JP2000096164A - Copper alloy for electronic apparatus - Google Patents

Copper alloy for electronic apparatus

Info

Publication number
JP2000096164A
JP2000096164A JP27237098A JP27237098A JP2000096164A JP 2000096164 A JP2000096164 A JP 2000096164A JP 27237098 A JP27237098 A JP 27237098A JP 27237098 A JP27237098 A JP 27237098A JP 2000096164 A JP2000096164 A JP 2000096164A
Authority
JP
Japan
Prior art keywords
copper alloy
grain size
crystal grain
workability
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27237098A
Other languages
Japanese (ja)
Inventor
Takao Hirai
崇夫 平井
Masaaki Kurihara
正明 栗原
Kuniteru Mihara
邦照 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP27237098A priority Critical patent/JP2000096164A/en
Publication of JP2000096164A publication Critical patent/JP2000096164A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow a copper alloy to sufficiently be applied even to a multipin lead frame or the like by controlling the crystal grain size of an alloy contg. specified ratios of Zn and Si, moreover contg. at least one kind among Bi, Se, Ca, Sr and rare earth elements by specified ratios in total, and the balance Cu with inevitable impurities to the specified one. SOLUTION: The crystal grain size of a copper alloy contg., by weight, 5 to 35% Zn and 0.5 to 3% Si, furthermore contg. at least one kind among Bi, Se, Ca, Sr and rare earth elements by 0.001 to 0.5% in total, and the balance Cu with inevitable impurities is preferably controlled to 5 to 35 μm. This copper alloy uses a Cu-Zn alloy as a base, and stress corrosion cracking as its weak point is improved by adding a suitable amt. of Si and optimumly controlling the crystal grain size therein. Zn improves its punching workability. Bi, Se, Ca, Sr and rare earth elements moreover improve the punching workability. Furthermore, Si contributes to the improvement of its strength, and the optimization of the crystal grain size improves its bending workability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多ピンリードフレ
ームなどにも十分適用できる電子機器用銅合金に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for electronic equipment which can be sufficiently applied to a multi-pin lead frame and the like.

【0002】[0002]

【従来の技術】従来より、半導体機器のリードフレーム
や端子などには、鉄系材料の他、Cu−Sn系、Cu−
Fe系等の銅系材料が広く用いられている。前記リード
フレーム材などには、強度、耐熱性、電気伝導性、熱伝
導性などが要求され、また、貴金属や半田などのめっき
性、半田接合性、表面平滑性なども重視される。また、
条および板からリードフレームを高精度に成型できるエ
ッチング性や打抜加工性も要求され、更に低価格なこと
も重要である。ところで、近年の半導体機器の高集積
化、小型化、高機能化が進み、それに応じて、例えば、
リードフレームでは、小型化、薄肉化、多ピン化、ファ
インピッチ化が進行し、また少数のピンを多列に配置し
たマトリックス状のリードフレームも開発されるように
なった。そして、これらは、主に、加工コストの安い打
抜加工法により製造されている。
2. Description of the Related Art Conventionally, lead frames and terminals of semiconductor devices have been used in addition to iron-based materials, as well as Cu-Sn-based and Cu-based materials.
Copper-based materials such as Fe-based are widely used. The lead frame material and the like are required to have strength, heat resistance, electric conductivity, heat conductivity, and the like. In addition, plating properties of noble metals and solders, solder bonding properties, surface smoothness, and the like are also important. Also,
Etching properties and punching workability that can form a lead frame from strips and plates with high precision are also required, and it is also important that the cost is lower. By the way, in recent years, high integration, miniaturization, and high functionality of semiconductor devices have been advanced, and accordingly, for example,
Leadframes have become smaller, thinner, have more pins, and have finer pitches. In addition, matrix leadframes having a small number of pins arranged in multiple rows have been developed. And these are mainly manufactured by the punching method with low processing cost.

【0003】[0003]

【発明が解決しようとする課題】このようなことから、
打抜加工性に優れるCu−Zn系銅合金が提案されてい
る(特開平1-162737号公報と特開平5-36878 号公報)。
しかし、一方の銅合金(特開平1-162737号公報)は応力
腐食割れが発生し易いうえ、100ピン以上の多ピンリ
ードフレームに対しては打抜加工性が十分でなく、他方
の銅合金(特開平5-36878 号公報)はCu−Zn系合金
表面にNi/Pdをめっきしたもので、曲げ加工すると
めっき層に亀裂が入って応力腐食割れが起き易くなり、
いずれも、リードフレームの多ピン化、ファインピッチ
化などへの適用は困難なものであった。本発明は、多ピ
ンリードフレームなどにも十分適用できる電子機器用銅
合金の提供を目的とする。
SUMMARY OF THE INVENTION
A Cu-Zn based copper alloy having excellent punching workability has been proposed (Japanese Patent Application Laid-Open Nos. 1-162737 and 5-36878).
However, one copper alloy (Japanese Patent Application Laid-Open No. 1-162737) is susceptible to stress corrosion cracking, and has insufficient punching workability for a multi-pin lead frame having 100 pins or more. (Japanese Patent Application Laid-Open No. 5-36878) is a plating method in which Ni / Pd is plated on the surface of a Cu—Zn-based alloy.
In any case, it has been difficult to apply the method to increasing the number of pins and fine pitch of the lead frame. An object of the present invention is to provide a copper alloy for electronic devices that can be sufficiently applied to a multi-pin lead frame and the like.

【0004】[0004]

【課題を解決するための手段】本発明は、Znを5〜3
5wt%、Siを0.5〜3wt%含み、更にBi、Se、
Ca、Sr、稀土類元素のうちの少なくとも1種を総計
で0.001〜0.5wt%含み、残部がCuと不可避的
不純物からなる銅合金であって、結晶粒度が5〜35μ
mであることを特徴とする電子機器用銅合金である。
SUMMARY OF THE INVENTION The present invention relates to a method for producing Zn by using 5 to 3 Zn.
5 wt%, containing 0.5 to 3 wt% of Si, Bi, Se,
A copper alloy containing at least one of Ca, Sr, and rare earth elements in total of 0.001 to 0.5 wt%, with the balance being Cu and unavoidable impurities, and having a crystal grain size of 5 to 35 μm;
m, which is a copper alloy for electronic equipment.

【0005】[0005]

【発明の実施の形態】本発明の銅合金は、Cu−Zn系
合金をベースとし、その欠点である応力腐食割れを、S
iを適量添加することと、結晶粒度を適正に制御するこ
とにより改善したもので、更に、前記Siは強度向上に
も寄与し、また結晶粒度の適正化は曲げ加工性を改善す
る。本発明において、Cuに添加するZnは打抜加工時
のバリの発生やリードの捩じれを極めて少なくして打抜
加工性を向上させる。その含有量を5〜35wt%に規定
する理由は、5wt%未満ではその効果が十分に得られ
ず、35wt%を超えるとβ相が出現して冷間加工性が悪
化するためである。Siは、前述のように耐応力腐食割
れ性の改善および強度の向上に寄与する。Siの含有量
を0.5〜3wt%に規定する理由は、0.5wt%未満で
はその効果が十分に得られず、3wt%を超えると導電性
および鋳造性が低下するためである。本発明で結晶粒度
を5〜35μmに規定する理由は、結晶粒度が5μm未
満でも35μmを超えてもその曲げ加工性および耐応力
腐食割れ性が十分改善されないためである。ここで、結
晶粒度はJISH0501に準じて決定される。
BEST MODE FOR CARRYING OUT THE INVENTION The copper alloy of the present invention is based on a Cu--Zn alloy, and its stress corrosion cracking, which is a defect of
It is improved by adding an appropriate amount of i and by appropriately controlling the crystal grain size. Further, the Si contributes to the improvement of the strength, and the optimization of the crystal grain size improves the bending workability. In the present invention, Zn added to Cu significantly reduces the occurrence of burrs and the twisting of leads during punching, thereby improving punching workability. The reason why the content is specified in the range of 5 to 35% by weight is that if the content is less than 5% by weight, the effect cannot be sufficiently obtained, and if the content exceeds 35% by weight, a β phase appears to deteriorate cold workability. Si contributes to the improvement of the stress corrosion cracking resistance and the strength as described above. The reason for defining the Si content to be 0.5 to 3 wt% is that if the content is less than 0.5 wt%, the effect cannot be sufficiently obtained, and if it exceeds 3 wt%, the conductivity and castability are reduced. The reason why the grain size is specified to be 5 to 35 μm in the present invention is that even if the grain size is less than 5 μm or more than 35 μm, the bending workability and the stress corrosion cracking resistance are not sufficiently improved. Here, the crystal grain size is determined in accordance with JIS H0501.

【0006】本発明銅合金では、Zn、Siに加えて、
更にBi、Se、Ca、Sr、稀土類元素のうちの少な
くとも1種を含有させると打抜加工性が更に向上する。
これら元素の含有量を総計で0.001〜0.5wt%に
規定する理由は、0.001wt%未満では含有させた効
果が十分に得られず、0.5wt%を超えると熱間加工性
が低下するためである。前記稀土類元素には、La、C
e、Pr、Nd、Smなどの元素の他、ミッシュメタル
を用いても良い。ミッシュメタルは、Ce45〜50wt
%、La20〜40wt%、残部Pr、Nd、Smなどか
らなる混合体で安価であり、経済的に有利である。
In the copper alloy of the present invention, in addition to Zn and Si,
Further, when at least one of Bi, Se, Ca, Sr and rare earth elements is contained, the punching workability is further improved.
The reason for defining the total content of these elements to be 0.001 to 0.5 wt% is that if the content is less than 0.001 wt%, the effect of the content cannot be sufficiently obtained. Is to be reduced. The rare earth elements include La, C
Misch metal may be used in addition to elements such as e, Pr, Nd, and Sm. Misch metal is Ce45-50wt
%, La 20 to 40 wt%, and the balance of Pr, Nd, Sm and the like is inexpensive and economically advantageous.

【0007】本発明銅合金では、前記諸元素に加えて、
In、Ba、Sb、Hf、Be、Nb、Pd、B、Cな
どを添加して、リードフレーム材や端子材に要求される
強度や耐熱性を更に向上させることができる。これら元
素の添加量は導電率を大幅に低下させない範囲が推奨さ
れる。なお、本発明銅合金では溶解鋳造時に混入するO
およびSの含有量を50ppm以下にすると、めっき性、
半田接合性、半田濡れ性などの表面特性が向上する。
In the copper alloy of the present invention, in addition to the above elements,
By adding In, Ba, Sb, Hf, Be, Nb, Pd, B, C, etc., the strength and heat resistance required for the lead frame material and the terminal material can be further improved. It is recommended that the amount of these elements be added so that the conductivity is not significantly reduced. In addition, in the copper alloy of the present invention, O
When the content of S and S is 50 ppm or less, the plating property,
Surface properties such as solder jointability and solder wettability are improved.

【0008】[0008]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)表1に示すNo.1〜16の組成の銅合金を高周
波溶解炉により溶解し、これを6℃/秒の冷却速度で鋳
造して厚さ30mm、幅100mm、長さ150mmの
鋳塊を得た。なお、表1で選択元素のMMはミッシュメ
タルである。次に、この鋳塊を850℃で厚さ12mm
に熱間圧延し、これを厚さ9mmに両面を切削して酸化
皮膜を除去したのち、厚さ1.2mmに冷間圧延し、次
いで不活性ガス雰囲気中で530℃で1時間焼鈍し、次
いで厚さ0.21mmに冷間圧延したのち、不活性ガス
中で530℃で1時間焼鈍し、次いで仕上圧延して厚さ
0.15mmの板材を製造した。
The present invention will be described below in detail with reference to examples. (Example 1) Copper alloys having compositions Nos. 1 to 16 shown in Table 1 were melted by a high-frequency melting furnace and cast at a cooling rate of 6 ° C./sec. To have a thickness of 30 mm, a width of 100 mm and a length of 150 mm. Was obtained. In Table 1, MM of the selected element is misch metal. Next, the ingot was heated at 850 ° C. to a thickness of 12 mm.
Hot-rolled, cut both sides to a thickness of 9 mm to remove the oxide film, cold-rolled to a thickness of 1.2 mm, and then annealed at 530 ° C. for 1 hour in an inert gas atmosphere. Next, after cold-rolling to a thickness of 0.21 mm, the sheet was annealed at 530 ° C. for 1 hour in an inert gas, and then finish-rolled to produce a 0.15 mm-thick plate.

【0009】(比較例1)表1に示す No.17〜27の組成
の銅合金を用いた他は、実施例1と同じ方法により、厚
さ0.15mmの板材を製造した。なお、一部のものは
焼鈍条件を変えて板材の結晶粒度を変化させた。
Comparative Example 1 A plate having a thickness of 0.15 mm was produced in the same manner as in Example 1 except that copper alloys having compositions Nos. 17 to 27 shown in Table 1 were used. In some cases, the annealing conditions were changed to change the crystal grain size of the sheet material.

【0010】実施例1および比較例1で得られた各々の
板材について結晶粒度、引張強さ(TS)、導電
率(EC)、曲げ加工性、打抜加工性、耐応力腐
食割れ性を下記方法により調べた。結果を表2〜4に示
す。 結晶粒度:結晶組織を光学顕微鏡(200倍)により
観察し、JISH0501の切断法に準じて測定した。 引張強さ(TS):JISZ2241に準じて測定し
た。 導電率(EC):JISH0501の切断法に準じて
測定した。 曲げ加工性:板材を幅10mm、長さ50mm(長さ
方向と圧延方向とが平行)に切り出し、これに曲げ半径
0.1mmでW曲げし、曲げ部における割れの有無を5
0倍の光学顕微鏡で目視観察した。割れおよび肌荒れの
無いものを良好○、肌荒れが生じたものをやや不良△、
割れが生じたものを不良×と判定した。 打抜加工性:板材にSKD11製金型で1mm×5m
mの角状の穴を開け、5001回目から10000回目
までの打抜分からサンプルを20個無作為に抽出しサン
プルの厚さbに対する破断部厚さaの割合〔(a/b)
×100%〕を求めた。この破断部割合(破断面比率)
は打抜加工性の目安の一つとされ、この割合が大きい程
打抜加工性は良好で、打抜きでの歩留まりが高く、かつ
加工が精密に行えると評価される。 耐応力腐食割れ性(耐SCC性):板材から幅8m
m、長さ50mm(長さ方向と圧延方向が平行)の引張
試験片を切出し、これをJISC8306に準拠するア
ンモニア雰囲気に曝露した。このサンプルの両端に20
kgf/mm2 の定荷重をかけ破断までの時間を測定した。
The grain size, tensile strength (TS), electrical conductivity (EC), bending workability, punching workability, and stress corrosion cracking resistance of each of the sheet materials obtained in Example 1 and Comparative Example 1 were as follows. The method was investigated. The results are shown in Tables 2 to 4. Crystal grain size: The crystal structure was observed with an optical microscope (200 times), and measured according to the cutting method of JIS H0501. Tensile strength (TS): Measured according to JISZ2241. Conductivity (EC): Measured according to the cutting method of JIS H0501. Bending workability: A plate material is cut out to a width of 10 mm and a length of 50 mm (the length direction and the rolling direction are parallel), and is subjected to W-bending at a bending radius of 0.1 mm.
It was visually observed with an optical microscope of 0 magnification. Good for those without cracks and rough skin, good for those with rough skin,
Those having cracks were judged to be defective. Punching workability: 1mm x 5m with SKD11 mold for plate material
Then, 20 square samples were randomly extracted from the 5001st to 10000th punchings, and the ratio of the fractured part thickness a to the sample thickness b [(a / b)
× 100%]. Breakage ratio (fracture surface ratio)
Is regarded as one of the standards of punching workability. It is evaluated that the larger this ratio is, the better the punching workability is, the higher the yield in punching is, and the processing can be performed precisely. Stress corrosion cracking resistance (SCC resistance): width 8m from plate
m, a tensile test piece having a length of 50 mm (the length direction and the rolling direction were parallel) was cut out and exposed to an ammonia atmosphere according to JISC8306. 20 at each end of this sample
A constant load of kgf / mm 2 was applied to measure the time until breakage.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【表3】 [Table 3]

【0014】[0014]

【表4】 [Table 4]

【0015】表2〜4より明らかなように、本発明例の
No.1〜16はいずれも、総ての特性に優れている。これに
対し、比較例のNo.17 はZnが少ないため、No.19 はS
iが添加されていないため、いずれも引張強さと打抜加
工性が低下した。No.18 はZnが多いため、製造加工
性、導電率、曲げ加工性が低下した。No.20 はSiが多
いため溶解鋳造時に酸化物が多く発生して製造加工性お
よび曲げ加工性が低下した。No.21 はBiが多く熱間加
工中に大きな割れを生じ正常に製造することができなか
った。No.22 はミッシュメタル(MM)が多いため、N
o.23 はCaが多いため、いずれも曲げ加工性と冷間圧
延時に割れが発生し製造加工性が低下した。No.24,25は
焼鈍条件が適正でなく結晶粒度が細かく且つ混粒となっ
た。そのため曲げ加工性が低下し、耐SCC性も低下し
た。No.26,27は焼鈍条件が適正でなく、結晶粒度が大き
くなり、そのため曲げ加工性がやや低下し、打抜加工性
と耐SCC性が低下した。
As is clear from Tables 2 to 4, the present invention
Nos. 1 to 16 all have excellent properties. On the other hand, in Comparative Example No. 17, the amount of Zn was small.
Since i was not added, the tensile strength and the punching workability decreased in all cases. In No. 18, since there was much Zn, the manufacturing workability, conductivity, and bending workability were reduced. In No. 20, since a large amount of Si was present, a large amount of oxide was generated during melting and casting, and the workability and bending workability were reduced. No. 21 contained a large amount of Bi and generated large cracks during hot working, and could not be manufactured normally. No.22 has many misch metal (MM),
Since o.23 contained a large amount of Ca, cracking occurred during bending work and cold rolling in all cases, resulting in reduced workability. In Nos. 24 and 25, the annealing conditions were not appropriate and the crystal grain size was fine and mixed. Therefore, the bending workability was reduced, and the SCC resistance was also reduced. In Nos. 26 and 27, the annealing conditions were not appropriate and the crystal grain size was large, so that the bending workability was slightly lowered, and the punching workability and SCC resistance were lowered.

【0016】[0016]

【発明の効果】以上に述べたように、本発明の電子機器
用銅合金は、Znを5〜35wt%、Siを0.5〜3wt
%含み、更にBi、Se、Ca、Sr、稀土類元素のう
ちの少なくとも1種を0.001〜0.5wt%含み、結
晶粒度が5〜35μmの電子機器用銅合金で、耐応力腐
食割れ性、強度、電気・熱伝導性、曲げ加工性、打抜加
工性、耐応力腐食割れ性、製造加工性などに優れていて
多ピンリードフレームなどにも十分適用でき、工業上顕
著な効果を奏するものである。
As described above, the copper alloy for electronic equipment of the present invention has a Zn content of 5 to 35 wt% and a Si content of 0.5 to 3 wt%.
%, And at least one of Bi, Se, Ca, Sr, and rare earth elements is contained in an amount of 0.001 to 0.5 wt%, and has a crystal grain size of 5 to 35 μm. Excellent in properties, strength, electrical and thermal conductivity, bending workability, punching workability, stress corrosion cracking resistance, manufacturing workability, etc. To play.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Znを5〜35wt%、Siを0.5〜3
wt%含み、更にBi、Se、Ca、Sr、稀土類元素の
うちの少なくとも1種を総計で0.001〜0.5wt%
含み、残部がCuと不可避的不純物からなる銅合金であ
って、結晶粒度が5〜35μmであることを特徴とする
電子機器用銅合金。
1. A Zn content of 5 to 35% by weight and a Si content of 0.5 to 3%.
wt%, and at least one of Bi, Se, Ca, Sr, and rare earth elements is 0.001 to 0.5 wt% in total.
A copper alloy for electronic equipment, the balance being a copper alloy comprising Cu and inevitable impurities and having a crystal grain size of 5 to 35 μm.
JP27237098A 1998-09-28 1998-09-28 Copper alloy for electronic apparatus Pending JP2000096164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27237098A JP2000096164A (en) 1998-09-28 1998-09-28 Copper alloy for electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27237098A JP2000096164A (en) 1998-09-28 1998-09-28 Copper alloy for electronic apparatus

Publications (1)

Publication Number Publication Date
JP2000096164A true JP2000096164A (en) 2000-04-04

Family

ID=17512952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27237098A Pending JP2000096164A (en) 1998-09-28 1998-09-28 Copper alloy for electronic apparatus

Country Status (1)

Country Link
JP (1) JP2000096164A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022805A1 (en) * 2002-09-09 2004-03-18 Sambo Copper Alloy Co., Ltd. High-strength copper alloy
JP2006188722A (en) * 2005-01-04 2006-07-20 Dowa Mining Co Ltd Method for producing brass material and brass material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022805A1 (en) * 2002-09-09 2004-03-18 Sambo Copper Alloy Co., Ltd. High-strength copper alloy
JP2006188722A (en) * 2005-01-04 2006-07-20 Dowa Mining Co Ltd Method for producing brass material and brass material

Similar Documents

Publication Publication Date Title
KR101158113B1 (en) Copper alloy plate for electrical and electronic components
JP4157898B2 (en) Copper alloy sheet for electrical and electronic parts with excellent press punchability
EP2339039B1 (en) Copper alloy sheet for electric and electronic part
KR102327539B1 (en) Copper alloy for electronic and electric equipment, copper alloy plate for electronic and electric equipment, electronic and electric equipment parts, terminal, bus bar, and movable piece for relay
JP4729680B2 (en) Copper-based alloy with excellent press punchability
JP4117327B2 (en) Copper alloy sheet for electrical and electronic parts with excellent press punchability
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP2000087158A (en) Copper alloy for semiconductor lead frame
KR20090051077A (en) Copper alloy plate material for electrical/electronic equipment and process for producing the same
JP2001294957A (en) Copper alloy for connector and its producing method
JP2008127605A (en) High-strength copper alloy sheet superior in bend formability
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP3418301B2 (en) Copper alloy for electrical and electronic equipment with excellent punching workability
JP2000104131A (en) High strength and high conductivity copper alloy and its production
JP4177221B2 (en) Copper alloy for electronic equipment
JP3344700B2 (en) High-strength, high-conductivity copper alloy sheet for leadframes with excellent heat treatment during press punching
JP3374037B2 (en) Copper alloy for semiconductor lead frame
JP3735005B2 (en) Copper alloy having excellent punchability and method for producing the same
JP2000144284A (en) High-strength and high-conductivity copper-iron alloy sheet excellent in heat resistance
JP3296709B2 (en) Thin copper alloy for electronic equipment and method for producing the same
JPH10287939A (en) Copper alloy for electric and electronic equipment, excellent in punchability
JP2005281714A (en) Copper alloy and its manufacturing method
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP2000080426A (en) Copper alloy for electronic equipment
JP2000096164A (en) Copper alloy for electronic apparatus