TW454306B - Circuit and method for reducing parasitic bipolar effects during electrostatic discharges - Google Patents

Circuit and method for reducing parasitic bipolar effects during electrostatic discharges Download PDF

Info

Publication number
TW454306B
TW454306B TW088119225A TW88119225A TW454306B TW 454306 B TW454306 B TW 454306B TW 088119225 A TW088119225 A TW 088119225A TW 88119225 A TW88119225 A TW 88119225A TW 454306 B TW454306 B TW 454306B
Authority
TW
Taiwan
Prior art keywords
source
current
transistor
voltage
coupled
Prior art date
Application number
TW088119225A
Other languages
English (en)
Inventor
Jeremy C Smith
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Application granted granted Critical
Publication of TW454306B publication Critical patent/TW454306B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • H01L27/027Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements specially adapted to provide an electrical current path other than the field effect induced current path
    • H01L27/0277Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements specially adapted to provide an electrical current path other than the field effect induced current path involving a parasitic bipolar transistor triggered by the local electrical biasing of the layer acting as base of said parasitic bipolar transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

4543 Ο 6 ^ 〆 _案號88119225 夕6 年_Γ月χΓ日 修正_ ( ' ...... 五、發明說明(1) 以前申請之參考 此申請曾於1998年11月30曰以申請號碼09/201, 392在美 國提出。 發明之範圍 本發明關於一電路,特別關於一電路及方法以在靜電放 電期間降低寄生雙極效應。 發明之背景 一積體電路在其承受積體電路設計電壓為高之電壓時, 可能受損。靜電放電("ESD"),起源自如機械晶片載體, 塑膠晶片儲存裝置等來源,或甚至人體亦可產生高出積體 電路設計電壓許多倍之電壓。例如,人體可供應一高達4 KV之靜電放電。以操作於小於5 V之積體電路而言,如此 比例之靜電放電堪稱大破壞。 為保護積體電路不受高電壓,或ESD事件之害,通常在 内部電路與積體電路之輸入/輸出銷間利用一保護電路。 一種可在ESD事件時使積體電路失效之現象稱為“雙極急 返”。 圖1說明一Ν-通道金屬氧化物半導體(MOS)電晶體及一以 前技藝之固有寄生雙極電晶體之部份簡圖與部份剖面圖。 如圖1所說明,一ΝΡΝ雙極裝置在ρ基體中形成,其有一射 極搞合至源,一集極輕合至汲極,及一基極輕合至一 Ν-通 道MOS電晶體之基體。圖1中,基體結與源耦合至地,汲極 耦合至一 I/O墊。I/O墊顯示接收一 ESD事件。 在雙極急返期間,由一 η +擴散耦合至一結合片(集極), 及一 η +擴散耦合至地(射極)形成之寄生雙極裝置,可由自
O:\0l\61178.ptc 第5頁 4543 Ο 6
