JPH0618188A - Copper alloy for header plate and heat exchanger using the same - Google Patents

Copper alloy for header plate and heat exchanger using the same

Info

Publication number
JPH0618188A
JPH0618188A JP5024996A JP2499693A JPH0618188A JP H0618188 A JPH0618188 A JP H0618188A JP 5024996 A JP5024996 A JP 5024996A JP 2499693 A JP2499693 A JP 2499693A JP H0618188 A JPH0618188 A JP H0618188A
Authority
JP
Japan
Prior art keywords
header plate
tank
plate
heat exchanger
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5024996A
Other languages
Japanese (ja)
Inventor
Kouji Oida
晃次 乃田
Hiroshi Yamaguchi
洋 山口
Shuichi Yamazaki
周一 山崎
Katsuhiko Takada
勝彦 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Denso Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, NipponDenso Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP5024996A priority Critical patent/JPH0618188A/en
Publication of JPH0618188A publication Critical patent/JPH0618188A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • F28F9/0226Header boxes formed by sealing end plates into covers with resilient gaskets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements
    • F28F2275/122Fastening; Joining by methods involving deformation of the elements by crimping, caulking or clinching

Abstract

PURPOSE:To improve stress corrosion cracking resistance of a heat exchanger and to reduce in thickness and weight of a header plate material by forming the plate for mounting a core in a tank of a material having special composition and crystal grain size. CONSTITUTION:A heat exchanger comprises a tank 5 having exit/entrance of cooling medium and mounted at both ends of a core 3 having tubes 1 for feeding the medium and fins 2 for dissipating heat through a header plate 4. The plate 4 and the tank 5 are caulked at pawl parts 6, 7 by a caulking plate 8 through an elastic sealing material 9. In this case, the plate is formed of a material which contains 10-20wt.% of Zn, 1.0-2wt.% of Sn, 0.005-0.03wt.% of P, the rest of Cu and unavoidable impurities and has 15mum or less of crystal grain size. Thus, stress corrosion cracking resistance of the exchanger is improved and the thickness and weight are reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐応力腐食割れ性、強
度、加工性に優れた熱交換器用ヘッダープレート用銅合
金及びそれを用いた熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for a header plate for a heat exchanger, which is excellent in stress corrosion cracking resistance, strength, and workability, and a heat exchanger using the same.

【0002】[0002]

【従来の技術およびその問題点】従来、熱交換器、例え
ば自動車用ラジエーターの構造は、図1に示すように、
冷却媒体を流通させるチューブ1と熱を放散するフィン
2で構成したコア3と、コア3の両端部にヘッダープレ
ート4を介して冷却媒体の出入口を持つタンク5を取付
けたものでタンク5とヘッダープレート4との結合は、
図に示すようにタンク5とヘッダープレート4に設けた
爪部7,6をステンレス等のかしめプレート8により、
弾性シール材9を介してかしめることにより行っている
(以後、間接かしめ方式と称する)。そして、この場合
のヘッダープレート材としては黄銅や丹銅が用いられて
きた。これに対し、近年、熱交換器は軽量化、コスト低
減のため、タンクにはプラスチック製のものを使用し、
タンクとヘッダープレートの結合には、ステンレス等の
かしめプレートを用いることなく、直接ヘッダープレー
トの周辺部を折り曲げてかしめるか、もしくはタンクに
設けた爪部をヘッダープレートの係止部に圧入する方法
(以後、直接かしめ方式と称する)が採用されている。
2. Description of the Related Art Conventionally, the structure of a heat exchanger, for example, an automobile radiator is as shown in FIG.
A core 3 composed of a tube 1 for circulating a cooling medium and fins 2 for dissipating heat, and a tank 5 having inlets and outlets for the cooling medium attached to both ends of the core 3 via header plates 4 The connection with the plate 4 is
As shown in the figure, the claws 7 and 6 provided on the tank 5 and the header plate 4 are fixed by a caulking plate 8 made of stainless steel or the like.
This is performed by caulking through the elastic sealing material 9 (hereinafter referred to as an indirect caulking method). And brass and brass have been used as the header plate material in this case. On the other hand, in recent years, in order to reduce the weight and cost of the heat exchanger, plastic tanks have been used,
To connect the tank and the header plate, do not use a caulking plate such as stainless steel but directly bend the peripheral part of the header plate to caulk, or press the claw part provided on the tank into the locking part of the header plate. (Hereinafter referred to as a direct caulking method) is adopted.

【0003】直接かしめ構造の熱交換器では、かしめ又
は圧入係止にともない、ヘッダープレートに作用する応
力と汚染大気等の外部環境又はロングライフクーラント
(LLC)等の冷却媒体の腐食作用により、ヘッダープ
レートに応力腐食割れ(SCC)が発生し易い欠点があ
った。特にプラスチック製タンクを使用する場合は、弾
性シール材とヘッダープレート間の隙間構造により腐食
が加速され、SCCが発生し易い傾向があり、このため
直接かしめ構造の熱交換器に用いるヘッダープレートの
材質としては、黄銅、丹銅より耐SCC性に優れたSn
入り銅が使用され始めた。しかしながら、Sn入り銅は
強度が弱く、かしめ力を確保するためにはヘッダープレ
ートの肉厚を厚くして対処せざるを得ず、このことはラ
ジエーターの重量を増し、また材料コスト的な不利をも
来すものであった。
In a heat exchanger having a direct caulking structure, due to the caulking or press fitting locking, the stress acting on the header plate and the external environment such as contaminated air or the corrosive action of a cooling medium such as long life coolant (LLC) causes The plate has a drawback that stress corrosion cracking (SCC) is likely to occur. Especially when a plastic tank is used, corrosion tends to be accelerated due to the gap structure between the elastic seal material and the header plate, and SCC tends to occur. Therefore, the material of the header plate used for the heat exchanger with the direct caulking structure. As for Sn, which has better SCC resistance than brass and brass
Entered copper began to be used. However, Sn-containing copper has low strength, and in order to secure the crimping force, it is necessary to increase the thickness of the header plate to deal with it, which increases the weight of the radiator and has a material cost disadvantage. Was also coming.

【0004】かかることから、本発明はヘッダープレー
ト材としては、張り出し加工に耐え、強度的には間接か
しめ構造で使用していた黄銅材なみの高い強度を持ち、
汚染大気等の外部環境又はLLCによるSCCの発生に
対し十分な耐久時間を持ち、諸性能を熱交換器における
ヘッダープレートに適するよう調整した合金を提供し、
軽量でコストが易く、耐SCC性等の耐食性に優れた熱
交換器を提供することを目的とするものである。なお、
熱交換器を構成するフィンにはSn入り銅が用いられる
が、最近ではZnめっき後加熱処理した薄肉Sn入り銅
が、またチューブ材としてはSn又は/及びP入り薄肉
黄銅が用いられている。
In view of the above, the present invention, as the header plate material, withstands the overhanging process and has a strength as high as that of the brass material used in the indirect caulking structure.
We provide alloys that have sufficient durability against external environment such as polluted air or generation of SCC due to LLC, and have various performances adjusted to be suitable for header plates in heat exchangers.
It is an object of the present invention to provide a heat exchanger that is lightweight, easy to cost, and excellent in corrosion resistance such as SCC resistance. In addition,
Sn-containing copper is used for the fins of the heat exchanger, but recently, thin-walled Sn-containing copper that has been heat-treated after Zn plating and Sn or / and P-containing thin brass is used as the tube material.

【0005】[0005]

【問題点を解決するための手段】本発明は、直接かしめ
方式によりタンクとヘッダープレートとを結合してなる
熱交換器において、前記ヘッダープレートがZn:10
〜20wt%、Sn:1.0超〜3wt%、P:0.0
05〜0.03wt%を含み、残部Cuと不可避不純物
とからなるか、もしくは前記ヘッダープレートがZn:
10〜20wt%、Sn:1.0超〜3wt%、P:
0.005〜0.10wt%、Ni又はFeのうち1種
又は2種:0.01〜1.0wt%を含み、残部Cuと
不可避不純物とからなり、結晶粒度が15μm以下のも
のを用いた熱交換器により、前記課題を達成したもので
ある。
The present invention relates to a heat exchanger in which a tank and a header plate are joined together by a direct caulking method, wherein the header plate is Zn: 10.
-20 wt%, Sn: more than 1.0 to 3 wt%, P: 0.0
0 to 0.03 wt% and the balance Cu and unavoidable impurities, or the header plate has Zn:
10 to 20 wt%, Sn: more than 1.0 to 3 wt%, P:
0.005 to 0.10 wt%, one or two kinds of Ni or Fe: 0.01 to 1.0 wt%, the balance Cu and unavoidable impurities, and a crystal grain size of 15 μm or less were used. The heat exchanger achieves the above object.

【0006】熱交換器をなすヘッダープレート材を従来
のSn入り銅等の耐SCC性は優れているが強度は不足
している材料に代えて薄肉化するためには、加工性を表
すエリクセン値が12.0以上であると同時に、耐力1
75N/mm2以上が望ましく、しかも半田付工程で実
質的に軟化しないことが要求される。またアンモニアに
代表される外部環境及び100℃に加熱した30%LL
C水溶液中でそれぞれ付加応力200N/mm2下での
寿命が十分あることが必要である。本発明では、これら
直接かしめ構造の熱交換器におけるヘッダープレートと
しての諸性能を上記のような組成とし、かつ結晶粒度を
調整することにより解決したものである。
In order to reduce the thickness of the header plate material forming the heat exchanger by using a conventional material such as Sn-containing copper that has excellent SCC resistance but lacks strength, the Erichsen value indicating workability is required. Is 12.0 or more and at the same time, yield strength 1
75 N / mm 2 or more is desirable, and it is required that the soldering process does not substantially soften. In addition, the external environment represented by ammonia and 30% LL heated to 100 ° C
It is necessary for each of the C aqueous solutions to have a sufficient life under an applied stress of 200 N / mm 2 . In the present invention, various performances as a header plate in these heat exchangers of direct caulking structure are solved by making the composition as described above and adjusting the crystal grain size.

【0007】以下、ヘッダープレート材の成分組成の限
定理由を説明する。Znの添加は、強度、加工性、耐酸
化性を付与するためで、Zn含有量を10〜20wt%
とする。Zn含有量が10wt%未満では十分な耐力が
得られず、20wt%を超えると耐SCC性が不足す
る。
The reasons for limiting the composition of the header plate material will be described below. The addition of Zn is to impart strength, workability, and oxidation resistance, and the Zn content is 10 to 20 wt%.
And If the Zn content is less than 10 wt%, sufficient yield strength cannot be obtained, and if it exceeds 20 wt%, the SCC resistance becomes insufficient.

【0008】Snの添加は、強度、耐熱性及び耐SCC
性を向上させる効果がある。そして、Sn含有量を1.
0超〜3wt%としたのは、1.0wt%以下では強度
及び耐SCC性向上と耐熱性保存の効果が十分でなく、
3wt%を超えると塑性加工性が低下するためである。
なお、耐熱性の効果はNi又はFeの添加がない合金を
用いる場合には特に必要である。
[0008] The addition of Sn, strength, heat resistance and SCC resistance
It has the effect of improving the sex. Then, the Sn content is set to 1.
The content of more than 0 to 3 wt% is because when 1.0 wt% or less, the effects of improving strength and SCC resistance and preserving heat resistance are not sufficient.
This is because if it exceeds 3 wt%, the plastic workability decreases.
The effect of heat resistance is particularly necessary when using an alloy without addition of Ni or Fe.

【0009】Pの添加は、加工性の向上とNi又はFe
を共添する場合は、Ni又はFeとPの化合物による強
度と耐熱性の向上をはかるためである。そして、Pの含
有量の加減を0.005wt%としたのは、これ未満で
は加工性の向上が不足であり、上限をNi又はFeの添
加がない場合0.03wt%としたのは、0.03wt
%を超えると耐SCC性が低下するためで、Ni又はF
eの添加がある場合の上限0.10wt%は、PはNi
又はFeと化合して耐SCC性に悪影響を及ぼしにくい
が、これを超えると十分な加工性が得られないためであ
る。
The addition of P improves the workability and improves the Ni or Fe content.
This is because, in the case of co-adding, the strength and heat resistance are improved by the compound of Ni or Fe and P. The reason why the content of P is adjusted to 0.005 wt% is that the workability is insufficiently improved below this amount, and the upper limit is 0.03 wt% when Ni or Fe is not added. 0.03 wt
%, The SCC resistance deteriorates.
The upper limit of 0.10 wt% when e is added is P is Ni
Alternatively, it is difficult to combine with Fe to adversely affect the SCC resistance, but if it exceeds this, sufficient workability cannot be obtained.

【0010】Ni又はFeの添加は、強度と耐熱性の向
上をLLC中での耐SCC性の劣化なしにはかるためで
ある。そして、Ni又はFeあるいはその両者の含有量
を0.01wt%〜1.0wt%と限定したのは、Ni
又はFeあるいはその両者の含有量が0.01wt%未
満ではNi又はFeとPの化合物による耐熱性の向上や
強化が顕著とならず、1.0wt%を超えると加工性が
劣化するためである。
The addition of Ni or Fe is for improving the strength and heat resistance without deteriorating the SCC resistance in LLC. Then, the content of Ni or Fe or both is limited to 0.01 wt% to 1.0 wt% because
Alternatively, if the content of Fe or both is less than 0.01 wt%, the improvement or strengthening of heat resistance due to the Ni or Fe and P compound is not remarkable, and if it exceeds 1.0 wt%, the workability is deteriorated. .

【0011】さらに、結晶粒度を15μm以下としたの
は、耐SCC性と強度を同時に十分なものとするためで
ある。すなわち、15μmを超えると十分な強度(耐
力)を焼鈍状態の条件下で得ることが困難であり、また
耐SCC性も若干低下する。
Further, the reason why the grain size is set to 15 μm or less is that the SCC resistance and the strength are simultaneously sufficient. That is, if it exceeds 15 μm, it is difficult to obtain sufficient strength (proof stress) under the condition of the annealed state, and the SCC resistance is slightly lowered.

【0012】本発明によるヘッダープレート材を用いる
熱交換器では上記諸元を満たした焼鈍上がりのコイルか
らヘッダープレート材をプレス加工し、チューブとフィ
ンを組み込んだコアと半田付し、その後、タンクを直接
かしめする。この間に加工性(エリクセン値で代表され
る)と強度(耐力で代表される)を高レベルに保持した
素材を用い、プレス加工に伴う加工歪を耐SCC性に悪
影響がなく強度の軟化を実質的に生じさせない条件下で
除去する。
In the heat exchanger using the header plate material according to the present invention, the header plate material is pressed from the annealed coil satisfying the above-mentioned specifications, soldered to the core incorporating the tubes and fins, and then the tank is Crimp directly. During this time, a material that maintains workability (represented by Erichsen value) and strength (represented by proof stress) at a high level is used. Eliminate under conditions that do not cause it.

【0013】本発明のヘッダープレート材を用いる熱交
換器は、従来のものより軽量化されたものとなり、しか
も外部環境及びLLC中による耐SCC性に優れたもの
となる。
The heat exchanger using the header plate material of the present invention is lighter in weight than the conventional one, and is excellent in SCC resistance due to the external environment and LLC.

【0014】[0014]

【実施例1】本発明合金として、Cu−11%Zn−
1.5%Sn−0.01%P(Cu濃度は残量、%はw
t%、以下同じ)、Cu−15%Zn−1.3%Sn−
0.01%P、Cu−15%Zn−1.3%Sn−0.
2%Ni−0.02%P、Cu−20%Zn−2.0%
Sn−0.3%Ni−0.005%Pの4種類の合金
と、従来合金としてCu−10%Zn、Cu−30%Z
n、Cu−0.15%Sn−0.005%Pの合金3種
類を溶製し、熱間圧延、面削を加えた後、冷間圧延、中
間焼鈍、仕上圧延、最終焼鈍を調整して個々の合金毎に
2〜3種の結晶粒度の異なる試料を作成した。得られた
試料の耐力、エリクセン値、結晶粒度を測定した。エリ
クセン値と耐力の関係について得られた結果を図2に示
す。
Example 1 As an alloy of the present invention, Cu-11% Zn-
1.5% Sn-0.01% P (Cu concentration is the remaining amount,% is w
t%, the same hereinafter), Cu-15% Zn-1.3% Sn-
0.01% P, Cu-15% Zn-1.3% Sn-0.
2% Ni-0.02% P, Cu-20% Zn-2.0%
Four kinds of alloys of Sn-0.3% Ni-0.005% P and Cu-10% Zn, Cu-30% Z as conventional alloys
n, Cu-0.15% Sn-0.005% P alloy 3 types are melted, and after hot rolling and chamfering, cold rolling, intermediate annealing, finish rolling, and final annealing are adjusted. Samples having different grain sizes of 2 to 3 were prepared for each alloy. The yield strength, Erichsen value, and grain size of the obtained sample were measured. The results obtained for the relationship between the Erichsen value and proof stress are shown in FIG.

【0015】結晶粒度は各直線とも左上が小で、右下が
大となる。数値としては図中の直線の範囲でCu−11
%Zn−1.5%Sn−0.01%P合金で5μm〜1
3μm、Cu−15%Zn−1.3%Sn−0.01%
P合金では6μm〜13μm、Cu−15%Zn−1.
3%Sn−0.2%Ni−0.02%P合金では10μ
m〜13μm、Cu−20%Zn−2.0%Sn−0.
3%Ni−0.005%P合金では13μm〜15μm
であった。また従来合金ではCu−10%Znで9μm
〜20μm、Cu−0.15%Sn−0.005%P合
金で25μm〜30μm、Cu−30%Zn合金で15
μm〜60μmであった。なお、従来合金の場合、20
μm〜50μmの結晶粒度のものを使用することが一般
的である。図2の結果から本発明合金は強度に優れてい
ること、Zn,Sn,Ni,結晶粒度の強度に対する寄
与が大きいことがわかる。
The grain size of each straight line is small at the upper left and large at the lower right. Numerical values are Cu-11 within the range of the straight line in the figure.
% Zn-1.5% Sn-0.01% P alloy 5 μm to 1
3 μm, Cu-15% Zn-1.3% Sn-0.01%
In the P alloy, 6 μm to 13 μm, Cu-15% Zn-1.
10μ for 3% Sn-0.2% Ni-0.02% P alloy
m-13 μm, Cu-20% Zn-2.0% Sn-0.
13 μm to 15 μm for 3% Ni-0.005% P alloy
Met. In the case of the conventional alloy, Cu-10% Zn is 9 μm.
-20 μm, Cu-0.15% Sn-0.005% P alloy 25 μm-30 μm, Cu-30% Zn alloy 15
It was μm to 60 μm. In the case of the conventional alloy, 20
It is common to use a crystal grain size of μm to 50 μm. From the results shown in FIG. 2, it can be seen that the alloy of the present invention is excellent in strength and that Zn, Sn, Ni, and grain size make a large contribution to the strength.

【0016】[0016]

【実施例2】Cu−15%Zn−0.2%Ni−0.0
1%P合金をベースとしてこれに1.0〜2.6%のS
nを添加した4種の合金及びNiを0.5%、Pを0.
02%に変更しSnを1.5%添加した合金につき、実
施例1と同様の直線を得た。得られた直線からエリクセ
ン値12.4での0.2%耐力を読み取り、図3を得
た。Snの強度に対する寄与が明らかである。
Example 2 Cu-15% Zn-0.2% Ni-0.0
1.0% to 2.6% S based on 1% P alloy
n of four kinds of alloys and Ni of 0.5%, P of 0.
A straight line similar to that in Example 1 was obtained for the alloy in which the content of Sn was changed to 02% and 1.5% of Sn was added. The 0.2% proof stress at the Erichsen value of 12.4 was read from the obtained straight line to obtain FIG. The contribution of Sn to the strength is clear.

【0017】[0017]

【実施例3】Cu−10%Zn−1.6%Sn合金をベ
ースとして、これに0〜0.052%のPを添加した4
種の合金につき、実施例1と同様の直線を得た。得られ
た直線から耐力200MPaでのエリクセン値を読み取
り、図4を得た。Pの加工性向上に対する寄与が明らか
である。
Example 3 Based on a Cu-10% Zn-1.6% Sn alloy, 0 to 0.052% of P was added thereto4.
A straight line similar to that of Example 1 was obtained for each type of alloy. The Erichsen value at a proof stress of 200 MPa was read from the obtained straight line to obtain FIG. It is clear that P contributes to the improvement of workability.

【0018】[0018]

【実施例4】本発明合金として、Cu−10%Zn−
1.5%Sn−0.2%Ni−0.01%P、Cu−1
1%Zn−1.5%Sn−0.01%Pの2種の合金と
従来合金として、Cu−0.2%Sn−0.01%P、
Cu−10%Zn合金の2種につき、各々最終冷間加工
率を70%とった後、350℃で焼鈍し、時間による硬
度軟化曲線を求めた。その結果を図5に示す。焼鈍時間
0の時の硬度の90%に軟化する時間の長短でみると、
Cu−10%Zn合金に対し、他の合金が優れているこ
とがわかる。
Example 4 As the alloy of the present invention, Cu-10% Zn-
1.5% Sn-0.2% Ni-0.01% P, Cu-1
Two alloys of 1% Zn-1.5% Sn-0.01% P and conventional alloys of Cu-0.2% Sn-0.01% P,
For each of the two types of Cu-10% Zn alloy, the final cold work rate was set to 70%, followed by annealing at 350 ° C., and the hardness-softening curve with time was obtained. The result is shown in FIG. Looking at the duration of softening to 90% of the hardness when the annealing time is 0,
It can be seen that the other alloys are superior to the Cu-10% Zn alloy.

【0019】[0019]

【実施例5】Cu−10%Zn−1.5%Sn−0.0
1%P合金をベースとして、これに0、0.004%、
0.007%、0.013%、0.024%のFeを添
加した5種の合金につき実施例1と同様にして試料を作
製した。これらにつき耐力、エリクセン値、結晶粒径を
測定したが、結晶粒径は4〜7μm、エリクセン値は1
2.0〜12.4の範囲に入った。耐力の測定結果から
最終焼鈍温度とFe分との関係図として図6を得た。図
6よりFeは少量添加でも顕著な耐熱性の向上をもたら
すことが明らかである。
Example 5 Cu-10% Zn-1.5% Sn-0.0
Based on 1% P alloy, 0, 0.004%,
Samples were prepared in the same manner as in Example 1 using five kinds of alloys containing 0.007%, 0.013%, and 0.024% Fe. The proof stress, Erichsen value and crystal grain size were measured for these, and the crystal grain size was 4 to 7 μm and the Erichsen value was 1
It entered the range of 2.0 to 12.4. FIG. 6 was obtained from the result of the proof stress measurement as a relationship diagram between the final annealing temperature and the Fe content. It is clear from FIG. 6 that even if a small amount of Fe is added, it brings about a remarkable improvement in heat resistance.

【0020】[0020]

【実施例6】表1に示す合金について、1:1アンモニ
ア水雰囲気中で引張荷重196N/mm2を付加した上
で応力腐食割れ時間を求めた。その結果を表1にあわせ
て示す。直接かしめ方式では残留応力が150〜200
N/mm2生ずるし、発生応力も最大200N/mm2
なる。従って、この条件下で間接かしめ方式での黄銅の
アンモニア環境下での寿命約3時間以上という基準を確
保したい。この意味で従来合金Cu−15%Znは不適
格である。また応力腐食割れに対してZn濃度の影響が
支配的であり、Snの添加によって改良できることが明
らかである。
Example 6 For the alloys shown in Table 1, the stress corrosion cracking time was obtained after applying a tensile load of 196 N / mm 2 in an atmosphere of 1: 1 ammonia water. The results are also shown in Table 1. The direct caulking method has a residual stress of 150 to 200
N / mm 2 occurs and the maximum stress is 200 N / mm 2 . Therefore, under this condition, it is desired to secure the standard that the life of brass in the indirect caulking method is about 3 hours or more in the ammonia environment. In this sense, the conventional alloy Cu-15% Zn is ineligible. Further, it is clear that the influence of Zn concentration is dominant on the stress corrosion cracking and can be improved by adding Sn.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【実施例7】100℃に保った市販のロングライフクー
ラント中で196N/mm2の引張応力を、Cu−10
%Zn−1.5%Sn−0.2%Ni−0.01%P合
金板、Cu−10%Zn−1.5%Sn−0.013%
Fe−0.01%P合金板及びCu−11%Zn−1.
5%Sn−0.01%P合金板に付加する応力腐食割れ
試験を実施したが、2300時間後も破断しなかった。
しかし同様な実験をCu−20%Zn合金について実施
すると400時間で破断した。
Example 7 A tensile stress of 196 N / mm 2 was applied to Cu-10 in a commercially available long-life coolant kept at 100 ° C.
% Zn-1.5% Sn-0.2% Ni-0.01% P alloy plate, Cu-10% Zn-1.5% Sn-0.013%
Fe-0.01% P alloy plate and Cu-11% Zn-1.
A stress corrosion cracking test was applied to a 5% Sn-0.01% P alloy plate, but it did not fracture even after 2300 hours.
However, when a similar experiment was performed on a Cu-20% Zn alloy, it broke at 400 hours.

【0023】[0023]

【実施例8】表2に示す合金にてヘッダープレートを作
成し、直接かしめ方式で熱交換器を組立て、耐応力腐食
割れ性を試験した。外部環境に対する耐応力腐食割れ性
については、1%のアンモニア雰囲気中での漏れの発生
するまでの時間を測定することにより行った。また、内
部環境に対する耐応力腐食割れ性については、30%に
希釈したロングライフクーラントを80℃で0.12M
Paの内圧で封入し、90日保持した後、漏れの有無と
解体後の割れの有無で評価した。得られた結果を表3に
示す。
[Embodiment 8] Header plates were prepared from the alloys shown in Table 2, heat exchangers were assembled by direct caulking, and stress corrosion cracking resistance was tested. The stress corrosion cracking resistance to the external environment was measured by measuring the time until the occurrence of leakage in a 1% ammonia atmosphere. Regarding the resistance to stress corrosion cracking against the internal environment, the long life coolant diluted to 30% is 0.12M at 80 ° C.
After sealing at an internal pressure of Pa and holding for 90 days, the presence or absence of leakage and the presence or absence of cracks after disassembly were evaluated. The results obtained are shown in Table 3.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【実施例9】Cu−11%Zn−1.5%Sn−0.0
1%PとCu−10%Zn−1.6%Sn−0.012
%Fe−0.01%Pの2種の本発明合金と、Cu−
0.15%Sn−0.005%Pの従来合金の各々0.
6mmの板厚の板からヘッダープレートを作成し、直接
かしめ方式で熱交換器を組立て、静水圧破壊試験を行っ
た。本発明合金を用いた場合は、0.59Paの静水圧
に耐えたが、従来合金を用いた場合は、同様の静水圧に
耐えられなかった。なお、従来合金は0.8mm厚のも
のを用いることが通常である。
Example 9 Cu-11% Zn-1.5% Sn-0.0
1% P and Cu-10% Zn-1.6% Sn-0.012
% Fe-0.01% P two alloys of the present invention and Cu-
0.15% Sn-0.005% P each of the conventional alloys of 0.
A header plate was prepared from a plate having a plate thickness of 6 mm, a heat exchanger was assembled by a direct caulking method, and a hydrostatic breakdown test was performed. When the alloy of the present invention was used, it could withstand a hydrostatic pressure of 0.59 Pa, but when the conventional alloy was used, it could not withstand the same hydrostatic pressure. The conventional alloy is usually 0.8 mm thick.

【0027】[0027]

【発明の効果】以上のように、本発明は直接かしめ構造
の熱交換器におけるヘッダープレートとして特定の組成
の合金をヘッダープレートに用いるため、これにより得
られる熱交換器は耐応力腐食割れ性に優れ、同時にヘッ
ダープレート材の板厚を薄肉化することにより、軽量化
が可能であり、しかも安価であるという顕著な効果を有
する。
As described above, according to the present invention, an alloy having a specific composition is used as a header plate in a heat exchanger having a direct caulking structure. Therefore, the heat exchanger thus obtained has a stress corrosion cracking resistance. Excellent, and at the same time, by reducing the thickness of the header plate material, there is a remarkable effect that the weight can be reduced and the cost is low.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の間接かしめ方式によるタンクとヘッダー
プレート部の部分斜視説明図である。
FIG. 1 is a partial perspective explanatory view of a tank and a header plate portion according to a conventional indirect caulking method.

【図2】実施例1におけるエリクセン値と耐力との関係
図である。
FIG. 2 is a relationship diagram between Erichsen value and proof stress in Example 1.

【図3】実施例2におけるSn含有量と耐力との関係図
である。
FIG. 3 is a relationship diagram between Sn content and proof stress in Example 2.

【図4】実施例3におけるP含有量とエリクセン値との
関係図である。
FIG. 4 is a relationship diagram between P content and Erichsen value in Example 3.

【図5】実施例4における焼鈍時間と硬度との関係図で
ある。
FIG. 5 is a relationship diagram between annealing time and hardness in Example 4.

【図6】実施例5における焼鈍温度と耐力との関係図で
ある。
FIG. 6 is a relationship diagram between an annealing temperature and a proof stress in Example 5.

【符号の説明】[Explanation of symbols]

1 チューブ 2 フィン 3 コア 4 ヘッダープレート 5 プラスチック製タンク 6 ヘッダープレートの爪部 7 プラスチックタンクの爪部 8 かしめプレート 9 弾性シール材 1 Tube 2 Fin 3 Core 4 Header Plate 5 Plastic Tank 6 Header Plate Claw 7 Plastic Tank Claw 8 Caulking Plate 9 Elastic Sealing Material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 周一 埼玉県大宮市プラザ99−2 (72)発明者 高田 勝彦 愛知県刈谷市昭和町1丁目1番地日本電装 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuichi Yamazaki 99-2 Omiya City Plaza, Saitama Prefecture (72) Inventor Katsuhiko Takada 1-1-chome, Showa-cho, Kariya city, Aichi Nihondenso Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ヘッダープレートの周辺部を折り曲げて
タンクとともにかしめるか、もしくはタンクに設けた爪
部をヘッダープレートの係止部に圧入することによりタ
ンクとヘッダープレートとを結合してなる熱交換器にお
いて、前記ヘッダープレートがZn:10〜20wt
%、Sn:1.0超〜3wt%、P:0.005〜0.
03wt%を含み、残部Cuと不可避不純物とからな
り、結晶粒度が15μm以下のものであることを特徴と
する熱交換器用ヘッダープレート用銅合金。
1. A heat exchange system in which a tank and a header plate are joined by bending a peripheral portion of the header plate and caulking with the tank, or by press-fitting a claw portion provided on the tank into a locking portion of the header plate. In the container, the header plate has Zn: 10 to 20 wt.
%, Sn: more than 1.0 to 3 wt%, P: 0.005 to 0.
A copper alloy for a header plate for a heat exchanger, which contains 03 wt% and consists of balance Cu and unavoidable impurities and has a grain size of 15 μm or less.
【請求項2】 ヘッダープレートの周辺部を折り曲げて
タンクとともにかしめるか、もしくはタンクに設けた爪
部をヘッダープレートの係止部に圧入することによりタ
ンクとヘッダープレートとを結合してなる熱交換器にお
いて、前記ヘッダープレートがZn:10〜20wt
%、Sn:1.0超〜3wt%、P:0.005〜0.
10wt%、Ni又はFeのうち1種又は2種:0.0
1〜1.0wt%を含み、残部Cuと不可避不純物とか
らなり、結晶粒度が15μm以下のものであることを特
徴とする熱交換器用ヘッダープレート用銅合金。
2. A heat exchange in which the tank and the header plate are joined by bending the peripheral portion of the header plate and caulking with the tank, or by press-fitting a claw portion provided on the tank into a locking portion of the header plate. In the container, the header plate has Zn: 10 to 20 wt.
%, Sn: more than 1.0 to 3 wt%, P: 0.005 to 0.
10 wt%, one or two of Ni or Fe: 0.0
A copper alloy for a header plate for a heat exchanger, which contains 1 to 1.0 wt% and consists of the balance Cu and unavoidable impurities and has a grain size of 15 μm or less.
【請求項3】 ヘッダープレートの周辺部を折り曲げて
タンクとともにかしめるか、もしくはタンクに設けた爪
部をヘッダープレートの係止部に圧入することによりタ
ンクとヘッダープレートとを結合してなる熱交換器にお
いて、前記ヘッダープレートとしてZn:10〜20w
t%、Sn:1.0超〜3%、P:0.005〜0.0
3wt%を含み、残部Cuと不可避不純物とからなり、
結晶粒度が15μm以下のものを用いることを特徴とす
る熱交換器。
3. A heat exchange in which the tank and the header plate are joined by bending the peripheral portion of the header plate and caulking with the tank, or by press-fitting a claw portion provided on the tank into a locking portion of the header plate. In the container, Zn: 10 to 20w as the header plate
t%, Sn: more than 1.0 to 3%, P: 0.005 to 0.0
3% by weight, the balance Cu and unavoidable impurities,
A heat exchanger having a crystal grain size of 15 μm or less.
【請求項4】 ヘッダープレートの周辺部を折り曲げて
タンクとともにかしめるか、もしくはタンクに設けた爪
部をヘッダープレートの係止部に圧入することによりタ
ンクとヘッダープレートとを結合してなる熱交換器にお
いて、前記ヘッダープレートとしてZn:10〜20w
t%、Sn:1.0超〜3wt%、P:0.005〜
0.10wt%、Ni又はFeのうち1種又は2種:
0.01〜1.0wt%を含み、残部Cuと不可避不純
物とからなり、結晶粒度が15μm以下のものを用いる
ことを特徴とする熱交換器。
4. A heat exchange in which the tank and the header plate are joined by bending the peripheral portion of the header plate and caulking with the tank, or by press-fitting a claw portion provided on the tank into a locking portion of the header plate. In the container, Zn: 10 to 20w as the header plate
t%, Sn: over 1.0 to 3 wt%, P: 0.005
0.10 wt%, one or two of Ni or Fe:
A heat exchanger comprising 0.01 to 1.0 wt%, the balance being Cu and unavoidable impurities, and having a grain size of 15 μm or less.
JP5024996A 1992-01-27 1993-01-21 Copper alloy for header plate and heat exchanger using the same Pending JPH0618188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5024996A JPH0618188A (en) 1992-01-27 1993-01-21 Copper alloy for header plate and heat exchanger using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-35582 1992-01-27
JP3558292 1992-01-27
JP5024996A JPH0618188A (en) 1992-01-27 1993-01-21 Copper alloy for header plate and heat exchanger using the same

Publications (1)

Publication Number Publication Date
JPH0618188A true JPH0618188A (en) 1994-01-25

Family

ID=26362603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5024996A Pending JPH0618188A (en) 1992-01-27 1993-01-21 Copper alloy for header plate and heat exchanger using the same

Country Status (1)

Country Link
JP (1) JPH0618188A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751850A (en) * 1993-06-30 1998-05-12 International Business Machines Corporation Method for image segmentation and classification of image elements for documents processing
JP2001239803A (en) * 1999-12-20 2001-09-04 Nsk Ltd Rolling bearing unit for supporting wheel
US11073345B2 (en) 2018-10-31 2021-07-27 Hanon Systems Heat exchanger header with stiffening element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751850A (en) * 1993-06-30 1998-05-12 International Business Machines Corporation Method for image segmentation and classification of image elements for documents processing
JP2001239803A (en) * 1999-12-20 2001-09-04 Nsk Ltd Rolling bearing unit for supporting wheel
JP4581233B2 (en) * 1999-12-20 2010-11-17 日本精工株式会社 Rolling bearing unit for wheel support
US11073345B2 (en) 2018-10-31 2021-07-27 Hanon Systems Heat exchanger header with stiffening element

Similar Documents

Publication Publication Date Title
JPH0618188A (en) Copper alloy for header plate and heat exchanger using the same
US4828936A (en) Aluminum alloy sheet excellent in high-temperature sagging resistance and sacrificial anode property and having high room-temperature strength
JPH11241136A (en) High corrosion resistant aluminum alloy, clad material thereof, and its production
JPH1180870A (en) Aluminum alloy clad material for heat exchanger excellent in strength and corrosion resistance
JPH0525576A (en) High strength al alloy tube material for al heat exchanger excellent in pitting corrosion resistance
JP2004225061A (en) Aluminum alloy clad tube material having excellent corrosion resistance, and heat exchanger with built-in clad tube material
JPH03291344A (en) Copper alloy for heat exchanger header plate
JP3230685B2 (en) Copper base alloy for heat exchanger
JPH06212331A (en) Aluminum alloy brazing sheet having high strength and high corrosion resistance
JP2000087164A (en) Aluminum alloy clad material for heat exchanger excellent in corrosion resistance
JP2779172B2 (en) Aluminum brazing sheet for heat exchanger components
JP2001226729A (en) Aluminum alloy for heat exchanger excellent in corrosion resistance
JPH07207394A (en) Fin material made of al alloy excellent in brazeability
JPH0841573A (en) High strength aluminum alloy fin material for heat exchanger
JP2000297338A (en) Aluminum alloy clad material for heat exchanger, excellent in corrosion resistance under alkaline environment and acid environment
JPH04154932A (en) Aluminum alloy fin material for heat exchanger excellent in self-corrosion resistance and sacrificial anode effect
JPH11140572A (en) High strength aluminum alloy brazing sheet for heat exchanger excellent in intergranular corrosion resistance
JP2000297339A (en) Aluminum alloy clad material for heat exchanger, excellent in corrosion resistance under alkaline environment and acid environment
JP2000239774A (en) High strength aluminum alloy fin material for heat exchanger, excellent in thermal conductivity
JP2813483B2 (en) Aluminum brazing sheet
JPH09176768A (en) Aluminum alloy clad material for heat exchanger excellent in alkaline corrosion resistance
CN111936647A (en) Aluminum alloy heat exchanger for exhaust gas recirculation system
JP2000087169A (en) Aluminum alloy clad material for heat exchanger excellent in corrosion resistance
JPH05195116A (en) Copper alloy for header plate of heat exchanger
JPH0987788A (en) Brazing sheet for heat exchanger, excellent in strength after brazing and high temperature corrosion resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041104

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250