TW423118B - CMOS process having poly-SiGe gate - Google Patents

CMOS process having poly-SiGe gate Download PDF

Info

Publication number
TW423118B
TW423118B TW88120344A TW88120344A TW423118B TW 423118 B TW423118 B TW 423118B TW 88120344 A TW88120344 A TW 88120344A TW 88120344 A TW88120344 A TW 88120344A TW 423118 B TW423118 B TW 423118B
Authority
TW
Taiwan
Prior art keywords
layer
poly
type well
sige
patent application
Prior art date
Application number
TW88120344A
Other languages
Chinese (zh)
Inventor
Hung-Jr Lin
Diau-Yuan Huang
Original Assignee
Shr Min
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shr Min filed Critical Shr Min
Priority to TW88120344A priority Critical patent/TW423118B/en
Application granted granted Critical
Publication of TW423118B publication Critical patent/TW423118B/en

Links

Abstract

This invention is about CMOS process having poly-SiGe gate and can be used in the dual gate CMOS process. The Ge compositions of the NMOS and the PMOS transistors can be adjusted according to the designed requirement such that the purpose of optimizing the whole CMOS is obtained without increasing extra mask.

Description

4 23118 五、發明說明¢1) 本發明係有關於一種CMOS製程,特別是有關於一種具 -有Poly-Si Ge閘極之CMOS製程。 現今’為符合高運算速度、低耗功率、及高積集度之 需求’ CMOS半導體製程技術也持續地往深次微米 (deep-submicron)領域發展。隨著半導體製程技術不斷進 步,M0S電晶體閘極之寬度、厚度,及閘極氧化層之厚. 度…等也隨之縮小(sealing down)。由於閘極氧化層厚度 縮小’且複晶石夕的摻雜載子濃度不夠高,故使得複晶5夕閘 極在靠近閘極氧化層介面附近容易產生沒有載子之空乏區 (depletion region) ’而造成所謂”複晶矽閘極空乏效應 〜 (poiy-gate depletion effect ;PDE)",將會影響M0S 電 晶體之效能表現。此外’在深次微米製程使用P +複晶梦閘 極亦會遭遇蝴穿透(Boron penetration)之問題。 近來之研究指出,以PolyHxGex製作閘極是極有前 景之一種選擇(其中,X表示Ge在Poly-SiGe之成分比例)。 因為,具有Poly-Si^Ge,閘極之元件,除了可擁有較 低之閘極片電阻、和較高之驅動電流外,並且可以降低複 晶矽閘極空乏效應(PDE )。另外,對於硼穿透之問題亦能 有效地降低。4 23118 V. Description of the invention ¢ 1) The present invention relates to a CMOS process, and particularly to a CMOS process with a Poly-Si Ge gate. Nowadays, ‘to meet the requirements of high computing speed, low power consumption, and high accumulation’, CMOS semiconductor process technology has continued to develop into the deep-submicron field. With the continuous advancement of semiconductor process technology, the width and thickness of the gate of the MOS transistor and the thickness of the gate oxide layer have been reduced. Because the gate oxide thickness is reduced and the doped carrier concentration of the polycrystalline stone is not high enough, the polycrystalline silicon gate is prone to generate a depletion region without carriers near the gate oxide layer interface. 'As a result, the so-called "poiy-gate depletion effect (PDE) " will affect the performance of the M0S transistor. In addition,' P + complex dream gates are used in deep submicron processes. It also encounters the problem of Boron penetration. Recent research has pointed out that PolyHxGex is a very promising choice for gates (where X represents the proportion of Ge in Poly-SiGe). Because it has Poly- Si ^ Ge, the gate element, in addition to having a lower gate sheet resistance and a higher driving current, and can reduce the polycrystalline silicon gate depletion effect (PDE). In addition, for the problem of boron penetration Can also be effectively reduced.

Wen-Chin Lee 等人在論文「Optimized Poly-SU' ^ -G a t e T e c h η ο 1 〇 g y f 〇 r D u a 1 G a t e C Μ 0 S A p p 1 i c a t i 〇 η」 ( 1 998年VLSI技術會議)中所揭示之數據指出:對NMOS電晶 體而言,Ge之成分比例X大於20 %時,其閘極空乏寬度會 一 增加,主動載子濃度會下降;反之,對PM0S電晶體而言,Wen-Chin Lee et al. In the paper "Optimized Poly-SU '^ -Gate T ech η ο 1 〇gyf 〇r D ua 1 Gate C Μ 0 SA pp 1 icati 〇η" (1998 VLSI Technical Conference) The data disclosed in the article pointed out that: for NMOS transistors, when the proportion X of Ge is greater than 20%, the gate gap width will increase and the active carrier concentration will decrease; otherwise, for PMOS transistors,

第4頁 五、發明說明(2) G e之成分比例X大於2 〇 %時,其閘極空乏寬度會下降,主 動載子漢度會增加。 由於NMOS電晶體之驅動能力優於PMOS電晶體,在積體 電路之製作上仍以NMOS為主要元件;而且,在現今採用 Poly-SUex閑極之雙閘極CMOS製程,對於NMOS和PMOS電 晶體閘極(分別為P+型閘極、N+型閘極)中之Ge成分比例, 仍然無法分別予以設定不同之比例。因此,在以NM〇s特性 為主要考量之情形下;Wen-Chin Lee認為:p〇iy- SilxGex 閘極應用於雙閘極(dual gate) CM OS技術時,當Ge之成分 比例x約為20 %左右時,可獲得最佳化之結果(但之特 性僅是在可接受之範圍内而已,不見得達到最佳化;因為 對PM0S電晶體而言’ p〇iy —sl xGex閘極之Ge之成分比例越 冋’其.效能.表現越佳)。 對於Poly-Si^Gex閘極之雙閘極CMOS製程而言,若能 夠將NMOS和PM0S電晶體閘極中之Ge成分,設定不同之比 例’則NMOS及PM0S電晶體均分別得到最佳化,對於整體 CMOS元件而言必可獲至更佳之效能表現。 有鑑於此’本發明之目的為提出具有p〇ly_SiGe閘極 之(雙間極)CMOS製程’能夠讓NMOS和PM0S電晶體閘極中之Page 4 V. Description of the invention (2) When the component ratio X of Ge is greater than 20%, the gate empty width will decrease and the active carrier Han degree will increase. Because the driving ability of NMOS transistors is better than PMOS transistors, NMOS is still the main component in the fabrication of integrated circuits. In addition, Poly-SUex dual-gate CMOS process is now used for NMOS and PMOS transistors. It is still impossible to set different ratios of the Ge components in the gates (respectively P + gates and N + gates). Therefore, in the case of taking NMOS characteristics as the main consideration; Wen-Chin Lee believes that when the poiy-SilxGex gate is applied to the dual gate CM OS technology, when the composition ratio x of Ge is about At about 20%, optimized results can be obtained (but the characteristics are only within acceptable ranges, and may not be optimized; because for the PM0S transistor, 'p〇iy —sl xGex gate The more Ge's composition ratio, the better its performance. For the dual-gate CMOS process of the Poly-Si ^ Gex gate, if the Ge components in the NMOS and PM0S transistor gates can be set to different ratios, then the NMOS and PM0S transistors are optimized separately. For the overall CMOS device, better performance can be obtained. In view of this, "the purpose of the present invention is to propose a (dual interpolar) CMOS process with a poly_SiGe gate" which enables one of the NMOS and PMOS transistor gates

Ge成分’依設計之所需而擁有不同之成分比例,藉以達成 整體CMOS最佳化之目的。 為了達成上述目的,本發明提出之第一種具有 Poly-SiGe閘極之CMOS製程,包括如下步驟:提供一半導 體基底’具有N型井區、p型井區、及絕緣結構(例如為淺Ge composition ’has different composition ratios according to the design requirements, so as to achieve the purpose of overall CMOS optimization. In order to achieve the above object, the first CMOS process with a Poly-SiGe gate provided by the present invention includes the following steps: providing a half-conductor substrate 'having an N-type well region, a p-type well region, and an insulating structure (for example, a shallow

第5頁 五、發明說明(3) 溝槽隔離區),上述絕緣結構將上述Ρ蜇、Ν型井區予以電 性隔離;形成閘極介電層於上述半導體基底之上;依序形 成Poly-Si Ge層、及第一絕緣層(例如為氮化矽層)於上述 閘極介電層上;上述Poly-Si Ge層中之Ge和Si之成分比例 為X %和(100™x) % ;其中,上述N型井區上方之 Poly-SiGe層為第一 P〇ly-SiGe層,上述P型井區上方之 Poly-SiGe層為第二Poly-SiGe層;去除上述N型井區上方 之第一絕緣層,保留上述P型丼區上方之第一絕緣層;加 熱氧化C例如使用熱氧法)上述第一Poly_SiGe層使其表靣 形成氧化層’其中在未氧化之上述第一 p〇ly_SiGe層内, 且y G e和S i之成分比例變成為y %和(1 q 〇 _ y ) % 除上述P型井區上方之第一絕緣層,而露出上述第二 Poly-SiGe層;去除上述氧化層,而露出上述第一 Poly-SiGe層;形成一導電層(例如為金屬層)於上述第 一、第二Poly-SiGe層上;定義蝕刻上述導電層、及上述 第-、第二Poly-SiGe層’而露出上述閘極介電層,以分 別形成閘極結構於上述N型、p型井區之上方;以及 後續之邊襯、源/汲極區之製程。 队 為了達成上述㈣,本發明提出 P〇ly-siGe問極之⑽S製程,包提有 體基底,具有N型井區、„ 沖杈供+導 溝槽隔離區)’上述絕緣結構將。,緣結構(例如為淺 性隔離;形成閑極介電層於上將 =型、N型井區予以電 成Poly-SiGe層、及第一絕緣層) 體基底之上;依序形 昂緣層(例如為氣化矽層)於上述 1画5. Description of the invention on page 5 (3) Trench isolation area), the above-mentioned insulating structure electrically isolates the above P 蜇 and N-type well areas; forming a gate dielectric layer on the semiconductor substrate; sequentially forming Poly -Si Ge layer, and a first insulating layer (such as a silicon nitride layer) on the gate dielectric layer; the proportion of Ge and Si in the Poly-Si Ge layer is X% and (100 ™ x) %; Among them, the Poly-SiGe layer above the N-type well region is the first Poly-SiGe layer, and the Poly-SiGe layer above the P-type well region is the second Poly-SiGe layer; the N-type well region is removed The first insulating layer above retains the first insulating layer above the P-type 丼 region; heating and oxidizing C, for example, using the thermal oxygen method), the first Poly_SiGe layer causes its surface to form an oxide layer. In the p〇ly_SiGe layer, and the composition ratio of y Ge and S i becomes y% and (1 q 〇 _ y)% except for the first insulating layer above the P-type well region, and the second Poly-SiGe is exposed. Layer; removing the oxide layer to expose the first Poly-SiGe layer; forming a conductive layer (such as a metal layer) on the first On the second Poly-SiGe layer; define the etching of the conductive layer and the first and second Poly-SiGe layers' to expose the gate dielectric layer to form a gate structure on the N-type and p-type wells, respectively Above the region; and the subsequent process of lining and source / drain region. In order to achieve the above, the present invention proposes a Poly-SiGe interrogation process, which includes a body substrate, has an N-type well area, and „blanket for supply + guide trench isolation area. Edge structure (for example, shallow isolation; formation of an idler dielectric layer on top of a P-type, N-type well area to be electrically-converted to a Poly-SiGe layer, and a first insulating layer) on a bulk substrate; sequentially forming a marginal layer (For example, a vaporized silicon layer)