衝器之Ν-通道MOS裝置中之雙極裝置最易受急返影響。此 寄生裝置常為在受到ESD事件之電路之失效點。 _連 減輕此寄生雙極問題之知名方案為增加一鎮流電卩且^ 接在N-通道MOS電晶體之汲極與一輸出銷之間s ^ ^ 保證,以均等分配通過NM0S電晶體之任何放電電流(或$ 分支形成一NM0S電晶體)方式,為在電路中之雙椏導$另 件之ESD保護之額外方法。鎮流電阻器之增加玎碟保在,電 一集極至射極失效點之電壓VT2大於集極至射極電廢Vt1 a’a冰 流在該點在寄生雙極電晶體中開始流動。VT1與^ Μ 於圖2中說明。 &晚 'll iS /竖 圖2說明圖1之N -通道M0S電晶體之汲極電流與淡视 _ 之關係。圖2顯示二條曲線。一曲線說明一典塑#自曲線 準矽化物技術之汲極電流對汲極至源電壓關係’另/ Λ愈 it s疯之** 說明典型自我對準矽化物技術之汲極電流與汲極矣Λ φ 〇β Μ Μ 0 S 電 壓之關係。當數個NM0S電晶體(或分支形成之爭
O:\61\61178.ptc 第6頁 454306 修正 案號 88119225 五、發明說明(3) 晶體)作為一個寄生雙極裝置時,此種裝置依賴固有雙極 電晶體之“急返”電流-電壓特性。如上述,電流在某一 集極至射極電壓,VT1開始流過雙極電晶體。其後,集極至 射極電壓在電流增加時降低,自VTi “急返”。當汲極電壓 增加時,此趨勢反轉,在電流上升時,導致集極至射極電 壓亦上升。最後,雙極電晶體在另一特別集極至射極電壓 VT2失效。在典型非自我對準矽化物技術中,VT2通常小於V T1,因為一自我對準矽化物源/汲極擴散可降低裝置之有效 串聯電阻(圖2之線斜坡更陡)。 在二技術中,以鎮流電阻器方式增加串聯電阻,VT2可被 控制而使大於Vn。此可保證第一NM0S (或NM0S電晶體之分 支)不會在小於第二NM0S電晶體導電之電壓崩潰。此點亦 可保證全裝置之之失效電流為其各組件之和,而非急返之 第一片段。圖2顯示失效電流為第二崩潰電流,Ιτ2。ΙΤ2之 值在ESD期間不能超過,否則將造成裝置之永久損壞。因 此,增加鎮流電阻器之動機為自一特定電晶體之可用ΙΤ2之 總值為最大。通常,IΤ2與特殊技術之構造參數有關,在各 技術中各有不同。 在半導體技術標定之趨勢為技術之每一新生代之IΤ2之降 低。此由數個因素造成,如使用淺,自我對準矽化物源/ 汲極接點,及使用重摻雜之Ρ+基體於外延層。除在多分支 裝置中提升不良寬度標定外,自我對準矽化物層亦消耗大 部份接點深度,亦稱為降低第二崩潰失效電流閾值(Ιτ2)。 重摻雜Ρ+基體上(epi-基體)之外延層在先進技術中所必 需,以防止知名之鎖存效應。E p i -基體之基體電阻甚低,
O:\61\61178.ptc 第7頁 454306 MM 88119P9R 發明說明(4) _广月 修正 因而可使其體電位緊密耦合 言,此點極為理邦、,盆^ 二片之地。在防止鎖存 勻發起及保持雙‘作用、。。雙極作用’因其不易均 圖式簡單說明 在配合以下之圖式及一較 發明有更佳之瞭解1中知佳具體實例之說明冑,可對本 電Γ體說之明部一///# &通道MOs電晶體及固有寄生雙極 電明體之部份簡圖,及部份為剖面圖。 踅桠 圖2說明圖1之N -通道|^〇8雪曰糾*丄 之關係圖。 通迢’電曰日體之汲極電流對汲極電壓 圖3 §尤明本發明之_ a E| 4 ^ Q〇 . 電路之郤份簡圖及部份剖面圖。 圖4說明本發明之ESD電路之簡圖。 』囬圍 應瞭解,為簡化及清晰計,圖 例如,某些組件對其他元件而言 =U =。 件。 麥号唬碼在圖中重複以代表對應或類比元 車乂佳具體貫例之詳細說明 以下將詳述本發明之數個齡杜日^ ^况月 體實例均在於一電體實例’…之各具 两,、,h L 6 叫及方法以升尚N-通道電晶體之源電 m f· # 4 :生雙極裝置之基極至射極電壓順向偏壓,以 Φ夕iff極裝置導電。本發明可防止在先進半導體技術 :ί:、返’因為當Vti超過發生時(即VT2 = VTl及IT,IT2), 裝置立即文到損壞。因此等裝置,不足以在雙極急返效應 Ϊ t ί ’因為失效電流之值太低。®此此等技 術取好此避免急返,並需要增加、俾輸出缓衝器㈣⑽裝置
154306 SS_M19225 五、發明說明(5) 在ESD放電期間不致急返
-, 此與值& 以鎮流方法控制寄生雙極作用疗统方法試圖在急返後 ϋΐ 5¾ SI ® ^ /,.1 . +4. . $ 同 β 圖3顯示一具體實例,其中 Ν -通道電晶體(24)與地之間 相當 小之電阻器(2 S )耦合在 — 流源(32)用以自 •,. - · '丨ν . a “j防止款 … 俾Ν通道電晶體 廢’ s亥順向偏壓又造成固有雙極盤極至射極接點之順向偏 電位因電流通過電阻器26,而盡置之急返。因此,一正 &挪f低日瘦生於電晶體24之源與ρ型 土體(1%極)間形成之二極體之陰極(η+擴散)。Α電位之強 度可由調整電阻器之值’或源注入電流源之相對強度而予 以控制。反之,由電晶體2 4之η +源擴散形成之二極體之陽 極(基體)電位由雪崩產生率及有效基體電阻控制,其在其 他結構參數不.易設計。因此,利用本發明’急返可以控制 而其方式不影響其他在製造程序中需要之實際與電參數。 本發明之特殊具體實例將參考圖4予以詳細說明。 圖4以簡圖方式說明本發明之輸出緩衝器電路20 »輸出 緩衝器電路20為具有ESD保護之輸出緩衝器電路,包括Ρ-通道電晶體22,Ν -通道電晶體24,電阻器26 ’塾30,源注 入電流源3 2,其尚含源注人偏壓電路3 3,及源注入電晶體 34,ESD軌道鉗位器46及二極體48 βΡ-通道電晶體22及Ν-通道電晶體24共同形成一輪出缓衝器電路《Ρ-通道電晶體 22以其耦合至其汲極與阱間之固有二極體28予以說明》Ρ-通道源注入電晶體3 4有一源搞合至墊3 0 ’ 一閘及一没極輕 合至電組器26之一端《ρ-通道電晶體34由源注人電晶體33 所偏壓。 正ESD事件將ESD電流導入通過源、注入電流源(32)用以 之源在事件時升高,因而可防止、電阻器
O:\61\61178.ptc 第9頁 454306 _案號8gUi225 9P车日 修正____ 五、發明說明(6) 源注入偏壓電路33包括P -通道電晶體36及38,電阻器4〇 及44 ’及N -通道電晶體42 °P~通道電晶體36之閘極連接至 VDD,一第一源端點連接至墊3〇,及第二汲極端點。p”通 道電晶體38之/源連接至正電源供應電壓端點VDD,一閘 接至地’及一淚極。電阻器40之第一端點連接至p -通道電 晶體38之汲極,及第二端點《 N-通道電晶體42之汲極連接 至電阻器40之第二端點,一閘極連接至P-通道電晶體36之 第二汲極端點’及一源連接至VSS ^電阻器44之第一端點 接至N -通道電晶體42之閘極’第二端點接至地端sVSS。 ESD轨道鉗位器46及二極體48耦合至VDD與VSS之間。ESD轨 道甜位器46可能為併入電路20之積體電路之固有電容2〇, 或提供在ESD期間VDD及VSS間之放電路徑之主動甜位電 路。一極體48在VSS在二極體電壓降(Vd)在'VDI)之上時導· 電。 , 輸出緩衝器電路正常作業期間,電晶體22及24之閘由内 部電路偏壓,該電路未示於圖4,造成p-通道電晶體2 2或 N_通道電晶體24之一導電以驅動墊30至所需之電壓。源、、主 入偏壓電路33將源注入電晶體34置於不導電狀態,以使漏 電電流最小^ P—通道電晶體36不導電,使N_通道電晶體42 之閘極電塵為低,因而使電晶體4 2不導電β此舉使電阻器 40之第二端點足夠高以使ρ_通道電晶體34為不導電。 1正ESD事件期間,或其他高電壓事件’源注入偏壓電 =33保持Ρ-通道源注入電晶體34為導電狀態^ 通道電晶 6在墊30之電壓超過一閲值電壓降vd{)以上時,造成一 高電壓供至N-通道電晶體42之閘極^ N_通道電晶體乜為導
第10頁 454306 __案號 88119225 ^ 年 月 >Γη - 五、發明說明(7) 電’使Ρ-通道電晶體3 4之閘極被拉低,保使源注入Ρ_電晶 體34為導電。ESD電流之一部份由墊30得導、通過Ρ—通道 電晶體34及電阻器26至VSS °ESD事件其餘電流經卜通道電 晶體22之二極體28至VDD,於是經ESD軌疽甜位器46至 VSS ° 以某些ESD電流通過源注入電晶體34及電阻器26,通 道電晶體24之源電壓即增加,因而升高固有雙極電晶體 (如圖1及圖3說明者)之射極電壓,阻止了固有雙極電晶體 之導電。此亦增加了墊電壓,該電壓可在ESD事件期間建 立,超過時會發生急返,如上所述,其可損壞利用自我對 準矽化物技術構成之積體電路》 電阻器26之電阻上限由N -通道電晶體24之電阻器26造成 之延遲之長度決定》N-通道電晶體24之源電壓之一部份即 足以防止寄生雙極裝置導電,因為基體之接地,故基體電 壓無法升高。卜通道電晶體24僅需—高於基體之二極體電 壓降即可防止雙極急返之發生。在說明之具體實例中,電 阻器26以具有約10歐姆電阻值或更少之電阻器實施。 在另一具體實例中’不用源注入偏壓電路33,p_通道源 注入電晶體34之閘可直接連接至VDI) ^此方案仍可使源注 入電晶體34注入電流至電阻器26 ,電流之量隨VDD與墊3〇 開始升咼時降低。此舉使源注入電晶體3 4之源至閘電壓降 低強度’而使裝置之偏壓解除。但利用源注入偏壓電路3 3 之優點為,如VDD與墊3〇開始移動,保持一足可使?_通道 源注入電晶體34導電之源至閘電壓,因為電晶體36僅需供 應小部份電流以使跨電阻器44之電壓超過N-通道電晶體u
O:\61\61178.ptc 第11頁 454306 _案號 88119225 五、發明說明(8) 年广月 修正 之閾值電壓。電晶體3 6仍然易受到解除偏壓之效應,電阻 器44之值容易調整俾N -通道電晶體42仍然導電,保正電晶 體3 4之閘極夠低,以使P-通道源注入電晶體3 4保持高度導 電。 利用電阻器2 6與由源注入電晶體34與源注入偏壓電路3 3 構成之電流源3 2可在崩潰發生前,大幅擴展缓衝器電路之 ESD範圍,其可使ESD保護電路在裝置失效前更多之邊際作 用0 本發明已經以較佳具體實例予以敘述,對精於此技藝者 可瞭解,本發明可以不同方式修改及有許多上述揭示以外 之其他具體實例。因此,附列之申請專利範圍可涵蓋在本 發明範圍内之本發明之所有修改。
0:\61\61178*ptc 第12頁

Claims (1)

  1. 454306 _案號 88119225 年Γ月〆fa 修正_ 六、申請專利範圍 1. —種半導體裝置包含: 一端點; —電流源具有第一節點耦合至端點,及第二節點以 提供一電流以響應端點上之靜電放電(E S D ); 第一電阻元件具有第一節點耦合至第一電壓參考節 點,及第二節點耦合至電流源之第二節點;及 —第一電晶體具有控制電極,第一電流電極耦合至 端點,及一第二電流電極耦合至電流源之第二節點。 2. —種半導體裝置包含: —連接墊; 一具有控制節點之N型電晶體,第一電流電極耦合 至連接墊,及一第二電流電極; —具有控制節點之P型電晶體,一第一電流電極耦 合至第一電壓參考端點,一第二電流電極耦合至N型電晶 體之第一電流電極;及 —具有輸出節點之電壓源耦合至N型電晶體之第二 電流電極,以提供一電壓,及一輸入節點耦合至連接墊以 控制電壓源之輸出節點之電壓值。
    O:\61\61178.ptc 第14頁
TW088119225A 1998-11-30 1999-11-04 Circuit and method for reducing parasitic bipolar effects during electrostatic discharges TW454306B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/201,392 US6329692B1 (en) 1998-11-30 1998-11-30 Circuit and method for reducing parasitic bipolar effects during eletrostatic discharges

Publications (1)

Publication Number Publication Date
TW454306B true TW454306B (en) 2001-09-11

Family

ID=22745641

Family Applications (1)

Application Number Title Priority Date Filing Date
TW088119225A TW454306B (en) 1998-11-30 1999-11-04 Circuit and method for reducing parasitic bipolar effects during electrostatic discharges

Country Status (5)

Country Link
US (3) US6329692B1 (zh)
JP (1) JP4401500B2 (zh)
KR (1) KR100717973B1 (zh)
CN (1) CN1167132C (zh)
TW (1) TW454306B (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809348B1 (en) * 1999-10-08 2004-10-26 Denso Corporation Semiconductor device and method for manufacturing the same
JP3217336B2 (ja) * 1999-11-18 2001-10-09 株式会社 沖マイクロデザイン 半導体装置
JP2002083931A (ja) * 2000-09-08 2002-03-22 Nec Corp 半導体集積回路装置
JP2002305254A (ja) * 2001-04-05 2002-10-18 Mitsubishi Electric Corp 半導体装置およびその製造方法
US6650103B2 (en) * 2001-05-31 2003-11-18 Analog Devices, Inc. Magnetic snapback sensor circuit and electrostatic discharge circuit using same
JP2003031669A (ja) * 2001-07-13 2003-01-31 Ricoh Co Ltd 半導体装置
DE10201056B4 (de) * 2002-01-14 2007-06-21 Infineon Technologies Ag Halbleitereinrichtung mit einem bipolaren Schutztransistor
US7042689B2 (en) * 2003-01-21 2006-05-09 Taiwan Semiconductor Manufacturing Co., Ltd. High voltage tolerant ESD design for analog and RF applications in deep submicron CMOS technologies
US7075763B2 (en) * 2002-10-31 2006-07-11 Micron Technology, Inc. Methods, circuits, and applications using a resistor and a Schottky diode
US6879476B2 (en) * 2003-01-22 2005-04-12 Freescale Semiconductor, Inc. Electrostatic discharge circuit and method therefor
US6900970B2 (en) * 2003-01-22 2005-05-31 Freescale Semiconductor, Inc. Electrostatic discharge circuit and method therefor
US6844597B2 (en) * 2003-02-10 2005-01-18 Freescale Semiconductor, Inc. Low voltage NMOS-based electrostatic discharge clamp
US8000067B1 (en) 2003-05-15 2011-08-16 Marvell International Ltd. Method and apparatus for improving supply noise rejection
US7196887B2 (en) * 2003-05-28 2007-03-27 Texas Instruments Incorporated PMOS electrostatic discharge (ESD) protection device
JP2005093696A (ja) * 2003-09-17 2005-04-07 Matsushita Electric Ind Co Ltd 横型mosトランジスタ
US6996786B2 (en) * 2003-09-30 2006-02-07 International Business Machines Corporation Latch-up analysis and parameter modification
US7089520B2 (en) * 2003-11-19 2006-08-08 International Business Machines Corporation Methodology for placement based on circuit function and latchup sensitivity
US7396412B2 (en) 2004-12-22 2008-07-08 Sokudo Co., Ltd. Coat/develop module with shared dispense
US7651306B2 (en) 2004-12-22 2010-01-26 Applied Materials, Inc. Cartesian robot cluster tool architecture
US7819079B2 (en) 2004-12-22 2010-10-26 Applied Materials, Inc. Cartesian cluster tool configuration for lithography type processes
US7798764B2 (en) 2005-12-22 2010-09-21 Applied Materials, Inc. Substrate processing sequence in a cartesian robot cluster tool
TW200739872A (en) * 2006-04-04 2007-10-16 Univ Nat Chiao Tung Power line electrostatic discharge protection circuit featuring triple voltage tolerance
TW200816878A (en) * 2006-09-27 2008-04-01 Silicon Motion Inc Electrostatic discharge (ESD) protection device
US7672101B2 (en) 2007-09-10 2010-03-02 Taiwan Semiconductor Manufacturing Co., Ltd. ESD protection circuit and method
CN101533830B (zh) * 2008-03-11 2012-05-09 义隆电子股份有限公司 高压垫的静电放电保护装置
WO2010038101A1 (en) * 2008-10-03 2010-04-08 Freescale Semiconductor, Inc. Semiconductor device and electronic device
US8693149B2 (en) * 2009-05-20 2014-04-08 Semiconductor Components Industries, Llc. Transient suppression device and method therefor
US8193585B2 (en) * 2009-10-29 2012-06-05 Freescale Semiconductor, Inc. Semiconductor device with increased snapback voltage
US20110102046A1 (en) * 2009-10-31 2011-05-05 Pankaj Kumar Interfacing between differing voltage level requirements in an integrated circuit system
US8344472B2 (en) 2010-03-30 2013-01-01 Freescale Semiconductor, Inc. Semiconductor device and method
US8338872B2 (en) 2010-03-30 2012-12-25 Freescale Semiconductor, Inc. Electronic device with capcitively coupled floating buried layer
US8927391B2 (en) * 2011-05-27 2015-01-06 Taiwan Semiconductor Manufacturing Company, Ltd. Package-on-package process for applying molding compound
CN102332403A (zh) * 2011-09-20 2012-01-25 中国科学院微电子研究所 一种半导体结构及其制造方法
US10553633B2 (en) * 2014-05-30 2020-02-04 Klaus Y.J. Hsu Phototransistor with body-strapped base
TWI521824B (zh) * 2014-08-08 2016-02-11 朋程科技股份有限公司 靜電放電防護電路及具有此電路的電壓調節器晶片
US10332871B2 (en) * 2016-03-18 2019-06-25 Intel IP Corporation Area-efficient and robust electrostatic discharge circuit
US10840907B1 (en) 2019-11-19 2020-11-17 Honeywell International Inc. Source-coupled logic with reference controlled inputs
US11329481B2 (en) 2020-05-18 2022-05-10 Littelfuse, Inc. Current limiting circuit arrangement

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019888A (en) 1987-07-23 1991-05-28 Texas Instruments Incorporated Circuit to improve electrostatic discharge protection
US5157573A (en) 1989-05-12 1992-10-20 Western Digital Corporation ESD protection circuit with segmented buffer transistor
US5465189A (en) 1990-03-05 1995-11-07 Texas Instruments Incorporated Low voltage triggering semiconductor controlled rectifiers
US5021853A (en) 1990-04-27 1991-06-04 Digital Equipment Corporation N-channel clamp for ESD protection in self-aligned silicided CMOS process
US5153529A (en) * 1991-08-30 1992-10-06 Motorola, Inc. Rail-to-rail input stage of an operational amplifier
US5225702A (en) 1991-12-05 1993-07-06 Texas Instruments Incorporated Silicon controlled rectifier structure for electrostatic discharge protection
US5440162A (en) 1994-07-26 1995-08-08 Rockwell International Corporation ESD protection for submicron CMOS circuits
US5528193A (en) * 1994-11-21 1996-06-18 National Semiconductor Corporation Circuit for generating accurate voltage levels below substrate voltage
US5534792A (en) * 1995-02-15 1996-07-09 Burr-Brown Corporation Low capacitance electronically controlled active bus terminator circuit and method
US5798658A (en) * 1995-06-15 1998-08-25 Werking; Paul M. Source-coupled logic with reference controlled inputs
KR100223923B1 (ko) * 1996-11-19 1999-10-15 구본준 정전기 방지장치
US5903419A (en) 1997-09-29 1999-05-11 Motorola, Inc. Circuit for electrostatic discharge (ESD) protection
US6204715B1 (en) * 1999-02-26 2001-03-20 General Motors Corporation Signal amplifying circuit

Also Published As

Publication number Publication date
CN1167132C (zh) 2004-09-15
CN1256516A (zh) 2000-06-14
KR100717973B1 (ko) 2007-05-16
US6329692B1 (en) 2001-12-11
JP4401500B2 (ja) 2010-01-20
US6373104B1 (en) 2002-04-16
KR20000035771A (ko) 2000-06-26
JP2000174133A (ja) 2000-06-23
US6284616B1 (en) 2001-09-04

Similar Documents

Publication Publication Date Title
TW454306B (en) Circuit and method for reducing parasitic bipolar effects during electrostatic discharges
US7485504B2 (en) Stable PD-SOI devices and methods
US7236339B2 (en) Electrostatic discharge circuit and method therefor
JP3992855B2 (ja) 静電気放電保護のための回路
US8598620B2 (en) MOSFET with integrated field effect rectifier
US8703547B2 (en) Thyristor comprising a special doped region characterized by an LDD region and a halo implant
CN102165693A (zh) 电气电路的开关装置
JPH06196634A (ja) 空乏制御型分離ステージ
JPS6137796B2 (zh)
US4622573A (en) CMOS contacting structure having degeneratively doped regions for the prevention of latch-up
US8120107B2 (en) Semiconductor device internally having insulated gate bipolar transistor
KR19980071441A (ko) 정전기 방전 보호용 회로
US6879476B2 (en) Electrostatic discharge circuit and method therefor
JPH05129532A (ja) 逆電圧保護回路を具えたパワー半導体装置
US4437135A (en) Semiconductor integrated circuit device
US9293451B2 (en) Integrated circuit electrical protection device
EP0184222B1 (en) Mos type integrated circuit having charging and discharging transistors
JPS605568A (ja) 縦型絶縁ゲ−ト電界効果トランジスタ
KR100504203B1 (ko) 반도체장치의 보호소자
KR100435807B1 (ko) 정전방전 보호 회로용 반도체 제어 정류기
JPH044755B2 (zh)
US6781804B1 (en) Protection of the logic well of a component including an integrated MOS power transistor
EP0121096B1 (en) Semiconductor contact structure
JPS63104481A (ja) 伝導度変調型たて型mosfet
US9275990B2 (en) Circuit and method for reducing BVii on highly overdriven devices

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees