TW553763B - Method of checking the integrity of a system of nanofiltration or reverse osmosis modules - Google Patents

Method of checking the integrity of a system of nanofiltration or reverse osmosis modules Download PDF

Info

Publication number
TW553763B
TW553763B TW090113339A TW90113339A TW553763B TW 553763 B TW553763 B TW 553763B TW 090113339 A TW090113339 A TW 090113339A TW 90113339 A TW90113339 A TW 90113339A TW 553763 B TW553763 B TW 553763B
Authority
TW
Taiwan
Prior art keywords
value
module
concentration
measured
compound
Prior art date
Application number
TW090113339A
Other languages
English (en)
Inventor
Claire Ventresque
Valerie Gisclon-Lallemand
Guy Bablon
Gerard Chagneau
Original Assignee
Vivendi Universal
Ile De France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vivendi Universal, Ile De France filed Critical Vivendi Universal
Application granted granted Critical
Publication of TW553763B publication Critical patent/TW553763B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/104Detection of leaks in membrane apparatus or modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/019
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N2015/0662Comparing before/after passage through filter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/086Investigating permeability, pore-volume, or surface area of porous materials of films, membranes or pellicules

Description

553763 五、發明說明(1) 本發明涉及一種用於檢驗毫微過濾或反滲透模組系統完 整性的方法,諸如在溶液分離或濃縮過程中所使用的那此 模組系統,尤其是在水處理領域中所使用的那些模組系 統。 利用膜淨化飲用水的技術出現了越來越多的各種容量的 工業化完成規模。膜技術過濾領域重新進行了劃分,彳曰是 通常都規定以下幾個範圍: 微孔孔徑約為0 · 5 // m左右的微過滤, 微孔孔徑約為1 0nm左右的超過滤, 宅微過濾’其截斷能力約為1ηηι或2 50道爾頓(dal ton) (實際是2 0 0至3 0 0道爾頓,這是關於當前市場上的毫微過 渡膜的情況), 1 nm (納米)以下的反滲透。 笔微過濾可以濾除大部分溶解的有機污染及某些無機礦 物離子。事實上毫微過濾可以濾除可溶性的有機分子及某 些ί小尺相當的無機離子。因此,毫微過濾包含了反滲 透範圍。t微過濾也稱為《低壓反滲透》或《超精細過 濾》。 因為其截斷閥值很低,毫微過濾保證了全部的微生物不 育性。 不過’在工業沒備中’毫微過濾膜都安裝在毫微過濾模 組内’並且這些毫微過濾模組本身要借助於配置大量的帶 有所要求渗透性膜的模組而加以使用^。因此,儘管毫微 過濾在膜方面來說本質上是細菌和病毒不可滲透的,但配