第6頁Page 6

4 23 1 1 B 五、發明說明(4) 閘極介電層上;上述P〇ly-Si Ge層中之Ge和Si之成分比例 為X %和(100-x) % ;其中,上述N型井區上方之 P 〇 1 y - S i G e層為第一 P 〇 1 y - S i G e層’上述p型井區上方之 Poly-SiGe層為第二P〇ly-SiGe層;去除上述p型井區上方 之第一絕緣層,保留上述N型井區上方之第—絕緣層;带 成未經按雜之複晶石夕層於上述第一絕緣層、及上述第二 Pol y-SiGe層之上;去除上述N型井區上方之未經摻雜複晶 石夕層’保留上述P型井區上方之未經摻.雜複晶矽層;進行 加熱程序(例如為高溫回火程序),使上述第二p〇ly_SiGe 層中之Ge往上述未經摻雜複晶矽層擴散;其中,上述第二 Poly-SiGe層内,Ge和Si之成分比例變成為z %和(1〇〇_2) %,且z < x ;去除上述p型井區上方之第一絕緣層,而露 出上述第一Poly-SiGe層;形成一導電層(例如為金屬層) 於上,第一Poly_SiGe層 '及上述未經摻雜複晶矽層之0 上;定義蝕刻上述導電層、上述第一15〇4_以(^層:及上 述未經摻雜複晶矽層,而露出上述閘極介電層’以分別形 成閘極結構於上述N型、p型井區之上方;以及,完成後 之邊襯、源/汲極區之製程。 ' 圖式之簡單說明: 為讓本發明之上述目的、特徵、和優點能更明顯易 Ϊ 1 :文特舉兩個較佳實施例’並配合所附圖 <,做詳細 說明如下: 第1 A圖至第11圖顯示依據本發明第一實施例之流程剖4 23 1 1 B V. Description of the invention (4) On the gate dielectric layer; the proportions of Ge and Si in the above-mentioned Polly-Si Ge layer are X% and (100-x)%; The Po y-S i Ge layer above the P-well area is the first Po y-S i Ge layer. The Poly-SiGe layer above the p-well area is the second Po-SiGe layer; Remove the first insulating layer above the p-type well area, and retain the first-insulating layer above the n-type well area; bring an unpressed polycrystalline stone layer on the first insulating layer, and the second Pol on the y-SiGe layer; remove the undoped polycrystalline stone layer above the N-type well region; and retain the undoped and doped polycrystalline silicon layer above the P-type well region; perform a heating process (for example, high temperature) Tempering procedure) to diffuse the Ge in the second poly_SiGe layer to the undoped polycrystalline silicon layer; wherein, in the second Poly-SiGe layer, the composition ratio of Ge and Si becomes z% and (100%)%, and z <x; remove the first insulating layer above the p-type well region to expose the first Poly-SiGe layer; form a conductive layer (eg, a metal layer) on the , The first Poly_Si Ge layer 'and the above-mentioned undoped polycrystalline silicon layer; define the etching of the above-mentioned conductive layer, the above-mentioned first 1504_ and (^ layer: and the above-mentioned undoped polycrystalline silicon layer, and expose the gate The electrode dielectric layer is used to form gate structures above the N-type and p-type well regions, respectively; and, the completed process of the side lining and source / drain regions. '' Brief description of the drawings: In order to make the present invention The above-mentioned objects, features, and advantages can be more obvious and easy to understand 1: Wente cites two preferred embodiments, and cooperates with the attached drawings < to make a detailed description as follows: FIGS. 1A to 11 show the invention according to the present invention. Flow chart of the first embodiment

第7頁 五、發明說明(5) 面圖;以及 第2 A圖至第2 I圖顯示依據本發明第二實施例之流程剖 面圖。 符號說明: 1〜半導體基底; 2〜N型井區; 3〜P型井區; 4〜絕緣結構; 5〜閘極介電層; 6〜Poly-SiGe層; 6a~ 第一Poly-SiGe 層; 6b~ 第二Poly-SiGe 層; 7〜第一絕緣層; 8〜氧化層; 9〜導電層; 1 0、11 ~閘極結構; 12、13〜邊襯; 1 4、1 5〜源/沒極區; 16〜PM0S電晶體; 17~NM0S電晶體; 2 0〜未經摻雜複晶矽。 實施例一:Page 7 5. Description of the invention (5) Plan view; and Figs. 2A to 2I show cross-sectional views of a process according to the second embodiment of the present invention. Explanation of symbols: 1 ~ semiconductor substrate; 2 ~ N type well area; 3 ~ P type well area; 4 ~ insulation structure; 5 ~ gate dielectric layer; 6 ~ Poly-SiGe layer; 6a ~ first Poly-SiGe layer 6b ~ second Poly-SiGe layer; 7 ~ first insulating layer; 8 ~ oxide layer; 9 ~ conductive layer; 10, 11 ~ gate structure; 12, 13 ~ side lining; 1 4, 1 5 ~ source / No pole region; 16 ~ PM0S transistor; 17 ~ NM0S transistor; 2 ~ Undoped polycrystalline silicon. Embodiment one:

4 23 11 8 五、發明說明(6) 第1 A圖至第1 I圖顯示依據本發明第一實施例之流程剖 面圖。 依據本發明第一實施例,首先提供一半導體基底1, 具有N型(第一型)井區2、p型(第二型)井區3、及絕緣結構 4 ;上述絕緣結構4例如為淺溝槽隔離(s h a 1 1 〇 w t r e n c h isolation ; STI)結構’藉以將上述N型、p型井區(2,3) 予以電性隔離。再形成閘極介電層5 (例如為薄氧化層), 於上述半導體基底1之上,結果如第1A圖所示。 使用LPCVD法’依序沈積P〇ly-SiGe層6、及第一絕緣 層7於上述閘極介電層5上;結果如第1B圖所示。上述4 23 11 8 V. Description of the invention (6) Figures 1A to 1I show sectional views of the process according to the first embodiment of the present invention. According to a first embodiment of the present invention, a semiconductor substrate 1 is first provided, which has an N-type (first type) well region 2, a p-type (second type) well region 3, and an insulation structure 4; the above-mentioned insulation structure 4 is, for example, shallow A trench isolation (sha 1 1 0wtrench isolation; STI) structure is used to electrically isolate the above-mentioned N-type and p-type well regions (2, 3). A gate dielectric layer 5 (for example, a thin oxide layer) is further formed on the semiconductor substrate 1. The result is shown in FIG. 1A. Using LPCVD ', a Poly-SiGe layer 6 and a first insulating layer 7 are sequentially deposited on the gate dielectric layer 5; the results are shown in FIG. 1B. Above

Poly-SiGe層6中之Ge和Si之成分比例為Xl %和(i〇〇_x丨) % ;其中’上述Poly-SiGe層6之厚度介於30〜50 ηαι,上 述Ν型井區2上方之Poly-SiGe層為第一 Poly-SiGe層6a,上 述P型井區3上方之Poly-SiGe層為第二P〇ly-SiGe層6b ;上 述第一絕緣層7,在此實施例係為氮化矽層,厚度介於3 〇 〜50 nm ° 接著,使用活性離子蝕刻法(r IE)去除上述N型井區2 上方之第一絕緣層7,而露出上述第—p〇iy_SiGe層以,保 留上述P型井區3上方之第一絕緣層7,如第ic圖所示。在 此’亦可利用上述p型井區3上方之第一絕緣層7為遮罩, 對上述第一Poly_SiGe層6a進行離子佈植(使用B+或BF彳離 子)’以便提供p+型之p〇ly —Si給PM〇s電晶體。 使用熱氧法,使上述第一Poly-SiGe層6a形成氧化層 8’如第1D圖所示。其中’由於在熱氧化過程中,被氧化The composition ratios of Ge and Si in the Poly-SiGe layer 6 are Xl% and (i〇〇_x 丨)%; wherein the thickness of the above-mentioned Poly-SiGe layer 6 is between 30 and 50 ηα, and the above-mentioned N-type well region 2 The upper Poly-SiGe layer is a first Poly-SiGe layer 6a, the above Poly-SiGe layer above the P-type well region 3 is a second Poly-SiGe layer 6b; the above-mentioned first insulating layer 7, in this embodiment, It is a silicon nitride layer with a thickness ranging from 30 to 50 nm. Then, the first insulating layer 7 above the N-type well region 2 is removed by using active ion etching (r IE) to expose the above-mentioned p-iy_SiGe layer. Therefore, the first insulating layer 7 above the P-type well region 3 is retained, as shown in FIG. Here, it is also possible to use the first insulating layer 7 above the p-type well region 3 as a mask to perform ion implantation (using B + or BF 彳 ions) on the first Poly_SiGe layer 6a to provide p + -type p. ly —Si gives PMOS transistor. An oxide layer 8 'is formed on the first Poly-SiGe layer 6a using the thermal oxygen method as shown in FIG. 1D. Of which, because of being oxidized during the thermal oxidation process,

423118 '423118 ''

之Poly-SiGe層内之Ge會被推擠出,而往外擴散至未被氧 化之第一 Poly- SiGe層6a内;所以,在未氧化之第一 Poly-SiGe層6a内,Ge和Si之成分比例變成為y %和 (100-y) %,且y > X〗。 ‘著,使周IPO4溶液去除上述p型井區3上方之第—絕 緣層7(氮化石夕層)’而露出上述第二?〇1丫_以(^層61;);如 第1 E圖所示。在此,亦可利用氧化層8為遮罩,對上述第 二Poly-SiGe層6b進行離子佈植(使用As+或p+離子),以便 提供1^型之口〇44丨給關05電晶體。 再使用B0E去除上述氧化層8,而露出上述第一 Poly-SiGe層6a ;如第1F圖所示。 沈積一導電層9 ’於上述第一、第二層 (6a ’ 6b)上;如第1G圖所示。上述’導電層9例如為金屬 層,厚度介於50〜20 0 nm。 進行閘極蝕刻程序’對上述導電層9、及上述第一、 第一 SiGe層(6a ’6b)進行餘刻,而露出上述閘極介 電層5 ’以分別形成閘極結構(丨〇,u )於上述N、p型丼區 (2,3)之上方;如第1H圖所示。 完成後續之邊襯(12、13)、和源/;及極區(η,15)之 製程,以形成PM0S電晶體16和NM0S電晶體17,如第π圖所 示。 實施例二: 第2 Α圖至第2 I圖顯示依據本發明第二實施例之流程剖The Ge in the Poly-SiGe layer will be pushed out and diffuse out to the first Poly-SiGe layer 6a which is not oxidized; therefore, in the first Poly-SiGe layer 6a which is not oxidized, the Ge and Si The component ratio becomes y% and (100-y)%, and y > X. ‘So, make the Zhou IPO4 solution remove the first-insulator layer 7 (nitride stone layer) above the p-type well area 3 and expose the second? 〇1 丫 _ 以 (^ 层 61;); As shown in Figure 1E. Here, the second Poly-SiGe layer 6b can also be ion-implanted (using As + or p + ions) using the oxide layer 8 as a mask, so as to provide a type 1 port for the 05 transistor. The BOE is then used to remove the oxide layer 8 to expose the first Poly-SiGe layer 6a; as shown in FIG. 1F. A conductive layer 9 'is deposited on the first and second layers (6a' 6b); as shown in Fig. 1G. The aforementioned 'conductive layer 9 is, for example, a metal layer having a thickness of 50 to 200 nm. The gate etching process is performed to perform a remainder on the conductive layer 9 and the first and first SiGe layers (6a'6b), and the gate dielectric layer 5 'is exposed to form gate structures (丨 0, u) above the N, p-type 丼 region (2, 3); as shown in Figure 1H. The subsequent processes of the side lining (12, 13), the source /; and the polar region (η, 15) are completed to form a PMOS transistor 16 and a NMOS transistor 17, as shown in FIG. Second embodiment: Figures 2A to 2I show a flow chart according to a second embodiment of the present invention.

第10頁 42311δ 五、發明說明(8) 面圖;其中’和第一實施例相同或是類似之部分,則以相 同之數字或符號表示。 依據本發明第一實施例’首先提供一半導體基底1, 具有Ν型(第一型)井區2、Ρ型(第二型)井區3、及絕緣結構 4 ;上述絕緣結構4例如為淺溝槽隔離(shall〇w trench isolation ; STI)結構,藉以將上述N型、P型井區(2,3) 予以電性隔離。再形成閘極介電層5 (例如為薄氧化層), 於上述半導體基底1之上,結果如第2A圖所示= 使用LPCVD法’依序沈積P〇ly-SiGe層6、及第一絕緣 層7於上述閘極介電層5上;結果如第2B圖所示。上述Page 10 42311δ V. Description of the invention (8) A plan view; where ′ is the same as or similar to the first embodiment, it is indicated by the same number or symbol. According to a first embodiment of the present invention, a semiconductor substrate 1 is first provided, which has an N-type (first type) well region 2, a P-type (second type) well region 3, and an insulation structure 4; the above-mentioned insulation structure 4 is, for example, shallow A trench isolation (STI) structure is used to electrically isolate the N-type and P-type well regions (2, 3). A gate dielectric layer 5 (for example, a thin oxide layer) is further formed on the semiconductor substrate 1 described above, and the result is shown in FIG. 2A = using the LPCVD method to sequentially deposit the Poly-SiGe layer 6 and the first The insulating layer 7 is on the gate dielectric layer 5; the result is shown in FIG. 2B. Above

Poly-SiGe層6中之Ge和Si之成分比例為χ2 %和(100_心) % ;其中’上述Poly-SiGe層6之厚度介於30〜50 nra,上 述N型井區2上方之P〇ly-SiGe層為第一 p〇ly-SiGe層6a,上 述P型井區3上方之Poly-SiGe層為第二p〇ly-SiGe層6b ;上 述第一絕緣層7,在此實施例係為氮化矽層,厚度介於3 〇 〜50 nm 〇 接著,去除上述P型井區3上方之第一絕緣層7,而露 出上述第二Poly-SiGe層6b,保留上述N型井區2上方之第 一絕緣層7,如第2C圖所示。 .屯成未經推雜之複晶梦層(undoped poly-Si) 20於上 述第—絕緣層7、及上述第二Poly-Si Ge層6b之上,如第外 圖所示。 使用活性離子蝕刻法(r I £)去除上述N型井區2上方之 未經摻雜複晶矽層20,保留上述P型井區3上方之未經摻雜The composition ratios of Ge and Si in the Poly-SiGe layer 6 are χ2% and (100_center)%; where the thickness of the above-mentioned Poly-SiGe layer 6 is between 30 and 50 nra, and the P above the above-mentioned N-type well region 2 The Oly-SiGe layer is the first poly-SiGe layer 6a, and the Poly-SiGe layer above the P-type well region 3 is the second poly-SiGe layer 6b; the above-mentioned first insulating layer 7, in this embodiment It is a silicon nitride layer with a thickness between 30 and 50 nm. Next, the first insulating layer 7 above the P-type well region 3 is removed, and the second Poly-SiGe layer 6b is exposed, and the N-type well region is retained. The first insulating layer 7 above 2 is shown in FIG. 2C. An undoped poly-Si layer 20 is formed on the first insulating layer 7 and the second Poly-Si Ge layer 6b, as shown in the outer figure. The active ion etching method (r I £) is used to remove the undoped polycrystalline silicon layer 20 above the N-type well region 2 and leave the undoped above the P-type well region 3

第11頁 423118 五、發明說明(9) 複晶矽層2 0。 接著’在溫度介於8 0 0〜1 〇 5 〇 。C之條件下,施以高 溫退火程序(annealing process)。由於在高溫退火過程 中’P型丼區3上方之第二p〇iy_SiGe層6b中之Ge會向未經 摻雜複晶矽20擴散’導致第二poiy-SiGe層6b之Ge含量甴 .x2 %變成為z % ’且z < x2 ;結果如第2 E圖所示。 使用Η3Ρ04溶液去除上述N型丼區2上方之第一絕緣層7 (氮化矽層),而露出上述第一Poly-Si Ge層6a ;如第2F圖 所示。 沈積一導電層9 ’於上述第一、第二p〇iy —Si Ge層 (6a,6b)上;如第2G圖所示。上述,導電層9例如為金屬 層,厚度介於50〜200 nm。 進行閘極#刻程序,對上述導電層9、及上述第一、 第二Poly-SiGe層(6a,6b)進行餘刻,而露出上述閘極介 電層5 ’以分別形成閘極結構(1 〇,π )於上述N、p型井區 (2,3)之上方;如第2H圖所示。 完成後續之邊襯(12、13)、和源/j:及極區(14,15)之 製程’以形成PM0S電晶體1 6和NM0S電晶體17,如第21圖所 示。 對第一實施例而言,預先沈積之p〇ly_SiGe層中,Ge 成分佔X! %。當完成第一實施例之製程時,PM〇s電晶體之 Poly-SiGe閘極中,Ge成分比例變成為y %,而⑽⑽電晶體 之?〇17-5166閘極中,〇6成分比例仍為义%,且丫>4。所Page 11 423118 V. Description of the invention (9) Polycrystalline silicon layer 20. Then 'at a temperature between 80 and 1050. Under the condition of C, an annealing process is performed. The Ge content of the second poiy-SiGe layer 6b is due to the fact that the Ge in the second poi_SiGe layer 6b above the P-type ytterbium region 3 will diffuse to the undoped polycrystalline silicon 20 during high temperature annealing. % Becomes z% 'and z <x2; the result is shown in Fig. 2E. The Y3P04 solution is used to remove the first insulating layer 7 (silicon nitride layer) above the N-type Y region 2 to expose the first Poly-Si Ge layer 6a; as shown in FIG. 2F. A conductive layer 9 'is deposited on the first and second poiy-Si Ge layers (6a, 6b); as shown in FIG. 2G. As mentioned above, the conductive layer 9 is, for example, a metal layer with a thickness of 50 to 200 nm. The gate #etching process is performed, and the conductive layer 9 and the first and second Poly-SiGe layers (6a, 6b) are left etched to expose the gate dielectric layer 5 ′ to form gate structures ( 10, π) above the N, p-type well area (2, 3); as shown in Figure 2H. The subsequent processes of the side linings (12, 13), and the source / j: and the polar regions (14, 15) are completed to form a PMOS transistor 16 and a NMOS transistor 17, as shown in FIG. For the first embodiment, in the pre-deposited poly_SiGe layer, the Ge component accounts for X!%. When the process of the first embodiment is completed, in the Poly-SiGe gate of the PMOS transistor, the Ge component ratio becomes y%, and the ratio of the pseudotransistor? In the 〇17-5166 gate, the 〇6 component ratio is still meaning%, and y> 4. All

第12頁 五'發明說明(10) 以,1C製造廠商可預先設定NM0S電晶體,使其Poly-SiGe 閘極中,G e成分比例約為2 0 %左右(即設定Xl三2 0 ),而 且依據本發明第一實施例之方法,製作而得之PM0S電晶體 中’其Poly-SiGe閘極中’Ge成分比例y %會大於20 % (亦 即y > X】)。所以’依據本發明第一實施之方法,對PM〇s 和NM0S電晶體而言’可以對其Poly-SiGe閘極之Ge成分比 例分別設定比例,以達到最佳化之目的,PM0S電晶體之效 能表現不再會受到NM0S電晶體之限制(亦即其pm〇S電晶體 Poly-SiGe閘極之Ge成分不必和NM0S電晶體相同),故而可 增加整體CMOS之效能表現。 對第二實施例而言,預先沈積之Poly-Si Ge層中,Ge 成分佔X2 %。當完成第二實施例之製程時,NM0S電晶體之 Poly-SiGe閘極中,Ge成分比例變成為z %,而pm〇S電晶體 之?〇17-51〇6間極中’〇6成分比例仍為&%,且2<〜。所 以’1C製造廠商可預先設定pm〇s電晶體,使其p〇ly_SiGe 閘極中’ Ge成分比例大於20 %以上(例如設定& Ξ 25), 而且依據本發明第二實施例之方法,製作而得之NM〇s電晶 體中’其Poly-Si Ge閘極中,Ge成分比例變成為z %,且小 於25 % (亦即z < & ’例如z %變成2〇 %左右)。所以同 理,依據本發明第二實施之方法,對pM〇s和關⑽電晶體而 s ’可以對其p〇iy-Si Ge閘極之Ge成分比例分別設定比 =,以達到最佳化之目的’ PM〇s電晶體之效能表現不再會 文到NM0S電晶體之限制(亦即其PM〇s電晶體p〇ly_SiGe閘極 之Ge成分不必和NM〇s電晶體相同),故而可增加整體cm〇sPage 5 (5) Description of the invention (10) Therefore, 1C manufacturers can pre-set the NM0S transistor so that the proportion of Ge component in the Poly-SiGe gate is about 20% (that is, X1 = 320). In addition, according to the method of the first embodiment of the present invention, the Ge component ratio y% in the Poly-SiGe gate of the PMOS transistor obtained will be greater than 20% (that is, y > X]). Therefore, according to the method of the first implementation of the present invention, for the PM0s and NMOS transistors, the ratio of the Ge composition ratio of their Poly-SiGe gates can be set separately to achieve the purpose of optimization. The performance is no longer limited by the NMOS transistor (that is, the poly composition of the poly-SiGe gate of the pMOS transistor does not have to be the same as that of the NMOS transistor), so the overall CMOS performance can be increased. For the second embodiment, the pre-deposited Poly-Si Ge layer has a Ge component of X2%. When the process of the second embodiment is completed, the proportion of Ge in the Poly-SiGe gate of the NMOS transistor becomes z%, and that of the pMOS transistor? The proportion of the '〇6 component in the 〇17-51〇6 pole is still &%, and 2 < ~. Therefore, a '1C manufacturer can preset a pMOS transistor so that the proportion of the Ge component in the poly_SiGe gate is greater than 20% (for example, & Ξ 25), and according to the method of the second embodiment of the present invention, In the fabricated NMOS transistor, the proportion of Ge in its Poly-Si Ge gate becomes z% and is less than 25% (that is, z < & 'for example, z% becomes about 20%) . Therefore, in the same way, according to the method of the second embodiment of the present invention, the ratio of Ge components of pOiy-Si Ge gates can be set respectively for pM0s and the passivation transistor to optimize. The purpose of the performance of PM 0s transistor is no longer subject to the limitation of NMOS transistor (ie, the PM composition of PM 0s transistor p0ly_SiGe gate does not have to be the same as that of NMOS transistor), so it can be Increase overall cm〇s

第13頁 m 423118 五、發明說明.(11) 之效能表現。 由上述可知,使用本發明之方法可有如下優點· —、在雙重閑極CM〇s製程中,可以對PMOS電晶體和 008電晶體,分別設定其13〇1¥_$1(^閘極中之66成分比 例,使PMOS電晶體之Ge成分大於NMOS電晶體中之Ge成分’ | 以達到最佳化之目的。 —、應用本發明之方法’其製程步驟可相容於傳統雙 ^閘極-P〇ly-SiGe閘極CM〇s之製程’無須增加額外之光 用以Si::已:::::::例揭露如上,然其並非 之精神和範㈣,當;;者’在不脫離本發明 之保護範圍當視後附…專利者=本發明Page 13 m 423118 V. Description of the invention. (11) Performance performance. From the above, it can be known that using the method of the present invention can have the following advantages:-In the double idle CMOS process, the PMOS transistor and the 008 transistor can be set to 1301 ¥ _ $ 1 (^ in the gate electrode respectively). The 66 component ratio makes the Ge component of the PMOS transistor greater than the Ge component of the NMOS transistor '| to achieve the purpose of optimization. — The method of the present invention is applied, whose process steps are compatible with the traditional double gate -P〇ly-SiGe gate CM〇s process' no need to add extra light for Si :: Already ::::::: The example is exposed as above, but it is not the spirit and scope, when; Without departing from the scope of the present invention, it should be attached as appended ... patentee = this invention

第14頁Page 14

Claims (1)

4 2311 8 六、申請專利範圍 I. 一種具有Poly-SiGe閘極之CMOS製程,包括: 提供一半導體基底,具有第一型井區、第二型井區、 及絕緣結構,上述絕緣結構將上述第一、第二型井區予以 電性隔離; 形成閘極介電層於上述半導體基底之上; 依序形成Poly-SiGe層、及第一絕緣層於上述閘極介 電層上;上述P〇ly-Si Ge層中之Ge和Si之成分比例為X % 和(100-X) % ;其中,上述第一型井區上方之Poly —SiGe層 為第一Poly-SiGe層’上述第二型井區上方之P〇ly-SiGe層 為第二Poly-SiGe 層; 去除上述第一型井區上方之第一絕緣層,保留上述第 二型井區上方之第一絕緣層; 加熱我i化上述苐一 POiy-SiGe層使其表面形成氧化 層;其中’在未氧化之上述第一 P〇ly_SiGe層内,Ge*Si 之成分比例變成為y %和(l〇〇-y) %,且y > χ ; 去除上述第一型井區上方之第一絕緣層,而露出上述 第二Poly-SiGe 層; 去除上述氧化層’而露出上述第一 p〇ly_SiGe層; 形成一導電層於上述第一、第二?〇17_5丨(^層上; 疋義姓刻上述導電層、及上述第一、第二 層,而露出上述閘極介電層,以分別形成閘極結構於上述 第一、第二型井區之上方;以及 完成後續之邊襯 '源/没極區之製程。 2.如申請專利範圍第:項所述之製程,其中,上述4 2311 8 VI. Scope of patent application I. A CMOS process with a Poly-SiGe gate, including: providing a semiconductor substrate with a first well region, a second well region, and an insulation structure; The first and second type well regions are electrically isolated; a gate dielectric layer is formed on the semiconductor substrate; a Poly-SiGe layer and a first insulating layer are sequentially formed on the gate dielectric layer; the P The composition ratios of Ge and Si in the 〇ly-Si Ge layer are X% and (100-X)%; wherein, the Poly-SiGe layer above the first type well region is the first Poly-SiGe layer. The Poly-SiGe layer above the type well area is the second Poly-SiGe layer; the first insulation layer above the first type well area is removed, and the first insulation layer above the second type well area is retained; The above-mentioned first POiy-SiGe layer is formed on its surface to form an oxide layer; wherein in the above-mentioned first Poly_SiGe layer which has not been oxidized, the composition ratio of Ge * Si becomes y% and (100-y)% And y >χ; remove the first insulating layer above the first type well area, and expose the second Poly- A SiGe layer; removing the oxide layer ’to expose the first poly_SiGe layer; forming a conductive layer on the first and second? 〇17_5 丨 (^ layer; the last name is engraved on the conductive layer, and the first and second layers, and the gate dielectric layer is exposed to form a gate structure in the first and second well areas, respectively. Above; and complete the subsequent process of lining the source / inverted region. 2. The process as described in the scope of patent application: Item 1, where the above 第15頁 4 23 1 1 8 六'申請專利範圍 Poly-SiGe層係.使用LPCVD法沈積而得,厚度介於3〇 nra ° 3.如申請專利範圍第1項所述之製程,其中,上述第 一絕緣層係係使用L P C V D法沈積而得之氮化;ε夕層,厚度介 於30 〜50 nm 。 4 ·如申請專利範圍第3項所述之製程,其中,去除上 述第一型井區上方之第一絕緣層’係使用活性離子蝕刻 法。 5.如申請專利範圍第3項所述之製程,其中,去除上 述第二型井區上方之第一絕緣層’係使用h3P〇4溶液。 6 ‘如申請專利範圍第1項所述之製程,其中,加熱氧 化上述第一Poly-SiGe層,係使用熱氧法。 7. 如申請專利範圍第1項所述之製程 述氧化層係使用B0E蝕刻。 8. 如申請專利範圍第1項所述之製程 電層為金屬層,厚度介於50〜2〇〇 nm。 9. 如申請專利範圍第1項所述之製輕 ^ 型井區為N型井區,上述第二型井區為p型井區 \0.—種具有Poly-SiGe閘極之CM0S製程,包括: 及絕k供半導體基底,具有第一型井區、第二型井區、 電ί緣結構,上述絕緣結構將上述第一、第二型井區予以 电性隔離; 形成閘極介電層於上述半導體基底之上; 依序形成Poly-Si Ge層、及第一絕緣層於上述閘極介 50 其中,去除上 其中 其中 上述導 上述第Page 15 4 23 1 1 8 Six-application patent range Poly-SiGe layer system. Deposited using LPCVD method, thickness is 30nra ° 3. The process described in item 1 of the patent application range, wherein the above The first insulating layer is a nitride obtained by LPCVD; the ε layer has a thickness of 30 to 50 nm. 4. The process according to item 3 of the scope of patent application, wherein the removal of the first insulating layer 'above the first type well area is by using an active ion etching method. 5. The process according to item 3 of the scope of patent application, wherein the removal of the first insulating layer 'above the second type well area uses an h3P04 solution. 6 ‘The process as described in item 1 of the scope of patent application, wherein the first Poly-SiGe layer is oxidized by heating using a thermal oxygen method. 7. The process described in item 1 of the scope of patent application said oxide layer is etched using BOE. 8. The process described in item 1 of the scope of the patent application The electrical layer is a metal layer with a thickness of 50 ~ 200 nm. 9. As described in item 1 of the scope of the patent application, the light-type well area is an N-type well area, and the second type well area is a p-type well area \ 0. A CM0S process with a Poly-SiGe gate, Including: and a semiconductor substrate for insulation, having a first type well area, a second type well area, and an electric edge structure, the above-mentioned insulation structure electrically isolates the first and second type well areas; forming a gate dielectric Layer on the semiconductor substrate; a Poly-Si Ge layer and a first insulating layer are sequentially formed on the gate dielectric 50; 第16頁 4 23118 六、申請專利範圍 電層上;上述Poly-SiGe層中之Ge和Si之成分比例為x % 和(100-x) % ;其中,上述第一型井區上方之Poiy-SiGe層 為第一 Poly-SiGe層,上述第二型井區上方之P〇ly-SiGe層 為第二Poly-SiGe 層; 去除上述第二型井區上方之第一絕緣層’保留上述第 一型井區上方之第一絕緣層; 形成未經摻雜之複晶石夕層於上述第一絕緣層、及上述 第二Poly-SiGe層之上; 去除上述第一型井區上方之未經摻雜複晶矽層’保留 上述第二型井區上方之未經摻雜複晶矽層; 進行加熱程序,使上述第二p〇ly_SiGe層中之Ge往上 述未經摻雜複晶矽層擴散;其中,上述第二Poly —SiGe層 内’Ge和Si之成分比例變成為z %和(100 — z) %,且z < X ; 去除上述第一型井區上方之第一絕緣層,而露出上述 第一Poly-SiGe 層; 形成一導電層於上述第一 p〇ly_SiGe層、及上述未經 摻雜複晶矽層之上; 定義钱刻上述導電層、上述第一Poly-SiGe層、及上 述未經摻雜複晶矽層,而露出上述閘極介電層,以分別形 成閘極結構於上述第一、第二型井區之上方;以及 完成後續之邊襯、源/汲極區之製程。 11.如申請專利範圍第1〇項所述之製程,其中,上述 Poly-SiGe層係使用Lpcv])法沈積而得,厚度介於3〇〜5〇Page 16 4 23118 6. On the electric layer for patent application; the proportion of Ge and Si in the above Poly-SiGe layer is x% and (100-x)%; among them, the Poiy- The SiGe layer is a first Poly-SiGe layer, and the Poly-SiGe layer above the second type well region is a second Poly-SiGe layer; removing the first insulating layer above the second type well region, and leaving the first A first insulating layer above the well region; forming an undoped polycrystalline spar layer on the first insulating layer and the second Poly-SiGe layer; removing the The doped polycrystalline silicon layer 'retains the undoped polycrystalline silicon layer above the second type well region; and a heating process is performed to make the Ge in the second poly_SiGe layer to the undoped polycrystalline silicon layer. Diffusion; wherein the composition ratio of 'Ge and Si' in the second Poly-SiGe layer becomes z% and (100-z)%, and z <X; remove the first insulating layer above the first type well region And expose the first Poly-SiGe layer; forming a conductive layer on the first poly_SiGe layer and the above-mentioned un-doped Above the polycrystalline silicon layer; define the above-mentioned conductive layer, the first Poly-SiGe layer, and the undoped polycrystalline silicon layer, and expose the gate dielectric layer to form a gate structure respectively on the above Above the first and second well areas; and complete the subsequent lining and source / drain region processes. 11. The process according to item 10 of the scope of patent application, wherein the Poly-SiGe layer is deposited by Lpcv]) method, and the thickness is between 30 and 50. 第17頁 423118 六、申請專利範圍 nm 。 1 2.如申請專利範圍第1 〇項所述之製程’其中,上述 第一絕緣層係係使用LPCVD法沈積而得之氮化矽層,厚度 介於30〜50 nm。 1 3.如申請專利範圍苐1 2項所述之製程’其中,去除 上述第二型井區上方之第一絕緣層’係使用活性離子蝕刻 法。 1 4.如申請專利範圍第1 2項所述之製程’其中,去除 上述第一型井區上方之第一絕緣層’係使用Η3 Ρ04溶液。 1 5.如申請專利範圍第1 〇項所述之製程’其中,上述 加熱程序係為高溫回火製程,溫度介於800〜1〇5〇 ° c。 1 6.如申請專利範圍第1 〇項所述之製程,其中,去除 上述第一型井區上方之未經摻雜複晶矽層,係使用活性籬 子蝕刻法。 17·如申請專利範圍第1〇項所述之製裎,其中,上述 導電層為金屬層,厚度介於5〇〜200 nm。 18.如申請專利範圍第1〇項所述之製程,其中,上述 第一型井區為N型井區,上述第二型井區為p型井區。^Page 17 423118 VI. Patent Application Range nm. 1 2. The process according to item 10 of the scope of the patent application, wherein the first insulating layer is a silicon nitride layer deposited by LPCVD and has a thickness of 30 to 50 nm. 1 3. According to the process described in the scope of application patent No. 12 (1), wherein the removal of the first insulating layer above the second type well area is performed by an active ion etching method. 1 4. The process ′ described in item 12 of the scope of the patent application, wherein the removal of the first insulation layer above the first type well area ′ uses a Η3 Ρ04 solution. 15. The process according to item 10 of the scope of the patent application, wherein the heating process is a high-temperature tempering process, and the temperature is between 800 and 105 ° C. 16. The process according to item 10 of the scope of patent application, wherein the undoped polycrystalline silicon layer above the first type well region is removed by using an active fence etching method. 17. The system described in item 10 of the scope of application for a patent, wherein the conductive layer is a metal layer with a thickness of 50 to 200 nm. 18. The process according to item 10 of the scope of patent application, wherein the first type well area is an N type well area, and the second type well area is a p type well area. ^ 第18頁Page 18
TW88120344A 1999-11-22 1999-11-22 CMOS process having poly-SiGe gate TW423118B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88120344A TW423118B (en) 1999-11-22 1999-11-22 CMOS process having poly-SiGe gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88120344A TW423118B (en) 1999-11-22 1999-11-22 CMOS process having poly-SiGe gate

Publications (1)

Publication Number Publication Date
TW423118B true TW423118B (en) 2001-02-21

Family

ID=21643101

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88120344A TW423118B (en) 1999-11-22 1999-11-22 CMOS process having poly-SiGe gate

Country Status (1)

Country Link
TW (1) TW423118B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100334740C (en) * 2003-08-26 2007-08-29 茂德科技股份有限公司 Power MOSFET and its mfg. method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100334740C (en) * 2003-08-26 2007-08-29 茂德科技股份有限公司 Power MOSFET and its mfg. method

Similar Documents

Publication Publication Date Title
JP2010502015A (en) Complementary silicon-on-insulator (SOI) junction field effect transistor and method of manufacturing the same
JP2001298186A (en) Semiconductor device and manufacturing method thereof
JPH11297852A (en) Semiconductor device and manufacture thereof
KR20070085699A (en) Method for forming self-aligned dual fully silicided gates in cmos devies
JP2002026318A (en) Insulated gate semiconductor device and manufacturing method thereof
JP2009070840A (en) Semiconductor device and manufacturing method thereof
US7659154B2 (en) Dual gate CMOS fabrication
US20130026565A1 (en) Low rdson resistance ldmos
JP4792716B2 (en) Semiconductor device and manufacturing method thereof
TW200822360A (en) Semiconductor device and manufacturing method thereof
JP2001144289A (en) Semiconductor device and manufacturing method therefor
JP3874716B2 (en) Manufacturing method of semiconductor device
TW423118B (en) CMOS process having poly-SiGe gate
US5612243A (en) Polycide local interconnect method and structure
JP2008047586A (en) Semiconductor device, and its fabrication process
JPH09135029A (en) Mis semiconductor device and manufacturing method therefor
US8728920B2 (en) Schottky diode with control gate for optimization of the on state resistance, the reverse leakage, and the reverse breakdown
JP5676111B2 (en) Semiconductor device and manufacturing method thereof
JPH07161988A (en) Manufacture of semiconductor device
JP5159708B2 (en) Semiconductor device and manufacturing method thereof
JP4043452B2 (en) Manufacturing method of semiconductor device
JP4723182B2 (en) Semiconductor device and manufacturing method thereof
JPH113996A (en) Semiconductor device and manufacture thereof
JPH11204783A (en) Semiconductor device and manufacture therefor
JPS6129176A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees