的特性とし
て弓張強さと伸びについて測定した結果を第2表に示し
た。
An ingot with the chemical components shown in Table 1 was melted, and after being divided into two parts, 8
It was heated to 00°C and hot rolled into a board with a thickness of 8 mm. After removing the oxide film on the surface by pickling, cold rolling and annealing were repeated to obtain a plate material with a thickness of 0.8 mm.
A heat treatment was performed in the range of 5 to 60 seconds to prepare samples having the crystal grain sizes shown in Table 2. Table 2 shows the results of measuring the bow tensile strength and elongation as mechanical properties of the obtained samples.

次にこのようにして調製した試料をプレス加工してヘッ
ダープレートとし、その際のプレス加工性を調査し、プ
レス加工性が良好なものを○印、やや凹凸を生じたもの
をΔ印、著しい肌荒れを生じたものをX印、成形時に割
れが生じたものをXX印で表わしてこれを第2表に併記
した。
Next, the sample prepared in this way was pressed into a header plate, and the press workability was investigated. Those with good press workability were marked with ○, those with slight unevenness were marked with Δ, and those with significant unevenness were marked. Those with rough skin are marked with an X, and those with cracks during molding are marked with an XX, and these are also listed in Table 2.

またこのヘッダープレートを用いてラジェータコアを形
成し、ヘッダープレートにプラスチック製タンクを取付
け、その周辺をかしめてラジェータを作製し、耐SCC
性を次のように比較評価した。即ち耐SCC性について
は、外部環境と内部環境について分け、外部環境の耐S
CC性は1%のアンモニア雰囲気中で漏れの発生するま
での時間を測定し、内部環境の耐SCC性は、30%に
希釈したLLCを80°Cで]、2kg/′cdの内圧
で封入し、90日間保持した後、漏れの有無と解体後の
割れの有無で評価した。即ち液の漏れについては、液漏
れの発生がないものを○印、接合部の液封能力の低下(
材料の軟化)による液漏れをX印、SCCによる液漏れ
をXX印で表わし、更に解体後の割についてれは、材料
のSCCの有無で表わし、それぞれ第2表に併記した。
In addition, this header plate is used to form a radiator core, a plastic tank is attached to the header plate, and the radiator is created by caulking the area around it, making it SCC resistant.
The characteristics were compared and evaluated as follows. In other words, regarding SCC resistance, the external environment and internal environment are separated, and the SCC resistance of the external environment is
CC resistance was measured by measuring the time until leakage occurred in a 1% ammonia atmosphere, and SCC resistance in the internal environment was measured by filling LLC diluted to 30% at 80°C with an internal pressure of 2kg/'cd. After holding it for 90 days, it was evaluated based on the presence or absence of leakage and the presence or absence of cracks after disassembly. In other words, regarding liquid leakage, if there is no liquid leakage, mark ○, and if there is a decrease in the liquid sealing ability of the joint (
Liquid leakage due to material softening (softening of the material) is represented by an X mark, liquid leakage due to SCC is represented by an XX mark, and cracking after disassembly is represented by the presence or absence of SCC in the material, and these are also listed in Table 2.

第2表 第2表から明らかなように結晶粒度を20〜80μmと
した本発明合金はヘッダープレートとして充分な強度と
加工性を合わせ持つと共に、従来合金と比較して内部環
境及び外部環境に対し耐SCCが顕著に改善されること
が判る。これに対し合金成分が外れる比較合金では結晶
粒度が20〜80μmの範囲内にあってもほとんどが内
部環境における耐SCC性が劣ることが判る。
As is clear from Table 2, the alloy of the present invention with a grain size of 20 to 80 μm has both sufficient strength and workability as a header plate, and is more resistant to internal and external environments than conventional alloys. It can be seen that the SCC resistance is significantly improved. On the other hand, it can be seen that most of the comparative alloys with different alloy components have poor SCC resistance in the internal environment even if the crystal grain size is within the range of 20 to 80 μm.

また合金成分は規定範囲内にあるが、結晶粒度が10μ
m以下の比較合金Nα15はプレス成形時に割れが生じ
てしまい、結晶粒度が100μmのもの(比較合金Nc
t18)は成形時に著しい肌荒れが生じた。
Also, although the alloy components are within the specified range, the crystal grain size is 10 μm.
Comparative alloy Nα15 with a grain size of 100 μm or less cracks during press forming (comparative alloy Nα15 with grain size of 100 μm)
In case of t18), significant roughness occurred during molding.