553763
置大3:的模組可能 此外,總會存在 封黏接差,膜中有 在模組内安聚毫 形結構方案: 帶有造成影響模組不 模組有缺陷或構造不 未探測到的孔穴)。 微過濾膜通常所採用 滲透性的缺陷。 好的情況(媒的密 的有兩種普通的外 面是η《盤繞式》料形結構,它採用了 1平 繞起來(也^是\炎片秀分Λ開/又旧堯收集料物的管^盤 “阻=ϊΐϊ:Τ巧的ϊ體部分的濃縮物正相反由 曰 ’、為就〉辰細在該濃縮物中), 一種是所說的《空心纖維》式外 毛細管纖維束的形狀。 。構其中膜呈現與 設ί:::ΐ ?的類型如何’模組(-般對於工業水處理 Ϊ:Π8英寸而長度為40英寸)彼此連接,實際 :有:個if Μ所說❾《壓管》内。毫微過濾的全部系統可 可ϋ個並秘安裝的壓管,通常都固定在總成組合件(或 在f施中所提出的問題就是探測模組或幾個模組構成系 統的兀整性缺陷,出現缺陷的地方或者是膜本身,或者是 在密封接合的地方,並且表現出來的情況是流體直接從2 的污濁一侧(濃縮物)穿過有破損的膜或有缺陷的密封接合 通到清潔的一側(滲透物)。 σ 因此就存在兩大類應用於個別選擇模組的檢驗方法,也
\\312\2d-code\90-08\90113339.ptd' '第 Π " " '' ----- 川/(x3 五 發明說明(3) 就是說存在兩大類、、 — 測方法·· Λ k /慮或反滲透模組完整性改變的探 一類方法是採用v 質量(尤其是通二量\驗//成的水質、即檢驗滲透物的 另-類方法是:用里上導Λ,或.進行細_ 測量空隙)。 5過私楝測滲漏(例如測量流量、 臺上:ΐ ί ΐ ί用i::採用的而且-般地都是放在測試 内,=行2都不能被用來在運行狀態下的系統 量:::ί、ί ί ί 文獻wo 99/44 m中所推薦的利用測 *爪木妹,則滲漏的方日h 不能用到毫微過;:#,這後兩ϋ法不能用到反渗透也 式操作。事實上慮、種方法必需要進行膜的切向方 因此,採用了比較大的壓力和速度, θ漏雜讯不能與環境雜訊區分開。 :::些方法可用到全部的模組系統;原則上來說這些 灰::要求測量系統生成水的電導率。因此,&了利用反 2對海水清沙,通常測量電導率就夠了。相反地,對於 =么過濾膜系統來說,測量系統生成水的電導率就不能以 =要的精確性探測缺陷。事實上,毫微過濾從本質上來講 * °午大置的鹽’比如鈣、氣化物、硝酸鹽…通過,這並不 歸因於系統完整性的缺陷。 ”本發明的目的就是克服已知方法的不足,借助於一種可 仏,特別是活微生物滲漏的方法(活微生物比如有細菌、 病毋' 原生動物’以及特別是Cryptosporidium和
553763
553763 五、發明說明(5) 5 0%以上。對於這些膜來說,完全測量生成水中的鹽量(比 如利用電導率)不能探測滲漏。 相反地,某些多價離子,比如硫酸鹽,鐵,不管是反涂 透或毫微過濾,總是完全被膜所阻擋。當在系統中出現渗 漏時,這些多價離子的濃度因而應該大於正常系統的濃〜 度。 對於毫微過濾膜來說,以%表示的可分析化合物過滤通 過的最《開闊》範圍描述在表1中,此表是作為天然水毫 微過濾應用實施例而指出的各種被鑒別化合物穿過毫微過 濾膜的過滤私度(過濾比)。該表中,化合物過渡程度的運 算式如下: 通過(過濾)(%) = 100 X (滲透物中化合物濃度/濃縮物一側 化合物濃度) 濃縮物一側的化合物濃度確定為是壓管引入及壓管濃 物之間的平均值。 ' 令人感興趣的是要注意到:能夠鑒別在由膜提供的食用 水中存在的一種化合物而且該化合物在正常情況下可由這 些膜按很高的比例阻擋住,目此當出現濃縮物/滲透物渗 漏時就能探測這種化合铷廿s π卜a s t ^ 裡σ物並且可較容易地當場進行計量測
疋0甚至普遍能夠鑒別丄言嫌_德人 金〜k樣一種化合物,它大量地同時存 在於食用水之中並絕夬却人、木μ … 巴大口P刀被膜排除(盡可能少地通過過 容易測定含量的離子 都具有一種可很明顯加 或化合物諸如氯化物、碳酸氫鹽等 以判斷的過濾過程。此外,某些化
553763 五、發明說明(6) 合物的透過率與水的pH值非常有關 =的情況,這些都能以碳酸的形式 =死"式分子的石夕酸或碳酸來說也一 形式相反可透過膜。 而石酸鹽離子有很多優點: f在海水和地表水中呈自然狀態 疋強酸性離子,不管水的pH值如 性, ^ =速測定其含量而且費用不高 ★經常添加硫酸以便調節膜進料引 膜的濃縮物一側的硫酸離子量, 、不過已經能證實的是··在毫微過 f,況下,如硫酸鹽之類的化合物 里還;又透過膜或密封接合的缺陷之 了。 因此本發明提出一種毫微過濾或 檢驗方法,該系統主要用於對食用 的流體進行處理,每個模組都有一 及這些膜的密封連接,其步驟主要 在食用流體中選擇一種化合物它 能說明問題但在正常情況下又能有 測I在該系統模組下游區中該化 把這一測量值與一個參照值進行 當該測量值大於參照值時就鑒別 :尤其是含碳酸酐化合 透過,對於那些呈現其 樣,因而它們與其離子 何其形式保持不可交換 入的pH值,這還可增加 濾或反滲透膜中有滲漏 在一定的微生物可探測 前就開始是可探測的 反滲透模組系統完整性 或需探測活微生物滲漏 些宅微過濾或反滲透膜 是: 是可溶解的,存在量既 效地被膜所阻撞, 合物的濃度值, 比較,以及 為該系統部位記憶體在
C:\2D-CODE\90-08\90113339.ptd 第9頁 553763 五、發明說明(7) 缺陷。 優選地,當系統至少帶有多個並聯安裝的模組時,該方 法包括以下幾個步驟: 測量溶解在這多個模組中每個模組類似下游區中,該化 合物的濃度值, 對每個模組的這些測量值進行比較, 鑒定出這些值中最小的那些值,並且認定一個至少近似 等於這些最小值的值為參照值, 當這個模組的測量值大於該參照值時就確認出並聯安裝 的某一模組中存在缺陷。這就可以在沒有預先指定的參照 值的情況下探測出並聯安裝的那些模組中有時會帶有缺陷 的那個模組。 當然,這可應用到並聯安裝的模組每一部分都是由一列 模組構成的情況。因此根據本發明另一種優選的看法,上 述確定的一般方法其特徵在於,系統帶有多列並聯安裝模 組,該方法包括幾個步驟主要是: 測量溶解在每列類似區域中的該化合物濃度值, 比較對於每列所測量的這些值, 識別出這些值中的一些最小值,並把至少近似等於這些 最小值的一個值認定為參照值, 當該系列的測量值顯然大於這個參照值時就確認出其中 一列記憶體在缺陷。 有利地是,為了識別出該系統中有缺陷的元件,本發明 方法的特徵在於它另外還包括幾個步驟主要是:
C:\2D-CODE\90-08\90113339.ptd 第10頁 五、發明說_ 〜著模組列按 度值, 所選擇的區域測量該溶解化合物的濃 為針對一個# ^ 它顯然等於直^ ί ΐ位所測的每個濃度值選定一個參照值 者,有缺陷時,;,該指定部位上游區所測的濃度值,或 發現, 就疋從直接處在該指定部位的下游區進行 當在該下游區域巾% :日丨μ &, 指定部位中存在缺陷。,、’、值大於相關參照值時就確認在 在這後一種愔 域至少包括每個模組的::f ··沿^模組列所選擇的區 接起來的每個接、/ ,σ可把模組與下一個模組連 地檢測了。 糸列中的每個元部件都被有效 旦有利地’為了得到所考慮的全 里,人們測量了溶解在流體二歹]杈、,且有代表性的測 樣品是在含有來自該;物的濃度值’此 上述過程可適用於系列模组的兄L -區域中提取的。 :陷除外,對於這種情況該方預先探測其中 括:列模組,該方法包括幾個步驟主寺^於’系統至少包 :者模組列按幾個所選擇的:錄 >辰度值, j里^種溶解化合物的 為特定部位所測的每個濃度值 然等於直接處在該指定部位上個麥照值,該值顯 缺陷的情況下,就從直接處在以=度值,即,在有 現,以及 ^日疋。卩位下游區進行發 \\312\2d-code\90-08\90113339.ptd 第11頁 ^1 553763 五 發明說明(9) 田在該下游區測得的值大 部位中存在缺陷。*大於相關參照值時就認定在指定 發ί Ϊ:::情況下’比如是在有幾列模組的情況下,太 少在於,沿著系列模組所選擇的那些以 與:-個模組連接起來。 接頭£ ’錢頭可把模紐 在2 3,當系統至少包括-列模組時,人們就測量溶解 右也ό ^體樣品中的所選化合物的深度值,該樣品是從含 二 系列中每個模組的流體區内提取的。 攸表1中所給出的說明可清楚地看出,特別有利地是選 擇了要測量其濃度的化合物,例如是硫酸鹽。 下面在有關一個系統所採用的優選實施例中對本發明又 作了描述’该系統包括幾個連續級(或總成元件),每一級 都是由一些並聯安裝的壓管構成的,每個管都帶有幾個模 組(在所考慮的實施例中是6個,另一個典型值是7)目的是 檢驗毫微過濾或反滲透模組系統的完整性以及探測穿過由 纏繞(盤繞)或空心纖維膜片及密封接頭構成模組的活微生 物滲漏(細菌、病毒、原生動物以及特別是 Cryptosporidium和Giardia)。該方法包括幾個步驟主要 是: 提取最小系統範圍中的水樣品,此最小系統範圍是由幾 個滲透物壓管和一些互連器構成的(通常一個壓管裝有5至 7個連接相配合的過濾模組)。 把硫酸鹽離子或其他已大量排出的化合物值與安裝在系
C:\2D-CODE\90-08\90113339.ptd 第12頁 553763
—此 麼管的這類值 統同一排(也稱為級)中其他 圖3中給出了 一個實施例。 如果這樣提取的水样〇 g 士 — 介入从^ 土 仫樣口口具有一疋含量的已大量被排出的 化5物(較可取地是碚赫 η Ά ^ , ΛΑ , . ^ ^ ^ 疋瓜S夂鹽),壓官靶圍内的已大量被排出 〇κ 則M官不存在完整性的缺陷(參見圖 2b,例如N。32管的情況)。 祕t Ϊ這樣提取的水樣品具有的有效排出化合物(更可取 ^ ^ ^鹽)含里鬲於該種化合物含量低的管系統情況,
仃探測可測出有缺陷的模組或有缺陷的密封接頭,如 俊面所描述的那樣, =助探針依照系統範圍提取幾個水樣品,該系統範圍是 由&透物壓管及内部連接器構成的, 按照例如標準NFT90-040中所述的規定方案或其他現場 方法(商品化的可自由使用的工具箱)測量各樣品中已有被 排出的化合物比率(更可取的是硫酸鹽)。 枯繪出沿著壓管的縱向濃度變化曲線(參見圖〗a、^ b、 lc) 〇 沿壓管的縱向濃度變化曲線按照如圖3所示的示意圖變 化。縱向參照曲線可依據其硫酸鹽含量最低的壓管u測出, 或者計算出來。 “ 根據本發明,人們能夠設計出各種不同的應用,其中尤 其可指出下面的一種。 作為實施例,上述方法已在法國上瓦茲省梅裏Μ爸ry (Μ ? r y s u r 0 i s e )毫微過濾廠應用了,它擁有8個毫微過
553763 五、發明說明(11) 渡排’每排每天可生產1 7 5 〇 〇 m3水並且每排有丨丨4 〇個每個 約為3 7m2的宅微過濾模組。毫微過濾模組都按照每個壓管 為6個模組插入到壓管中。因而在M g ry一sur一〇ise廠站中 有1 520個壓管。模組按三級安裝,配置情況如下: 第一級接收待處理的水,其硫酸鹽含量約在5〇〜1〇〇mg/1 之間, 第二級接收第一級的濃縮物, 弟二級接收苐二級的濃縮物。 在1 5 2 0個壓官滲透物中有步驟系統地測量硫酸鹽含量可 以糾正裝配的差錯,其中主要包括: 1 ·更換11個被壓扁或被捲滾的内部密封連接器, 2 ·安裝缺少的2 0個密封接頭, 3 ·安裝4個缺少的連接器, 4 ·變換4個受損的膜元件。 果f ,有被校正,這些安裝上的錯誤可能造成的後 果是壓官濃縮物與滲透物密封隔室之間的不滲透性差,使 知》辰縮物有一定的量排到管的滲透物收集器中。濃縮物可 帶有一些人們所不希望的化合物,尤其是帶有細菌。 這些裝配方,的差錯不能通過測量壓管生成水的電導率 來探測,因為耄微過濾必然讓某些離子通過(如氯化物, 鈣,碳酸氫鹽),管滲透物的電導率與由於反滲透所產生 的電導率相比較來說是高白勺。在圖以中,給出了一個實施 例其中28個管的-套總成元件(第三級)進行了電導率的測 量。與其他總成整套裝置的壓管相比較,沒有任何一個壓
第14頁 553763
官具有非典型的電導率。 。相反地’在相同管的滲透物中測量硫酸鹽顯示出:管 n 22、33、61、62及72為非典型性的,它們生產一種水 其硫酸鹽濃度明顯比較高(參見圖2 b)。 、和圖3指出了探測元件總成4中壓管n ° 61時的硫酸鹽 測ϊ結果’硫酸鹽的滲漏處在第一個膜的供水連接器的地 方。水溫為4 °C。 在改正不滲透性密封缺陷的操作時間内根據標準NFT90 -41 4在壓管出口處對水進行的細菌學測量可表明:當管子 出現些非典型性的硫酸鹽值時(與總成元件中其他壓管 相比較如圖2b中所示),可出現病菌滲漏。 =標準NFT90-414所作的分析結果進行了 一種隨意的記 文才示圮它可以對樣品彼此進行相對的比較,計算表如下: 出現陽性大腸桿菌樣菌落: 標號1 0 = 1個菌落 標號20 = 2個菌落 才示號3 0 = 3個菌落· · · · · · =陽性大腸桿菌樣菌落也沒有非致病的干擾菌叢: 沒有陽性大腸桿菌樣菌 物寄生物): 洛但是存在非致病干擾菌叢(腐 標號1 = 0至1 〇種腐物寄生物 標號2 = 1 1至50種腐物寄生物 標號3 = 51至1〇〇種腐物寄生物
553763 五、發明說明(13) 標號4 =多於1 0 0種腐物寄生物 標號5 =被遮滿的瓊脂 當結果同時包括一些陽性大腸菌反應及一些腐物寄生物 時就增加一些標號’例如標號23就對應兩種計算在内的大 腸桿菌樣以及5 3種計算在内的腐物寄生物。 細菌學的測量只能作統計性地解釋因為陽性反應能夠被 曲解(污染),如陰性反應也一樣可能是被歪曲的,因為是 按1 0 0 m 1的樣品進行採樣的。 校正之前和校正之後在壓管的滲透物中所進行 採樣結果彙集到圖4中。 、1❹次 在組合件總成方面,M g r y - s u r - 〇 i s e礙站的 是由2 8或5 4個壓管構成的,其密封性不是絕_應用中它們 個壓管所測結果表示在圖5中。 、的〜個或幾
\\312\2d-code\90-08\90113339.ptd 第16頁 553763 五、發明說明(14) 表1 化合物 大Mii pH価勺 作用 在天然水中 頻存在 不充创勺 分罐度 鋁 10% 〜50% X ? X X 硼、緦 10% 〜50% X X X 鈣 10% 〜60% X 氯化物 50% 〜80% X 電導率 20% 〜60% X 有機炭 0-20% X X 銅 0〜5% X 氟 30% 〜50% X 鐵 0〜5% X X 重碳酸鹽 10% 〜60% X X 鉀 40% 〜70% X X 鎂 10% 〜40% X 猛 達40% X X 鈉 50% 〜80% X 銨,亞硝酸鹽 50% 〜80% X X X 及硝酸鹽 磷酸鹽’ 0 〜20% ? X X 矽 達80% X X X 硫酸鹽 低於5% C:\2D-CODE\90-08\90113339.ptd 第 17 頁 553763 五、發明說明(15)
表2 膜排^|°1總成1^°4壓管N〇62 水溫:4°C 21/12/99 安放位置 插入探頭的長度 硫酸鹽(mg/1) 提取起點 0 開端連接器入口 509 80 末端連接器入口 725 150 中間膜1 1200 21 開端連接器1 1635 10 末端連接器1 1782 8 中間膜2 2216 2 開端連接器2 2651 1 末端連接器2 2798 3 中間膜3 3232 2 開端連接器3 3667 0 末端連接器3 3814 1 中間膜4 4248 2 開端連接器4 4683 0 末端連接器4 4830 1 中間膜5 5264 0 開端連接器5 5699 4 末端連接器5 5846 2 中間膜6 6280 0 開端連接器出口 6747 1 末端連接器出口 6926 3 末端連接管滲透物 7045 2
C:\2D-CQDE\90-08\90113339.ptd 第18頁 553763 圖式簡單說明 本發明的目的、特徵和優點可從” 定性的典型實施例所給出的說沐4照附圖作為非限 有: σ 岣楚地顯示出來,圖中 圖la是沿著毫微過濾系統第一級中一 酸鹽濃度曲線圖(以mg/Ι (毫克/升)夺八]核組或壓管的硫 和第三個模組之間出現連接渗漏·、不該系統在第二 圖1 b是沿著該系統第二級中一 度曲線圖(以mg/l表示) 陷; 圖1 c是沿著該系統第 度曲線圖(以mg/l表示) :或壓管的硫酸鹽濃 弟二和第四個模組連接處有缺 1 ^二2模、组或壓管的㉟酸鹽濃 第三與第四模組連接處有缺陷y與第二模組連接處以及在 圖2a是表示第三級28個壓管電 圖2b是表示與圖2a中相同的那些磨管H… (mg/ 1 )的描繪圖; 瓜酉夂孤s ϊ 圖3是表示沿著由5個模組形成的壓管,硫酸 mg/ 1表示)變化曲線圖,· 孤3里(以 以是表示系統的屡管滲透物中細菌學分析的描繪圖, 描Γ圖是表示該系統各總成或各級渗透物中細菌學分析的 第19頁 C:\2D-CODE\90-08\90113339.ptd

