発明の名称 Title of invention
技術分野 Technical field
本発明は、 電気, 電子, 通信, 情報, 言 H則機器や自動車等に使用されるリード, スィッチ, コ ネクタ, リレー, 摺動片等の構戯才として ¾¾する高強度銅^ に関するものである。 明 The present invention relates to a high-strength copper used as a lead for electric, electronic, communication, information, H-law devices, automobiles, etc., such as leads, switches, connectors, relays, and sliding pieces. is there. Light
背景技術 Background art
細 Fine
~¾に、 電気, 電子, 通信, 情報, tn則機器や自動車等に個されるリード, スィッチ, コネ クタ, リレー, 摺動片等の構謝として、 高強度銅^^棚されているが、近時のカゝかる濃 の小型化, m.it, 高性能化に伴って、 それらにィ¾¾されるリード, スィッチ, コネクタ等の構 戯才料にも、 極めて厳しい糊生改善が要求されている。例えば、 コネクタのバネ接点部は極鎌 力棚される力 かかる極薄板を構成する高強度銅^^には、 薄肉化を図るために高度の強度が 要求さ^ 更には強度と曲げ加工性を始めとする延性との高度なバランスを有すること、 生菌生, 経済性に優れること及び導電性, 耐食性 (耐応力腐:^ IJれ, 耐脱亜鉛腐食, 耐マイグレーショ ン) , 応力緩和特性, 半田付け性, 耐摩耗性等において問題のないこと力 求されている。 In ~ ¾, high-strength copper shelves are used for electrical, electronic, communication, information, tn-law equipment, automobiles, and other leads, switches, connectors, relays, and sliding pieces. With the recent miniaturization, m.it, and high performance of ultra-high density, extremely strict glue improvement is also required for genuine materials such as leads, switches, connectors and so on. Have been. For example, the spring contact part of the connector is a force that can be shelved. The high-strength copper that constitutes such an ultra-thin plate requires a high degree of strength in order to reduce its thickness. It has a high balance with the ductility to begin with, viable bacterial growth, excellent economical efficiency, and conductivity, corrosion resistance (stress decay: ^ IJ, anti-zinc corrosion, migration resistance), stress relaxation It is required that there be no problems in properties, solderability, abrasion resistance, etc.
ところで、 高強度銅^^としては、 一般に、 ベリリウム銅、 チタン銅、 アルミニウム葡同、 り ん葡同、 洋白、 黄銅や S n, N iを添加した黄銅力 s周知である力 s、 これらの HI的な高強戯同合 金には次のような問題があり、 上記した要求に応えることができない。 By the way, high-strength copper ^^ generally includes beryllium copper, titanium copper, aluminum grape, rye gong, nickel silver, brass and brass power with Sn, Ni added s well-known power s , The HI-like high-role alloy has the following problems and cannot meet the above requirements.
すなわち、 ベリリウム銅は、 銅^^中、 最も高い強度を有するものであるが、 ベリリウムカ?人 体に 常に有害である (特に、 溶融扰態ではベリリウム蒸気が極 であっても非常に危険であ る) ため、 ベリリウム銅製咅附又はこれを含む製品の廃棄処理 (特に焼却処理) が困難であり、 «に使用する溶解設備に要するイニシャルコスト力 s極めて高くなる。 したがって、 所定の特性 を得るために の最終段階で溶体化処理が必要となることとも相俟って、 コストを含む経 済性に問題がある。 In other words, beryllium copper, the copper ^^, but those with the highest strength is always detrimental to beryllium Ca? Human body (in particular, a beryllium vapor poles also very dangerous in molten扰態any) for waste disposal beryllium copper咅附or products containing them (especially incineration) is difficult, initial cost power s very high required dissolution equipment used to «. Therefore, there is a problem in economical efficiency including cost, in combination with the necessity of solution treatment in the final stage for obtaining predetermined characteristics.
また、 チタン銅は、 ベリリウム銅に次ぐ強度を有するが、 チタンが活 14¾素であるために高価 な溶解設備が必要となり、 溶解時の品質' り力問題となる。 したがって、 ベリリウム銅と同 様に、 $¾tの最終段階での溶体化処理が必要となることとも相俟って、 経済 に問題がある。
また、 アルミニウム Wl同は、 アルミニウムが舌 14¾素であるため、 ^な铸塊を得ること力 s困 難であり、 また半田付け性も悪いといった問題がある。 Titanium copper has the second highest strength than beryllium copper, but since titanium is active, expensive melting equipment is required, which is a problem in quality improvement during melting. Therefore, as in the case of beryllium copper, there is a problem in economy due to the necessity of solution treatment in the final stage of $ ¾t. In addition, aluminum Wl same, because the aluminum is tongue 14¾ prime, is that the force s difficult to obtain a ^ a铸塊, also there is a solderability also problems such as bad.
また、 りん舊同、 洋白は、 熱間加工性力 ¾く、 熱間] aによる が困難であるため、 に 翻連纖造により される。 したがって、 生産性力 く、 エネルギーコストが! ¾く、 り も悪い。 また、 高強度の代表品種であるばね用りん舊同やばね用洋白には、 高価な S n, N iが 多量に含有されているため、 経済性に問題がある。 In addition, Rinjindo and Yoshiro are made of tandem fiber because of their high hot workability and difficulty in hot work. Therefore, productivity is high and energy costs are high! In addition, high-strength representative varieties such as Ringen for spring and nickel white for spring contain a large amount of expensive Sn and Ni, which poses a problem in economics.
黄銅及び S i, N iを添加した黄銅は^ ffiであるカ 強度的に満足できるものでなく、 耐食性 に問題 (応力腐健 IJれ及び β!&腐食) があり、 上記した小型化, 高性能化を図る製品構舰と しては不適当である。 Brass and brass to which Si and Ni are added are ^ ffi. The strength is unsatisfactory, and there is a problem in corrosion resistance (stress corrosion IJ and β! & Corrosion). It is unsuitable as a product structure for improving performance.
したがって、 このような "I殳的高強度銅合金は、 前述した如く小型化, 高性能化され る傾向にある各種機器の部品構戯才として到底満足できるものではなく、 新たな高強凝同 の 開発が強く要請されている。 発明の開示 Therefore, such high-strength copper alloys are not completely satisfactory as components for various types of equipment that tend to be miniaturized and have high performance, as described above. Development is strongly demanded.
本発明者は、 0. 2 %ttt) (永久ひずみが 0. 2 %になるときの弓嫉であり、 以下においては、 単に !¾¾」 ということもある) は結晶樹圣 Dの一 1 Z2乗 (D一1 ) に比例して上昇する、 とするホール 'ベッチ (Hall - Petch) の関係式 (E. 0. Hall, Proc. Phys. Soc. London. 64 (1951) 747.及び NJ. Petch, J. Iron Steel Inst. 174 (1953) 25. 参照)に着目して、 結晶粒を微細化する ことにより、 上言己した の要 ΐ青を ¾1足しうる高強度同^^を得ること力 s きると考え、 結晶粒 の微細ィ匕について種々の研究, 実,験を行った。 その結果、 添加元素次第で ^^を再結晶させる ことによる結晶粒の微細化を実現でき、 結晶粒 (再結晶粒) を或る禾 ij ^以下に微細化させること により 0. 2 %耐カを主とする強度を顕著に向上させることができ、 結晶樹圣が小さくなるに従 つて強度も増大されることカ袢賴した。更に、 結晶粒の微細化における添加元素の景簿について 種々の実験を行い、 C u _ Z n合金に対して S iの添加は、 核 «サイトを増加させる効果があ り、 更に C u— Z n— S i合金に対して C 0の添加は米诚長を抑制する効果があることから、 こ れらの効果を利用することで、 ί 細な結晶粒を有する C u— Z n— S i系^ Xは C u— Z n— S i -C o系合金を得ることが可能であることを究明した。 すなわち、 核 サイトの増加は、 S i添加による積層欠陥エネルギーの低下が原因であると考えら 米诚長の抑制は、 C o添加 による微細な析出物の «が原因と考えられる。 The present inventor believes that 0.2% ttt) (the bow jewel when the permanent set becomes 0.2%, and in the following, it may be simply !! th power (D one 1) rises in proportion to, that hole 'Betti.... (Hall - Petch ) relation (E. 0. Hall, Proc Phys Soc London 64 (1951) 747. and NJ. Paying attention to Petch, J. Iron Steel Inst. 174 (1953) 25.), obtaining the high strength required to add ΐ one more blue by refining the crystal grains Considering the power, we conducted various researches, experiments, and experiments on fine-grained crystal grains. As a result, crystal grains can be refined by recrystallizing ^^ depending on the added element, and the crystal grains (recrystallized grains) can be refined to a certain size ij ^ or less by 0.2% In particular, the strength mainly of the steel can be remarkably improved, and the strength increases as the size of the crystal tree decreases. Furthermore, various experiments were conducted on the list of added elements in the refinement of crystal grains, and the addition of Si to Cu_Zn alloy has the effect of increasing the number of nucleus sites, and furthermore, the effect of Cu— The addition of C 0 to Zn—Si alloy has the effect of suppressing the rice grain length. By using these effects, 、 Cu—Zn— It was clarified that Si-based ^ X can obtain Cu-Zn-Si-Co-based alloy. In other words, the increase in the number of nuclei sites is thought to be caused by the decrease in stacking fault energy due to the addition of Si, and the suppression of rice growth is thought to be due to the formation of fine precipitates due to the addition of Co.
本発明は、 かかる究明事項に基づいてなされたもので、 機械的性質, 力 ni性, 耐食性等に優れ、
経済性にも問題のない新規な高強度銅合金であって、 特に、小型化, 車 I*化, 高性能化される傾 向にある各種機器の部品構戯才としても にィ麵でき、広範な用途に供しうる極めて ¾m性に 富む高強度銅 を m共することを目的とする。 The present invention has been made based on such findings, and is excellent in mechanical properties, strength, corrosion resistance, and the like. This is a new high-strength copper alloy that has no problem in terms of economic efficiency. It can be used especially as a component for various equipment that is becoming smaller, more compact, and more sophisticated. The purpose is to provide a high-strength copper with extremely high 性 m properties that can be used for a wide range of applications.
すなわち、第 1に、本発明は、 主として、 高強度性を必要とされる 才 (板材, 条材, 線材 等) 又はその加工材 (プレス成形品, 曲げ加工品等) として籠する髙強賠同 (以下「第 1 発明銅^^」 という) を ¾f共することを目的とする。 なお、 第 1発明銅^^を構戯才として に删できる製品, 部品には、 薄肉化, 車疆化を要求される擴型, 小型の通ィ teやパソコン 等に删される電子機! ^品、 医療機器部品、月瞻部品、機械部品、 熱^!の管板、海水によ る冷却装置や小型 白等における海フ] i 口, 出口の構成部品、 酉 泉 品、 自動車用の各種 言価機器部品、遊雌具及び日用品等があり、具体的には、 コネクタ, リレー, スィ ツチ, ソケット, パネ, 歯車, ピン, ヮッシャ, 遊戯用コイン, キー, タンブラ一, ボタン, ホ ック, 留め金具, ダイヤフラム, ベロー, 摺動片, 軸受, ボリゥム用摺動片, ブッシュ, ヒユー ズグリップ, リードフレーム, 計 反等を挙げること力できる。 That is, first, the present invention is mainly used as a material that requires high strength (plate material, strip material, wire material, etc.) or a processed material thereof (press-formed product, bent product, etc.). (Hereinafter referred to as "first invention copper ^^"). In addition, products and parts that can use the first invention copper ^^ as a genius can be used in electronic devices used in wide-area, small-sized telecommunications, personal computers, etc., which are required to be thin-walled and carnized. Parts, medical equipment parts, moon parts, machine parts, heat ^! Tube sheets, seawater cooling devices and small white parts etc. There are various price components, playground equipment, daily necessities, etc. Specifically, connectors, relays, switches, sockets, panels, gears, pins, washers, game coins, keys, tumblers, buttons, and hotspots are available. Clamps, fasteners, diaphragms, bellows, sliding pieces, bearings, sliding pieces for volumes, bushings, fuse grips, lead frames, counterweights, etc.
また、 第 2に、 本発明は、 主として、 第 1発明銅合金に要求される禾 s¾には強度を必要としな, いが、高度にバランスされた強度と導電性とを必要とする圧 才 (板材, 条材, 線材等) 又はそ のカロ工材 (プレス成形品, 曲げ加工品等) として籠する高強度銅 (以下「第 2発明銅合 金」 という) を樹共することを目的とする。 なお、 第 2発明銅^^を構戯才として に飾で' きる製品, 部品には、 自動車用の各種機器部品、導電性を必要とする情報 品、 Secondly, the present invention does not require strength mainly for the copper required for the first invention copper alloy, but requires a highly balanced strength and conductivity. The purpose is to share high-strength copper (hereinafter referred to as the “second invention copper alloy”) as a material (plate material, strip material, wire material, etc.) or as a material for caro (press-formed product, bent product, etc.). And In addition, products and parts that can be decorated with the second invention copper ^^ as a genius include various equipment parts for automobiles, information products that require conductivity,
品、 家電機器部品、 熱^^の管板、 海水による冷却装置ゃ小灘 '識等における 嫌入口, 出 口の構成部品、機械部品、遊) tffl品及び日用品等があり、 具体的には、 コネクタ, スィッチ, リ レー, ブッシュ, ヒューズグリップ, リードフレーム, 酉 S泉 キー, タンブラ一, ボタン, ホック, 留め金具, ダイヤフラム, ベロー, 摺動片, 軸受, 遊綱コイン等を挙げることができ る。 Products, household electric appliance parts, heat pipe sheets, seawater cooling system ゃ Onada '等 等 入口 入口 入口 入口 入口 入口 が が が t が が t t , Connectors, switches, relays, bushings, fuse grips, lead frames, roosters, springs, keys, tumblers, buttons, hooks, fasteners, diaphragms, bellows, sliding pieces, bearings, play rope coins, etc. You.
さらに、 第 3に、本発明は、 主として、 第 1発明銅^^と同^^の高強度性を必要とされる 伸線材 (断面円形の 的線材、 断面職力 形(正方 , 多角形(六角腾) 等の異形線 材) 又はそのカロェ材 (曲け加工品等) として霞に棚される高強戯同^^ (以下「第3発明銅 という) を 共することを目的とする。 なお、 第 3発明銅 を構戯才として にィ¾¾ できる製品, 部品には、 医療機 t ¾品、 藤用部品、 月瞎部品、樹戒部品、遊謹品、 自動車用 の各種 m部品、 言 則観 ロ及び電子, 電^ κ¾¾等があり、具体的には、 コネクタ, キー, ヘッダ咅附, 釘 (遊戯機器用釘等) , ヮッシャ, ピン, ネジ, コイルバネ, リードスクリュー,
コピー のシャフト, 金網 ( 用金網又は海水による冷却装置や小 M白等における海水取 入口, 出口のフィルタ等) , 摺動片, 軸受, ボルト等を挙げることができる。 Thirdly, the present invention mainly relates to a drawn wire material (a target wire material having a circular cross section, a cross-sectional work shape (square, polygonal) which requires the same high strength as the first invention copper ^^. The purpose is to share a high-strength drama (hereinafter referred to as the " third invention copper") that is shelved in the haze as a deformed wire (such as hexagonal 腾) or its karoe (bent processed product). The products and parts that can use the third invention copper as a genius are parts of medical equipment, parts of wisteria, parts of wisteria, parts of luster, trees, parts for leisure, various m parts for automobiles, etc. There are two types: electronic devices, electronic devices, electronic devices, and connectors. Specifically, connectors, keys, headers, nails (such as nails for play equipment), washers, pins, screws, coil springs, lead screws, Shafts for copying, wire mesh (cooling device using wire mesh or seawater, filters for seawater intake and outlet in small M white, etc.), sliding pieces, bearings, bolts, etc. can be mentioned.
而して、 第 1発明銅^^は、 4〜19ma s s% (好ましくは 6〜 1 5m a s s %、 より好ま しくは 7〜: 13ma s s%) の Znと 0. 5〜2. 5ma s s % (好ましくは、 0. 9〜2. 3 m a s s %, より好ましくは 1. 3〜2. 2 m a s s %) の S iとをそれらの含有量間に Z n— 2. 5 - S i =0〜15ma s s% (好ましくは 1〜 12 m a s s %、 より好ましくは 2〜 9 m a s s%) の関係を有するように含有し且つ歹¾¾が Cuからなる^5誠をなすと共に、 平均結 晶粒径 Dが 0, 3 ^m≤D≤3. 5〃m (好ましくは 0. 3〃m≤D≤2. 5 m、 より好まし くは 0. 3 m≤ D≤ 2〃 m)である結晶組織をなしており、 再結晶状態における 0. 2 %K¾ 力 s250 N/mm2以上 (好ましくは 300 N/mm2以上) であることを 冓成とするもの である。 Thus, the first invention copper ^^ has a Zn content of 4 to 19 ma ss% (preferably 6 to 15 ma ss%, more preferably 7 to 13 ma ss%) and 0.5 to 2.5 ma ss%. (Preferably 0.9 to 2.3 mass%, more preferably 1.3 to 2.2 mass%) and Zn—2.5-Si = 0 to 15ma ss% (preferably. 1 to 12 mass%, more preferably. 2 to 9 mass%) with forming the content to and歹¾¾ consists Cu ^ 5 Makoto to have the relationship, the mean binding Akiratsubu径D is 0, 3 ^ m ≤ D ≤ 3.5 m (preferably 0.3 m ≤ D ≤ 2.5 m, more preferably 0.3 m ≤ D ≤ 2 m) None has, it is an冓成that the 0. 2% K¾ force s 250 N / mm 2 or more in the recrystallized state (preferably 300 N / mm 2 or higher).
また、 第 2発明銅合金は、 4〜 17 m a s s % (好ましくは 5〜: L 3 m a s s %、 より好まし くは 6〜1 1. 5ma s s%) の Znと 0. 1〜0. 8ma s s % (好ましくは 0. 2〜0. 6 ma s s %, より好ましくは 0. 2〜0. 5ma s s%) の S iとをそれらの含有量間に Z n— 2. 5 - S i =2〜1 5ma s s% (好ましくは 4〜12ma s s%、 より好ましくは 5〜10 ma s s%) の関係を有するように含有し且つ歹! ¾が(:11からなる餘繊をなすと共に、 平均 結晶粒径 Dが 0. 3μΐη≤Ό≤3. 5 m (好ましくは 0. S/^m^D S/^m より好ましく は 0. 3 Λ m≤D≤ 2. 5^m) である結晶組哉をなしており、 再結晶状態における 0. 2 %耐 力が 250 N/mm2以上 (好ましくは 300 NZmm2以上) であることを細冓成とするも のである。 The copper alloy of the second invention has a Zn content of 4 to 17 mass% (preferably 5 to L 3 mass%, more preferably 6 to 11.5 mass%) and 0.1 to 0.8 mass%. % (Preferably 0.2-0.6 ma ss%, more preferably 0.2-0.5 ma ss%) and Z n—2.5 -S i = 2 115 ma ss% (preferably 4-12 ma ss%, more preferably 5-10 ma ss%), and the average crystal is particle diameter D is 0. 3μΐη≤Ό≤3. 5 m (preferably 0. S / ^ m ^ DS / ^ more preferably m 0. 3 Λ m≤D≤ 2. 5 ^ m) a crystal sets Hara The 0.2% proof stress in the recrystallized state is 250 N / mm 2 or more (preferably 300 NZmm 2 or more).
さらに、 第 3発明銅^^は、 66〜76ma s s% (好ましくは 68〜75. 5 m a s s %) の Cuと 2 1〜33ma s s% (好ましくは 22〜31111335%) の2]1と0. 5〜2ma s s% (好ましくは 0. 8〜1. 8ma s s%、 より好ましくは:!〜 1. 7ma s s%) の S iと を、 それらの含有量間に Cu— 5 · S i =62〜67ma s s% (好ましくは Cu_5 · S i = 63〜66. 5ma s s %) 及び Z n + 6 · S i =32〜38ma s s% (好ましくは Zn + 6 · S i =33〜37ma s s%) の関係を有するように、 含有してなる^^繊をなすと共に、 平均結晶粒径 Dが 0. 3〃m≤D≤3. 5 m (好ましくは 0. 3 m≤D≤3 m、 より好ま しくは 0. 3 m≤D 2. 5 m) である糸吉晶B哉をなしており、 再結晶状態における 0. 2 %動が 250 N/mm2以上 (好ましくは 300 N/mm2以上) であることを ¾W成と するものである。
«明銅合金における上記平均結晶粒径 0及び 0. 2%耐カは、 当該合金組織の一部又は全部 を再結晶させる »理たる再結晶化処理が复数回に亘つて行なわれるときにおいては、 最後に行 なわれた再結晶化処理 (以下 「最終稱吉晶化処¾] という) によって得られた材料 (以下「再結 晶材」 という) における平均結晶粒徹ぴ 0. 2%動で特定されるものである。 なお、 上記再 結晶化処理が一回のみ行なわれるときにおいては、 その処理が :11冬再結晶化処理であり且つその 処避才が 結晶材であることはいうまでもない。 Further, the third invention copper ^^ is composed of 66-76 ma ss% (preferably 68-75.5 mass%) of Cu and 21-33 ma ss% (preferably 22-31111335%) of 2] 1 and 0. 5 to 2 ma ss% (preferably 0.8 to 1.8 ma ss%, more preferably:! To 1.7 ma ss%), and Cu—5 · S i = 62 ~ 67ma ss% (preferably Cu_5Si = 63 ~ 66.5ma ss%) and Zn + 6Si = 32 ~ 38ma ss% (preferably Zn + 6Si = 33 ~ 37ma ss%) And the average grain size D is 0.3〃m≤D≤3.5 m (preferably 0.3 m≤D≤3 m, It is preferably 0.3 m ≤ D2.5 m), and the 0.2% movement in the recrystallized state is 250 N / mm 2 or more (preferably 300 N / mm 2以上 W is defined as W. «The average crystal grain size of 0% and 0.2% in the copper alloy is resistant to recrystallization of a part or all of the alloy structure.» When the recrystallization process is performed several times, The average grain size of the material (hereinafter referred to as “recrystallized material”) obtained by the last recrystallization treatment (hereinafter referred to as “final crystallization process”) is 0.2%. It is specified by. When the recrystallization process is performed only once, it is needless to say that the process is the: 11 winter recrystallization process and the evacuation is a crystal material.
條明銅合金は、 好ましい難の形態にあって、 に、 Jomei copper alloy is in a preferred form of difficulty,
(1) 錶塊を熱間加工 (j±¾, 押出, 鍛造等) 及び ζ又は冷間加工 o ,伸線) を含む塑性 カロェにより所 犬に加工し、 その塑 1¾¾ロェ素材を再結晶 域での讓理 ( 屯等) により再結晶化処理 (最終再結晶化処理) することによって得られる再結晶材 (主とし て、 第 1及び第 2発明銅合金は圧延材であり、 第 3発明銅合金は伸線材である) 、 (1) The lump is processed into a dog by plastic karoe including hot working (j ± ¾, extrusion, forging, etc.) and ζ or cold working o, wire drawing. Recrystallized material obtained by recrystallization treatment (final recrystallization treatment) by quenching (final recrystallization, etc.) (mainly the first and second invention copper alloys are rolled materials, and the third invention Copper alloy is a wire drawing material),
(2) 上記 (1) の再結晶材を所定觀犬に冷間加工 (j ,伸線, することによって得 られる冷間加工材 (主として、 第 1及び第 2発明銅 は圧 才であり、 第 3発明銅合 金は伸線材である) 、 (2) A cold-worked material obtained by cold-working (j, drawing) the recrystallized material of the above (1) to a predetermined dog (mainly, the first and second invention copper are brilliant, The third invention copper alloy is a wire drawn material),
(3) 上記 (1) の再結晶材をプレスカロェ, 曲げ加工等により所定の製品开^!犬にカロェすること によつて得られる製品加工材、 . (3) A product obtained by subjecting the recrystallized material of (1) above to a predetermined product by pre-curling, bending, etc. ^^!
(4) 上記 (2) の冷間加工材をプレスカロェ, 曲げ加工等により所定の製品开^ I犬に加工するこ とによつて得られる製品力 Πェ材、 (4) The product strength obtained by processing the cold-worked material of (2) above into a predetermined product 开 ^ I dog by press working, bending, etc. 等
の何れかの形態で $ f共される。 $ F is shared in either form.
第 1発明銅^ にあっては、 特性の更なる向上を図るために、 0. 005〜0. 5ma s s% (好ましくは 0. 01〜0. 3ma s s%、 より好ましくは 0. 02〜0. 2ma s s%) の C In the first invention copper alloy, in order to further improve the characteristics, 0.005 to 0.5 ma ss% (preferably 0.01 to 0.3 ma ss%, more preferably 0.02 to 0 2ma ss%) C
0及び Z又は 0. 03〜1. 5ma s s% (好ましくは、 0. 05〜0. 7ma s s%、 より好 ましくは 0. 05〜0. 5ma s s%) の S nを、 更に含有する合金組成をなすものとしておく ことが好ましい。 Further contains Sn of 0 and Z or 0.03 to 1.5 ma ss% (preferably 0.05 to 0.7 ma ss%, more preferably 0.05 to 0.5 ma ss%). It is preferable to have an alloy composition.
この場合、 ( 0及ぴ311の含有量は、 上言纖囲内において S iの含有量を考慮して される。 すなわち、 Coの含有量は、 これを S i含有量で除した値 C o/S iが 0. 005〜0. 5 (好 ましくは Co/S i=0. 01〜0. 3、 より好ましくは Co/S i =0. 03-0. 2) とな るように^される。 また Snの含有量は、 S i含有量を当該含有量で除した値 S i/Snが 1. 5以上 (好ましくは S i/S n≥2、 より好ましくは S i/S n≥3) となるように決定される。
また、 第 1発明銅合金においては、 0. 005〜0. 3ma s s% (好ましくは 0. 01〜0. 2 m a s s %) の Fe及び/又は 0. 005〜0. 3 m a s s % (好ましくは 0. 01〜0. 2 ma s s %) の N iを、 Coの代 素として或いは C oとの共添元素として更に含有する «をなすものとしておくことができる。 In this case, the content of (0 and 311 is taken into consideration in consideration of the content of Si in the above-mentioned fiber. That is, the content of Co is a value obtained by dividing this by the content of Si. / S i is 0.005 to 0.5 (preferably Co / S i = 0.01 to 0.3, more preferably Co / S i = 0.03 to 0.2). The Sn content is a value obtained by dividing the Si content by the content, and S i / Sn is 1.5 or more (preferably S i / S n ≥2, more preferably S i / S n n≥3). Further, in the first invention copper alloy, 0.005 to 0.3 mass% (preferably 0.01 to 0.2 mass%) Fe and / or 0.005 to 0.3 mass% (preferably 0. .01 to 0.2 mass%) may further be contained as a co-element of Co or as a co-addition element with Co.
この場合、 Fe含有量又は N i含有量は、 S i含有量 (C 0と共添させる場合にあっては、 S i含有量及び Co含有量) を考慮して^される。 すなわち、 Fe, Ni含有量は、 Coが含有 される場合を含めた合言十含有量を S iの含有量で除した値 (Fe+N i +C o) /S iが 0. 0 05〜0. 5 (好ましくは (Fe+N i +Co) /S i =0. 01〜0. 3、 より好ましくは (Fe+N i +Co) /S i =0. 03〜0. 2) となるように される。 かかる決定を行な うに当たっては、 疆己した合計含有量 (F e +N i + C 0 ) が 0. 005〜 0. 55 m a s s % (好ましくは 0. 01〜0. 35ma s s%、 より好ましくは 0. 02〜0. 25ma s s%) となるように酉爐しておくこと力壁ましい。 In this case, the Fe content or the Ni content is determined in consideration of the Si content (when co-added with C 0, the Si content and the Co content). In other words, the content of Fe and Ni is the value obtained by dividing the synonymous content including the case where Co is contained by the content of Si (Fe + N i + Co) / S i is 0.005. ~ 0.5 (preferably (Fe + N i + Co) / S i = 0.01 to 0.3, more preferably (Fe + N i + Co) / S i = 0.03 to 0.2) So that In making such a determination, the total content (F e + N i + C 0) determined is 0.005 to 0.55 mass% (preferably 0.01 to 0.35 mass%, more preferably Is 0.02 to 0.25ma ss%).
第 2発明銅^^にあっては、 特性の更なる向上を図るために、 0. 005〜0. 5ma s s% (好ましくは 0. 01〜0. 3ma s s%、 より好ましくは 0. 02〜0. 2 m a s s %) の C o及び Z又は 0. 2〜3ma s s% (好ましくは 1〜2. 6ma s s%、 より好ましくは 1. 2' 〜2. 5ma s s %) の Snを、 更に含有する^^誠をなすものとしておくことが好ましい。 この場合、 Co含有量及び Sn含有量は、 S i含有量との関係を考慮して決定される。 すなわ ち、 Co含有量は、 上記した範囲内において、 Co含有量を S i含有量で除した値 Co/S iが 0. 02〜: 1. 5 (好ましくは Co/S i =0. 04〜1、 より好ましくは C o/S i = 0. 0 6〜0. 5) となるように決定される。 また、 S n含有量は、 上記した範囲内において、 S i含 有量を Sn含有量で除した値 S i/Snが 0. 5以下 (好ましくは S i /S n≤ 0. 4、 より好 ましくは S iZSn≤0. 3) となるように f夬定される。 In the second invention copper ^^, in order to further improve the characteristics, 0.005 to 0.5 ma ss% (preferably 0.01 to 0.3 ma ss%, more preferably 0.02 to 0.2 mass%) of Co and Z or 0.2 to 3 mass% (preferably 1 to 2.6 mass%, more preferably 1.2 ′ to 2.5 mass%) of Sn. It is preferable to be sincere. In this case, the Co content and the Sn content are determined in consideration of the relationship with the Si content. That is, within the above range, the Co content is a value obtained by dividing the Co content by the Si content. Co / Si is 0.02 to: 1.5 (preferably Co / Si = 0. 04 to 1, more preferably Co / S i = 0.06 to 0.5). Further, the Sn content is a value obtained by dividing the Si content by the Sn content within the above-mentioned range, and the value S i / Sn is 0.5 or less (preferably, S i / S n ≤ 0.4, Preferably, f i is set so that S iZSn ≤ 0.3).
また、 第 2発明銅 にあっては、 Coに代えて或いは Coと共に、 Q. 005〜0. 3ma s s% (より好ましくは 0. 01〜0. 2ma s s%) の Fe及び/又は 0. 005〜0. 3m a s s% (より好ましくは 0. 01〜0. 2ma s s%) の N iを含有させておくことが きる。 この場合、 F e含有 *Xは N i含有量は、 S i含有量 (Coと共添させる場合にあっては、 S i 含有量及び Co含有量) を考慮して決定される。 すなわち、 Fe, Ni含有量は、 Coを含有す る場合を含めた合計含有量を S iの含有量で除した値 (F e +N i + C 0) /S iが 0. 02〜 1. 5 (好ましくは (Fe+N i +Co) /S i =0. 04〜1、 より好ましくは (F e +N i + Co) /S i =0. 06〜0. 5) となるように決定される。 かかる を行なうに当たって
は、 iff己した合計含有量 (Fe+Ni+Co) 力 s0. 005〜0. 55mas s% (好ましくは 0. 01〜0. 35ma s s%、 より好ましくは 0. 02〜0. 25ma s s%) となるように 酉爐しておくことが望ましい。 Further, in the second invention copper, instead of or together with Co, Q.005 to 0.3mass% (more preferably 0.01 to 0.2mass%) Fe and / or 0.005mass%. Ni of 0.3 to 0.3 mass% (more preferably 0.01 to 0.2 mass%) can be contained. In this case, the Fe content * X and the Ni content are determined in consideration of the Si content (when co-added with Co, the Si content and the Co content). That is, the content of Fe and Ni is the value obtained by dividing the total content including the case where Co is contained by the content of Si (F e + N i + C 0) / S i from 0.02 to 1 .5 (preferably (Fe + N i + Co) / S i = 0.04 to 1, more preferably (F e + N i + Co) / S i = 0.06 to 0.5) Is determined. In doing such Is the total content (Fe + Ni + Co) power s 0.005 to 0.55 mass% (preferably 0.01 to 0.35 mass%, more preferably 0.02 to 0.25 mass%) %) Is desirable.
また、 第 1及び第 2発明銅^^にあっては、 用^ ±必要される特性に応じて、 P, Sb, As, S r, Mg, Y, Cr, L a, Ti, Mn, Zr, I n, H fから還尺された一種以上の元素を 含有させておくこと力 sできる。 これらの元素の含有量は、 各々、 0. 003〜0. 3mas s% の範囲で ¾!:に決定される Further, in the first and second invention coppers, P, Sb, As, Sr, Mg, Y, Cr, La, Ti, Mn, Zr , In, Hf can contain one or more elements scaled down. The content of each of these elements is determined in the range of 0.003 to 0.3 mass%, as follows:
第 3発明銅^^にあっては、 特 I生の更なる向上を図るために、 0. 005〜0. 3mas s% (好ましくは 0. 01〜0. 2ma s s%、 より好ましくは 0. 02〜0. 15ma s s%) の Co及び: /又は 0. 03〜lma s s% (好ましくは 0. 05〜0. 7ma s s%、 より好まし くは 0. 05〜0. 5ma s s%) の Snを、 更に含有する^ 1誠をなすものとしておくこと が好ましい。 In the third invention copper ^^, in order to further improve the characteristic I production, 0.005 to 0.3 mass% (preferably 0.01 to 0.2 mass%, more preferably 0.1 mass%). 02-0.15ma ss%) and / or 0.03-lma ss% (preferably 0.05-0.7ma ss%, more preferably 0.05-0.5ma ss%) the sn, it is preferable to assume that further form a ^ 1 Makoto containing.
この場合、 Co, Snの含有量は、 上言 囲内において S i含有量を考慮して f夬定される。 す なわち、 C 0含有量は、 これを S i含有量で除した値 C 0 / S iが 0. 005〜 0. 4 (好まし くは Co/S i=0. 01〜0. 2、 より好ましくは Co/S i =0. 02-0. 15) となる ように決定される。 また、 Sn含有量は、 当該含有量で S i含有量を除した値 S 1 311が1以 上 (好ましくは S i/Sn≥l. 5、 より好ましくは S i/Sn≥2) となるように決定される。 また、 第 3発明銅^^においては、 Coの代 素として或いは Coとの共添元素として、 0. 005〜0. 3ma s s% (好ましくは 0. 01〜0. 2ma s s%) の Fe及び/又は 0. 0 05-0. 3ma s s% (好ましくは 0. 01〜0. 2 m a s s %) の N iを含有させておくこ と力5'できる。 In this case, the contents of Co and Sn are determined in consideration of the Si content in the above description. That is, the C0 content is the value obtained by dividing this by the Si content, and C0 / Si is 0.005 to 0.4 (preferably Co / Si = 0.01 to 0.2). , And more preferably, Co / S i = 0.02-0.15). In addition, the Sn content is a value obtained by dividing the Si content by the content, S 1311 is 1 or more (preferably S i / Sn ≥ 1.5, more preferably S i / Sn ≥ 2). Is determined as follows. Further, in the third invention copper ^^, as an element of Co or as a co-addition element with Co, 0.005 to 0.3mass% (preferably 0.01 to 0.2mass%) of Fe and And / or 0.05% to 0.3mass% (preferably 0.01 to 0.2mass%) of Ni can be contained 5 '.
この場合、 F e含有量又は N i含有量は、 S i含有量 (Coと共添させる場合にあっては、 S i含有量及び Co含有量) を考慮して決定される。 すなわち、 Fe, Ni含有量は、 Coを含有 する場合を含めた合計含有量を S iの含有量で除した値 (Fe+Ni +C 0) /S i力 s0. 00 5〜0. 4 (好ましくは (Fe+N i +Co) ZS i =0. 01〜0. 2、 より好ましくは (F e+N i +Co) /S i =0. 02〜0. 15) となるように決定される。 かかる決定を行なう に当たっては、編己した合計含有量 (Fe+N i +Co) が 0. 005〜0. 35ma s s%In this case, the Fe content or the Ni content is determined in consideration of the Si content (when co-added with Co, the Si content and the Co content). That is, the content of Fe and Ni is a value obtained by dividing the total content including the case of containing Co by the content of Si (Fe + Ni + C0) / Si force s 0.005 to 0.005. 4 (preferably (Fe + Ni + Co) ZSi = 0.01 to 0.2, more preferably (Fe + Ni + Co) /Si=0.02 to 0.15) Is determined. In making such a determination, the total content (Fe + N i + Co) edited should be between 0.005 and 0.35mass%.
(好ましくは 0. 01〜0. 25ma s s%、 より好ましくは 0. 02〜0. 2ma s s%) と なるように酉 51しておくこと力望ましい。
また、 第 3発明銅^ にあっては、 各々 0. 005〜0. 2ma s s%の P、 Sb及び Asと 各々 0. 003〜0. 3ma s s%の S r、 Mg、 Y、 C r、 L a、 T i、 Mn、 Z r、 I n及 び Hf とから選択した一種以上の元素を、 用^ ±必要される特性に応じて、 P、 Sb及び Asを 一種以上含有する場合においてはこれらの合計含有量が 0. 005〜0. 25ma s s%となる ように、 更に含有する合金繊をなすことができる。 - ところで、 前述した如く、 結晶粒 (再結晶粒) の微細化によって強度、 特に 0. 2%勸が1¾] 上するが、 本発明者が実験により確認したところでは、 平均結晶米雄 Dが 3. 5 m以下となる と、 3. 5 mを超える場合に比して、 體な助向上か 1忍められた。 また、 平均結晶米雄 Dを 3. 5 mから t次/ J、さくしていったところ、 3 m, 2. 5^m, 2 mに達した時点で、 耐 力向上度が急激に変化することカ 認された。 このような実験による ¾|忍事項から、 電気, 電子, 通信, 則機鶴の部品構戯才に必要とされる耐カ ( に、 25 ONZmm2以上であり、 好 ましくは 300 N/mm2以上である) が孫保されるためには、 平均結晶! ¾Dが 3. 5 m以 下であることが必要であり、 高度の強度 (ittl) が要求される場合には 3 μ m以下であることが 好ましく、 更に高度の強度が要求される場合は 2 · 5μ m以下であることが好ましいと考えられ、 特に、 可能な範囲で強度の 的な向上を図るためには、 平均結晶 ¾ί圣 Dを 2 m以下としてお くこと力 子ましいと考えられる。一方、 平均結晶米雄 Dが小さくになるに従い動も向上するこ, とになる 、実,験により確認したところでは平均結晶 t¾圣の最小は 0. 3 mであり、 0. 3 μ m未満のものは レベルでは得ることが困難であると予測される。 (Preferably 0.01 to 0.25 ma ss%, more preferably 0.02 to 0.2 ma ss%). Further, in the third invention copper ^, each of 0.005 to 0.2mass% of P, Sb and As and each of 0.003 to 0.3mass% of Sr, Mg, Y, Cr, When one or more elements selected from L a, T i, M n, Z r, In and H f are contained in one or more of P, Sb and As depending on the required properties. An alloy fiber can be further contained so that the total content thereof is 0.005 to 0.25 mass%. -By the way, as described above, the strength, especially the 0.2% recommendation, is increased by the refinement of the crystal grains (recrystallized grains). When it was less than 5 m, it was more efficient than when it was over 3.5 m. In addition, when the average crystal grain size D was reduced from 3.5 m to the order t / J, the improvement in proof stress suddenly changed at 3 m, 2.5 ^ m, and 2 m. It was approved. ¾ by such experiments | from Shinobu matter, electric, electronic, communication,耐Ka (the required for parts構戯rhino law machine cranes, and a 25 ONZmm 2 or more, the good Mashiku 300 N / mm 2 or more) must be an average crystal! ¾D must be 3.5 m or less, and 3 μm or less when a high strength (ittl) is required. In the case where a higher strength is required, it is considered that the thickness is preferably not more than 2.5 μm. In particular, in order to improve the strength as much as possible, the average crystal圣 Keeping D less than 2 m is considered to be powerful. On the other hand, as the average crystal grain D becomes smaller, the movement also improves.According to experiments and experiments, the minimum of the average crystal t¾ 圣 is 0.3 m, which is less than 0.3 μm. Things are expected to be difficult to obtain at the level.
かかる点から、 第 1〜第 3発明銅^^にあっては、 250 N/mm2以上 (好ましくは 300 N/mm2以上) の耐カを確保するために、 0. 3 m≤D≤3. 5 mの再結晶組籠であるこ 曰 とが必要であるとした。 すなわち、 再結晶状態 (最終再結晶化処理後の状態) における平均結! 粒径 Dが 0. 3 m≤ D≤ 3. 5 μ mであり且つ 0. 2 %K¾が 250 N/mm 2以上であるこ とが必要である。 そして、 第 2及び第 3発明銅合金では、 より高強度であることカ 求される場 合において、 0.
From this point, in the first to third invention copper ^^, in order to secure a resistance to 250 N / mm 2 or more (preferably 300 N / mm 2 or more), 0.3 m≤D≤ It is said that it is necessary to have a recrystallized basket of 3.5 m. In other words, the average result in the recrystallized state (the state after the final recrystallization process)! It is necessary that the particle size D is 0.3 m ≤ D ≤ 3.5 μm and 0.2% K 250 is 250 N / mm 2 or more. In the case where the second and third invention copper alloys are required to have higher strength, it is considered that the copper alloy has a thickness of 0.
としておくこと力 り好ましい。 一方、 第 2及び第 3発明銅 より更に高強度であること力 、 要とされる用途にも供せられる第 1発明銅合金にあっては、 0. 3; m≤D≤2. 5Λπιとして おくこと力 子ましく、 0. 3 m≤D≤2/ mとしておくことがより好ましい。 It is preferable to keep it. On the other hand, the first invention copper alloy, which has higher strength than the second and third invention coppers, and which is also used for required applications, has a capacity of 0.3; m≤D≤2.5 Λ More preferably, it should be set to 0.3 m≤D≤2 / m.
また、 第 1〜第 3発明銅 ^^は、 適当な熱処理 (^:には應屯) により再結晶させることによ つて上記した如き結晶粒の微細化を実現したものであるが、 かかる結晶粒の微細化は前述した合 金 ¾J¾としておくことによって可能となる。
すなわち、 第;!〜第 3発明銅合金において、 Zn, S iは、 積層欠陥エネルギーを下げ、 転位 密度を高くし、 再結晶 ¾成の核のサイト (場所) を増やして、 結晶粒の微細化に寄与する機能 と、 C uのマトリックスに固溶して材¾ ^度の向上に寄与する機能とを有するものであり (以下、 両機能を 「結晶樹 細化'強度向上機能」 という) 、 それらの含有量は次のような理由から前述 した如く決定されている。 In addition, the first to third invention copper ^^ realizes the refinement of crystal grains as described above by recrystallization by an appropriate heat treatment (^: 應). Refinement of grains can be achieved by setting the alloy {J} described above. That is, No .; -In the third invention copper alloy, Zn, Si lowers the stacking fault energy, increases the dislocation density, and increases the number of nuclei sites (locations) for recrystallization, thereby contributing to the refinement of crystal grains. And a function of forming a solid solution in the Cu matrix to contribute to the improvement of the material strength (hereinafter, both functions are referred to as “crystal thinning 'strength improving function”), and their contents are Has been determined as described above for the following reasons.
すなわち、 主に圧 才又はその製品加工材として棚される第 1及び第 2発明銅^^では、 Z n含有による結晶樹 細化 ·強度向上機能が" 5¾分に発揮されるためには、 Z n含有量を 4 m a s s%以上とする必要が'あり、 当該機能をより効果的に発揮させるためには、 強度の大幅な向上を 図る第 1発明銅合金において 6 m a s s %以上 (好ましくは 7 m a s s %以上) とし、 第 1発明 銅 よりやや高強度性に劣ることカ赞される第 2発明銅 において 5ma s s%以上 (好ま しくは 6 m a s s %以上) としておくこと力 子ましい。一方、 Z n含有量が '過多であると、 応力 腐健! I U 受 I生が増し、 曲げ加工性も低下することになる。 したがって、 1¾才の用途及び IS力 腐健!!れの抑制機能を有する S iの含有量との関係を考慮すれば、 Zn含有量を、 第 1発明銅合 '金では 19ma s s%以下 (好ましくは 15 m a s s %以下、 より好ましくは 13 m a s s %以 下) とし、 第 2発明銅^^では 17 m a s s %以下 (好ましくは 13 m a s s %以下、 より好ま しくは 11. 5 m a s s %以下) としておく必要がある。 In other words, in the first and second invention copper ^^, which are mainly shelved as a brilliant product or a processed material thereof, in order to achieve the functions of crystal thinning and strength improvement due to the inclusion of Zn in 5 minutes, It is necessary that the Zn content be 4 mass% or more, and in order to exhibit the function more effectively, in the first invention copper alloy for which the strength is greatly improved, 6 mass% or more (preferably 7 mass%) is required. mass% or more), and in the second invention copper, which is considered to be slightly inferior in strength to the first invention copper, at least 5 mass% (preferably 6 mass% or more). If the Zn content is too high, the IU will increase and the bending processability will decrease, so the 1-year-old use and the IS power Considering the relationship with the Si content, the Zn content is reduced to 19 ma ss% in the first invention copper alloy. Lower (preferably 15 mass% or less, more preferably 13 mass% or less), and in the second invention copper ^^, 17 mass% or less (preferably 13 mass% or less, more preferably 11.5 mass% or less) It is necessary to keep it.
一方、 S i含有による結晶樹 細化'強度向上機能は、 Znより遥かに少 iで、発揮されるが、 Z nとの相互ィ乍用によるものである。 また、 S iは Z nとの共添により応、力腐: れ 1生を己文善, 抑制する作用力 sある。 しかし、 S iの iifij添加は、 導電性を低下させることになる。 これらの点 を考慮すれば、 強度向上及 TO晶樹 钿化を生眼とする第 1発明銅^^では、 S i含有量を 0. 5ma s s%以上としておくこと力 s必要であり、 0. 9m a s s %以上 (より好ましくは 1. 3 ma s s%m±) としておくこと力 子ましい。 しかし、 第 1発明銅^^において、 S iを 2. 5 mas s%を超えて'励口すると、 導電性、 熱間加工' 14¾ぴ、冷間加工性カ くなり、 これらの特性 をより充分に確保するためには S i含有量を 2. 3ma s s %以下としておくこと力 子ましく、 2. 2ma s s %以下としておくことがより好ましい。一方、 強度と導電性とのバランスを重視 する第 2発明銅^ では、 所定の強度を得るために必要な結晶樹 钿化効果を発揮させるために、 S i含有量を少なくとも 0. Ima s s%としておくことカ 、要であり、 0. 2ma s s%以上 としておくこと力 子ましい。 しカゝし、 強度とのバランスを考慮して の導電率を ί崔保するため には、 S i含有量を 0. 8 m a s s %以下としておくことが必要であり、 用途に見合う充分な導 電性を確保するためには 0. 6 m a s s %以下 (より好ましくは 0. 5 m a s s %以下) として
おくことが好ましい。 On the other hand, the function of improving the crystal densification 'strength by containing Si is exhibited with i being much smaller than that of Zn, but is due to mutual use with Zn. In addition, S i can respond to co-addition with Zn, and has an action force s that suppresses one life. However, the addition of iifij of Si reduces the conductivity. Considering these points, the first invention copper ^^ to the strength improvement及TO AkiraTatsuki钿化raw eye, it is necessary that force s to keep and the S i content 0. 5 ma ss% or more, 0. It should be at least 9 mass% (more preferably 1.3 mass% m ±). However, in the case of the first invention copper ^^, when Si exceeds 2.5 mass%, the conductivity and hot working becomes 14%, and the cold workability becomes poor. In order to ensure a sufficient amount, the Si content is preferably set to 2.3 ma ss% or less, more preferably 2.2 ma ss% or less. On the other hand, in the second invention copper alloy, which emphasizes the balance between strength and conductivity, the Si content must be at least 0.1% in order to exhibit the crystal-densification effect necessary for obtaining the predetermined strength. It is important to keep it at 0.2 ma ss% or more. However, in order to maintain the electrical conductivity in consideration of the balance between strength and strength, it is necessary to keep the Si content to 0.8 mass% or less. To ensure electrical conductivity, it should be 0.6 mass% or less (more preferably, 0.5 mass% or less) Preferably.
さらに、 第 1及び第 2発明銅合金においては、 Z n, S iの共添による結晶 *¾纖田化の効果と 応力腐 tlれ 14¾ぴ 度とのバランスをとる必要がある力 そのためには、 Z n, S i含有量を 上記した範囲で個々に^:して決定することによっては不十分であり、 Zn, S i含有量の相互 関係を Z n _ 2 · 5 · S iで特定して、 当該関係式の値が一定範囲となるように決定しておくこ とが必要である。 すなわち、 結晶樹 細化による雕の強度を確保するためには、 第 1発明銅合 金では Zn— 2. 5 · S i≥0ma s s%となることが必要であり、 Zn— 2. 5 · S i≥lm a s s% (より好ましくは Zn— 2. 5 · S i≥ 2 m a s s %) となること力 子ましく、 第 2発 明銅^^では Zn— 2. 5 ''S i≥2ma s s%となることが必要であり、 Zn— 2. 5 · S i ≥4ma s s% (より好ましくは Zn— 2. 5 - S i≥5ma s s%) となること力 子ましい。 一方、 第 1及び第 2発明銅合金の何れにあっても、 Zn— 2. 5 · S i >15ma s s%となる と、 応力腐健 ijれが H著に生じるため、 Z n, S i含有量を Zn— 2. 5 · S i≤15ma s s %となるように決定しておく必要があり、 応力腐: ftjれのより効果的な抑制を図るためには、 Zn— 2. 5 · S i≤l 2ma s s% (より好ましくは、 第 1発明銅 で Zn— 2. 5 · S i ≤9ma s s%、 第 2発明銅^^で Z n— 2. 5 · S i≤ 10 m a s s %) となるように決定し ておくことが好ましい。 Furthermore, in the copper alloys of the first and second inventions, the force required to balance the effect of crystallization by co-addition of Zn and Si with the strength of 14% of stress corrosion It is not sufficient to determine the Zn, Si content individually ^: within the above range, and the relationship between Zn, Si content is specified by Zn_2_5 · Si. Then, it is necessary to determine the value of the relational expression within a certain range. That is, in order to secure the strength of the sculpture by crystal thinning, the first invention copper alloy needs to have Zn−2.5 · S i ≥0mass%, and Zn−2.5 · S i≥lm ass% (preferably Zn-2.5 · S i≥2 mass%), and in the second copper alloy ^^, Zn-2.5 ''S i≥2ma ss%, and Zn—2.5 · S i ≥4ma ss% (more preferably, Zn—2.5−S i≥5ma ss%). On the other hand, in any of the first and second invention copper alloys, when Zn−2.5 · S i> 15 ma ss%, stress corrosion ij is significantly generated, so that Zn, S i It is necessary to determine the content so that Zn-2.5 · S i ≤ 15 ma ss%. For more effective suppression of stress rot: ftj S i≤l 2ma ss% (more preferably, Zn-2.5 · S i ≤9ma ss% for the first invention copper, Z n-2.5 · S i≤10 mass% for the second invention copper ^^ ) Is preferably determined.
また、 第 3発明銅 にあって、 Zn含有量は、 第 1及び第 2発明銅 におけると同様に結' 曰 H日謝' 辦田ィ匕 ·強度向上機能を考慮することは勿論であるが、 更に第 3発明銅^^主として伸線 材又はその製品加工材としてィ©¾されるものであることから熱間押出性を考慮して ^する必要 があり、 圧 才である第 1及び第 2発明銅合金に比して多量とすべきであり、 熱間押出性を充分 に確保するためには、 21 m a s s %以上としておくこと力5必要である。 熱間押出一伸線をより 良好ならしめるためには、 Z n含有量を 22ma s 3%以上としておくことがより好ましい。 な お、 第 3発明銅合金は、 第 1及び第 2発明銅^^に比しては、 Z n含有量が多いため耐応力腐食 割れ性が劣ることになるが、 一般の Cu_Z n系合金 (例えば、 J I S-C2700 (65Cu -35Zn) ) に比しては、 Zn含有量力少なく、 糸泉ネ才等としての用 ^±、 耐応力腐: f!jれ性も 充分に満足すること力 sできる。 しかし、 第 3発明銅 において、 線材等として必要且つ充分な 耐応力腐健 Uれ 14¾ぴ冷間加工性を確保するためには、 Z n含有量を 33 m a s s %以下として おくことカ?必要である。 すなわち、 Zn含有量が 33ma s s%を超えると、 /3相, ァ相カ 曳留 し易 冷間加工性に悪景灣を与えることになり、 また応力腐: れ 1'4¾ぴ1»&腐食の点でも 問題となる。耐応力腐葡 Uれ 14¾ぴ冷Β Πェ性を確保しつつ熱間押出一伸線をより良好に行うた
めには、 Z n含有量を 31 m a s s %以下としておくこと好ましい。 第 3発明銅^^においては、 熱間押出性, 冷間加工性を確保するために Cu含有量も考慮する必要があり、 Cu含有量が 66 mas s %未満では /3相, γ相が曳留し易く、 冷間加工性が問題となり、 逆に 76 m a s s %を 超えると、 熱間押出力 s困難となる。 したがって、 Cu含有量は 66〜76ma s s%としておく 必要があり、 冷間加工性, 熱間押出性を充分に確保するためには 68〜75. 5ma s s%とし ておくこと力 ¾子ましい。 In addition, in the third invention copper, the Zn content is, as in the first and second invention copper, naturally, taking into account the strength improvement function. Further, the third invention copper is mainly used as a drawn wire or a processed product thereof, so it is necessary to take hot extrudability into consideration. 2 invention should be a large amount in comparison with the copper alloy, in order to ensure a sufficient hot extrudability is that the force 5 must be a 21 mass% or more. In order to further improve the hot-extrusion drawing, it is more preferable to set the Zn content to 22% by mass or more. The copper alloy of the third invention is inferior in stress corrosion cracking resistance due to its high Zn content compared with the copper of the first and second inventions. (For example, compared to JI S-C2700 (65Cu-35Zn)), Zn content is low, use as Itoizumi ^^, stress rot resistance: f! J Can s power. However, in the third invention copper, in order to secure a necessary and sufficient stress KusaKen U Re 14¾ Pi cold workability as wires or the like, mosquitoes can put Z n content as 33 mass% or less? Required is there. That is, if the Zn content exceeds 33mass%, the / 3 phase and the α phase are easily drawn, which gives bad workability to cold workability and stress decay: 1'4¾ ぴ 1 »& Corrosion is also a problem. Stress extinguishing U 14 14 For this purpose, the Zn content is preferably set to 31 mass% or less. In the third invention copper ^^, it is necessary to consider the Cu content in order to ensure hot extrudability and cold workability. If the Cu content is less than 66 mass%, the / 3 phase and the γ phase曳留to facilitate, cold workability becomes a problem, if it exceeds 76 mass% to the contrary, the hot extrusion force s difficult. Therefore, it is necessary to keep the Cu content at 66-76 ma ss%, and to ensure sufficient cold workability and hot extrudability, it is important to keep the Cu content at 68-75.5 ma ss%. .
また、 S iは、 前述したように、 Znとの共添により結晶謝 钿化'強度向上機能及び] S力腐
抑制機能を発揮するものである。 したがって、 伸線材である第 3発明銅 に おいても、 結晶樹 細化'強度向上機能を主眼とすると、 第 1発明銅 と同様に、 S i含有量 は 0. 5 m a s s %以上としておく必要があり、 伸線材であることを勘案すれば、 0. 8ma s s %以上とすることが好ましく、 1 m a s s %以上とすることが ¾®である。 しかし、 S i含有 量が 2 ma s s %を超えると、 冷間加工性の阻害要因であるァ相, ネ目が析出する。 したがって、 冷間カロェ性を確保するためには、 S i含有量を 2 m a s s %以下とする必要があり、 Z 11カ?多量 に含有されることを考慮して、 1. 8 m a s s %以下であること力 子ましく、 1. 7 m a s s % 以下とすることがより好ましい。 Further, as described above, Si has a function of improving crystal crystallization and strength by co-addition with Zn, and It exerts the suppression function. Therefore, also in the third invention copper, which is a wire drawing material, the Si content needs to be 0.5 mass% or more, as in the first invention copper, mainly for the function of improving the crystal thinning 'strength. Considering that the material is a drawn wire, it is preferably 0.8 mass% or more, and more preferably 1 mass% or more. However, if the Si content exceeds 2 mass%, a phase and foveals, which are factors inhibiting cold workability, precipitate. Therefore, in order to ensure the cold Karoe resistance, it is necessary to the S i content is 2 mass% or less, considering that contained in Z 11 months? Multimeric, 1. 8 mass% or less More preferably, it is more preferably 1.7 mass% or less.
さらに、 第 3発明銅^^において、 熱間押出性、 冷間加工 ¾¾ぴ雷応力腐葡 Uれ性を充分に確 保するためには、 Cu, S i, Zn含有量を個々に独立して^するのみでは不十分であり、 S ' i含有量と Cu含有量及び Zn含有量との関係を考慮して決定する必要があり、 Cu, S i含有 量の相互関係において C 11ー531=62〜6 7111& 3 3%となり且っ211, S i含有量の相互 関係において Z n + 6 · S i =32〜38ma s s%となるように、 Cu, S i, Z n含有量を 決定しておく必要がある。 すなわち、 Cu, S i, Zn含有量が夫々上記した範囲内であっても、 Cu, S i含有量の相互関係が Cu_5S i >67ma s s%となるか、 或いは Zn, S i含有 量の相互関係が Z η + 6 ' S iく 32ma s s%となると、 良好な熱間加工性を確保することが できず、 逆に、 Cu— 5 S i<62ma s s%又は Zn + 6 · S i >38となると、 結晶粒界で の Zn, S 1 カ缟くなり或いは/?相, ァ相カ 留し易くなるため冷間加工性力 ¾くなり、 更 には応力腐翁!!れが生じ易くなり、 用途によっては! 腐食の問題も生じ易くなる。 さらに、 このような問題を生じさせず、 冷間カロェ性, 耐応力腐 Uれ性等をより充分に確保するためには、 Cu— 5S i=63〜66. 5ma s s%及ぴ Z n+6 · 3 ί=33〜37πι& 3 3%となるよ うに、 C u, S i, Z n含有量を決定しておくことが好ましい。 Furthermore, in the third invention copper ^^, in order to ensure sufficient hot extrudability and cold working, lightning stress corrosion resistance, the Cu, Si, and Zn contents must be independently controlled. However, it is not enough to perform the determination in consideration of the relationship between the S ′ i content and the Cu content and Zn content. In the correlation between the Cu and Si content, C 11-531 = 62 to 6 7111 & 3 3%, and 211, and the Cu, Si, and Zn contents are adjusted so that Zn + 6 · Si = 32 to 38mass% in the correlation of the Si content. You need to decide. That is, even if the Cu, Si, and Zn contents are within the above ranges, respectively, the correlation between the Cu and Si contents is Cu_5S i> 67mass%, or the mutual relation between the Zn and Si contents. When the relationship is Z η + 6 'S i, 32 ma ss%, good hot workability cannot be ensured. Conversely, Cu—5 S i <62 ma ss% or Zn + 6S i> When it is 38, the Zn and S 1 content at the grain boundaries increases or the cold workability increases due to easy retention of the /? And α phases. ! Depending on the application! Corrosion problems are also likely to occur. Further, in order to avoid such a problem and to secure cold calorie property and stress rot resistance more sufficiently, Cu—5S i = 63 to 66.5mass% and Zn + It is preferable to determine the contents of Cu, Si, and Zn so that 63 · = 33 to 37πι & 33%.
ところで、 結晶粒は、 ¾J昇に伴って或いは時間の^!に伴って成長していくことなり、 再
結晶過程においては、 すべての部分で同時に再結晶するのではなく、 再結晶し易レ、部分から再結 晶化が始まり、 編^ ¾での再結晶力 S完了するまでには長時間を要する。 このため、再結晶過程 の初期において再結晶した結晶粒は、 再結晶過程が冬了するまでに成長を開始して、 組 が に再結晶する時点ではかなり成長することになる。 したがつて、 組膨或において微細な再 結晶粒が均一に分布するためには、 再結晶過程における再結晶粒の成長を抑制しておくことが好 ましい。 Coにはかかる再結晶粒の成 Κί卬制機能があり、 第 1〜第 3発明銅^^において Coを 添加する理由はこの点にある。 すなわち、 Coは S iとィ匕合して、 ί 細な析出物 (0. 0 l〃m 程度の Co2S i等) を形成して、 結晶粒の成長を抑制する。 Coによる結晶粒の成鄉唰機能 力 揮されるためには、 C 0含有量を 0. 005 m a s s %以上としておくことカ?必要である。 しカゝし、 添加された Coの缝が上記した析出物の形成に関与する訳ではなく、 ~¾の固溶する c 0によってマトリックスの ¾m性ヵ狗上し且つ応力緩和特性が¾上することになる。 したがつ て、 このような而撤性, 応力緩和特性の向上機能をも充分に発揮させるためには、 第 1〜第 3発 明銅 金の何れにおいても、 C 0含有量を 0. 01 m a s s %以上としておくことが好ましく、 更に 0. 02ma s s %以上としておくことがより好ましい。一方、 第 1及び第 2発明銅^^に おいては Coを 0. 5ma s s%を超えて添加しても、 また第 3発明銅合金においては C oを 0. 3ma s s%を超えて添加しても、 用 必要とされる結晶粒の成銜卬制効果, 応力鎩ロ特性の 改善効果が鮮口して、 それ以上向上せず、 経済的に無駄であり、 却って、析出物の粗大化や析出 物量の過多により曲げ加工性を低下させる虞れがある。 した力 て、 Co含有量は、 第 1及び第 2発明銅合金においては 0. 5ma s s%以下としておく必要があり、 また第 3発明銅^^にお いては 0. 3 m a s s %以下としておく必要がある力 s、 上記した各機能をより^)に発揮させ且 つ用^ h必要とされる曲げ加工性を充分に確保するためには、 第 1及び第 2発明銅 において は 0. 3ma s 3 %以下としておくこと力 ¾子ましく、 更に 0. 2 m a s s %以下としておくこと 力 sより好ましく、 また第 3発明銅合金においては 0. 2 ma s s% 下としておくこと力 子まし く、 更に 0. 15 m a s s %以下としておくことがより好ましい。 By the way, the crystal grains grow as the ¾J rises or as ^! In the crystallization process, not all parts are recrystallized at the same time, but it is easy to recrystallize, recrystallization starts from the part, and it takes a long time to complete the recrystallization force S in knitting . Thus, the recrystallized grains at the beginning of the recrystallization process will start to grow by the end of the recrystallization process in winter, and will grow considerably when the set recrystallizes to. Therefore, in order to uniformly distribute fine recrystallized grains in the swelling, it is preferable to suppress the growth of recrystallized grains during the recrystallization process. Co has a function of controlling such recrystallized grains, and this is the reason why Co is added to the first to third invention coppers. In other words, Co bonds with Si to form fine precipitates (such as Co 2 Si of about 0.01 μm), thereby suppressing the growth of crystal grains. To be grain growth鄉唰function forces volatilized by Co is that mosquito? Necessary to the a C 0 content 0. 005 mass% or more. However, the amount of Co added does not contribute to the formation of the above-mentioned precipitates, but the solid solution of c¾ of ~ ¾ improves the matrix and improves the stress relaxation characteristics. Will be. Therefore, in order to sufficiently exert such functions of improving the metastatic property and the stress relaxation property, the C 0 content of 0.01 to 0.01 of the first to third copper alloys must be reduced. It is preferably set to not less than mass%, more preferably not less than 0.02 mass%. On the other hand, in the first and second invention copper alloys, even if Co is added in excess of 0.5 mass%, and in the third invention copper alloy, Co is added in excess of 0.3 mass%. Nevertheless, the required effect of suppressing the formation of crystal grains and improving the effect of stress reduction are clear and do not improve any further, and are economically wasteful. There is a possibility that bending workability may be deteriorated due to excessive formation or excessive amount of precipitates. As a result, the Co content needs to be 0.5 mass% or less in the first and second invention copper alloys, and 0.3 mass% or less in the third invention copper ^^. In order to sufficiently exert the required force s and the above functions ^) and to sufficiently secure the required bending workability, the first and second invention copper require 0.3 ma. s Force to be kept at 3% or less Force, more preferably force to be 0.2 mass% or less, and more preferably force to be 0.2 mass% or less for the third invention copper alloy More preferably, it is set to 0.15 mass% or less.
また、 Coは結晶粒の微細ィ匕を図る上で S iと密 な関係を有するものであるから、 Co含有 量は S i含有量との関係において決定する必要があり、 結晶樹繊田化により用 必要な強度向 上を図るためには、 Co含有量を、 その S i含有量に対する比率 Co/S iが第 1及び第 3発明 銅^ においては 0. 005以上となるように、 また第 2発明銅^^においては 0. 02以上と なるように、 決定しておくこと力 、要である。 すなわち、 Co/S iがこれらの値に達しなレ、場 合には、 上言 斤出物の开成が、少なく、 且つ結晶粒の成 卬制効果カ¾揮されず、 当該発明銅合金
の用 ii±必要とされる強度を得ること力,難である。 さらに、 結晶粒の成靜唰効果を充分に発 揮させて更なる強度向上を図るためには、 Co/S iが、 第 1及び第 3発明銅 では 0. 01 以上であることが好ましく、 0. 02以上であることがより好ましい。 また、 第 2発明銅 で は 0. 04以上であることが好ましく、 0. 06以上であることが好ましい。 In addition, since Co has a close relationship with Si in reducing the crystal grain size, it is necessary to determine the Co content in relation to the Si content. In order to improve the required strength, the Co content should be adjusted so that the ratio Co / S i to the Si content becomes 0.005 or more in the first and third invention copper alloys. It is important to determine the second invention copper so that it becomes 0.02 or more. That is, if Co / Si does not reach these values, the composition of the above-mentioned copper alloy is small and the effect of controlling the formation of crystal grains is not controlled. Ii ± It is difficult to obtain the required strength. Further, in order to sufficiently exert the calming effect of the crystal grains and further improve the strength, it is preferable that Co / Si is 0.01 or more in the first and third invention coppers, More preferably, it is 0.02 or more. Further, in the second invention copper, it is preferably 0.04 or more, more preferably 0.06 or more.
このようにじ 0は、 S i含有量との関係において、 Co/S i力 s上記した如く一定値以上とな るように決定すべきものであるが、 C o/S i力 、要以上に大きくなると、 上言浙出物の粗大化, 増量化を招き、 曲げ加工性を阻害することになる。例えば、 Co/S iが、 腿才である第 1発 明銅^^において 0. 5を超え、 また伸線材又はその製品加ェ材である第 3発明銅 において 0. 4を超えると、 曲げ加工性が急激に低下する。 また、 第 1発明銅^^^求する程度にまで 強度を向上させておく必要のなレ、用途に供せられる第 2発明銅 においても、 C o/S iが 1. 5を超えると、 必要とされる最低隨の曲げ加工性を確保することが困難となる。 したがって、 Co/S iの上限値は、 かかる点と Coによる結晶滅鄙 P制効果とを比較^!:しつつ、 当該発 明銅合 供せられる用途及び加: ¾jg, 开^ 1犬をも考慮して、 決定すべきであり、 具体的には C o/S iの範囲は次のように決定される。 すなわち、 Co/S iの上限は、 第 1発明銅餘にあ つては C o/S i≤0. 5としておくこと力必要であり、 CoZS i≤0. 3としておくこと力 s 好ましく、 Co/S i≤0. 2としておくこと力 である。 また第 2発明銅^ にあっては、 Co/S i≤l. 5としておくこと力 s必要であり、 Co/S i≤lとしておくこと力 子ましく、 Co/S i≤0. 5としておくこと力 SS¾である。 また第 3発明銅^^にあっては、 Co/S i ≤0. 4としておくことカ?必要であり、 CoZS i≤0. 2としておくこと力 子ましく、 CoZ S i≤0. 15としておくこと力 ¾gである。 As described above, the value 0 should be determined so that the Co / Si force s becomes a certain value or more as described above in relation to the Si content, but the Co / Si force is more than necessary. If it becomes larger, the above mentioned products will be coarsened and increased in volume, impeding bending workability. For example, if Co / Si exceeds 0.4 in the first invention copper ^^, which is a thigh, and 0.4 in the third invention copper, which is a wire drawing material or a product material thereof, bending occurs. Workability sharply decreases. Further, it is necessary to improve the strength to the extent that the first invention copper ^^^ is required.In the second invention copper used for applications, if Co / Si exceeds 1.5, It becomes difficult to secure the required minimum bending workability. Therefore, the upper limit of Co / S i is compared with this point and the effect of Co crystal elimination P ^^! : In addition to this, the decision should be made in consideration of the intended use of the copper and the 加 jg and 开 ^ 1 dogs. Specifically, the range of Co / Si is as follows: It is determined. That is, the upper limit of the Co / S i is first invention copper餘near connexion is that force necessary to the C o / S i≤0. 5, CoZS i≤0. 3 and that force s preferable to keep, Co / S i ≤ 0.2. Further, in the second invention copper ^, the force s is required to be set to Co / S i≤l.5, and the force is set to be Co / S i≤l. The power to keep is S S¾. Also In the third aspect copper ^^, Co / S i ≤0. 4 and is that mosquito? A need to, CoZS i≤0. 2 and to keep it forces operators Mashiku, CoZ S i≤0. 15 The power to keep is ¾g.
Fe, Niは、 Coと同様の結晶 ¾3Φ制効果 (より正確には、 Fe, Niによる当言 l果は C 0と同等以下である) を発揮するものである。 したが'つて、 Fe, Niは、 Coのt ¾素とし て含有させること力 s 'できる。勿論、 F e, N iを C 0と共添することにより、 上記効果の更なる 向上を期待できる。 F e及び Z又は N iを C 0に代えて又は C 0と共に添加する場合、 高価な。 Fe and Ni exhibit the same crystal ¾3Φ control effect as Co (more precisely, the effect of Fe and Ni is less than or equal to C 0). It was but ', connexion, Fe Ni, it forces s is contained in the t ¾ element of Co' can. Of course, by co-adding Fe and Ni with C 0, a further improvement in the above effects can be expected. It is expensive to add Fe and Z or Ni instead of or together with C0.
0の含有量を低減することによる経済的効果が大きレゝ。 F e, N iを含有させる場合における、 F e, N i含有量及び S i含有量との関係 (Co+Fe+N i) /S iは、 C o含有 »¾ぴ3 i 含有量との関係 Co/S iについて前述したと同様の理由, から、 第 1〜第 3発明銅^^の 何れにおいても、 Fe, N i含有量は Co含有量と同一とし、 (Fe+Ni+Co) ZS i ¾C o/S iと同一とする。 すなわち、 (Fe+Ni+Co) /S iは、 第 1発明銅^^では 0. 0 05〜0. 5 (好ましくは 0. 01〜0. 3、 より好ましくは 0. 002〜0. 2) とし、 第 2
発明銅合金では 0. 02〜1. 5 (好ましくは 0. 04〜1、 より好ましくは 0. 06〜0. 5) とし、 第 3発明銅 では 0. 005〜0. 4 (好ましくは 0. 01〜0. 2、 より好まし くは 0. 02〜0. 15) とする。 ところで、 Fe, N iは C oの f ¾素となりうるものであ り、 Coと同様の機能を発揮するものであるから、 Fe, N i, Coの 2種以上を共添させる場 合においても、 それらの合計含有量は、 Coのみを戦虫添加させる場合の含有量 (編己した Co の含有量) と同等であるべきである。但し、 Fe, Ni, Coの 2種以上を共添させる場合、 固 溶, 析出を考慮すれば、 Fe, Ni, Coの共添含有量 (合計含有量) の上限値は Co含有量よ りも 0. 05 m a s s %程度拡大すること力 s 容される。 かかる点から、 F e, N i, C oの 2 種以上を共添させる場合には、 その合計含有量 (Fe+Ni+Co) を、 Co含有量に対してそ の上限値を 0. 05 m a s s %拡大させた範囲とすること力望ましいとした。すなわち、 当 ΐ亥合 計含有量 (F e +Ν i +C 0) 力 s、 第 1及び第 2発明銅^^では 0. 005〜0. 55ma s s% (好ましくは 0. 01〜0. 35ma s s%、 より好ましくは 0. 02〜0. 25ma s s%) であること力望ましく、 第 3発明銅合金では 0. 005〜0. 35mas s% (好ましく は 0. 01〜0. 25ma s s%、 より好ましくは 0. 02〜0. 2 m a s s %) であることが 望ましいとした。 The economic effect by reducing the content of 0 is large. Relationship between Fe, Ni content and Si content when Fe and Ni are contained (Co + Fe + Ni) / Si is expressed as Co content »¾ ぴ 3 i content and For the same reason as described above for Co / Si, the Fe and Ni contents are assumed to be the same as the Co contents in any of the first to third invention copper ^^, and (Fe + Ni + Co ) Same as ZS i ¾C o / S i. That is, (Fe + Ni + Co) / S i is 0.05 to 0.5 (preferably 0.01 to 0.3, more preferably 0.002 to 0.2) in the first invention copper ^^. ) And the second In the invention copper alloy, it is 0.02 to 1.5 (preferably 0.04 to 1, more preferably 0.06 to 0.5), and in the third invention copper, it is 0.005 to 0.4 (preferably 0.4 to 0.5). 01 to 0.2, more preferably 0.02 to 0.15). By the way, Fe and Ni can be f elements of Co and exert the same function as Co. Therefore, when two or more of Fe, Ni and Co are added together, However, their total content should be equal to the content when only Co is added to the insects (the content of self-edited Co). However, when two or more of Fe, Ni, and Co are co-added, the upper limit of the co-added content (total content) of Fe, Ni, and Co is higher than the Co content in consideration of solid solution and precipitation. Can be increased by about 0.05 mass%. From this point, when two or more of Fe, Ni, and Co are co-added, the total content (Fe + Ni + Co) and the upper limit of the Co content are set to 0. It was determined that it was desirable to increase the range by 05 mass%. That is, the total content (F e + Ν i + C 0) force s of the first and second invention copper ^^ is 0.005 to 0.55 ma ss% (preferably 0.01 to 0. 35 ma ss%, more preferably 0.02 to 0.25 ma ss%), and in the third invention copper alloy, 0.005 to 0.35 mass s% (preferably 0.01 to 0.25 ma ss%). And more preferably 0.02 to 0.2 mass%).
Snは、 強度向上機能、 結晶繊田俗幾能及び IS力緩和特性, 耐食性, 耐摩耗性の向上機能等 を発揮するものである。而して、 第 1及び第 3発明銅合金では、 強度向上機能、 ^ Sn exerts functions such as strength improvement, crystal fiber shiroku and IS force relaxation properties, corrosion resistance, and wear resistance. Thus, in the first and third invention copper alloys, the strength improving function, ^
能, マトリックスの «m性向上機能、 応力緩和特性, 耐食性, 耐摩耗性の向上機能を充分に発揮 させるために、 S n含有量を 0. 03 m a s s %以上とする必要があり、 0. 05 m a s s %以 上とすることカ 子ましい。 しかし、 S n含有量が、 圧礙才である第 1発明銅^^において 1· 5 %を超え、 また伸線材である第 3発明銅^^において 1 m a s s %を超えると、 曲げ加工性が 急激に低下する。 したがって、 曲げ加工性を確保するためには、 Sn含有量を、 第 1発明銅 では 1. 5 m a s s %以下とし、 第 3発明銅^ では 1 m a s s %以下としておくことが必要で ある。 また、 第 1及び第 3発明銅^^の何れにおいても、 曲げ加工性をより充分に確保するため には、 311含有量を0. 7ma s s%以下としておくこと力 ¾子ましく、 0. 5ma s s%以下と しておくこと力 である。 The Sn content must be at least 0.03 mass% in order to fully exhibit the function to improve the performance of the matrix and the properties of the matrix, stress relaxation characteristics, corrosion resistance, and abrasion resistance. It should be at least mass%. However, when the Sn content exceeds 1.5% in the first invention copper ^^, which is a copper alloy, and exceeds 1 mass% in the third invention copper ^^, which is a wire drawing material, bending workability is increased. It drops sharply. Therefore, in order to ensure bending workability, it is necessary that the Sn content be 1.5 mAs s% or less in the first invention copper and 1 mA s s% or less in the third invention copper. In both the first and third invention coppers, in order to ensure sufficient bending workability, the content of 311 should be set to 0.7 mass% or less. It is the power to keep it below 5mass%.
一方、 要求する最低強度が第 1及び第 3発明銅^^より低い第 2発明銅 にあっては、 S i 含有量との関係も考慮して、 Sn添加による強度向上, 結晶 ¾¾¾細化、 応力緩和特性の向上、 耐 応力腐^ ϋれ性, 耐食性, 耐摩耗性の向上を図ることが好ましいが、 そのためには Sn含有量を 0. 2ma s s %以上としておくこと力 ?必要であり、 要求される強度に応じて、 1 m a s s %以
上、 更には 1. 2ma s 3%以上としておくこと力 子ましい。 しかし、 511を311133 3%を超 えて添加すると、 熱間加工性が阻害され、 曲げ加工性も悪くなる。 したがって、 かかるカロ工性を 確保するためには、 S n含有量は 3 m a s s %以下としておく必要があり、 より良好な熱間加工 性, 曲げ加工性を確保するためには、 2. 6ma s s %以下としておくことが好ましく、 2. 5 mas s %以下としておくことがより好ましい。 On the other hand, in the case of the second invention copper, whose required minimum strength is lower than that of the first and third invention coppers, taking into account the relationship with the Si content, the strength is improved by adding Sn, the crystal is refined, improvement of the stress relaxation characteristics, anti-stress corrosion ^ Y is resistance, corrosion resistance, it is preferable to improve the abrasion resistance, for which is that the force? necessary to the the Sn content 0. 2ma ss% or more, 1 mass% or less depending on the required strength It is also important to keep it above 1.2mass 3%. However, if 511 is added in excess of 311133 3%, hot workability is impaired, and bending workability is also deteriorated. Therefore, the Sn content must be 3 mass% or less in order to ensure such calo workability. In order to ensure better hot workability and bending workability, 2.6 ma ss % Or less, and more preferably 2.5 mass% or less.
また、 Snを忝加させる場合、 その含有量は S i含有量との関係 (S iZSn) を考慮する必 要がある。 強度向上を主眼とする第 1発明銅 においては、 S i含有量を多くして高強度を得 ようとする場合、 S i/Sn<l. 5未満であると、 曲げ加工性を始めとする延性が著しく低下 することになる。 したがって、 第 1発明銅^^においては、 Sn含有量を S i/Sn≥l. 5と なるように f½する必要があり、 上記延性を充分に確保するためには、 S i / S n≥2としてお くこと力 ¾子ましく、 S iZSn^Sとしておくこと力 である。 また、 Sn含有量を第 1発明 銅^^より若干少 iに抑えた第 3発明銅^^では、 上記同様の理由から、 Sn含有量を S i/S n≥ 1となるように決定する必要があり、 上記延性を充分に確保するためには、 S i/Sn≥l. 5としておくこと力 子ましく、 S i/Sn≥2としておくこと力 s である。 In addition, when Sn is forgiven, its content must be considered in relation to the Si content (SiZSn). In the copper of the first invention, whose main purpose is to improve the strength, in order to obtain a high strength by increasing the Si content, if S i / Sn <l. The ductility will be significantly reduced. Therefore, in the first invention copper ^^, it is necessary to make the Sn content f½ so that S i / Sn ≧ l.5, and in order to sufficiently secure the above ductility, S i / S n ≧ Power to keep as 2 ¾ Power to keep as S iZSn ^ S. Further, in the third invention copper ^^ in which the Sn content is slightly smaller than the first invention copper ^^, the Sn content is determined to be S i / S n ≥ 1 for the same reason as described above. must, in order to sufficiently ensure the ductility is S i / Sn≥l. 5 and to keep it forces operators preferred, it forces s to keep the S i / Sn≥2.
一方、 強度とバランスされた導電性が要求される第 2発明銅^^にあっては、 S iの'励口に制 約を受けることから、 延性を大きく損なうことなく高強度を確保するためには、 Sn含有量を S i含有量との関係において S i/S n≤0. 5となるように;^しておくことが必要である。延 性, 強度をより向上させるためには、 S i/Sn≤0. 4としておくこと力 子ましく、 S i/S n≤0. 3としておくこと力 である。 On the other hand, in the case of the second invention copper ^^, which is required to have conductivity balanced with strength, since it is restricted by the opening of Si, it is necessary to secure high strength without greatly impairing ductility. It is necessary to set the Sn content so that S i / S n ≤ 0.5 in relation to the Si content. In order to further improve ductility and strength, it is necessary to set S i / Sn ≤ 0.4, and to set S i / S n ≤ 0.3.
P, Sb, As, S r, Mg, Y, Cr, L a, Ti, Mn, Z r, I n, ΗΪは、 当該^^ の用途に応じて ¾¾¾されるものであり、 主として、 結晶粒の微細化、 熱間加工性の改善、 耐食性 の改善、 不可避的に¾λする有菌 *¾素 (S等) をより無害なものとする作用及び IS力緩和特 性の向上等の効果を発揮する。 かかる効果は、 当該各元素の含有量が 0. 003ma s s%未満 では、 殆と,待できず、 逆に 0. 3ma s s %を超えて、勦 Πしても、 添加量に見合う効果は得ら れず、 経済的に無駄であり、 却って曲げ加工性を損なうことになる。但し、 Zn含有量が多い第 3発明銅^^においては、 特に、 P, Sb, 八3は耐麻鉛腐食性, 耐応力腐健 !Jれ性の向上を 目的として添加させる。 このような目的として励 Πさせる P, Sb, Asの効果は、 上記の場合 と同様に、 0. 005%未満の励口では殆ど発揮されない。一方、 P含有量が 0. 2ma s s% を超えると、 却って冷間での曲げ加工性カ領なわれることになる。 したがって、 第 3発明銅^^ において P, Sb, Asを ¾¾卩させる場合には、 その含有量を 0. 005〜0. 2mas s%と
しておくこと力 、要であり、 P, S b, A sの 2種以上を共添させる場合における合計含有量を 0. 0 0 5〜0. 2 5 m a s s %としておく必要が'ある。 P, Sb, As, Sr, Mg, Y, Cr, La, Ti, Mn, Zr, In, and 、 are determined according to the intended use of ^^. Demonstrates effects such as miniaturization of steel, improvement of hot workability, improvement of corrosion resistance, action to make bacterium * nitrogen (S, etc.) inevitably more harmless and improvement of IS force mitigation properties I do. If the content of each element is less than 0.003 ma ss%, it is almost impossible to wait. Conversely, if the content exceeds 0.3 ma ss% and the amount of each element is reduced, the effect commensurate with the added amount is obtained. This is economically wasteful, and rather impairs bending workability. However, in the third invention copper having a high Zn content, particularly, P, Sb and 83 are added for the purpose of improving hemp lead corrosion resistance and stress corrosion resistance. The effect of P, Sb, and As, which are excited for such a purpose, is hardly exhibited when the excitation is less than 0.005%, as in the above case. On the other hand, if the P content exceeds 0.2 mass%, the bending workability in the cold state will be degraded. Therefore, when P, Sb, and As are purified in the third invention copper ^^, the content is 0.005 to 0.2 mass%. It is important that the total content when two or more of P, Sb, and As are added together is set to 0.005 to 0.25 mass%.
ところで、 再結晶材を得るための »理 (再結晶化処理) としては、 に、 編己 (1 ) にい ぅ塑 14¾Πェ素材を 2 0 0〜6 0 0。Cに 2 0分〜 1 0時間職することによる舰カ棚される。 かかる «理は、 通常、 ノ ツチ方式で行われる力5'、 謹理時間カ¾い場合、 讓理の初期段階で 再結晶したもの力 s、 たとえ C o添加による結晶成 Sip制効果力 揮されるとしても、 徐々に成長 して、 結晶粒の均一な微細化が妨げられる虞れがある。 しかし、 かかる虞れがある場合、 m を一般的な;^屯 よりも高温 (成开 才の物温)で且つ短時間の »理 (急速高 ϊ¾π熱処理)を行う ことにより、 C 0を添加させる場合は勿論、 添加させない場合にあっても、 初期再結晶粒の成長 を防止して、 再結晶による結晶粒の微細ィ匕を良好に行うことができる。すなわち、 高い熱ェネル ギーを短時間に作用させることにより、 より多くの核生成サイトにおいて短時間でほぼ同時に再 結晶化させ、 結晶成長させる時間的な余裕を与えないからである。具体的には、 例えば、 mmBy the way, in order to obtain a recrystallized material, the process (recrystallization treatment) is as follows. It will be a shelf for 20 minutes to 10 hours at C. Such «management is usually Roh Tutsi force 5 carried out in the manner ', If no謹理time mosquitoes ¾, those that have been recrystallized in the early stages of YuzuruMakoto force s, if C o crystal growth Sip braking effect forces volatilized by adding Even if it does, it may grow slowly and prevent uniform refinement of the crystal grains. However, if there is a possibility of such a problem, m is added to C by performing a treatment (rapidly high ϊ¾π heat treatment) at a higher temperature (a material temperature for growth) than that of a general; In addition to the case where the addition is not performed, the growth of the initial recrystallized grains can be prevented, and the crystal grains can be satisfactorily reduced by recrystallization. That is, by applying high thermal energy in a short period of time, recrystallization can be performed almost simultaneously in more nucleation sites in a short period of time, and there is no time allowance for crystal growth. Specifically, for example, mm
1¾)ロェ素材を、 4 5 0〜7 5 0 °C, 1〜: L 0 0 0秒、の餅で « (急速高 するこ とにより、 当該成开謝の結晶編戠を完全に再結晶化させるようにするのである。 1¾) Roe material is heated at 450 ~ 750 ° C, 1 ~: L0000 seconds with rice cake. It is to make it.
また、 第 1〜第 3発明銅合金は、 "^に、 編己した如く、 ( 1 ) の再結晶材、 (2 ) の冷間加 ェ材又は (3 ) (4 ) の製品加工材として される力 s、 その^ 程において次のような処理 を付加しておくことによって、 強度等の合金特定を更に向上させること力 sできる。 In addition, the first to third invention copper alloys can be used as a recrystallized material of (1), a cold-worked material of (2) or a product processed material of (3) or (4), as described in is the force s, by keeping adding the following processing in the ^ extent, can be force s further improve the alloy particular strength.
例えば、 再結晶材を得る前の冷間加工においてそのカロ工率を 3 0 %以上 (好ましくは 6 0 %以 上) としておくことにより、 具体的には、 (1 ) にいう顧 ロェ素材を得る工程において 又は伸線率が 3 0 %以上 (好ましくは 6 0 %以上)の冷間加工を行うことにより、 結晶粒の微細化 を健させて、 結晶粒の微钿化による強度向上をより効果的に図ること力5できる。 すなわち、 結 晶粒を微細化させるためには、 その核«サイトが必要である力 s、 上記した如く加工率の高い冷 間カロェにより核生成サイトカ s増加し、 その加工率が い程、 核生成サイトの増加量が多くなる。 さらに、 再結晶とはひずみエネルギーの開放によるものであることから、 上記冷間加工により剪 断ひずみを増加させることにより、 より微細な結晶粒が得られることになり、 その結果、 結晶粒 の微細ィ匕による強度向上をより効果的に図ることができる。 ところで、最終再結晶化処理される 画 ェ素材としては、 平均結晶紐圣 (再結晶前の平均結晶 圣) の小さなものであること力 子 ましく、 具体的には平均結晶 |¾圣が 2 0 μ m以下 (好ましくは 1 0〃 m以下) であるものとして おくこと力 子ましい。再結晶前の平均結晶樹圣が小さい程、 次いで行われる譲理において再結 晶の核となる場所が増カロし、 特に粒界での 立密度が レ、程、 核 «サイトになり易いからであ
る。但し、 平均結晶粒径が小さレ、程強度が Ί¾くなるため、 高強戯同 の«に要するエネルギ 一コスト力 く、 ¾jt時間もかかることになる。 したがって、 (1 ) にいう塑 素材の平均 結晶樹圣は、編己した加工率との兼ね合いで決めること力 ?好ましい。 なお、 用 、 再結晶材の ままでは強度が不足する場合にあつては、 当該再結晶材に加工率 1 0 - 6 0 %の冷間 β又は冷 間伸線を施すことにより、 更に高い強度を得ることができる。 For example, by setting the caloric work rate to 30% or more (preferably 60% or more) in the cold working before obtaining the recrystallized material, specifically, the customer material referred to in (1) can be used. In the step of obtaining or by performing cold working with a wire drawing ratio of 30% or more (preferably 60% or more), the grain refinement is improved, and the strength improvement due to the grain refinement is improved. You can plan 5 effectively. That is, in order to refine the crystal grain, the nuclear «which site necessary force s, the high cold Karoe of as working ratio mentioned above increased nucleation cytokine s, extent have its working rate, nuclear The amount of generation sites increases. Furthermore, since recrystallization is due to release of strain energy, finer crystal grains can be obtained by increasing the shear strain by the cold working, and as a result, finer crystal grains can be obtained. It is possible to more effectively improve the strength by the dangling. By the way, the image material to be finally recrystallized is a material having a small average crystal string 圣 (average crystal before recrystallization 力). Specifically, the average crystal | ¾ 圣 is 2 It should be less than 0 μm (preferably less than 10 μm). The smaller the average crystal tree before recrystallization, the more the location of the nucleus of recrystallization in the subsequent yielding increases, especially the higher the standing density at the grain boundary, the more likely it is to be a nucleus site. In You. However, the smaller the average crystal grain size is, the higher the strength is. Therefore, the energy required for the high-strength game is high, the cost is high, and it takes ¾jt time. Therefore, the average crystal tree Holy of塑material referred to in paragraph (1), it forces decide in view of the knitted his own machining rate? Preferable. In the case where the strength of the recrystallized material is insufficient when used, the recrystallized material is subjected to cold β or cold drawing at a working rate of 10 to 60% to achieve higher strength. Can be obtained.
さらに、 編己画 ¾¾ェ素材を得る場合に、 1パスの圧延加工又は伸,働ロェを施す場合、 その圧 下率, 伸線率を大きく言 ( 1 5 %以上 (好ましくは 2 5 %以上) ) しておくこと力 子ましい。 圧下率, 伸線率の高レ、冷間加工により、 剪断ひずみ及び核生成サイトの増加を図り、 稱吉晶粒の 更なる微細ィ匕を実現できるからである。 また、 圧延加工を/ W圣ロール又は逆に極端に^圣のロー ルにより行うこと、 或いは伸線加工をダイス角度の大きな伸線ダイス又は逆にダイス角度の大き な極端に小さな伸線ダイスにより行うことも、 核生成サイト又は局部的なひずみエネルギーの増 加を図り、 再結晶粒の更なる微細ィ匕を実現する上で カである。 さらに、 圧延加工を異周 ¾J£@ 方法により行うこと、 つまり径の異なる上下ロールをィ舰する圧爾幾により iS を変えつつ圧延 することも、. 才に大きな剪断ひずみを与えて、 再結晶粒の微細ィ匕を図ること力3'できる。 また、 條明銅合金は、 その用途等に応じて、 再結晶させない適当な讓理 ("^に、 1 5 0 〜 6 0 0 °C, 1秒〜 4時間での廳屯) を施しておくことによって、 ばね限界ィ級ぴ 、カ嶽口特性 を著しく向上させること力 sできる。具体的には、 (2 ) の冷間加工材 ( (4 ) にいう冷間加工材 を含む) 又は (3 ) (4 ) の製品加工材に、 例えば 2 0 0 °C, 2時間の^ ί牛又は 6 0 0 °C, 3秒 の条件で Mi理を施しておく。 実施例 In addition, when the knitting material is obtained, if a single pass of rolling or drawing and working roving is performed, the reduction and drawing ratios must be increased (15% or more (preferably 25% or more). )) Power to keep. This is because the shearing strain and nucleation sites are increased by the reduction of the draft and the elongation and the cold working, and further refinement of the crystal grains can be realized. In addition, the rolling process is performed by a / W 圣 roll or a roll with an extremely low angle, or the wire drawing process is performed with a wire drawing die with a large die angle or a wire drawing die with an extremely small die angle. It is also important to increase the number of nucleation sites or local strain energies and to realize further finer recrystallized grains. In addition, performing rolling by a different circumference method, that is, rolling while changing the iS by pressing the upper and lower rolls having different diameters, can also cause a large shear strain and recrystallization. 3 'ability to make fine particles. In addition, depending on the application, etc., the Jomei copper alloy is subjected to an appropriate treatment that does not recrystallize ("^, 150 to 600 ° C, 1 second to 4 hours in a restaurant). by placing the spring limit I class Pi, it can be force s significantly improve the mosquitoes bamboo mouth characteristics. Specifically, (including cold working material referred to in (4)) cold working material (2) or (3) The processed material of (4) is subjected to Mi treatment, for example, at 200 ° C. for 2 hours, or at 600 ° C. for 3 seconds.
1として、 表 1〜表 4に示す糸滅の銅 ^^を大気中で溶解し、 厚み 3 5 mm, 幅 8 0 m m, 長さ 2 0 0 mmの角柱 ¾ ^纖を得た。 そして、 この錶塊を 8 5 0 °Cで熱間圧延 (4パス) し て厚み 6 mmの中間板材とし、 これを酸洗した上で、 更に冷間 により厚み 1 mmの最終板材 とした後、 各最終板材を、 それが 1 0 0 %再結晶する (以下「再結晶 Sg」 という) で 1時 間熱処理 ('應屯) することにより、 つまり編哉の完全な再結晶ィ園を施すことにより、 第 1発 明銅 N o . 1 0 l〜N o . 1 8 6を得た。 なお、 再結晶化処理を行うに当たっては、 事前に、 各最終板材から«した!^斗片 0 mm程度の正方开 反材片) を 3 0 から 5 0 °C刻み に 1時間職の射牛で羅屯して、 当 »^斗片カ s完全に再結晶したときの最衡 を見出し、 これ を上言己の再結晶 として ί夬定した (表 1 5〜表 1 7参照、) 。
さらに、 上記したと同一工程により^^ No. 102, No. 107, No. 111, No. 154, No. 180の ί冓成素材と同質 (同"^犬, 同一糸1¾) の ¾冬板材を得た上、 当該最終 板材を上記と異なる条件により再結晶化処理して、 No. 102, No. 107, No. 1 11, No. 152, No. 175と夫々同一糸賊の第 1発明銅^^ No. 102A, No. 1As 1, the copper ^^ of the stringiness shown in Tables 1 to 4 was dissolved in the atmosphere to obtain a prism 纖 ^ fiber having a thickness of 35 mm, a width of 80 mm, and a length of 200 mm. Then, the ingot was hot-rolled (at 4 passes) at 850 ° C to obtain an intermediate plate having a thickness of 6 mm, which was then pickled, and further cold-processed into a final plate having a thickness of 1 mm. By subjecting each final sheet to 100% recrystallization (hereinafter referred to as “recrystallized Sg”), it is heat-treated ('otun) for one hour, that is, the complete recrystallization of the knitting is performed. Thus, the first brilliant copper No. 10 l to No. 186 were obtained. In addition, before performing the recrystallization treatment, beforehand, «材« ^ か ら ^ ^ 各 各 各 か ら ^ 各 ^ ^ ^ ^ 最終 最終 ^ ^ in and Ratamuro, those »^ Tohenka s completely found the most衡at the time of recrystallization, which was ί夬定as his own recrystallization above words (see Table 1 5 Table 1 7). Furthermore, by the same process as described above, ^^ No. 102, No. 107, No. 111, No. 154, No. 180, the same quality (the same "^ dog, the same thread 1¾) ¾ winter board material After refining the final sheet material under conditions different from those described above, No. 102, No. 107, No. 11, No. 152, and No. 175 were the first inventions of the same pirates, respectively. Copper ^^ No. 102A, No. 1
07 A, No. 1 1 1 A, No. 154 A, No. 1805 Aを得た。 すなわち、 第 1発明銅合 金 No. 102 A, No. 107 A, No. 111 A, No. 154 A, No. 180 Aは、 最 終板材を、 その再結晶 より遥かに高温に短時間加 纖することにより、 再結晶化処理 (急 速高動 Π»理) したものであり、 その a (°C) 及び、加熱時間 b (秒) は、 表 15〜表 17 の 「再結晶 SJ¾ の欄に 「a (b) 」 として記載した通りである。例えば、 表 15において、 N 0. 102 Aの 「再結晶 の欄には 「480 (20) 」 と言己載してある力 ?、 これは; 冬ネ反材 を 480 °Cに 20少間加 することを意味する。 07 A, No. 1 11 A, No. 154 A, No. 1805 A were obtained. That is, in the first invention copper alloy No. 102 A, No. 107 A, No. 111 A, No. 154 A, No. 180 A, the final plate material was heated to a temperature much higher than the recrystallization for a short time. It has been recrystallized (rapidly moving at high speed) by fibering, and its a (° C) and heating time b (second) are shown in Table 15 to Table 17 of “Recrystallized SJ¾”. The column is as described as “a (b)”. For example, in Table 15, N in the column of "recrystallization 0. 102 A are then placing himself saying the" 480 (20) "force, which is:? Fuyune reaction material to 480 ° C 20 low while Means to add.
また、 難例 2として、 表 5〜表 8に示す糸滅の銅 ^^を大気中で溶解し、厚み 35mm, 幅 Also, as Difficult Example 2, the copper of ^^ shown in Tables 5 to 8 was dissolved in air, and the thickness was 35 mm and the width was 35 mm.
80 mm, 長さ 200 mmの角柱 1满塊を得た。 そして、 この錶塊を 850°Cで熱間 1¾ (4パ ス) して厚み 6 mmの中間板材とし、 これを酸洗した上で、 更に冷間 E により厚み 1 mmの最 終才反材とした後、 各最終板材を、 それが 100%再結晶する つまり再結晶 で 1時間 ¾ 理 (搬屯) することにより (再結晶化処理することにより) 、第 2発明銅 No. 201〜N o. 281を得た。 なお、 稱吉晶 は、 事前に、 第 1 例と同様にして した (表 18〜 表 20参照) 。 A 1 mm lump of 80 mm in length and 200 mm in length was obtained. Then, the ingot is hot-heated at 850 ° C for 1¾ (4 passes) to obtain a 6 mm-thick intermediate plate, which is then pickled, and further cold-E for a 1 mm-thick final material. After that, each final sheet material is recrystallized 100%, that is, recrystallized for 1 hour (by carrying out a recrystallization process) to obtain the second invention copper No. 201-N. o. 281 was obtained. In addition, the same method as in the first example was used in advance for Akira Nishiyoshi (see Tables 18 to 20).
さらに、 上記したと同一工程により^^ No. 202, No. 209, No. 250, No. 265の構成素材と同質の最終板材を得た上、 当該最終板材に前述した急速高動 Π讓理を施し て再結晶化することにより、 ^^ No. 202, No. 209, No. 250, No. 265と 夫々同ー滅の第 2発明銅^^ No. 202 A, No. 209 A, No. 25 OA, No. 26 5 Aを得た。 すなわち、 ^^ No. No. 202 A, No. 209A, No. 25 OA, No. 265 Aを得た急速高動卩熱処理餅 (渡 a (°C) 及び加熱時間 b (秒) ) は、 表 15〜表 1 7と同様の言 3載¾^により、 表 18〜表 20の 「再結晶 i¾J のネ閬に 「a (b) 」 として言己載し てある。 Furthermore, the same process as described above was used to obtain the final plate material of the same quality as the constituent materials of ^^ No. 202, No. 209, No. 250, and No. 265. And then recrystallized to obtain ^^ No. 202, No. 209, No. 250, No. 265, and the second invention copper, which has been destroyed ^^ No. 202 A, No. 209 A, No. 25 OA, No. 265 A was obtained. In other words, ^^ No. No. 202 A, No. 209A, No. 25 OA, No. 265 A obtained rapid heat-cured rice cake (wat a (° C) and heating time b (second)) According to the word 3 in Table 15 to Table 17, the word “a (b)” is written in the column of “Recrystallized i¾J” in Table 18 to Table 20.
また、 実施例 3として、 表 9〜表 12に示す糸誠の ^^を大気中で溶解し、 直径 95mm, 長 さ 180 mmの円柱 寿塊を得た。 この錶塊を 780°Cに加熱して押出プレス (500 t) によ り、 直径 12mmの 才を得た。 この^ =才を、 洗浄後、 8 mm径まで伸幼卩ェし、 更に、 5 00°C, 1時間の射牛で熱処理した上、 洗浄後、 伸線加工して 4 mm径の線材 (M ) を得た。
そして、 各線材を、 それが 100%再結晶する温度 (雨吉晶温度) で 1時間熱処理 m)する ことにより (再結晶化処理することにより) 、 第 3発明銅合金 No. 301〜No. 397を得 た。 なお、 再結晶化処理を行うに当たっては、 事前に、 各線材から嫌した 斗片 (長さ 20m m (4mm径) 程度の線材片) を 300°Cから 50°C刻みに 1時間 の 牛で 屯して、 当該 謝斗片カ ¾ ^に再結晶したときの最 を見出し、 これを上記の再結晶 として決定した (表 21〜表 24参照) 。 Further, as Example 3, ^^ of Itosei shown in Tables 9 to 12 was dissolved in the atmosphere to obtain a cylindrical longevity lump having a diameter of 95 mm and a length of 180 mm. The lump was heated to 780 ° C and extruded (500 t) to obtain a diameter of 12 mm. After washing, stretched to 8 mm in diameter, heat-treated at 500 ° C for 1 hour, washed, drawn and processed to 4 mm diameter wire ( M). Then, each wire is heat-treated at a temperature at which it recrystallizes 100% (Ameyoshi temperature) for 1 hour m) (by recrystallization treatment) to obtain the third invention copper alloy No. 301 to No. 301. 397 was obtained. In addition, before performing the recrystallization treatment, a towel piece (a piece of wire with a length of about 20 mm (diameter: 4 mm)) that was disliked from each wire was treated with cattle for 1 hour at 300 ° C to 50 ° C intervals. We found the best case when recrystallized on the Xiao-Tou カ ^ and determined this as the above-mentioned recrystallization (see Tables 21 to 24).
また、 上記したと同一工程により合金 No. 302, No. 314, No. 338の冓成素材 と同質の線材 mm) を得た上、 当該最終板材に前述した急速高 ϋ拠理を施して再結晶化 することにより、 ^^ No. 302, No. 314, No. 338と夫々同ー繊の第 3発明銅 合金 No. 302A, No. 314 A, No. 338 Aを得た。 ^^ N o. 302 A, No. 314A, No. 338Aを得た急 高 S¾n»»件 (¾a (°C) 及び加熱時間 b (秒) ) は、 表 15〜表 17と同様の言己載方式により、 表 21〜表 24の 「再結晶温度」 の櫓^: 「a (b)」 として記載してある。 In addition, a wire rod of the same quality as that of the alloy No. 302, No. 314, and No. 338 was obtained by the same process as above, and the final sheet was subjected to the rapid high grounding described above and re-used. By crystallization, ^^ No. 302, No. 314, No. 338 and the same copper alloy No. 302A, No. 314A, No. 338A of the same invention were obtained. ^^ No. 302 A, No. 314A, No. 338A were obtained, and the rapid S¾n »» (¾a (° C) and heating time b (seconds)) were similar to those in Tables 15 to 17. Depending on the loading method, it is indicated as “a (b)” in “Recrystallization temperature” in Tables 21 to 24.
比較例 1として、 第 1 m と同一の工程により、表 13に示す糸賊の第 1比較例^ feN 0. 401〜N 0. 422を得た。 また、 比較例 2として、 第 3截缶例と同一の工程により、 表 14 に示す誠の第 2比較例 0. 423〜No. 431を得た。 なお、 第 1比較例^ feN o . 40 l〜No. 407は、 夫々、 J I S規格の C2100、 C2200、 C2300、 C240 0、 C2600、 C2680及び C4250と同一繊をなすものであり、 第 2比較例合金 No. 423及ぴ N 0. 424は、 夫々、 J I S規格の C 2600及ぴ C 2700と同一誠を すも のである。 なお、 表 1〜表 12において、 Coは含有するが Fe, N iを含有しないものについ ての 「 (Co+Fe+N i) ZS i」 の ¾ ^は 「Co/S i」 と読み替えるものとする。 As Comparative Example 1, a first comparative example of feathers ^ feN 0.401 to N 0.422 shown in Table 13 was obtained by the same process as in 1 m. Further, as Comparative Example 2, the same second comparative example 0.423 to No. 431 shown in Table 14 were obtained by the same steps as in the third cutting example. Note that the first comparative example ^ feN o. 40 l to No. 407 are the same fibers as JIS standard C2100, C2200, C2300, C2400, C2600, C2680 and C4250, respectively, and the second comparative example Alloy Nos. 423 and N 0.424 have the same integrity as JIS standard C 2600 and C 2700, respectively. In Tables 1 to 12, も の ^ in “(Co + Fe + Ni) ZSi” for those containing Co but not Fe or Ni should be read as “Co / Si”. And
ところで、 比較例合金 No. 421, No. 425, No. 427, No. 431については、 $¾t 程において次のような問題が生じて、爾後の工程を行い得なかったため、 製作を断念した。 すなわち、 No. 421については鍩塊を熱間圧延する段階において大きな割れを生じ、 No. 425については熱間押出力 sできず、 No. 427及ぴ N 0. 31については伸条江程で破断 して、 何れも、 爾後の工程を行い得なかったため、 製作を断念した。 By the way, production of the alloys of Comparative Example No. 421, No. 425, No. 427 and No. 431 was abandoned because the following problems occurred at about $ ¾t and the subsequent steps could not be performed. That results in large cracks at the stage of hot rolling the鍩塊for No. 421, can not s hot extrusion force for No. 425, in about Shinjo Jiang for No. 427及Pi N 0. 31 They were broken and none of them could perform the subsequent steps.
そして、 第 1発明銅^^ No. 101〜No. 186, No. 102 A, No. 107A, N o. 111 A, No. 154 A, No. 180A、 第 2発明銅 No. 20 l〜No. 281, No. 202 A, No. 209 A, No. 25 OA, No. 265 A及び第 3発明銅 No. 301〜No. 397, No. 302 A, No. 314 A, No. 338 A並びに第 1及び、第 2
比較例^^ No. 40 1〜No. 43 1 (製作を断念した No. 42 1, No. 425, No. 427, No. 43 1を除く) の再結晶 l¾織における平均結晶 圣 D ( m) を、光学像を用い た切瞧 (J I S-H0501) に基づいて測定した。 その結果は、 表 1 5〜表 26に示す通り であった。 The first invention copper ^^ No. 101 to No. 186, No. 102A, No. 107A, No. 111A, No. 154A, No. 180A, the second invention copper No. 20 l to No. No. 281, No. 202 A, No. 209 A, No. 25 OA, No. 265 A and 3rd invention copper No. 301-No. 397, No. 302 A, No. 314 A, No. 338 A and 1st and 2nd Comparative Example ^^ Recrystallization of No. 40 1 to No. 43 1 (excluding No. 421, No. 425, No. 427, No. 431 which abandoned the production) Average crystal ¾ D (m ) Was measured based on a section using an optical image (JI S-H0501). The results were as shown in Tables 15 to 26.
また、 第 1発明銅^^ No. 1 01〜No. 186, No. 102A, No. 1 07A, No. 1 1 1 A, No. 1 54A, No. 180 A及び第 2発明銅 N o . 201〜No. 281, No. 202 A, No. 209 A, No. 25 OA, No. 265 A並びに第 1比較例^^ N o . 401〜No. 422 (No. 42 1を除く) について、 導電率を測定した。その結果は、表 1 5〜表 20及び表 25に示す通りであった。 なお、導電率 (%I ACS) は、 国際標賴同の体 積比抵抗 (1 7. 24 1 Χ 10-9^Ω · πι) を当該^ のィ機比«で除した値の百分率比で める。 Also, the first invention copper ^^ No. 101 to No. 186, No. 102A, No. 107A, No. 11A, No. 154A, No. 180A and the second invention copper No. 201 to No. 281, No. 202 A, No. 209 A, No. 25 OA, No. 265 A and the first comparative example ^^ No. 401 to No. 422 (excluding No. 421) The conductivity was measured. The results were as shown in Tables 15 to 20 and 25. The conductivity (% IACS) is the percentage ratio of the value obtained by dividing the volume resistivity (17.241 (10-9 ^ Ω · πι) equivalent to that of the international standard by the mechanical ratio of the ^. I can do it.
また、 第 1発明銅^^ No. 1 01〜No. 186, No. 102 A, No. 1 07A, No. 1 1 1 A, No. 1 54A, No. 180 A及び、第 2発明銅^^ N o. 201〜No. 281, No. 202 A, No. 209 A, No. 25 OA, No. 265 A並びに第 1比較例 N o . 401〜No. 422 (No. 421を除く) について、 ァムスラー ^能試験機を使用して引 張試験を行い、 K¾ (0. 2% †]) 、 引 さ及び伸びを測定した。 さらに、 ^^を厚さ 0. 7mmまで冷間圧延 (30%腿) して、 その圧耐 (以下「微ロェ材」 という) について、 上 記と同様の引張試験を行って、耐カ (0. 2 、 引張強さ及び伸びを測定すると共に 曲 げ加工性の麵及ぴ 、力腐健!!れ試験を行った。その結果は、表 1 5〜表 20及び表 25に示す 通りであった。 なお、 第 1発明銅^^ No. 1 01〜No. 186, No. 102 A, No. 1 07 A, No. 1 1 1 A, No. 154A, No. 180 A及び第 2発明銅^ N o. 201〜 No. 281, No. 202 A, No. 209 A, No. 25 OA, No. 265Aを 30%圧 延して得られる ί劾 Πェ材も、本発明に係る高強度銅 であることはいうまでもない。 In addition, the first invention copper ^^ No. 101 to No. 186, No. 102A, No. 107A, No. 11A, No. 1 54A, No. 180A and the second invention copper ^ ^ No. 201 to No. 281, No. 202 A, No. 209 A, No. 25 OA, No. 265 A and the first comparative example No. 401 to No. 422 (excluding No. 421) Tensile tests were performed using an Ammsler ^ ability tester, and K¾ (0.2% †]), tensile and elongation were measured. Further, ^^ is cold-rolled (30% thigh) to a thickness of 0.7 mm, and its pressure resistance (hereinafter referred to as “micro-roe material”) is subjected to the same tensile test as above to obtain a 0.2, the tensile strength and elongation were measured, and the bending workability was evaluated, and the test was conducted to confirm the strength and strength.The results were as shown in Tables 15 to 20 and 25. The first invention copper ^^ No. 101 to No. 186, No. 102 A, No. 107 A, No. 11 A, No. 154A, No. 180 A and the second invention The impeached wood obtained by rolling copper ^ No. 201 to No. 281, No. 202 A, No. 209 A, No. 25 OA, No. 265A by 30% is also a high impregnated material according to the present invention. It goes without saying that it is high-strength copper.
なお、 曲げ加工性の籠は、 ί劾 Π工材からその腿方向に対して垂直に切り出した! 斗片を W 犬に折曲して、 割れが生じたときの折曲度 R/t (R:折曲部における内周側の曲率雜 (m m) , t :
(mm) ) によって行った。表 1 2〜表 1 7及び表 22においては、 R / t = 0. 5で割れが生じなかつたものを、 曲げ加工性に優れるものとして 「◎」 で示し、 R/ The bendable basket was cut from the impeached material perpendicular to the thigh direction! The dough was bent into a W dog and the degree of bending R / t ( R: curvature radius (mm) on the inner circumference side at the bent part, t: (mm)). In Tables 12 to 17 and Table 22, those which did not crack at R / t = 0.5 are indicated by `` ◎ '' as having excellent bending workability, and
5では割れが生じなかった力 s、 0. 5≤R/t< 1. 5で割れを生じたものを、 良好な 曲げ加工性を有するもの (翻上の問題はない) として 「〇」 で示し、 R/t = 2. 5では割れ が生じなかった力 1. 5≤R/t<2. 5で割れを生じたものを、 的な曲げ加工性を有す
るもの (問題はある力 可能である) として 「△」 で示し、 R/t≥2. 5で割れを生じたも のを、 曲げ加工性に劣るもの (細困難) として 「X」で示した。 The force s that did not cause cracking at 5 and the one that cracked at 0.5 ≤ R / t <1.5 were rated “〇” as having good bending workability (no inversion problem). It shows that when R / t = 2.5, the force that did not cause cracking was 1.50 ≤ R / t <2.5. Those with cracks with R / t ≥2.5 are indicated by “△” as those with a certain force (a problem is possible), and those with cracks with R / t ≥2.5 are indicated with “X” as those with poor bending workability (fine difficulty) Was.
また、応力腐: れ試験は、 J I S H3250に規定された弋 ,器と試^ ί夜とを して 行ったものであり、等量のアンモニア水と水を混合した液をィ して、 アンモニア雰囲気暴露時 間と応力緩和率 (拗ロェ材の表面には、 当該後加工材の耐力値の 80%の応力を付加した) との 関係において、耐応力腐: Jれ性の籠を行った。表 15〜表 20及び表 25においては、 75 時間暴露で応力緩和率が 20%以下のものを、 耐腐: れ性に優れるものとして 「◎」 で示し、 応力緩和率が 75時間暴露では 20%を超えても 30時間暴露では 20%以下のものを、耐腐食 割れ性が良好なもの (難上の問題はない) として 「〇」 で示し、 12時間暴露で応力緩和率が In addition, the stress decay test was carried out using a sample vessel and a sample night specified in JIS H3250. In relation to the exposure time to the atmosphere and the stress relaxation rate (a stress of 80% of the proof stress value of the post-processed material was applied to the surface of the refractory material), a cage with stress decay resistance: J was used. . In Tables 15 to 20 and Table 25, those with a stress relaxation rate of 20% or less after 75 hours exposure are indicated by `` ◎ '' as having excellent corrosion resistance: Even if the amount exceeds 30%, those that are 20% or less after 30 hours exposure are indicated by “〇” as having good corrosion cracking resistance (no problem), and the stress relaxation rate after 12 hours exposure
20%以下のものを、 的な耐腐:^!!れ性を有するもの (問題はあるが 可能である) とし て 「△」 で示し、 12時間暴露で応力緩和率が 20%を超えるものを、耐応力腐儲!!れ性に劣る もの (翻困難) として 「X」で示した。 What is less than 20%, anti-corrosion: ^! ! Indicated as “も の” as a material having resilience (although there is a problem but possible), those with a stress relaxation rate exceeding 20% after 12 hours of exposure are those with poor stress corrosion resistance. Difficult) is indicated by “X”.
また、 第 3発明銅合金 No. 301〜No. 397, No. 302 A, No. 314 A, No. In addition, the third invention copper alloy No. 301 to No. 397, No. 302 A, No. 314 A, No.
338A及び第 2比較例合金 No. 423〜No. 431 (露を断念した No. 425, No.338A and the second comparative alloy No. 423 to No. 431 (No. 425, No.
427, No. 431を除く) をアムスラ一 能試謝幾をィ して引張試験を行い、 IttJ (0. 2 %«¾) 、 引張強さ及び伸びを測定した。 さらに、 ^^を 3. 35mm径まで伸線して、 そ の伸線材 (以下「ί劾ロェ材」 という) について、 上記同様の引張試験を行い、 Κ¾引 度, 伸びを測定すると共に、 曲げ加工性の 及び 、力腐儲!!れ試験を行った。 その結果は、表21 〜表 24及び表 26に示す通りであった。 なお、 第 3発明銅^ No. 30 l〜No. 397, No. 302 A, No. 314 A, No. 338 Aを伸 H¾ロェして得られる ί劾口ェ材も、本発明 に係る高強度銅 "^であることはいうまでもない。 427, No. 431) were subjected to a tensile test using the Amsla Performance Test, and the IttJ (0.2% «¾), tensile strength and elongation were measured. Furthermore, ^^ is drawn to a diameter of 3.35 mm, and the drawn material (hereinafter referred to as “Imperture material”) is subjected to the same tensile test as above, and the elongation and elongation are measured. Workability and power profit! The test was performed. The results were as shown in Table 2. 1 to Table 24 and Table 26. The impeached material obtained by stretching the third invention copper No. 30 l to No. 397, No. 302 A, No. 314 A, No. 338 A is also a high impregnating material according to the present invention. It goes without saying that the strength copper is "^".
なお、 曲げ加工性の籠は、拗 Π工材を Vブロックを侧して 90度に折曲して、割れが生じ たときの折曲度 R/d (R:折曲部における内周側の曲率 圣 (mm) , d:御ロェ材の径 (m m) ) によって行った。表 18〜表 22においては、 R/d = 0で割れが生じなかったものを、 曲げ加工性に優れるものとして 「◎」 で示し、 R/d = 0. 25では割れを生じなかったが、 0 ≤R/d<0. 25で割れを生じたものを、 良好な曲げ加工性を有するもの (鋼上の問題はな い) として 「〇」 で示し、 R/d = 0. 5では割れを生じなかつたが、 0. 25≤R/d<0. 5で割れが生じたものを、 的な曲げ加工性を有するもの (問題はあるが難可能である) と して 「△」 で示し、 R/d = 0. 5で割れが生じたものを、 曲け加工性に劣るもの (鋼困難) として 「X」で示した。
また、応力腐: ¾Iれ試験は、上記の曲げ加工性の讓に麵した拗ロェ材であって RZd = l . 5の 9 0度曲げを行ったものについて、 J I S H 3 2 5 0に «された試験器及び " 駒夜を使 用して行つたもので、等量のアンモニア水と水を混合した液を用いてァンモニァ暴露を行つた上、 硫酸で洗った後に 1 0倍の実体顕«で割れの有無を調査し、耐応力腐 !!れ性の を行った。 表 1 5〜表 2 0及び表 2 5においては、 4 0時間暴露で割れのないものを、耐腐健!!れ性に優れ るものとして 「©」で示し、 4 0時間暴露では割れを生じたが 1 5時間暴露では割れのないもの を、耐腐 llれ性が良好なもの (¾ffl上の問題はない) として 「〇」 で示し、 1 5時間暴露では 割れを生じたが 6時間暴露では割れのないものを、 般的な耐腐: illれ性を有するもの ( 題はあ るが!^可能である) として 「△」 で示し、 6時間暴露で割れを生じたものを、耐応カ腐儲!!れ 性に劣るもの (翻困難) として 「X」 で示した。 In addition, the bending workability of the basket is determined by bending the material to 90 degrees through the V block, and the degree of bending when a crack occurs R / d (R: inner circumferential side in the bent part) The curvature 圣 (mm), d: the diameter of the roe material (mm)). In Tables 18 to 22, those which did not crack at R / d = 0 are indicated by `` ◎ '' as having excellent bending workability, and no cracks occurred at R / d = 0.25. Cracks that occurred at 0 ≤ R / d <0.25 are indicated by “〇” as having good bending workability (no problem on steel), and cracks were observed at R / d = 0.5. However, if a crack occurred at 0.25≤R / d <0.5, it was judged as having good bending workability (although there was a problem, but it was difficult) with “△”. When the crack occurred at R / d = 0.5, it was indicated by “X” as having poor bending workability (steel difficult). In addition, the stress decay test was conducted according to JISH 3250 on a refractory material that had been subjected to the above-mentioned bending workability and was bent 90 degrees at RZd = 1.5. The test was carried out using a tester and "Komaya". After exposure to ammonium by using a mixture of equal amounts of ammonia water and water, the specimen was washed with sulfuric acid and then 10 times larger. In Table 15 to Table 20 and Table 25, those that did not crack after exposure for 40 hours were tested for corrosion resistance. Indicated as “©” as having excellent resistance to corrosion, those that cracked after exposure for 40 hours but did not crack after exposure for 15 hours, and those that have good corrosion resistance (no problem with ¾ffl ), Which shows cracks when exposed for 15 hours but does not crack when exposed for 6 hours. Those that have general corrosion resistance: ill resistance (although there is a title! There is a "△" as a symbol, and those that have cracked after 6 hours of exposure are resistant to corrosion! It is indicated by an “X” as it is inferior (hard to change).
表 1 5〜表 2 6力ら、第 1〜第 3発明銅合金は、 冒頭で特定した^ ¾¾¾ぴ 吉晶細 を有 しない第 1及び第 2比較例^ に比して、結晶粒の微細化を図ること力 sでき、励を含む機械的 性質及び曲げ加工性等を大幅に向上さ 辱るものであり、 従来の高強靡同 では飾し難い用 途においても板材, 条材, 線材等として にィ¾¾すること力 sできるものであること力 ¾| ^され る。 また、再結晶化処理を急速高 ロ齊拠理により行うことにより、結晶粒 Dの更なる微細化と 強度向上とを図りうることも藝される。 さらに、 表 1 5〜表 2 6には記載していなレ、が、 W& した御!]ェ材 (再結晶化された圧酣, 伸線材を、 更に冷間圧延, 伸纖ロェしたもの) を 1 5 0 〜6 0 0 °C, 1秒〜 4時間で 理したものについては、 ばね限界條ぴ) S力緩和 I生が大幅に 向上していることが ϋ認された。
Tables 15 to 26 show that the first to third invention copper alloys have finer crystal grains than those of the first and second comparative examples which do not have ^^ the can force s achieved are those mechanical properties and bending workability, and the like significantly increases of辱Ru the containing excited, plate even in conventional high strength Application for hardly decorative in靡同, elongated member, wires, etc. that force ¾ are those that can be force s to I ¾¾ to as | ^ is Ru. It is also demonstrated that by performing the recrystallization treatment on a high-speed basis, it is possible to further refine the crystal grains D and improve the strength. In addition, although not shown in Tables 15 to 26, the material was W & W!] (A recrystallized pressed and drawn wire was further cold-rolled and drawn). For those processed at 150 to 600 ° C for 1 second to 4 hours, it was confirmed that the spring limit conditions) S force relaxation I production was greatly improved.
[表 1】 合金材 合金組成 (m a [Table 1] Alloy material Alloy composition (m a
N o . Cu Zn Si Co Fe P Sr Y Cr し a Hf Zn-2.5Si (Co+Fe+ i)/S No.Cu Zn Si Co Fe P Sr Y Cr a Hf Zn-2.5Si (Co + Fe + i) / S
101 残部 10.0 0.98 7.550 101 Remaining 10.0 0.98 7.550
102 残部 10.3 1.50 6.550 102 Rest 10.3 1.50 6.550
102A 残部 10.3 1.50 6.550 102A Rest 10.3 1.50 6.550
103 残部 9.6 1.58 0.07 5.650 103 Rest 9.6 1.58 0.07 5.650
104 残部 11.1 1.43 0.05 7.525 104 Rest 11.1 1.43 0.05 7.525
105 残部 10.4 1.51 0.02 6.625 105 Rest 10.4 1.51 0.02 6.625
106 残部 8.5 1.66 0.03 4, 350 106 Rest 8.5 1.66 0.03 4, 350
107 残部 9.7 2.07 4.525 107 Rest 9.7 2.07 4.525
107A 残部 9.7 2.07 4.525 107A Rest 9.7 2.07 4.525
108 残部 6.8 2.33 0.975 108 Remainder 6.8 2.33 0.975
109 残部 16.1 0.73 14, 275 109 Rest 16.1 0.73 14, 275
110 残部 10.0 1.02 0.11 7.450 0.108 実 111 残部 10.2 1.52 0.12 6.400 0.079 110 Remaining 10.0 1.02 0.11 7.450 0.108 Actual 111 Remaining 10.2 1.52 0.12 6.400 0.079
NO CO 施 NO CO
111A 111A
你 I 残部 10.2 1.52 0.12 6.400 0.079 1 112 残部 11.8 1.44 0.08 0.12 8.200 0.056 你 I Remaining 10.2 1.52 0.12 6.400 0.079 1 112 Remaining 11.8 1.44 0.08 0.12 8.200 0.056
113 残部 9.1 1.57 0..11 0.03 5.175 0.070113 Remaining 9.1 1.57 0..11 0.03 5.175 0.070
114 残部 10.1 2.01 0.11 5, 075 0.055114 Remaining 10.1 2.01 0.11 5, 075 0.055
115 残部 11.5 2.32 0.14 5, 700 0, 060115 Remaining 11.5 2.32 0.14 5, 700 0, 060
116 残部 11.0 1.52 0.01 7.200 0.005116 Remaining 11.0 1.52 0.01 7.200 0.005
117 残部 10.2 1.51 0.06 6.425 0, 040117 Remaining 10.2 1.51 0.06 6.425 0, 040
118 残部 9.3 1.08 0.23 6.600 0.213118 Remaining 9.3 1.08 0.23 6.600 0.213
119 残部 4.8 1.58 0.07 0.850 0, 044119 Rest 4.8 1.58 0.07 0.850 0, 044
120 残部 18.1 1.39 0.15 14.625 0.108120 Rest 18.1 1.39 0.15 14.625 0.108
121 残部 13.6 1.26 0.09 10.450 0.071121 Remainder 13.6 1.26 0.09 10.450 0.071
122 残部 10.2 1.49 0.03 6.475 0.020122 Rest 10.2 1.49 0.03 6.475 0.020
123 残部 11.2 0.69 0.07 9.475 0, 101123 Rest 11.2 0.69 0.07 9.475 0, 101
124 残部 13.2 1.81 Q.12 8.675 0.066
124 Remainder 13.2 1.81 Q.12 8.675 0.066
【表 2】 合 材 合金組成 (ma s [Table 2] Composite alloy composition (mas
No. Cu Zn Si Go Fe Ni Sn As g Zr In Zn-2.5Si (Co+Fe+ i)/Si Si/Sn No. Cu Zn Si Go Fe Ni Sn As g Zr In Zn-2.5Si (Co + Fe + i) / Si Si / Sn
125 残部 8.6 1.31 0.27 5.325 0.206 125 Remaining 8.6 1.31 0.27 5.325 0.206
126 残部 10.3 1.95 0.10 0.05 5.425 0.051 126 Remaining 10.3 1.95 0.10 0.05 5.425 0.051
127 残部 9.8 0.88 0.39 7.600 0.443 127 Rest 9.8 0.88 0.39 7.600 0.443
128 残部 7.1 1.62 0.06 3.050 0.037 128 Remaining 7.1 1.62 0.06 3.050 0.037
129 残部 9.5 2.01 0.12 4.475 0.060 129 Rest 9.5 2.01 0.12 4.475 0.060
130 残部 10.0 1.63 0.06 0.01 5.925 0.043 130 Rest 10.0 1.63 0.06 0.01 5.925 0.043
131 残部 9.4 1.04 0.10 0.06 6.800 0.154 131 Rest 9.4 1.04 0.10 0.06 6.800 0.154
132 残部 10.8 1.58 0.04 0.07 6.850 0.070 132 Remainder 10.8 1.58 0.04 0.07 6.850 0.070
133 残部 9.3 1.66 0.08 0.02 5.150 0.060 133 Rest 9.3 1.66 0.08 0.02 5.150 0.060
134 残部 7.8 1.81 0.16 0.12 3.275 0.155 134 Rest 7.8 1.81 0.16 0.12 3.275 0.155
135 残部 12.1 1.73 0.05 0.06 7.775 0.064 135 Remainder 12.1 1.73 0.05 0.06 7.775 0.064
136 残部 11.8 1.12 0.19 0.08 9.000 0.241 136 Rest 11.8 1.12 0.19 0.08 9.000 0.241
137 残部 9.7 1.48 0, 04 0.07 6.000 0.074 137 Rest 9.7 1.48 0, 04 0.07 6.000 0.074
施 138 残部 8.8 1.63 0.12 0.01 4.725 0.080 Allocation 138 Rest 8.8 1.63 0.12 0.01 4.725 0.080
例 An example
1 139 残部 8.6 1.69 0.11 0.09 0.07 4.375 0.160 1 139 Rest 8.6 1.69 0.11 0.09 0.07 4.375 0.160
140 残部 5.3 1.32 0.03 0.01 0.04 2.000 0.058 140 Remainder 5.3 1.32 0.03 0.01 0.04 2.000 0.058
141 残部 10.2 0.81 0.01 0.02 0.08 8.175 O.J 36 141 Remaining 10.2 0.81 0.01 0.02 0.08 8.175 O.J 36
142 残部 9.4 1.64 0.34 5.300 4.824 142 Rest 9.4 1.64 0.34 5.300 4.824
143 残部 8.9 1.56 1.01 5.000 1.545143 Rest 8.9 1.56 1.01 5.000 1.545
144 残部 10.6 1.12 0.05 7.800 22.400144 Rest 10.6 1.12 0.05 7.800 22.400
145 残部 8.2 2.41 0.05 0.29 2.175 0.021 8.310145 Rest 8.2 2.41 0.05 0.29 2.175 0.021 8.310
146 残部 11.3 2.14 0.10 0.42 5.950 0.047 5.095146 Rest 11.3 2.14 0.10 0.42 5.950 0.047 5.095
147 残部 7.6 0.57 0.12 0.21 6.175 0.211 2.714147 Rest 7.6 0.57 0.12 0.21 6.175 0.211 2.714
148 残部 10.8 1.74 0.11 0.35 6.450 0.063 4.971148 Rest 10.8 1.74 0.11 0.35 6.450 0.063 4.971
149 残部 10.6 1.52 0.09 0.29 0.03 6.800 0.059 5.241149 Rest 10.6 1.52 0.09 0.29 0.03 6.800 0.059 5.241
150 残部 9.6 1.63 0.10 0.30 0.01 0.03 5.525 0.061 5.433150 Remaining 9.6 1.63 0.10 0.30 0.01 0.03 5.525 0.061 5.433
151 残部 9.8 1.67 0.07 0.25 0.02 5.625 0.042 6.680
151 Rest 9.8 1.67 0.07 0.25 0.02 5.625 0.042 6.680
o to o
o to o
【表 4】 [Table 4]
【表 5】 [Table 5]
合金組成 ( Alloy composition (
N o. Cu Zn Si Co Fe Ni P Sr Cr し a n Zn- 2.5Si (Co+Fe+Ni)/Si No.Cu Zn Si Co Fe Ni P Sr Cr then n Zn- 2.5Si (Co + Fe + Ni) / Si
201 残部 10.1 0.28 9.400 201 Remaining 10.1 0.28 9.400
202 残部 10.0 0.49 8.775 202 Rest 10.0 0.49 8.775
202A 残部 10.0 0.49 8.775 202A Rest 10.0 0.49 8.775
203 残部 9.0 0.51 0.21 7.725 203 Remainder 9.0 0.51 0.21 7.725
204 残部 10.5 0.45 0.12 9.375 204 Remaining 10.5 0.45 0.12 9.375
205 残部 7.7 0.52 6.400 205 Rest 7.7 0.52 6.400
206 残部 14.0 0.39 13.025 206 Rest 14.0 0.39 13.025
207 残部 10.2 0.19 0.03 9.725 0.158 207 Rest 10.2 0.19 0.03 9.725 0.158
208 残部 9.9 0.31 0.05 9.125 0.161208 Remainder 9.9 0.31 0.05 9.125 0.161
209 残部 10.0 0.50 0.12 8.750 0.240209 Rest 10.0 0.50 0.12 8.750 0.240
209A 残部 10.0 0.50 0.12 8.750 0.240209A Rest 10.0 0.50 0.12 8.750 0.240
210 残部 9.5 0.52 0.10 0.03 8.200 0.192 実 211 残部 8.8 0.50 0.09 0.04 7.550 0.180 > 施 212 残部 10.3 0.46 0.07 0.03 9.150 0.152 210 Remaining 9.5 0.52 0.10 0.03 8.200 0.192 Actual 211 Remaining 8.8 0.50 0.09 0.04 7.550 0.180> Allocation 212 Remaining 10.3 0.46 0.07 0.03 9.150 0.152
2 213 残部 9.7 0.33 0.11 8.875 0.333 2 213 Rest 9.7 0.33 0.11 8.875 0.333
214 残部 4.9 0.73 0.21 3.075 0.288214 Remaining 4.9 0.73 0.21 3.075 0.288
215 残部 15.8 0.70 0.10 14.050 0.143215 Remaining 15.8 0.70 0.10 14.050 0.143
216 残部 8.5 0.43 7.425 0.021216 Rest 8.5 0.43 7.425 0.021
217 残部 13.4 0.40 0.05 12.400 0.125 ο 217 Rest 13.4 0.40 0.05 12.400 0.125 ο
218 残部 10.5 0.52 ο 0.06 9.200 0.115 ο 218 Rest 10.5 0.52 ο 0.06 9.200 0.115 ο
219 残部 8.7 0.47 0.02 7.525 0.043 219 Rest 8.7 0.47 0.02 7.525 0.043
220 残部 9.8 0.39 0.07 8.825 0.179220 Remaining 9.8 0.39 0.07 8.825 0.179
221 残部 9.8 0.73 0.21 7.975 0.288221 Rest 9.8 0.73 0.21 7.975 0.288
222 残部 8.3 0.44 0.06 7.200 0.136222 Rest 8.3 0.44 0.06 7.200 0.136
223 残部 12.8 0.37 0.07 11.875 0.189223 Remainder 12.8 0.37 0.07 11.875 0.189
224 残部 8.1 0.55 0.06 0.03 6.725 0.164224 Remaining 8.1 0.55 0.06 0.03 6.725 0.164
225 残部 8.9 0.18 0.26 8.450 1.444
225 Rest 8.9 0.18 0.26 8.450 1.444
【表 6】 合金材 合金組成 ma s s 3%) [Table 6] Alloy material Alloy composition ma s s 3%)
N o . Cu Zn Si Co Fe Ni Sn Sr Mg Y Ti Zr Hf Zn-2.5Si (Co+Fe+Ni)/Si Si/Sn No.Cu Zn Si Co Fe Ni Sn Sr Mg Y Ti Zr Hf Zn-2.5Si (Co + Fe + Ni) / Si Si / Sn
226 残部 9.2 0.30 0.36 0.02 8.450 1.200 226 Rest 9.2 0.30 0.36 0.02 8.450 1.200
227 残部 8.5 0.49 0.45 7.275 0.918 1 227 Rest 8.5 0.49 0.45 7.275 0.918 1
228 残部 7.8 0.38 0.02 0.06 6.850 0.211 228 Remainder 7.8 0.38 0.02 0.06 6.850 0.211
229 残部 10.1 0.56 0.26 0.05 8.700 0.554 229 Rest 10.1 0.56 0.26 0.05 8.700 0.554
230 残部 10.8 0.19 0.04 0.02 10.325 0.316 230 Rest 10.8 0.19 0.04 0.02 10.325 0.316
231 残部 9.7 0.66 0.03 0.06 8.050 0.136 231 Rest 9.7 0.66 0.03 0.06 8.050 0.136
232 残部 8.8 0.48 0.04 0.04 7.600 0.167 232 Rest 8.8 0.48 0.04 0.04 7.600 0.167
233 残部 14.8 0.39 0.02 0.03 13.825 0.128 233 Rest 14.8 0.39 0.02 0.03 13.825 0.128
234 残部 4.8 0.50 0.21 0.02 3.550 0.460 234 Rest 4.8 0.50 0.21 0.02 3.550 0.460
235 残部 8.5 0.47 0.04 0.05 7.325 0.191 235 Rest 8.5 0.47 0.04 0.05 7.325 0.191
236 残部 10.0 0.28 0.04 0.02 0.02 9.300 0.286 236 Rest 10.0 0.28 0.04 0.02 0.02 9.300 0.286
237 残部 8.1 0.44 0.03 0.02 0.03 7.000 0.182 237 Rest 8.1 0.44 0.03 0.02 0.03 7.000 0.182
実 238 残部 10.8 0.57 0.01 0.05 0.02 9.375 0.140 Actual 238 Remaining 10.8 0.57 0.01 0.05 0.02 9.375 0.140
施 Out
239 残部 9.7 0.43 1.41 8.625 0.30 239 Rest 9.7 0.43 1.41 8.625 0.30
2 240 残部 8.2 0.18 2.01 7.750 0.092 240 Rest 8.2 0.18 2.01 7.750 0.09
241 残部 8.5 0.20 1.99 0.05 8.000 0.101241 Rest 8.5 0.20 1.99 0.05 8.000 0.101
242 残部 7.7 0.15 2.06 0.05 0.01 7.325 0.073242 Rest 7.7 0.15 2.06 0.05 0.01 7.325 0.073
243 残部 9.1 0.23 2.12 0.07 8.525 0.10243 Rest 9.1 0.23 2.12 0.07 8.525 0.10
244 残部 12.3 0.51 1.13 11.025 0.451244 Rest 12.3 0.51 1.13 11.025 0.451
245 残部 9.8 0.18 0.38 9.350 0.474245 Rest 9.8 0.18 0.38 9.350 0.474
246 残部 7.9 0.32 0.11 1.75 7.100 0.344 0.183246 Rest 7.9 0.32 0.11 1.75 7.100 0.344 0.183
247 残部 7.2 0.33 0.09 1.80 0.04 6.375 0.273 0.183247 Rest 7.2 0.33 0.09 1.80 0.04 6.375 0.273 0.183
248 残部 7.5 0.30 0.12 1.77 0.03 6.750 0.400 0.16248 Rest 7.5 0.30 0.12 1.77 0.03 6.750 0.400 0.16
249 残部 7.9 0.29 0.10 1.68 0.03 0.02 7.175 0.345 0.17249 Rest 7.9 0.29 0.10 1.68 0.03 0.02 7.175 0.345 0.17
250 残部 9.1 0.28 0.05 1.92 8,400 0.179 0.14250 Remaining 9.1 0.28 0.05 1.92 8,400 0.179 0.14
250A 残部 9.1 0.28 0.05 1.92 8.400 0.179 0.14250A Remaining 9.1 0.28 0.05 1.92 8.400 0.179 0.14
251 残部 10.4 0.70 0.12 1.50 8.650 0.171 0.467
251 Rest 10.4 0.70 0.12 1.50 8.650 0.171 0.467
【表 7】 合金材'l 合金組成 (m a s s %)[Table 7] Alloy material'l Alloy composition (m a s s%)
o. Cu Zn Si Co Fe Ni Sn Sb As Mg Y In Zn-2.5Si (Co+Fe+Ni)/Si Si/S o.Cu Zn Si Co Fe Ni Sn Sb As Mg Y In Zn-2.5Si (Co + Fe + Ni) / Si Si / S
252 残部 8.5 0.32 0.18 1.58 7.700 0.563 0.2252 Rest 8.5 0.32 0.18 1.58 7.700 0.563 0.2
253 残部 7.8 0.27 0.15 2.12 0.07 7.125 0.556 0.1253 Rest 7.8 0.27 0.15 2.12 0.07 7.125 0.556 0.1
254 残部 7.4 0.35 0.10 1.75 0.05 6.525 0.286 0.2254 Remainder 7.4 0.35 0.10 1.75 0.05 6.525 0.286 0.2
255 残部 8.8 0.21 0.01 1.48 8.275 0.048 O.255 Rest 8.8 0.21 0.01 1.48 8.275 0.048 O.
256 残部 8.4 0.32 0.11 2.28 7.600 0.344 0.1256 Rest 8.4 0.32 0.11 2.28 7.600 0.344 0.1
257 残部 7.8 0.27 0.09 2.71 7.125 0.333 0.1257 Rest 7.8 0.27 0.09 2.71 7.125 0.333 0.1
258 残部 10.6 0.14 0.05 0.29 10.250 0.357 0.4258 Rest 10.6 0.14 0.05 0.29 10.250 0.357 0.4
259 残部 15.1 0.32 0.07 1.56 1 .300 0.219 0.2259 Rest 15.1 0.32 0.07 1.56 1.300 0.219 0.2
260 残部 8.8 0.28 0.08 1.88 8.100 0.286 0.1260 Rest 8.8 0.28 0.08 1.88 8.100 0.286 0.1
261 残部 9.2 0.23 0.06 1.33 8.625 0.261 0.1261 Rest 9.2 0.23 0.06 1.33 8.625 0.261 0.1
262 残部 9.0 0.40 0.06 1.75 8.000 0.150 0.2262 Rest 9.0 0.40 0.06 1.75 8.000 0.150 0.2
263 残部 4.9 0.35 0.08 1.62 4.025 0.229 0' 21263 Rest 4.9 0.35 0.08 1.62 4.025 0.229 0 '21
264 残部 8.3 0.74 0.08 1.63 6.450 0.108 0.264 Rest 8.3 0.74 0.08 1.63 6.450 0.108 0.
CD 265 残部 7.7 0.26 0.07 0.02 2.02 7.050 0.346 0.1 CD 265 Rest 7.7 0.26 0.07 0.02 2.02 7.050 0.346 0.1
265A 残部 7.7 0.26 0.07 0.02 2.02 7.050 0.346 0.1 265A Rest 7.7 0.26 0.07 0.02 2.02 7.050 0.346 0.1
266 残部 7.1 0.27 0.06 0.03 2.22 0.06 6.425 0.333 0.1266 Rest 7.1 0.27 0.06 0.03 2.22 0.06 6.425 0.333 0.1
267 残部 8.3 0.27 0.08 0.01 2.00 0.02 0.02 7.625 0.322 0.1267 Rest 8.3 0.27 0.08 0.01 2.00 0.02 0.02 7.625 0.322 0.1
268 残部 6.9 0. 4 0.21 0.01 2.18 5.800 0.500 0.2268 Remaining 6.9 0.4 0.21 0.01 2.18 5.800 0.500 0.2
269 残部 8.8 0.36 0.02 0.05 1.58 7.900 0.194 0.2269 Rest 8.8 0.36 0.02 0.05 1.58 7.900 0.194 0.2
270 残部 9.3 0.19 0.04 0.02 0.58 8.825 0.316 0.3270 Rest 9.3 0.19 0.04 0.02 0.58 8.825 0.316 0.3
271 残部 7.8 0.32 0.03 0.05 1.49 7.000 0.250 0.21271 Rest 7.8 0.32 0.03 0.05 1.49 7.000 0.250 0.21
272 残部 11.3 0.44 0.03 0.03 1.68 10.200 0. 36 0.2272 Rest 11.3 0.44 0.03 0.03 1.68 10.200 0.36 0.2
273 残部 8.7 0.33 0.02 0.05 1.40 7.875 0.212 0.2273 Rest 8.7 0.33 0.02 0.05 1.40 7.875 0.212 0.2
274 残部 10.6 0.22 0.06 0.02 1.90 10.050 0.364 0.11274 Rest 10.6 0.22 0.06 0.02 1.90 10.050 0.364 0.11
275 残部 7.7 0.28 0.03 0.03 1.66 7.000 0.214 0.1275 Rest 7.7 0.28 0.03 0.03 1.66 7.000 0.214 0.1
276 残部 6.8 0.36 0.05 0.02 0.01 1.58 5.900 0.217 0.2276 Rest 6.8 0.36 0.05 0.02 0.01 1.58 5.900 0.217 0.2
277 残部 12.5 0.41 0.12 0.05 0.05 2.28 11.475 0.244 0.1
277 Rest 12.5 0.41 0.12 0.05 0.05 2.28 11.475 0.244 0.1
【表 8】 [Table 8]
合金組成 (ma s s%) Alloy composition (ma s s%)
例施 3 合金材 Example 3 alloy material
N o. Cu Zn Si Co Fe Ni Sn Sr Y し a Zr In Hf Cu-5Si Zn+6S i (Co+Fe+Ni)/Si Si/Sn No.Cu Zn Si Co Fe Ni Sn Sr Y then a Zr In Hf Cu-5Si Zn + 6S i (Co + Fe + Ni) / Si Si / Sn
326 72.5 25.9 1.53 0.05 0.02 64.85 35.08 0.046 326 72.5 25.9 1.53 0.05 0.02 64.85 35.08 0.046
327 70.6 28.1 1.25 0.06 0.01 64.33 35.60 0.056 327 70.6 28.1 1.25 0.06 0.01 64.33 35.60 0.056
328 71.5 27.0 1.44 0.02 0.05 64.29 35.64 0.049 328 71.5 27.0 1.44 0.02 0.05 64.29 35.64 0.049
329 71.7 26.8 1.45 0.06 0.03 64.41 35.50 0.062 329 71.7 26.8 1.45 0.06 0.03 64.41 35.50 0.062
330 70.7 27.6 1.58 0.04 0.04 62.84 37.08 0.051 330 70.7 27.6 1.58 0.04 0.04 62.84 37.08 0.051
331 71.9 26.5 1.55 0.04 0.03 0.03 64.10 35.80 0.045 331 71.9 26.5 1.55 0.04 0.03 0.03 64.10 35.80 0.045
332 72.2 26.2 1.48 0.03 0.03 0.02 64.84 35.08 0.054 332 72.2 26.2 1.48 0.03 0.03 0.02 64.84 35.08 0.054
333 7t.2 27.3 1.38 0.03 0.05 0.01 0.03 64.30 35.58 0.065 333 7t.2 27.3 1.38 0.03 0.05 0.01 0.03 64.30 35.58 0.065
334 71.4 27.0 1.55 0.07 0.01 0.02 63.60 36.30 0.065 334 71.4 27.0 1.55 0.07 0.01 0.02 63.60 36.30 0.065
335 73.7 24.5 1.61 0.22 65.62 34.16 7.318 335 73.7 24.5 1.61 0.22 65.62 34.16 7.318
336 74.0 23.8 1.52 0.73 66.35 32.92 2.082336 74.0 23.8 1.52 0.73 66.35 32.92 2.082
337 71.7 26.6 1.42 0.09 64.62 35.12 15.778337 71.7 26.6 1.42 0.09 64.62 35.12 15.778
338 73.2 25.0 1.59 0.06 0.13 65.27 34.54 0.038 12.231338 73.2 25.0 1.59 0.06 0.13 65.27 34.54 0.038 12.231
338A 73.2 25.0 1.59 0.06 0.13 65.27 34.54 0.038 12.231338A 73.2 25.0 1.59 0.06 0.13 65.27 34.54 0.038 12.231
339 73.0 25.2 1.60 0.05 0.10 0.03 65.02 34.80 0.031 16.000339 73.0 25.2 1.60 0.05 0.10 0.03 65.02 34.80 0.031 16.000
340 72.8 25.5 1.57 0.05 0.08 0.01 0.03 64.91 34.92 0.032 19.625340 72.8 25.5 1.57 0.05 0.08 0.01 0.03 64.91 34.92 0.032 19.625
341 72.9 25.3 1.59 0.07 0.13 0.04 64.92 34.84 0.044 12.231341 72.9 25.3 1.59 0.07 0.13 0.04 64.92 34.84 0.044 12.231
342 75.1 22.8 1.82 0.09 0.23 65.96 33.72 0.049 7.913342 75.1 22.8 1.82 0.09 0.23 65.96 33.72 0.049 7.913
343 71.5 26.9 1.41 0.15 0.04 64.45 35.36 0.106 35.250343 71.5 26.9 1.41 0.15 0.04 64.45 35.36 0.106 35.250
344 72.3 26.0 1.24 0.07 0.37 66.12 33.44 0.056 3.351344 72.3 26.0 1.24 0.07 0.37 66.12 33.44 0.056 3.351
345 71.7 26.3 1.19 0.08 0.74 65.74 33.44 0.067 1.608345 71.7 26.3 1.19 0.08 0.74 65.74 33.44 0.067 1.608
346 71.9 26.3 1.45 0.21 0.15 64.64 35.00 0.145 9.667346 71.9 26.3 1.45 0.21 0.15 64.64 35.00 0.145 9.667
347 72.5 25.6 1.67 0.05 0.20 64.13 35.62 0.030 8.350347 72.5 25.6 1.67 0.05 0.20 64.13 35.62 0.030 8.350
348 71.2 27.1 1.55 0.02 0.11 63.47 36.40 0.013 14.091348 71.2 27.1 1.55 0.02 0.11 63.47 36.40 0.013 14.091
349 73.7 24.4 1.71 0.07 0.06 0.03 65.18 34.66 0.041 28.500349 73.7 24.4 1.71 0.07 0.06 0.03 65.18 34.66 0.041 28.500
350 71.8 26.6 1.42 0.06 0.16 64.66 35.12 0.042 8.875350 71.8 26.6 1.42 0.06 0.16 64.66 35.12 0.042 8.875
351 75.1 22.7 1.91 0.13 0.05 0.09 65.57 34.16 0.094 21.222
351 75.1 22.7 1.91 0.13 0.05 0.09 65.57 34.16 0.094 21.222
: :
o o
WOO 8 'fS 060.39 TOO 10.0 εο.ο SO Ό 89.1 L'n WOO 8 'fS 060.39 TOO 10.0 εο.ο SO Ό 89.1 L'n
8t0'0 9 SS 9 SO '0 SO Ό 90 Ό 99 ·1 2 'S3 ο εζ. LLZ8t0'0 9 SS 9 SO '0 SO Ό 90 Ό 99 · 1 2' S3 ο εζ. LLZ
WO "0 80 'SS £9i W 60.0 to .0 90 Ό esn 6'9Z QLZWO "0 80 'SS £ 9i W 60.0 to .0 90 Ό esn 6'9Z QLZ
W_0 '0 Z8 OSO '99 90 20 LO Ό ΙΖ S LZ SLZW_0 '0 Z8 OSO '99 90 20 LO Ό ΙΖ S LZ SLZ
8t0 Ό 26 ε 0S6 9 80 "0 0.0 Lt'l ϊ 9Z Z'ZL8t0 Ό 26 ε 0S6 9 80 "0 0.0 Lt'l ϊ 9Z Z'ZL
180 Ό 96 01?8 £9 ん 0 '0 8Γ0 L9'l 8'93 6'" ε ε ひ 0.0 OZ '38 089 'f9 SO '0 0·0 09 Ί Z'QZ Z ZL180 Ό 96 01? 8 £ 9 0 '0 800 L9'l 8'93 6' "ε ε HI 0.0 OZ '38 089 'f9 SO' 0 009 · Z'QZ Z ZL
2S0O 12, '9S m 9 zro 60 Ό ZL'l 0 S3 ru Lん ε2S0O 12, '9S m 9 zro 60 Ό ZL'l 0 S3 ru L ん
ZW Ό 8S '39 Z9S 9 10 "0 90 Ό if I 8.92 L'lL οζ,ε ZW Ό 8S '39 Z9S 9 10 "0 90 Ό if I 8.92 L'lL οζ, ε
00 · 098 n Ό S9't I ' Z I SL 00 098 n Ό S9't I 'Z I SL
OL "-E OLZ '99 εο OVl Z'9Z Z'ZL 89εOL "-E OLZ '99 εο OVl Z'9Z Z'ZL 89ε
009 Zl 9820 80 "9S 069 9 SO'O ZQ Ό WTO Zl Ό £9 Ό ε. 8 "99 9ε εεε '6 0900 86 ε 81 Ό 10 Ό LO Ό 20 Ό 89 Ί に £i 99S 009 Zl 9820 80 "9S 069 9 SO'O ZQ Ό WTO Zl Ό £ 9 Ό ε. 8" 99 9ε εεε '6 0900 86 ε 81 Ό 10 Ό LO Ό 20 Ό 89 Ί to £ i 99S
S乙 O'O 9 OOi 'S9 38 Ό 20 Ό 90 Ό 90 Ί X'LZ O IL 99ε S O O'O 9 OOi 'S9 38 Ό 20 Ό 90 Ό 90 Ί X'LZ O IL 99ε
06l'L 09に 0 oに εε 093.99 £9 Ό 21 Ό 9Z. Ό 9'83 O OL 06l'L 09 to 0 o εε 093.99 £ 9 Ό 21 Ό 9Z. Ό 9'83 O OL
m "o 98 η on . IZ 0 90.0 30 Ό ΖΟ Ό in 9Z 6+ m "o 98 η on .IZ 0 90.0 30 Ό ΖΟ Ό in 9Z 6+
S9S"L S90'0 OSS .99 Z6 Ό 90 Ό 80"0 n'i 8 £2 8 Z. S9S "L S90'0 OSS .99 Z6 Ό 90 Ό 80" 0 n'i 8 £ 2 8 Z.
68 SSO'O 0 S8 02ε 61 Ό SO Ό 90 Ό OL l Z'SS 8 ZL ε乙 Ζ·9 691 Ό 80'9S 08 ' ZZ Ό t-0 '0 81· Ό 88 Ί 8.9Z 'U 09S 68 SSO'O 0 S8 02ε 61 Ό SO Ό 90 Ό OL l Z'SS 8 ZL ε 乙 99 691 Ό 80'9S 08 'ZZ Ό t-0' 0 81 81 Ό 88 Ί 8.9Z 'U 09S
S89 L ZW Ό Z "SS 0S9 'i?9 ΖΙΌ 90.0 30 "0 S9 L S S3 じ ZL 69εS89 L ZW Ό Z "SS 0S9 'i? 9 ΖΙΌ 90.0 30" 0 S9 L S S3 JL 69ε
982 "01 890 '0 ^8 ε 0S6 '½ WO PO Ό SO Ό 'ZL 89ε982 "01 890 '0 ^ 8 ε 0S6' ½ WO PO Ό SO Ό 'ZL 89ε
98い ε IWO si εε ZSに 99 69 0 10 Ό ίΟΌ 88 Ί 6'LZ 9+Sん98 ε IWO si εε ZS 99 69 0 10 Ό ίΟΌ 88 Ί 6'LZ 9 + S
688'" Z90-0 9/. ' ε £10'S9 10 "0 εο 60 "0 90 Ό ) Ό 19 l I 'S3 t 'ZL 99ε688 '"Z90-0 9 /.' Ε £ 10'S9 10" 0 εο 60 "0 90 Ό) Ό 19 l I 'S3 t' ZL 99ε
C8S'Gl SSO Ό 89 '½ o 99 30.0 ZO 0 Zl+O 90.0 W) Ό £9'L 8+W ε εζ. "8 S900 8 -K 026 ' 9 ZO Ό 8 0 Ζ.ΟΌ εο 8S'l i'SZ ½ε C8S'Gl SSO Ό 89 '½ o 99 30.0 ZO 0 Zl + O 90.0 W) Ό £ 9'L 8 + W ε εζ. "8 S900 8 -K 026' 9 ZO Ό 8 0 Ζ.ΟΌ εο 8S'l i'SZ ½ε
990.0 os 'ts OLZ S9 Ό LO .0 ΖΟ "0 09 Ί 6 H s. 990.0 os' ts OLZ S9 Ό LO .0 ΖΟ "0 09 Ί 6 Hs.
S06 ·9 Z90 -0 οε -gs OOfr 't-9 13 Ό SO'O W "0 S I 9 92 L'iL S06 9 Z90 -0 οε -gs OOfr 't-9 13 Ό SO'O W "0 S I 9 92 L'iL
US/!S !S/(!N +°0) IS9+UZ !S9-nO 人 d US !N 03 !S UZ no ο Ν US /! S! S / (! N + ° 0) IS9 + UZ! S9-nO d US! N 03! S UZ no ο Ν
¾¾嗨 ° 解 i i
¾¾ 嗨 ° solution ii
【表 12】 [Table 12]
合金組成 (ma s so/o) Alloy composition (mass so / o)
合金材 Alloy material
N o. Gu Zn Si Co Fe Ni Sn P Sb As Cu-5Si Zn+6Si (Co+Fe+Ni)/Si Si/Sn No. Gu Zn Si Co Fe Ni Sn P Sb As Cu-5Si Zn + 6Si (Co + Fe + Ni) / Si Si / Sn
379 71.6 26.5 1.55 0.28 0.06 63.860 35.80 5.536379 71.6 26.5 1.55 0.28 0.06 63.860 35.80 5.536
380 72.5 25.4 1.23 0.07 0.81 0.04 66.300 32.78 0.057 1.519380 72.5 25.4 1.23 0.07 0.81 0.04 66.300 32.78 0.057 1.519
381 72.6 25.5 1.60 0.08 0.15 0.06 64.610 35.10 0.050 10.67381 72.6 25.5 1.60 0.08 0.15 0.06 64.610 35.10 0.050 10.67
382 71.6 26.7 1.54 0.05 0.08 0.08 63.850 35.94 0.032 19.25382 71.6 26.7 1.54 0.05 0.08 0.08 63.850 35.94 0.032 19.25
383 73.3 24.9 1.60 0.02 0.07 0.14 65.270 34.50 0.056 11.43383 73.3 24.9 1.60 0.02 0.07 0.14 65.270 34.50 0.056 11.43
384 74.7 23.2 1.72 0.01 0.14 0.22 0.06 66.052 33.52 0.086 7.818384 74.7 23.2 1.72 0.01 0.14 0.22 0.06 66.052 33.52 0.086 7.818
385 73.1 25.1 1.44 0.06 0.01 0.17 0.08 65.943 33.74 0.047 8.471385 73.1 25.1 1.44 0.06 0.01 0.17 0.08 65.943 33.74 0.047 8.471
386 72.6 25.6 1.58 0.03 0.06 0.11 0.06 64.660 35.08 0.057 14.36386 72.6 25.6 1.58 0.03 0.06 0.11 0.06 64.660 35.08 0.057 14.36
387 71.8 26.4 1.46 0.09 0.01 0.03 0.19 0.05 64. 72 35.16 0.088 7.684 施 387 71.8 26.4 1.46 0.09 0.01 0.03 0.19 0.05 64.72 35.16 0.088 7.684
388 72.5 25.9 1.55 0.04 64.750 35.20 388 72.5 25.9 1.55 0.04 64.750 35.20
CO 例 CO example
CO CO
3 389 73.6 24.6 1.70 0.07 65.100 34.80 3 389 73.6 24.6 1.70 0.07 65.100 34.80
390 71.2 27.4 1.26 0.07 0.10 64.900 34.96 0.056 390 71.2 27.4 1.26 0.07 0.10 64.900 34.96 0.056
391 73.1 25.1 1.68 0.11 0.03 64.700 35.18 0.065391 73.1 25.1 1.68 0.11 0.03 64.700 35.18 0.065
392 72.1 26.2 1.55 0.07 0.06 0.02 64.350 35.50 0.045392 72.1 26.2 1.55 0.07 0.06 0.02 64.350 35.50 0.045
393 72.2 25.8 1.60 0.35 0.05 64.200 35.40 4.571393 72.2 25.8 1.60 0.35 0.05 64.200 35.40 4.571
394 71.0 27.0 1.26 0.06 0.65 0.08 64.700 34.56 0.048 1.938394 71.0 27.0 1.26 0.06 0.65 0.08 64.700 34.56 0.048 1.938
395 フ 2.0 26.2 1.25 0.08 0.37 0.05 0.06 65.750 33.70 0.064 3.378395 f 2.0 26.2 1.25 0.08 0.37 0.05 0.06 65.750 33.70 0.064 3.378
396 72.5 25.1 1.53 0.06 0.02 0.72 0.07 0.01 64.850 34.28 0.052 2.125396 72.5 25.1 1.53 0.06 0.02 0.72 0.07 0.01 64.850 34.28 0.052 2.125
397 71.5 26.7 1.48 0.04 0.04 0.21 0.03 0.02 0.02 64.100 35.58 0.054 7.048
397 71.5 26.7 1.48 0.04 0.04 0.21 0.03 0.02 0.02 64.100 35.58 0.054 7.048
【表 1 3】 [Table 13]
OO
≥» ≥ »
【表 14】 [Table 14]
合金組成 ( ma s s %) Alloy composition (mass s%)
N o. Cu Zn Si Go Sn Gu-5S i Zn+6S i (Go+Fe+Ni) Si Si/Sn No.Cu Zn Si Go Sn Gu-5S i Zn + 6S i (Go + Fe + Ni) Si Si / Sn
423 69.80 30.2 69.80 30.20 423 69.80 30.2 69.80 30.20
424 64.90 35.1 64.90 35.10 424 64.90 35.1 64.90 35.10
425 74.97 23.8 1.23 68.82 31.18 425 74.97 23.8 1.23 68.82 31.18
比 426 66.81 31.9 1.25 0.04 60.56 39.40 0.032 Ratio 426 66.81 31.9 1.25 0.04 60.56 39.40 0.032
427 74.74 23.0 2.21 0.05 63.69 36.26 0.023 例 427 74.74 23.0 2.21 0.05 63.69 36.26 0.023 Example
2 428 65.85 32.8 1.25 0.10 59.60 40.30 0.080 2 428 65.85 32.8 1.25 0.10 59.60 40.30 0.080
429 67.12 32.5 0.35 0.03 65.37 34.60 0.086 429 67.12 32.5 0.35 0.03 65.37 34.60 0.086
430 68.80 29.3 0.92 0.05 0.95 64.20 34.82 0.054 0.968 430 68.80 29.3 0.92 0.05 0.95 64.20 34.82 0.054 0.968
431 73.31 23.7 1.80 0.04 1.15 64.31 34.50 0.022 1.565
431 73.31 23.7 1.80 0.04 1.15 64.31 34.50 0.022 1.565
【表 1 5】 [Table 15]
合金材 平均結晶粒径再結晶温度 機械的性質 機械的性質 (後加工材) 曲げ加工性 耐応力腐 耐カ ( 引張強さ ( 伸び (¾) 耐カ ( 引張強さ ( 伸び (%) (後加工材) 食割れ性 Alloy material Average crystal grain size Recrystallization temperature Mechanical properties Mechanical properties (Post-processed material) Bendability Resistance to stress rot Resistance to tensile strength (Elongation (¾) Processed material)
10! 2.4 350 308 4ί6 45 504 572 15 ◎ o 10! 2.4 350 308 4ί6 45 504 572 15 ◎ o
o o
102A 1.8 480(20) 367 493 45 602 691 12 o o 12102A 1.8 480 (20) 367 493 45 602 691 12 o o 12
103 .0 400 347 493 45 593 688 11 o o 103.0 400 347 493 45 593 688 11 o o
104 2.0 400 339 491 44 592 685 11 o o 12 104 2.0 400 339 491 44 592 685 11 o o 12
105 2 350 328 489 586 682 13 ◎ o 12105 2 350 328 489 586 682 13 ◎ o 12
106 2.1 350 331 488 45 584 683 12 o o 12 106 2.1 350 331 488 45 584 683 12 o o 12
◎ o ◎ ◎ o ◎
108 2.0 350 355 508 42 599 725 8 厶 ◎ 10 108 2.0 350 355 508 42 599 725 8 m ◎ 10
109 2.2 350 309 432 43 513 601 9 o 厶 17109 2.2 350 309 432 43 513 601 9 o m 17
110 2.1 400 353 448 41 528 625 14 o 16110 2.1 400 353 448 41 528 625 14 o 16
◎ ©◎ ©
◎ ◎
実 ◎ Actual ◎
CO 施 CO application
113 1.6 400 417 5ί5 40 615 716 13 13 例 ◎ 113 1.6 400 417 5ί5 40 615 716 13 13 Example ◎
△ ◎ △ ◎
◎ o o o ◎ ◎ o o o ◎
118 1.3 400 399 502 39 591 692 10 〇 ◎ 17 118 1.3 400 399 502 39 591 692 10 〇 ◎ 17
119 2.3 400 312 452 40 548 638 9 o ◎ 13 119 2.3 400 312 452 40 548 638 9 o ◎ 13
121 1.8 400 406 509 43 602 701 o o 14 .0 350 354 493 45 615 705 11 o o 13121 1.8 400 406 509 43 602 701 o o 14.0 350 354 493 45 615 705 11 o o 13
123 2.2 400 310 415 43 501 598 14 ◎ o 19 o123 2.2 400 310 415 43 501 598 14 ◎ o 19 o
125 1.5 450 395 507 34 613 701 厶 ◎ 16 125 1.5 450 395 507 34 613 701 mm ◎ 16
1.4 450 381 456 36 558 639 8 厶 o 191.4 450 381 456 36 558 639 8 m o 19
]28 1.9 400 337 470 39 552 657 10 o 13
] 28 1.9 400 337 470 39 552 657 10 o 13
【表 1 6】 [Table 16]
才 機械的性質 機械的性質 (後加工材) 曲け加工 1生 耐応力腐食 Age Mechanical properties Mechanical properties (Post-processed material) Bending 1 life Stress corrosion resistance
N o . m) (. cj 耐カ (N/mm 2 ) 引張強さ (N/mm 2 ) 伸び 耐カ (N/mnn 2 ) 引張強さ (N/mm2 ) 伸ひ (%) (後加工材) 割れ性(M / m 2 ) Tensile strength (N / mm 2 ) Elongation Resistance (N / mnn 2 ) Tensile strength (N / mm 2 ) Elongation (%) (after Processed material)
129 1. 5 400 412 544 38 630 742 9 Δ 11129 1.5 400 412 544 38 630 742 9 Δ11
130 1. 400 392 512 44 614 725 12 © 13 i l 357 478 40 575 665 1 Z c130 1.400 392 512 44 614 725 12 © 13 i l 357 478 40 575 665 1 Zc
132 1. 3 400 413 517 40 628 730 11 © 12132 1.3 400 413 517 40 628 730 11 © 12
133 1. 3 400 404 513 40 624 735 11 ® 12133 1.3 400 404 513 40 624 735 11 ® 12
134 1. 4 450 430 558 36 559 764 9 Δ 12134 1.4 450 430 558 36 559 764 9 Δ12
135 1. 2 400 430 558 40 561 759 9 〇 o 12135 1.2 400 430 558 40 561 759 9 〇 o 12
136 1. 8 400 383 510 37 604 702 9 Δ 〇 16136 1.8 400 383 510 37 604 702 9 Δ 〇 16
137 1. 4 400 391 507 39 618 713 9 〇 ◎ 13137 1.4 400 391 507 39 618 713 9 ◎ ◎ 13
138 1. 3 400 400 515 42 600 708 12 ◎ ® 12138 1. 3 400 400 515 42 600 708 12 ◎ ® 12
139 ί. 2 450 444 559 36 673 779 7 Δ ◎ 13139 ί. 2 450 444 559 36 673 779 7 Δ ◎ 13
!40 314 434 40 510 614 ]4 ! 40 314 434 40 510 614] 4
ί . 32 436 43 522 616 15 ί. 32 436 43 522 616 15
142 1. 9 350 357 499 44 047 689 12 142 1.9 350 357 499 44 047 689 12
1 ο 389 512 40 588 フ 02 9 (Ql I I 施 cn 325 447 43 515 627 13 1 ο 389 512 40 588 f 02 9 (Ql I I cn 325 447 43 515 627 13
例 An example
4bi> 585 38 /00 810 6 ί 4bi> 585 38/00 810 6 ί
490 60b 37 712 822 490 60b 37 712 822
303 403 42 522 580 14 (Q) 303 403 42 522 580 14 (Q)
443 565 40 701 /87 10 443 565 40 701/87 10
1. J 411 536 42 670 757 \ \ 1. J 411 536 42 670 757 \ \
400 414 43 11 12 400 414 43 11 12
1 410 537 42 677 760 Ϊ2 1 410 537 42 677 760 Ϊ2
152 1. 2 400 425 552 43 688 770 11 ◎ 12 152 1.2 400 425 552 43 688 770 11 ◎ 12
153 2. 2 400 360 480 40 540 655 12 〇 ◎ 11153 2.2 400 360 480 40 540 655 12 〇 ◎ 11
154 1. 4 400 402 538 41 645 750 11 〇 © 11154 1.4 400 402 538 41 645 750 11 〇 © 11
154A 1. 3 710 (5) 426 553 43 _ 658 762 12 O ◎ 11154A 1.3 710 (5) 426 553 43 _ 658 762 12 O ◎ 11
155 1. 8 350 363 506 42 593 691 11 〇 © 12155 1.8 350 363 506 42 593 691 11 〇 © 12
156 1. 3 400 449 573 39 708 795 10 〇 © ί2156 1.3 400 449 573 39 708 795 10 〇 © ί2
157 1. 1 450 434 561 36 706 780 7 Δ o 17157 1.1 450 434 561 36 706 780 7 Δo 17
158 1. 4 400 400 530 40 627 735 11 ◎ © 12
158 1. 4 400 400 530 40 627 735 11 ◎ © 12
【表 1 7】 [Table 17]
合金材 平均結晶粒径 機械的性質 機械的性質 (後加工材) 導電率 Alloy material Average grain size Mechanical properties Mechanical properties (Post-processed material) Conductivity
M (°C 油び (%) 伸び (%) . 〈後加工材) 割れ性 C%iAGSM (° C Oiling (%) Elongation (%). <Post-processing material) Crackability C% iAGS
159 ΐ.9 400 392 04 42 92 588 \1 〇 〇 14159 ΐ.9 400 392 04 42 92 588 \ 1 〇 〇 14
■|g0 1 3 400 41 g23 41 10 o 11 " J 2.0 400 355 482 Q 560 6g 1 〇 ◎ 11■ | g0 1 3 400 41 g23 41 10 o 11 "J 2.0 400 355 482 Q 560 6g 1 ◎ ◎ 11
1Q2 ^4 400 39 gQQ 01 3 Δ 121Q2 ^ 4 400 39 g QQ 01 3 Δ 12
153 1.2 400 7 595 3g 683 800 7 Δ 10153 1.2 400 7 595 3g 683 800 7 Δ10
^64 450 428 5-jO 34 88 ggg 9 Δ Q ■(4^ 64 450 428 5-jO 34 88 ggg 9 Δ Q
^65 400 332 WO 0 705 11 © 12^ 65 400 332 WO 0 705 11 © 12
166 1.2 400 4Π 544 40 674 769 10 Ο 12166 1.2 400 4 Π 544 40 674 769 10 Ο 12
167 1.4 400 537 750 1 ] 〇 13167 1.4 400 537 750 1] 〇 13
1g8 1, 3 400 09 40 544 73g 11 131g8 1, 3 400 09 40 544 73g 11 13
169 3 400 08 525 40 "7 ◎ © 13169 3 400 08 525 40 "7 ◎ © 13
170 1.4 400 410 521 42 646 740 )2 13170 1.4 400 410 521 42 646 740) 2 13
171 1.4 400 400 517 42 640 730 ◎ ◎ 13 実 ]フ2 1.3 400 428 549 40 653 763 10 ο O 13 施 173 1.9 400 38 474 34 535 654 9 〇 171 1.4 400 400 517 42 640 730 ◎ ◎ 13 Actual] 2 1.3 400 428 549 40 653 763 10 ο O 13 173 1.9 400 38 474 34 535 654 9 〇
例 ◎ 14 Example ◎ 14
174 1.4 400 405 519 40 615 719 12 ◎ ◎ 12 oo 175 1.3 400 419 530 41 630 730 13 ◎ ]Z 174 1.4 400 405 519 40 615 719 12 ◎ ◎ 12 oo 175 1.3 400 419 530 41 630 730 13 ◎] Z
^76 1.3 400 420 27 4 g28 733 3 ◎ 12 ^ 76 1.3 400 420 27 4 g28 733 3 ◎ 12
17フ 1.1 400 47g 599 3g 716 823 7 厶 1017F 1.1 400 47g 599 3g 716 823 7um 10
178 2.0 450 393 487 34 562 673 9 Δ 14178 2.0 450 393 487 34 562 673 9 Δ14
179 1.5 400 403 520 41 613 720 12 ◎ ® 12179 1.5 400 403 520 41 613 720 12 ◎ ® 12
180 1.2 400 459 586 38 704 802 8 厶 O 11 讓 ί. ί 630 (8) 482 597 38 721 813 9 Ο O 11180 1.2 400 459 586 38 704 802 8 m O 11 630 630 (8) 482 597 38 721 813 9 Ο O 11
181 1.3 400 405 519 42 609 714 12 ◎ ◎ 12181 1.3 400 405 519 42 609 714 12 ◎ ◎ 12
2. ί 400 336 441 43 515 621 13 ® 〇 182.ί 400 336 441 43 515 621 13 ® 〇 18
183 1.5 400 407 518 42 607 708 10 〇 〇 13183 1.5 400 407 518 42 607 708 10 〇 〇 13
184 1.4 450 423 491 35 563 662 8 厶 ® 16184 1.4 450 423 491 35 563 662 8 m ® 16
185 1.2 150 456 571 40 694 784 12 〇 ◎ 12185 1.2 150 456 571 40 694 784 12 〇 ◎ 12
186 1.2 400 444 567 41 692 778 11 ◎ ◎ J3
186 1.2 400 444 567 41 692 778 11 ◎ ◎ J3
【表 1 8】 [Table 18]
合金材 平均吉晶粒径 機械的性質 機械的性質 (後加工村) J 導電率 Alloy material Average grain size Mechanical properties Mechanical properties (Post-processing village) J Conductivity
N m) (°C) J W mm Z ¾ つ f , mm 伸び (%) - l (、 M mm 2 ) ( N 伸び (%) (後如ェ材) 割れ性 (¾ iACSN m) (° C) JW mm Z f f, mm elongation (%)-l (, M mm 2 ) (N elongation (%) (after material) Crackability (¾ iACS
20 ΐ 3. 350 251 347 41 412 466 15 ◎ 〇 2820 ΐ 3. 350 251 347 41 412 466 15 ◎ 〇 28
202 2. 6 350 257 366 41 433 498 14 ◎ o 23202 2.6 350 257 366 41 433 498 14 ◎ o 23
202Α 2. 3 530 (15) 287 379 42 451 507 t5 ◎ o 23202Α 2.3 530 (15) 287 379 42 451 507 t5 ◎ o 23
203 2.4 400 288 399 41 452 530 14 ◎ o 24203 2.4 400 288 399 41 452 530 14 ◎ o 24
204 2. 4 400 275 390 41 449 525 14 ◎ 〇 24204 2.4 400 275 390 41 449 525 14 ◎ 〇 24
205 2. 8 350 258 349 41 437 489 13 ® o 24205 2.8 350 258 349 41 437 489 13 ® o 24
206 3. 350 265 390 42 486 536 11 o 厶 25206 3.350 265 390 42 486 536 11 o m 25
207 3. 1 400 254 346 43 420 484 12 ◎ o 33207 3.1 400 254 346 43 420 484 12 ◎ o 33
208 2. 8 400 263 372 41 485 542 10 ◎ 〇 29208 2.8 400 263 372 41 485 542 10 ◎ 〇 29
209 2. 3 450 301 412 38 500 565 12 ® o 27209 2.3 450 301 412 38 500 565 12 ® o 27
209Α 2. 1 520 C 100) 322 423 40 515 570 13 ◎ o 27209 Α 2.1 520 C 100) 322 423 40 515 570 13 ◎ o 27
210 2. 2 450 315 425 40 515 573 13 ◎ 〇 27210 2.2 450 315 425 40 515 573 13 ◎ 〇 27
211 2. 3 450 305 4ί8 41 503 568 14 ◎ o 28211 2.3 450 305 4ί8 41 503 568 14 ◎ o 28
212 2. 2 450 312 420 40 510 570 13 ® o 27 施 212 2.2 450 312 420 40 510 570 13 ® o 27
213 2. 8 450 274 393 37 480 535 10 213 2.8 450 274 393 37 480 535 10
例 ◎ 〇 29 Example ◎ 〇 29
2 214 2. 4 450 272 412 34 474 537 9 o 202 214 2. 4 450 272 412 34 474 537 9 o 20
CO 215 2. 1 400 359 469 42 550 647 8 o 厶 20 CO 215 2.1 400 359 469 42 550 647 8 o m 20
216 2. 4 350 261 362 4Ί 455 510 14 ◎ 〇 24 216 2. 4 350 261 362 4Ί 455 510 14 ◎ 〇 24
2. 5 400 306 4Π 42 4g8 558 12 o 厶 262.5 400 306 4Π 42 4g8 558 12 o m 26
218 2. 5 400 277 394 40 476 533 12 ◎ o 24218 2.5 400 277 394 40 476 533 12 ◎ o 24
219 2. 7 400 257 360 41 448 502 13 o 25219 2.7 400 257 360 41 448 502 13 o 25
220 2. 6 400 259 375 42 469 522 14 ◎ o 26220 2.6 400 259 375 42 469 522 14 ◎ o 26
221 2. 0 450 322 439 35 513 S64 9 厶 〇 20221 2.0 450 322 439 35 513 S64 9 mm 〇 20
222 3. 0 400 256 363 42 457 505 13 ◎ o 25222 3.0 400 256 363 42 457 505 13 ◎ o 25
223 2. 8 400 283 398 41 478 534 12 ◎ Δ 26223 2.8 400 283 398 41 478 534 12 ◎ Δ26
224 2. 4 400 262 391 40 480 531 12 ◎ 〇 23224 2.4 400 262 391 40 480 531 12 ◎ 〇 23
225 2. 8 400 270 358 42 430 492 12 ◎ o 32225 2.8 400 270 358 42 430 492 12 ◎ o 32
226 2. 4 450 298 405 37 491 570 9 厶 〇 28226 2.4 450 298 405 37 491 570 9 m 〇 28
227 2. 1 450 320 438 35 515 592 9 厶 〇 27
227 2.1 450 320 438 35 515 592 9 m 〇 27
【表 1 9】 [Table 19]
合金材 平均結晶粒径 冉;口 機械的性質 機械的性赏 (後加工材) 曲げ加工性 耐応力腐食 導電率 o. (。c) 耐カ (NAnm2 ) 引張強さ (N/mm2 ) 伸び (%) 耐カ C N/mm ) 引張強さ (N/mm2 ) 伸ぴ (%) (後加工材) 割れ性 C%iACS)Alloy material Average crystal grain size Ran; mouth Mechanical properties Mechanical properties (post-processed material) Bending workability Stress corrosion resistance Conductivity o. (.C) Power resistance (NAnm 2 ) Tensile strength (N / mm 2 ) Elongation (%) Power resistance CN / mm) Tensile strength (N / mm 2 ) Elongation (%) (Post-processed material) Crackability C% iACS)
228 2.7 400 259 356 40 445 488 11 ◎ © 27228 2.7 400 259 356 40 445 488 11 ◎ © 27
229 2.1 450 333 448 42 543 579 10 ◎ 〇 22229 2.1 450 333 448 42 543 579 10 ◎ 〇 22
230 2,9 400 259 362 43 449 495 14 ◎ 〇 34230 2,9 400 259 362 43 449 495 14 ◎ 〇 34
231 2.2 400 301 419 42 512 578 13 〇 21231 2.2 400 301 419 42 512 578 13 〇 21
232 2.4 400 260 388 42 460 526 13 ◎ 〇 25232 2.4 400 260 388 42 460 526 13 ◎ 〇 25
233 2.8 400 312 422 43 515 581 11 〇 Δ 25233 2.8 400 312 422 43 515 581 11 〇 Δ25
234 2.3 450 260 377 34 456 499 8 〇 ◎ 21234 2.3 450 260 377 34 456 499 8 〇 ◎ 21
235 2.4 400 257 386 40 477 525 13 ◎ 〇 25235 2.4 400 257 386 40 477 525 13 ◎ 〇 25
236 2.8 400 255 375 42 474 510 13 ◎ 〇 30236 2.8 400 255 375 42 474 510 13 ◎ 〇 30
237 2.4 400 268 376 40 474 514 13 ◎ o 25237 2.4 400 268 376 40 474 514 13 ◎ o 25
238 2.3 400 304 408 41 499 553 14 〇 23238 2.3 400 304 408 41 499 553 14 〇 23
239 2.6 350 331 410 41 523 590 12 〇 〇 20239 2.6 350 331 410 41 523 590 12 〇 〇 20
240 3.1 400 313 392 40 530 585 11 o o 24 実 240 3.1 400 313 392 40 530 585 11 o o 24 Actual
施 241 3.0 400 327 400 41 540 591 12 o 〇 24 例 242 2.8 400 335 399 41 543 590 12 Allocation 241 3.0 400 327 400 41 540 591 12 o 〇 24 Example 242 2.8 400 335 399 41 543 590 12
2 ◎ o 24 2 ◎ o 24
243 2.8 400 351 415 40 551 600 11 ◎ 〇 24243 2.8 400 351 415 40 551 600 11 ◎ 〇 24
244 2.7 350 337 433 43 545 612 11 〇 o 20244 2.7 350 337 433 43 545 612 11 〇 o 20
245 3.3 350 256 345 42 425 475 14 ◎ 〇 28245 3.3 350 256 345 42 425 475 14 ◎ 〇 28
246 1.8 400 354 435 42 600 640 13 ◎ 22246 1.8 400 354 435 42 600 640 13 ◎ 22
247 1.7 400 380 443 41 608 655 12 o ◎ 22247 1.7 400 380 443 41 608 655 12 o ◎ 22
248 1.8 400 371 438 42 600 645 13 〇 ◎ 22248 1.8 400 371 438 42 600 645 13 〇 ◎ 22
249 1.8 400 365 435 42 599 642 13 ◎ ◎ 22249 1.8 400 365 435 42 599 642 13 ◎ ◎ 22
250 1.8 400 376 443 43 588 645 11 ◎ o 22250 1.8 400 376 443 43 588 645 11 ◎ o 22
250A 1.7 520(20) 390 455 43 600 653 12 ◎ 〇 22250A 1.7 520 (20) 390 455 43 600 653 12 ◎ 〇 22
251 1.4 400 396 473 38 617 673 9 △ 〇 19251 1.4 400 396 473 38 617 673 9 △ 〇 19
252 1.7 400 365 440 40 606 643 Π o 24252 1.7 400 365 440 40 606 643 Π o 24
253 1.7 450 390 458 38 595 663 10 〇 ◎ 23253 1.7 450 390 458 38 595 663 10 ◎ ◎ 23
254 1.8 400 365 430 40 590 636 11 ◎ 22
254 1.8 400 365 430 40 590 636 11 ◎ 22
【表 20】 [Table 20]
材 平均結晶粒径 再結晶温度 機械的性質 機械的性質 (後加工材) 曲げ加工 f 耐応力腐食 導電率 Material Average grain size Recrystallization temperature Mechanical properties Mechanical properties (Post-processed material) Bending f Stress corrosion resistance Conductivity
N o. (U m) CO 耐カ (N/mm2 ) 引張強さ (NZmm2 ) 伸び (%) 耐カ (N/mm2 ) 引張強さ (N/mm2 ) 伸び (%) (後加工材) 割れ性 C%iACS)N o. (U m) CO耐Ka (N / mm 2) Tensile Strength (NZmm 2) elongation (%)耐Ka (N / mm 2) Tensile Strength (N / mm 2) elongation (%) (after Processed material) Crackability C% iACS)
255 2.3 350 302 385 41 470 525 14 ◎ o 23255 2.3 350 302 385 41 470 525 14 ◎ o 23
256 1.7 400 396 469 41 608 679 12 ◎ o 21256 1.7 400 396 469 41 608 679 12 ◎ o 21
257 Ί.δ 400 411 472 37 630 693 10 厶 〇 20257 Ί.δ 400 411 472 37 630 693 10 mm 〇 20
258 3.2 400 269 374 43 464 516 11 ◎ 〇 32258 3.2 400 269 374 43 464 516 11 ◎ 〇 32
259 2.1 400 411 487 42 628 701 8 △ 厶 2ί259 2.1 400 411 487 42 628 701 8 △ mm 2ί
260 2.0 400 354 434 42 578 625 12 〇 〇 22260 2.0 400 354 434 42 578 625 12 〇 〇 22
261 2.2 400 323 404 41 530 578 12 ◎ 〇 23261 2.2 400 323 404 41 530 578 12 ◎ 〇 23
262 2.0 400 355 439 40 575 632 Π 〇 〇 20262 2.0 400 355 439 40 575 632 Π 〇 〇 20
263 2.4 450 302 381 40 480 524 12 ◎ ◎ 21263 2.4 450 302 381 40 480 524 12 ◎ ◎ 21
264 1.5 400 366 469 42 619 678 9 △ © 18264 1.5 400 366 469 42 619 678 9 △ © 18
265 1.8 400 363 440 40 566 639 12 o 21265 1.8 400 363 440 40 566 639 12 o 21
265A 1.7 750(4) 377 450 41 575 645 12 ◎ 〇 21265A 1.7 750 (4) 377 450 41 575 645 12 ◎ 〇 21
266 1.7 400 380 448 40 585 650 12 〇 266 1.7 400 380 448 40 585 650 12 〇
実 ◎ 20 施 267 1.7 400 379 452 41 590 655 13 ◎ 〇 21 例 268 1.4 450 403 492 40 638 700 11 〇 Actual ◎ 20 applications 267 1.7 400 379 452 41 590 655 13 ◎ 〇 21 cases 268 1.4 450 403 492 40 638 700 11 〇
2 ◎ 20 2 ◎ 20
269 1.8 400 360 438 41 587 624 12 ◎ o 21269 1.8 400 360 438 41 587 624 12 ◎ o 21
270 3.0 400 271 371 42 492 530 14 ◎ 〇 28270 3.0 400 271 371 42 492 530 14 ◎ 〇 28
271 2.0 400 332 413 41 548 590 13 ◎ o 23271 2.0 400 332 413 41 548 590 13 ◎ o 23
272 1.7 400 389 465 42 612 664 12 〇 o 20272 1.7 400 389 465 42 612 664 12 〇 o 20
273 1.9 400 334 416 40 555 590 13 ◎ 〇 23273 1.9 400 334 416 40 555 590 13 ◎ 〇 23
274 2.1 400 388 457 40 574 633 12 o 25274 2.1 400 388 457 40 574 633 12 o 25
275 2.0 400 334 409 41 536 584 12 © o 23275 2.0 400 334 409 41 536 584 12 © o 23
276 1.8 400 332 410 40 537 586 11 ◎ ◎ 22276 1.8 400 332 410 40 537 586 11 ◎ ◎ 22
277 1.5 400 458 531 39 672 721 9 O o 20277 1.5 400 458 531 39 672 721 9 O o 20
278 2.0 400 341 414 42 550 591 13 ◎ ◎ 23278 2.0 400 341 414 42 550 591 13 ◎ ◎ 23
279 1.7 400 388 460 40 605 658 11 〇 ◎ 22279 1.7 400 388 460 40 605 658 11 〇 ◎ 22
280 1,7 400 396 475 39 615 680 12 ◎ ◎ 21280 1,7 400 396 475 39 615 680 12 ◎ ◎ 21
281 1.3 450 430 492 35 638 702 9 〇 ◎ 23
281 1.3 450 430 492 35 638 702 9 〇 ◎ 23
【表 2 1】 [Table 21]
合金树 平均結晶 径 再結晶温度 機械的性質 機械的性質 (後加工材) 曲げ加工性 耐応力腐食 o. m m) (。c) 耐カ (N/mm2 ) 引張強さ (N/mm2 ) 伸び (%) 耐カ (N/mm2 ) 引張強さ (NZmm2 ) 伸び (%) (後加工材) 割れ性 C%iACS)Alloy 树 Average crystal size Recrystallization temperature Mechanical properties Mechanical properties (post-processed material) Bendability Stress corrosion resistance o. Mm) (.c) Power resistance (N / mm 2 ) Tensile strength (N / mm 2 ) Elongation (%) Power resistance (N / mm 2 ) Tensile strength (NZmm 2 ) Elongation (%) (Post-processed material) Crackability C% iACS
301 3.1 300 310 502 38 635 729 6 O Δ 13301 3.1 300 310 502 38 635 729 6 O Δ 13
302 3.2 300 324 518 35 658 756 6 〇 △ 13302 3.2 300 324 518 35 658 756 6 〇 △ 13
302A 3.0 500(15) 339 527 37 670 765 7 〇 厶 13302A 3.0 500 (15) 339 527 37 670 765 7 Room 13
303 2.9 350 345 533 35 673 768 6 〇 厶 13303 2.9 350 345 533 35 673 768 6 Room 13
304 2.8 350 352 540 35 685 775 6 〇 Δ 13304 2.8 350 352 540 35 685 775 6 〇 Δ 13
305 2.9 300 340 535 36 685 776 6 〇 〇 12305 2.9 300 340 535 36 685 776 6 〇 〇 12
306 3.3 350 266 453 39 589 667 7 〇 厶 16306 3.3 350 266 453 39 589 667 7 Room 16
307 2.9 350 305 495 36 621 717 6 〇 厶 15307 2.9 350 305 495 36 621 717 6 Room 15
308 2.7 350 332 526 34 670 762 6 〇 Δ 13308 2.7 350 332 526 34 670 762 6 〇 Δ 13
309 2.2 350 360 541 32 677 774 5 △ O 14309 2.2 350 360 541 32 677 774 5 △ O 14
310 2.4 350 372 569 35 713 824 6 O 〇 12310 2.4 350 372 569 35 713 824 6 O 〇 12
311 2.3 350 382 580 32 729 841 5 厶 〇 12311 2.3 350 382 580 32 729 841 5 m 〇 12
312 1.9 350 392 580 34 751 860 5 △ 〇 11 実 312 1.9 350 392 580 34 751 860 5 △ 〇 11 Actual
施 313 2.6 350 346 541 35 682 784 6 〇 o 13 例 314 2.4 350 360 556 35 716 811 6 O o 12 Allocation 313 2.6 350 346 541 35 682 784 6 〇 o 13 Example 314 2.4 350 360 556 35 716 811 6 O o 12
3 Three
314A 2.3 550(10) 372 565 36 725 817 7 〇 o 12 314A 2.3 550 (10) 372 565 36 725 817 7 〇 o 12
315 2.3 350 375 567 36 728 819 6315 2.3 350 375 567 36 728 819 6
) 〇 o 12 ) 〇 o 12
316 2,3 350 376 569 36 733 822 6 〇 o 12 316 2,3 350 376 569 36 733 822 6 〇 o 12
317 2.7 350 338 533 35 670 773 6 O Δ 12317 2.7 350 338 533 35 670 773 6 O Δ12
318 2.4 400 349 546 32 694 792 5 o 〇 12318 2.4 400 349 546 32 694 792 5 o 〇 12
319 3.4 300 253 433 39 559 - 638 7 o Δ 17319 3.4 300 253 433 39 559-638 7 o Δ 17
320 2.7 350 339 535 36 675 776 6 〇 o 12320 2.7 350 339 535 36 675 776 6 〇 o 12
321 3.4 350 255 443 38 568 647 6 〇 Δ 16321 3.4 350 255 443 38 568 647 6 〇 Δ 16
322 2.1 400 377 574 35 726 832 5 〇 O 11322 2.1 400 377 574 35 726 832 5 〇 O 11
323 2.8 350 342 537 35 685 788 6 〇 Δ 12323 2.8 350 342 537 35 685 788 6 〇 Δ12
324 2.6 350 358 555 34 702 805 5 o 〇 12324 2.6 350 358 555 34 702 805 5 o 〇 12
325 2-8 350 293 481 34 615 702 6 厶 Δ 18325 2-8 350 293 481 34 615 702 6 m Δ 18
326 2.4 350 353 548 35 803 807 6 o O 12
326 2.4 350 353 548 35 803 807 6 o O 12
【表 22】 [Table 22]
合金材 平均結晶粒径 再結晶温度 機械的性質 機械的性質 (後加工材) 曲げ加工性 耐応力腐食 導鼋率 o. (°C) 耐カ (NZmm2 ) 引張強さ (N/mm2 ) 伸び (%) 耐カ (N/mm2 ) 引張強さ (N/mm2 ) 伸び (%) (後加工材) 割れ性 (%IACS)Alloy material Average crystal grain size Recrystallization temperature Mechanical properties Mechanical properties (post-processed material) Bendability Stress corrosion resistance Conductivity o. (° C) Power resistance (NZmm 2 ) Tensile strength (N / mm 2 ) elongation (%)耐Ka (N / mm 2) tensile strength (N / mm 2) elongation (%) (post-processed material) cracking resistance (% IACS)
327 2.8 350 329 521 36 655 756 6 O Δ 13327 2.8 350 329 521 36 655 756 6 O Δ13
328 2.8 350 341 536 35 697 792 6 O 厶 12328 2.8 350 341 536 35 697 792 6 Om 12
329 2.7 350 343 539 35 680 781 6 O 〇 12329 2.7 350 343 539 35 680 781 6 O 〇 12
330 2.7 350 348 545 32 693 800 5 Δ 厶 12330 2.7 350 348 545 32 693 800 5 Δ 12
331 2.5 350 355 551 34 692 804 5 〇 o 12331 2.5 350 355 551 34 692 804 5 〇 o 12
332 2.4 350 348 543 35 698 802 6 O o 12332 2.4 350 348 543 35 698 802 6 O o 12
333 2.5 350 350 545 35 695 796 6 O 厶 13333 2.5 350 350 545 35 695 796 6 Om 13
334 2.6 350 361 557 33 710 818 5 〇 o 12334 2.6 350 361 557 33 710 818 5 〇 o 12
335 2.8 350 346 545 35 681 790 5 O o 11335 2.8 350 346 545 35 681 790 5 O o 11
336 2.8 350 363 556 31 688 806 4 O 〇 11336 2.8 350 363 556 31 688 806 4 O 〇 11
337 2.7 350 352 542 35 688 796 6 〇 o 12337 2.7 350 352 542 35 688 796 6 〇 o 12
338 2.3 350 365 559 36 714 826 6 o 〇 12338 2.3 350 365 559 36 714 826 6 o 〇 12
338A 2.2 640(5) 377 567 37 722 833 7 o 〇 12 実 338A 2.2 640 (5) 377 567 37 722 833 7 o 〇 12 real
施 339 2.2 350 381 570 37 720 832 7 o 〇 12 例 340 2.2 350 375 568 36 723 833 6 〇 〇 12 Allocation 339 2.2 350 381 570 37 720 832 7 o 〇 12 Example 340 2.2 350 375 568 36 723 833 6 〇 〇 12
3 Three
341 2.2 350 373 569 36 718 829 6 o 〇 12O 342 1.8 400 398 594 34 756 865 4 Δ 〇 11 341 2.2 350 373 569 36 718 829 6 o 〇 12 O 342 1.8 400 398 594 34 756 865 4 Δ 〇 11
343 2.3 350 366 560 34 714 817 6 o △ 12 343 2.3 350 366 560 34 714 817 6 o △ 12
344 2.6 350 348 536 36 670 783 5 0 〇 13344 2.6 350 348 536 36 670 783 5 0 〇 13
345 3.0 350 346 536 32 663 777 4 Δ Δ n345 3.0 350 346 536 32 663 777 4 Δ Δn
346 2.4 350 350 545 34 685 780 5 o o 13346 2.4 350 350 545 34 685 780 5 o o 13
347 2.5 350 363 558 35 702 809 6 o o 12347 2.5 350 363 558 35 702 809 6 o o 12
348 2.8 350 337 537 33 678 779 5 0 〇 12348 2.8 350 337 537 33 678 779 5 0 〇 12
349 2.4 350 360 558 35 699 814 6 o 〇 11349 2.4 350 360 558 35 699 814 6 o 〇 11
350 2.7 350 333 527 36 669 764 6 〇 〇 12350 2.7 350 333 527 36 669 764 6 〇 〇 12
351 1.9 400 416 615 31 780 892 4 厶 〇 11351 1.9 400 416 615 31 780 892 4 mm 〇 11
352 2.5 350 359 551 34 702 810 6 o o 12352 2.5 350 359 551 34 702 810 6 o o 12
353 2.2 350 367 562 33 720 830 5 o o 12
353 2.2 350 367 562 33 720 830 5 oo 12
【表 23】 [Table 23]
合金材 平均結晶粒径 冉 機械的性質 機械的性質 (後加工材) 曲げ加工生 耐応カ腐食 導電率 Alloy material Average grain size Ran Mechanical property Mechanical property (Post-processed material) Bending process
N o. ( rn) (°C) 而す力 (Nf, mm2 ) 引張強さ C /mm2 ) 伸び (%) 耐カ (N/mm2 ) 引張強さ (N/mm2 ) 侔び (%) (後加工村) 割れ性 (%!AGSN o. (Rn) (° C) Force (Nf, mm 2 ) Tensile strength C / mm 2 ) Elongation (%) Power resistance (N / mm 2 ) Tensile strength (N / mm 2 ) (%) (Post-processing village) Fragility (%! AGS
354 2.1 350 377 570 33 725 836 5 Ο o 12354 2.1 350 377 570 33 725 836 5 Ο o 12
355 2.1 350 381 572 34 722 836 5 ο o 12355 2.1 350 381 572 34 722 836 5 ο o 12
356 2.1 350 375 568 35 733 835 5 ο o 12356 2.1 350 375 568 35 733 835 5 ο o 12
357 1.8 350 417 610 31 767 885 4 厶 〇 11357 1.8 350 417 610 31 767 885 4 mm 〇 11
358 2.4 350 354 548 35 699 804 6 ο 〇 12358 2.4 350 354 548 35 699 804 6 ο 〇 12
359 2.3 350 364 560 34 727 823 6 ο 〇 12 .359 2.3 350 364 560 34 727 823 6 ο 〇 12.
360 2.4 350 368 551 34 698 801 5 ο 厶 12360 2.4 350 368 551 34 698 801 5 οm 12
361 2.4 350 365 556 34 706 811 6 ο 〇 11361 2.4 350 365 556 34 706 811 6 ο 〇 11
362 2.4 350 377 564 32 708 818 4 厶 〇 11362 2.4 350 377 564 32 708 818 4 mm 〇 11
363 2.3 350 351 545 34 695 - 790 6 ο o 12363 2.3 350 351 545 34 695-790 6 ο o 12
364 2.9 350 307 480 34 615 698 6 〇 厶 18364 2.9 350 307 480 34 615 698 6 Room 18
365 3.1 350 335 530 31 653 765 4 △ Δ 14365 3.1 350 335 530 31 653 765 4 △ Δ 14
366 2.2 350 377 573 33 724 831 5 ο o 11 実 366 2.2 350 377 573 33 724 831 5 ο o 11 real
367 3, 1 350 297 478 36 612 693 6 Δ 厶 16 例 368 2.9 300 316 510 37 644 740 6 〇 〇 12 367 3, 1 350 297 478 36 612 693 6 Delta 16 Examples 368 2.9 300 316 510 37 644 740 6 〇 〇 12
3 Three
369 2.7 350 339 540 36 670 783 6 〇 〇 12 369 2.7 350 339 540 36 670 783 6 〇 〇 12
4^ 370 2.5 350 344 538 36 681 785 6 〇 〇 12 4 ^ 370 2.5 350 344 538 36 681 785 6 〇 〇 12
371 2.3 350 377 575 34 715 833· 5 ο 0 11 371 2.3 350 377 575 34 715 8335 ο 0 11
372 2.4 350 353 548 35 693 804 6 ο o 12372 2.4 350 353 548 35 693 804 6 ο o 12
373 2.5 350 354 557 33 700 808 5 ο 〇 12373 2.5 350 354 557 33 700 808 5 ο 〇 12
374 2.6 350 331 531 35 666 770 6 ο o 12374 2.6 350 331 531 35 666 770 6 ο o 12
375 2.8 350 330 523 36 654 758 6 ο o 13375 2.8 350 330 523 36 654 758 6 ο o 13
376 2.4 350 354 549 35 705 810 6 ο 〇 12376 2.4 350 354 549 35 705 810 6 ο 〇 12
377 2.4 350 361 558 35 711 824 6 ο 〇 12377 2.4 350 361 558 35 711 824 6 ο 〇 12
378 2.3 350 369 567 34 723 832 6 ο o 12378 2.3 350 369 567 34 723 832 6 ο o 12
379 2.7 350 334 536 33 676 777 6 ο 〇 12379 2.7 350 334 536 33 676 777 6 ο 〇 12
380 2.7 350 369 553 33 695 802 4 Δ 〇 12380 2.7 350 369 553 33 695 802 4 Δ 〇 12
381 2.4 350 372 566 34 720 831 5 ο 〇 12
381 2.4 350 372 566 34 720 831 5 ο 〇 12
【表 24】 [Table 24]
【表 2 5】 [Table 25]
【表 26】 [Table 26]