尚本発明合金がヘッダープレートとして優れた特性を有
することについて説明したが、ヘッダープレートのみな
らず、チューブなどの熱交換器の他の部材はもとより配
器材、端子、コネクターなど電気、電子部品用材料とし
ても安価に寿命を改善することかできる。
Although it has been explained that the alloy of the present invention has excellent properties as a header plate, it can be used not only for header plates but also other parts of heat exchangers such as tubes, as well as materials for electrical and electronic parts such as wiring materials, terminals, and connectors. However, it is possible to improve the lifespan at a low cost.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば自動車用熱交換器のSCCを
防止し、高性能、高信頼性の熱交換器を提供することが
できる。従ってラジェータにおいて一体かしめ構造の熱
交換器の採用が可能となり、同時に充分な強度を持つた
め板厚の薄肉化が可能となり、熱交換器の軽量化、コス
ト低減が可能になる等工業上顕著な効果を奏するもので
ある。
As described above, according to the present invention, it is possible to prevent SCC in an automobile heat exchanger and provide a high performance and highly reliable heat exchanger. Therefore, it is possible to use a heat exchanger with an integrally caulked structure in the radiator, and at the same time, since it has sufficient strength, it is possible to reduce the thickness of the plate, making it possible to reduce the weight and cost of the heat exchanger, which is an industrially significant feature. It is effective.

【図面の簡単な説明】 第1図は自動車用ラジェータの構造を一部切欠いて示す
斜視図である。 1 チューブ、(2)フィン。 3 コア、(4)ヘッダープレート。 5)プラスチック製タンク。 6)ヘッダープレートの爪部。 7)プラスチック製タンクの爪部。 8 かしめプレート 9)弾性シール材 第1図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway perspective view of the structure of an automobile radiator. 1 tube, (2) fin. 3 core, (4) header plate. 5) Plastic tank. 6) Claw part of header plate. 7) Claw part of plastic tank. 8 Caulking plate 9) Elastic sealing material Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)Zn5〜30wt%、Sn1〜5wt%及びSi
0.05〜3.0wt%を含み、残部Cuと不可避的不
純物からなり、かつ結晶粒度を20〜80μmとしたこ
とを特徴とする熱交換器ヘッダープレート用銅合金。
(1) Zn5-30wt%, Sn1-5wt% and Si
A copper alloy for a heat exchanger header plate, characterized in that the copper alloy contains 0.05 to 3.0 wt%, the balance consists of Cu and inevitable impurities, and has a crystal grain size of 20 to 80 μm.
(2)Zn5〜30wt%、Sn1〜5wt%及びSi
0.05〜3.0wt%を含み、さらにP0.1wt%
以下、Ni3wt%以下、Al2wt%以下、Mn2w
t%以下、Zr1.5wt%以下、Mg3wt%以下の
範囲内で1種又は2種以上を合計で0.05〜5wt%
含み、残部Cuと不可避的不純物からなり、かつ結晶粒
度を20〜80μmとしたことを特徴とする熱交換器ヘ
ッダープレート用銅合金。
(2) Zn5-30wt%, Sn1-5wt% and Si
Contains 0.05-3.0wt%, and further includes P0.1wt%
Below, Ni3wt% or less, Al2wt% or less, Mn2w
t% or less, Zr1.5wt% or less, Mg3wt% or less, one or more types in total 0.05 to 5wt%
1. A copper alloy for a header plate of a heat exchanger, characterized in that the remainder is Cu and unavoidable impurities, and has a crystal grain size of 20 to 80 μm.
JP9333190A 1990-04-09 1990-04-09 Copper alloy for heat exchanger header plate Pending JPH03291344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9333190A JPH03291344A (en) 1990-04-09 1990-04-09 Copper alloy for heat exchanger header plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9333190A JPH03291344A (en) 1990-04-09 1990-04-09 Copper alloy for heat exchanger header plate

Publications (1)

Publication Number Publication Date
JPH03291344A true JPH03291344A (en) 1991-12-20

Family

ID=14079286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9333190A Pending JPH03291344A (en) 1990-04-09 1990-04-09 Copper alloy for heat exchanger header plate

Country Status (1)

Country Link
JP (1) JPH03291344A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375029B1 (en) * 2000-07-22 2003-03-08 주식회사 대상엔터프라이즈 Copper alloy
WO2004022805A1 (en) * 2002-09-09 2004-03-18 Sambo Copper Alloy Co., Ltd. High-strength copper alloy
EP1452613A2 (en) * 2003-02-28 2004-09-01 Wieland-Werke AG Lead-free copper alloy and use thereof
EP1452612A2 (en) * 2003-02-28 2004-09-01 Wieland-Werke AG Lead-free copper alloy and use thereof
WO2006016631A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Sn-CONTAINING COPPER ALLOY AND METHOD FOR PRODUCTION THEREOF
EP1930453A1 (en) * 2005-09-30 2008-06-11 Sanbo Shindo Kogyo Kabushiki Kaishah Melted-solidified matter, copper alloy material for melting-solidification, and process for producing the same
CN109937267A (en) * 2016-10-28 2019-06-25 同和金属技术有限公司 Copper alloy plate and its manufacturing method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375029B1 (en) * 2000-07-22 2003-03-08 주식회사 대상엔터프라이즈 Copper alloy
WO2004022805A1 (en) * 2002-09-09 2004-03-18 Sambo Copper Alloy Co., Ltd. High-strength copper alloy
CN100430498C (en) * 2003-02-28 2008-11-05 威兰德-沃克公开股份有限公司 A lead-free copper alloy and its use
EP1452613A2 (en) * 2003-02-28 2004-09-01 Wieland-Werke AG Lead-free copper alloy and use thereof
EP1452612A2 (en) * 2003-02-28 2004-09-01 Wieland-Werke AG Lead-free copper alloy and use thereof
EP1452612A3 (en) * 2003-02-28 2004-09-22 Wieland-Werke AG Lead-free copper alloy and use thereof
EP1452613A3 (en) * 2003-02-28 2004-09-22 Wieland-Werke AG Lead-free copper alloy and use thereof
US9328401B2 (en) 2004-08-10 2016-05-03 Mitsubishi Shindoh Co., Ltd. Copper alloy casting having excellent machinability, strength, wear resistance and corrosion resistance and method of casting the same
JPWO2006016631A1 (en) * 2004-08-10 2008-05-01 三宝伸銅工業株式会社 Sn-containing copper alloy and method for producing the same
WO2006016631A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Sn-CONTAINING COPPER ALLOY AND METHOD FOR PRODUCTION THEREOF
US10017841B2 (en) 2004-08-10 2018-07-10 Mitsubishi Shindoh Co., Ltd. Copper alloy casting and method of casting the same
US10570483B2 (en) 2004-08-10 2020-02-25 Mitsubishi Shindoh Co., Ltd. Copper-based alloy casting in which grains are refined
EP1930453A1 (en) * 2005-09-30 2008-06-11 Sanbo Shindo Kogyo Kabushiki Kaishah Melted-solidified matter, copper alloy material for melting-solidification, and process for producing the same
EP1930453A4 (en) * 2005-09-30 2008-11-12 Mitsubishi Shindo Kk Melted-solidified matter, copper alloy material for melting-solidification, and process for producing the same
US9303300B2 (en) 2005-09-30 2016-04-05 Mitsubishi Shindoh Co., Ltd. Melt-solidified substance, copper alloy for melt-solidification and method of manufacturing the same
CN109937267A (en) * 2016-10-28 2019-06-25 同和金属技术有限公司 Copper alloy plate and its manufacturing method

Similar Documents

Publication Publication Date Title
KR20040045477A (en) Aluminium alloy for making fin stock material
JP4837188B2 (en) Aluminum alloy material for piping with excellent corrosion resistance and workability
JPH03291344A (en) Copper alloy for heat exchanger header plate
JPS6245301B2 (en)
JPH0368733A (en) Manufacture of copper alloy and copper alloy material for radiator plate
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
JP3230685B2 (en) Copper base alloy for heat exchanger
JPH0356635A (en) Copper alloy for header plate of heat exchanger
JP2842667B2 (en) High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger
JP3243188B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JPH0368731A (en) Manufacture of copper alloy and copper alloy material for radiator plate
JP3243189B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JPH0797651A (en) Production of aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JPH05195116A (en) Copper alloy for header plate of heat exchanger
JP3538507B2 (en) Aluminum alloy clad material for heat exchanger with excellent alkali corrosion resistance
JPH04354843A (en) Copper base alloy for heat exchanger
JPH04154932A (en) Aluminum alloy fin material for heat exchanger excellent in self-corrosion resistance and sacrificial anode effect
JPH03134128A (en) Aluminum alloy-clad material for heat exchanger member
JPS6261103B2 (en)
JPH0841573A (en) High strength aluminum alloy fin material for heat exchanger
JPH0618188A (en) Copper alloy for header plate and heat exchanger using the same
JPH0718358A (en) High strength aluminum alloy fin material for heat exchanger
JPS62182244A (en) Aluminum alloy for fin
JPH09176768A (en) Aluminum alloy clad material for heat exchanger excellent in alkaline corrosion resistance
JPH0689429B2 (en) Aluminum alloy for heat exchanger fin material which has excellent thermal conductivity after brazing and sacrificial anode effect