Claims (1)

  1. 91. 12, 28 替換本 553763 f/ (>^6 六、申請專利範圍_„ 1. 一種毫微過濾或反滲透模組系統完整性的檢驗方法, 此系統指定用於處理食用及要探測活微生物滲漏的流體, 每個模組包括一些毫微過濾或反滲透膜以及這些膜的密封 接頭,該方法包括幾個步驟主要是: 飞 在食用流體中選擇一種溶解的化合物,它存在可說明問0 題的但是在正常情況下能被膜有效地加以阻擋住; 測量這種化合物在該系統模組下游區的濃度值; 把這種測量值與一個參照值進行比較; 當這種測量值大於參照值時就確認在該系統區中存在缺 陷。 j 2. 如申請專利範圍第1項之方法,其中,系統至少包括 多個並聯安裝的模組,該方法包括主要是以下幾個步驟: 測量溶解在這多個模組中每個模組的那些類似下游區中 該化合物的濃度值, 比較這些每個模組的測量值, 鑒別出這些值中的一些最小的值,並認定一個至少近似 等於這些最小值的值為參照值, 當該模組的測量值大於該參照值時,就確認在一個並聯 安裝的模組中存在的缺陷。 < 3. 如申請專利範圍第1項之方法,其中,系統包括多列 並聯安裝的模組,該方法包括主要是以下幾個步驟: 測量溶解在每列類似區域中該化合物的濃度值, 比較每列這些測量值, 鑒別這些值中最小的那些值,並認定至少一個近似等於
    90113339(替換)-〗.ptd 第20頁 553763
    六、申請專利範圍 這些最小值的值為參照值 當該列測量值^ 列中存在缺陷^ ; 11個參照值時就確認這些列的一 4 ·如申請專利範圍第s 步驟主要是·· 、 法’其中,另外包括幾個 測里〉谷解在沿著一 值, 彳、成個選擇區中該化合物的濃度 對指定區測I |、曲 顯然等於直接處選取-個參照值,此參照值 缺陷的情況下,就;:=2游區的測量濃度值或者在有 以及 ,攸直接處在該指定區的下游區去發現, 區中存在缺陷τ〒所測的值大於相關參照值時就確認在指定 選5擇方法,其中,沿著模組列所 組與下-個模組連;==紐的下游區和每個可把模 6·如申請專利器區域。 量其濃度的溶解化任-項之方法,其中,測 旦申Ϊ專利範圍第3至5項中任一項之方法,其中,測 :::ί /;IL體樣品中的該化合物濃度值,Λ流體樣品是從 3有來自該列每個模組流體的區域中提取的。 疋伙 、,上::1 f專利範圍第7項之方法,#中’測量其濃度的 浴解化a物是硫酸鹽。 9 ·如申凊專利範圍第1項之方法,其中,系統至少包括 553763 <、申請專利範圍 一列模組,該方法包括以下幾個主 測量溶解在沿著模組列所選幾個區二驟: 值, °或中的該化合物濃度 對指定區域所測的每個濃度值選取— 等於對直接處在該指定區上游區域;;個參照值此值顯然 有缺陷的情況下,就從直接處在該二的濃度值或者,在 現,以及 曰疋區下游的區域發 ~當在該下游區所測的值大於相關參昭 尺區中存在缺陷。 、'值日守就確認在該指 10.如申請專利範圍第9項之方法,苴 選擇的那些區域至少包括每個模組的;:二”模組列所 的區域,這些連接器可把一 /T ,母個連接器 來。 1U衩組與下一個模組連接起 11·如申請專利範圍第9或1〇項中任一 测量其濃度的溶解化合物是硫酸鹽。、法,其中, 12.如申請專利範圍第1、9或1(f項之方法,盆中, 包括一列模組,人們測量溶解放在流體樣品中的、 1 /辰度值,此樣品是在含有來自該列每個二 域中提取的。 曰〕机體區 1 3 ·如申請專利範圍第1 2項之方法,其中,測 的溶解化合物是硫酸鹽。 則里其》辰度 第22頁
TW090113339A 2000-06-02 2001-06-01 Method of checking the integrity of a system of nanofiltration or reverse osmosis modules TW553763B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0007106A FR2809636B1 (fr) 2000-06-02 2000-06-02 Procede de controle de l'integrite d'un module, ou d'un systeme de modules, de nanofiltration ou d'osmose inverse

Publications (1)

Publication Number Publication Date
TW553763B true TW553763B (en) 2003-09-21

Family

ID=8850920

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090113339A TW553763B (en) 2000-06-02 2001-06-01 Method of checking the integrity of a system of nanofiltration or reverse osmosis modules

Country Status (19)

Country Link
US (1) US7216529B2 (zh)
EP (1) EP1289634B1 (zh)
JP (1) JP2004507340A (zh)
KR (1) KR100841835B1 (zh)
CN (1) CN1209179C (zh)
AT (1) ATE261334T1 (zh)
AU (2) AU7418401A (zh)
CA (1) CA2411320C (zh)
DE (1) DE60102295T2 (zh)
DK (1) DK1289634T3 (zh)
ES (1) ES2217156T3 (zh)
FR (1) FR2809636B1 (zh)
HK (1) HK1051981A1 (zh)
IL (1) IL153190A0 (zh)
NO (1) NO321877B1 (zh)
PT (1) PT1289634E (zh)
TR (1) TR200401286T4 (zh)
TW (1) TW553763B (zh)
WO (1) WO2001091891A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030015470A1 (en) * 2001-07-20 2003-01-23 Muralidhara Harapanahalli S. Nanofiltration water-softening apparatus and method
KR101301457B1 (ko) * 2004-08-31 2013-08-29 필름텍 코포레이션 분리 모듈의 시험 방법
JP4538732B2 (ja) * 2005-02-28 2010-09-08 東洋紡績株式会社 中空糸膜モジュ−ルのリーク検出方法およびリ−ク検出装置
ES2452480T3 (es) * 2005-09-07 2014-04-01 Hydranautics Dispositivos de filtración por osmosis inversa con caudalímetros y medidores de conductividad alimentados por etiquetas de RFID
CN101394917B (zh) * 2006-03-02 2012-03-07 真锅征一 孔扩散式平膜分离装置
EP2001578A4 (en) * 2006-03-13 2010-06-02 Hydranautics DEVICE FOR MEASURING PERMEANT FLOW AND PERMEATIVITY OF INDIVIDUAL REVERSE OSMOSEMBRANE ELEMENTS
WO2009087642A2 (en) * 2008-01-10 2009-07-16 I.D.E. Technologies Ltd. Desalination system and elements thereof
EP2088127A1 (de) 2008-02-11 2009-08-12 Sansystems Bioline GesmbH Ultrafiltrationsverfahren für Rohwasser zur Trinkwassergewinnung mit integriertem Verfahren zur Bestimmung von Kapillardefekten
AU2009255135B2 (en) * 2008-06-06 2012-02-16 Nitto Denko Corporation Membrane Filtering Device Managing System and Membrane Filtering Device for use therein, and Membrane Filtering Device Managing Method
US8991235B2 (en) * 2009-05-07 2015-03-31 Dow Global Technologies Llc Method of testing membranes and membrane-based systems
CN102596376B (zh) * 2009-10-19 2014-11-19 陶氏环球技术有限责任公司 测试螺旋卷组件的完整性的方法
FR3014330B1 (fr) 2013-12-05 2017-03-24 Abc Membranes Procede de controle de l'integrite de membranes de filtration durant leur fonctionnement

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873653A (en) * 1973-07-27 1975-03-25 Us Interior Preparation of high flux cellulose acetate membranes and hollow fibers from prefabricated low flux specimens
JPS54149383A (en) * 1978-05-15 1979-11-22 Nitto Electric Ind Co Ltd Liquid separator
US4188817A (en) * 1978-10-04 1980-02-19 Standard Oil Company (Indiana) Method for detecting membrane leakage
JPS6213502A (ja) * 1985-07-10 1987-01-22 Reiko Co Ltd 広帯域電磁波遮蔽用金属粉
JP2762358B2 (ja) * 1988-08-23 1998-06-04 ザ ダウ ケミカル カンパニー 水の軟化に有効なポリアミド膜の製造方法及び使用
JPH0790220B2 (ja) * 1989-08-25 1995-10-04 株式会社タクマ ボイラ給水処理方法とボイラ給水処理装置
JPH05248290A (ja) * 1992-03-09 1993-09-24 Nippondenso Co Ltd 内燃機関の空燃比制御装置
JP2986629B2 (ja) * 1992-10-02 1999-12-06 オルガノ株式会社 逆浸透膜装置における逆浸透膜交換方法
JP3028447B2 (ja) * 1993-05-12 2000-04-04 住友重機械工業株式会社 浄水処理装置
US5411889A (en) * 1994-02-14 1995-05-02 Nalco Chemical Company Regulating water treatment agent dosage based on operational system stresses
JP3243677B2 (ja) * 1994-03-09 2002-01-07 前澤工業株式会社 膜濾過装置における膜破損時のリーク検出器
JPH08168653A (ja) * 1994-12-15 1996-07-02 Hitachi Ltd 逆浸透膜式清水化装置
JPH0910565A (ja) * 1995-06-28 1997-01-14 Toyobo Co Ltd 半透性複合膜
JP3560708B2 (ja) * 1995-10-16 2004-09-02 ダイセン・メンブレン・システムズ株式会社 膜分離装置、そのリーク検出方法およびその運転方法
JPH10137561A (ja) * 1996-11-12 1998-05-26 Nkk Corp 分離膜破損検出方法および分離膜装置
JPH11109092A (ja) * 1997-10-01 1999-04-23 Mitsubishi Heavy Ind Ltd 逆浸透膜を用いた放射性物質含有廃液の処理方法
US5905197A (en) * 1998-01-22 1999-05-18 Hydranautics, Inc. Membrane sampling device
FR2775440B1 (fr) 1998-03-02 2000-11-10 Suez Lyonnaise Des Eaux Procede de controle de l'integrite des modules de filtration a fibres creuses
JP2000005575A (ja) * 1998-06-24 2000-01-11 Terumo Corp 膜寿命監視システムおよび膜寿命監視方法
JP4058657B2 (ja) * 1998-10-05 2008-03-12 東洋紡績株式会社 選択透過性膜モジュールのリーク検査方法
US6568282B1 (en) * 1999-02-26 2003-05-27 United States Filter Corporation Method and apparatus for evaluating a membrane

Also Published As

Publication number Publication date
ES2217156T3 (es) 2004-11-01
DK1289634T3 (da) 2004-07-12
TR200401286T4 (tr) 2004-07-21
CN1431925A (zh) 2003-07-23
KR100841835B1 (ko) 2008-06-26
US7216529B2 (en) 2007-05-15
DE60102295T2 (de) 2005-06-23
EP1289634B1 (fr) 2004-03-10
FR2809636A1 (fr) 2001-12-07
PT1289634E (pt) 2004-08-31
AU2001274184B2 (en) 2005-08-11
AU7418401A (en) 2001-12-11
JP2004507340A (ja) 2004-03-11
CA2411320A1 (fr) 2001-12-06
NO20025731D0 (no) 2002-11-28
NO321877B1 (no) 2006-07-17
KR20030026245A (ko) 2003-03-31
US20040020858A1 (en) 2004-02-05
IL153190A0 (en) 2003-06-24
ATE261334T1 (de) 2004-03-15
CA2411320C (fr) 2009-09-22
EP1289634A1 (fr) 2003-03-12
WO2001091891A1 (fr) 2001-12-06
NO20025731L (no) 2003-01-14
CN1209179C (zh) 2005-07-06
HK1051981A1 (en) 2003-08-29
DE60102295D1 (de) 2004-04-15
FR2809636B1 (fr) 2003-01-24

Similar Documents

Publication Publication Date Title
Sim et al. A review of fouling indices and monitoring techniques for reverse osmosis
TW553763B (en) Method of checking the integrity of a system of nanofiltration or reverse osmosis modules
US7698928B2 (en) Method for testing separation modules
Al-Ahmad et al. Biofuoling in RO membrane systems Part 1: Fundamentals and control
Vrouwenvelder et al. The membrane fouling simulator as a new tool for biofouling control of spiral-wound membranes
Kitis et al. Microbial removal and integrity monitoring of RO and NF membranes
Niewersch et al. Reverse osmosis membrane element integrity evaluation using imperfection model
Gonzalez-Gil et al. Clinical autopsy of a reverse osmosis membrane module
Fujioka et al. Integrity of reverse osmosis membrane for removing bacteria: New insight into bacterial passage
Lozier et al. Microbial removal and integrity monitoring of high-pressure membranes
JP2006322777A (ja) 流体測定装置
JP2008107330A (ja) バイオファウリング発生リスク評価装置
US20120270328A1 (en) Methods of Cationic Polymer Detection
Schäfer et al. Fouling in nanofiltration
CN112752604A (zh) 水质概况的制作方法、分离膜模块的检查方法及水处理装置
Kitis et al. Evaluation of biologic and non-biologic methods for assessing virus removal by and integrity of high pressure membrane systems
Salinas-Rodriguez et al. Methods for Assessing Fouling and Scaling of Saline Water in Membrane-Based Desalination
JP2525807B2 (ja) 膜濾過装置で濾過する水の汚染指標の測定方法
DeCarolis et al. Integrity and performance evaluation of new generation desalting membranes during municipal wastewater reclamation
Albassam Characterization of full-scale KAUST RO desalination plant and RO produced drinking water
Salinas-Rodriguez et al. 3 Methods for Assessing
Sethi Assessment and development of low-pressure membrane integrity monitoring tools
da Silva Integrity monitoring of reverse osmosis membranes: Potential for naturally present viruses to verify virus removal comparing to MS2 bacteriophages
Singh Fluorescence as an online tool for monitoring membrane integrity
Hu Electrical Impedance Spectroscopy (EIS) online monitoring of Reverse Osmosis (RO) membrane fouling

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees