TW205008B - - Google Patents

Download PDF

Info

Publication number
TW205008B
TW205008B TW081107498A TW81107498A TW205008B TW 205008 B TW205008 B TW 205008B TW 081107498 A TW081107498 A TW 081107498A TW 81107498 A TW81107498 A TW 81107498A TW 205008 B TW205008 B TW 205008B
Authority
TW
Taiwan
Prior art keywords
capacity
adsorption
oxygen
gas
cms
Prior art date
Application number
TW081107498A
Other languages
English (en)
Original Assignee
Air Prod & Chem
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Prod & Chem filed Critical Air Prod & Chem
Application granted granted Critical
Publication of TW205008B publication Critical patent/TW205008B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids
    • C01B21/0455Physical processing only by adsorption in solids characterised by the adsorbent
    • C01B21/0461Carbon based materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/306Active carbon with molecular sieve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/308Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S95/00Gas separation: processes
    • Y10S95/90Solid sorbent
    • Y10S95/902Molecular sieve
    • Y10S95/903Carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

Μ 五、發明説明() 本發明爲美國專利申請案07/644,711, 甲靖EJ 1991年 1月23日的延續申請案〇 經濟部屮央榀準局A工消tv·合作社印51 發明领域 本發明關於分離空氣以獲得氮的一方法 饮’具中利用一 具有高氣體積容量的破分子篩吸附刻進行變恩吸附 I明背景 氣變愿吸附(n2 PSA)爲適於生產氣的—常用分離方法 。此方法的進料典型地爲空氣,但亦可爲富於氣的氣體。 通常此方法爲一兩床程序並以一相當簡單餚環被操作,包 括加壓,於高壓下抽取產品,使床的壓力相等及降壓。其 它步驟例如產品沖洗亦可採用。整體循環時間係在幾分鐘 程度。所使用的高壓典型地爲4至8 atm,而峰壓通常係到 常壓,然而亦可到真空。 PSA爲一動力基礎(kinetics_based)方法,亦即〇2 及N 2的分離係因爲吸附則的一— 性(equilibrium selectivity)。在高壓進料步驟,〇2被 選擇地吸附從而取出一\增濃產品。在低壓吹洗步驟,該 被吸附的富於〇2相被脱附並從該床移出。運用於商業性單 元的吸附劑通常爲^ 破分子篩通常是捋破物質(例如:煤,榔殻炭,泥炭’ 煤答’破化高分子及類似物質)經過與另一含破物質一倂 處理而得。木子樂(Munzner)等人(I·974〉於美國專利第 (請先閲請背而之:/^意-^項再项寫本頁) 裝· 訂- 線. 205008 五、發明説明 經濟部屮央梂準而CX工消扑合作社印¾.
A β η 6 3’801’513財描述獲射用於肢賴砂子薛⑽& 之方法’以破物^•與含有高達5%揮發成份誠炭一起置杰 :〇(^_c下分離出炭,進而捋•焦炭中的孔球塞窄。焦炭 ▼以是由蝶、泥炭、榔殼、本材或塑膠加工而來。其他報 導中得知,要有麵牲氡與氮分離:吸賴的玉搜孔雇必 紅於络(A n g s t r。! )_,而平均孔徑是可以經由改變處理 的強度來調整。美國專利3,8Q15i3號中的示範例6中推迷 挪殼其粒徂爲1至3 mm經過每分鐘代的加熱,弄溫 _ c其有機揮發成份爲4.5%,在維持75〇〇c下3〇分鎊 的同時導4喊,隨後錢氣下冷卻。料評估測試, 利用上述處理料榔殻粒,分離躺㈣產品 、大約在同時,也有利用其他物質當基本原料來製造破 刀子筛的作法。认公告第sh。49.37。36(1974)中插述一 種利_或料__合或m合來製造較子筛的做法 =中先㈣腊吸附在—種破基的吸附剞上再加溫破化 品0破化的條件爲在情性氟體下加熱至__100(rc。 加熱迷率爲每小時5。至_口每分鐘〇.8至6 ”⑴,其中 持ΓΓ】Υ的料騎分鐘6.,師5(3至_。〇後保 • ·、時。操作目的據稱爲盤上 挪殼爲凡用、商品化的物質,文礙常 2 迷合原材料。佴是製造挪彀炭的方法,倒幾 于及有被報導遇。㈣内(shi Yinru 森林學院所㈣…二…:::: 公度) ^tS(21〇x297 205008 經沭部屮央梂準而ο:工消伢合作杜印3i 五、發明説明() ⑽,將揶毅加 熱至別。C,文稱以每分鐘―至…的昇溫速卜破化 Τ在5Μ時完成’又稱錄低溫度魏,财溫速率應 在每分鐘lot:以下。 美國專利第4,594,163號中沙特(s叫(1986)描述一 種以天然產生的物質爲材料的連續製造方法,方法中使用 非活化條件,如:非氣化,及;j;加人限制孔贼培塞孔 之物質。其製程包括炭的加熱在9〇〇到2〇〇〇τ中加熱5到9〇 分鐘,例如椰殻炭是利用描述在美國專利第3.884,'83〇號 中之方法所製造,在示範例中是加熱到^⑽卞。82^)及 更高。其宣稱所產出的CMS的氣容量在25〇c下爲* 〇〇到 6-〇〇Cc/cc,平均孔徑爲3至5埃。另有—例,可做爲先前 技藝代表,作法是每分鐘5〇C之异溫速率至5〇〇。〇 來炭化,打碎炭化的榔殼,以2〇χΑΟ網眼(mesh〉(美國篩) 之篩子得到顆粒後,在氮氟下以每分鐘异溫至95〇。〇後 ,並維持2小時。此產品的氣體積容量僅爲〇.8cc/cc。揶 殻炭的製造方法可以參考美國專利3,884,83〇號,專利中 插述從基本物質如無煙媒、椰殼炭等材料製造活性破。煤 或喊經打碎,過筛及與勒著剜混合再以造粒或擠壓方式成 型,再打碎及遇蒒。活化遇程爲在空氣中以3〇〇至4〇〇。〇烘 後,再以85〇t!至96〇°c溫斷來鍛燒。在如何製逄基本物質 卻毫無提及。 沙特(Sutt)在美國專利第4,627,857號(1986)中揭示 用於氧/氮分離之一 CMS的製法,藉由連續鍛燒黏聚在一 边用中 -—-- (請先間請背而之注意亊項再填寫本頁) 裝· 訂· 線. 205008 經沭部中央桴準::Tex工消1Ϊ-合作杜印51 Λ 6 Π6 五、發明説明() 起的7或去螺焦碳物質,例如域炭。該被勒聚在— s4材包括〜熱結合剞並分篩或製料。鍛燒係在情性 ^洗250在11〇〇。〇進行至少—分鐘,较佳地呢的分 鐘。貫施例示範了々 。 】氧谷量2 · 25至4 _ 44 cc/cc的CMS產品 C)。起錢物㈣料可見於先前提及的美國專利 第3,884,830號。 yi^*» AjL / 〇 u t)在美國專利第4 629,476號(1986)中插述 製出個CMS具有較佳的液體或氣體分離選择性,方法及 破物質上’如_毅炭’殖入分子量至少爲4。。的-種有 機物或無觀合物,其殖人量至少爲〇 • 001 wt%,該專利 且揭露在250至11〇〇。〇下進_步修改被殖入之炭物質。 從椰殼炭製成CMS通常先將炭製成粒狀,以利於分離 製程之應用〇 〇hSaki等人在美國專利第4 742,〇4〇(1988) 中描述CMS的製成是利用椰殼炭與煤焦油(c〇ai tan)或煤 焦油塔(coal tar pitch)結合成粒,於6〇〇至9〇〇〇c下破化 該额粒,以礦物酸(mineral acid)洗去顆粒中可溶成份, 乾操顆粒’加入一種蒸館過的雜吩油(creosote)再加熱至 6〇〇-9〇0°C,保持10至6〇分鐘,25°C下氧容量爲約每公克 6·〇至7.〇毫升,而沒有選擇性的原破化遇後之炭的容量爲 每公克8.〇毫升。美國專利第4,933,31Α中(1"〇)也提出了 一種類似的做法將破化物質製成顆粒,專利中插述CMS的 製出是用球嗖的酚樹脂與黏著剤混合,製成顆粒,加熱破 化顆粒。在製成CMS的遇程中,不同的物質可以少量添加 幫助效能,例如:細分的纖維素、挪殼、煤、焦油、湲青 本虼張尺度边用中國國家烊ψ((;Ν5)Ή規格(2丨〇父29/公龙) {請先間請背而之:戌悉事唄再碼寫木頁) 裝< 經濟部屮央標準而cx工消奸合作社印製 205008 五、發明説叫() 、或其他樹脂。使用顆粒狀CMS—方面在造輯上的昂贵费 用外,尚有殘留黏著剂或其分解的壷物佔位CMS的孔而降 低容量之缺點。所以能夠開發出一種球輯狀的破分子筛直 接可用於吸附床來進行分離而不農要奧通类释复租是非常 有用的。 v修改破化物質除了上述的次破物質來,尚 包括很多步鄉。例如:威廉在I%9年發表於"破"期刊第27 卷第1號第I3-22頁,題目爲”從工業角度看活性炭的製造 與使用"一文中指出利用蒸汽,二氣化破或空氣來 物_®!如媒、木材、榔殻及其他類似物。在8〇〇<〇以上氣與 炭的反應速率比蒸汽及二氧化破快1〇〇倍,所以活化必須 在物質傳送爲反應瓶頸及產品限制條件下進行。孔體積及 孔的.捷太是电殓查約奥.去,在存在一最大表面積及微孔體 積(micr〇P〇re v〇lume)。8〇〇至85〇。〇據稱爲最佳溫度不會 產生孔收縮的現象。 利用破分子篩進行空氣分離的價值在希曼 (Seemann) 的1988年文章中提出。文章發表於化工技術期刊第η卷第 341351頁’名稱爲"以破分子韩利用壓力改變⑷來產 出富氡氣體的數學模式"。文章中討論利用商用的㈤ (Bergwerksverband公司所製造的咖V進行ps績環從 f,氣中分離出氧。文中指出雖然在下上述=種 =觸爾·但是如 钱越。因此,在吸 及Μ合氣,在吸附床的 (請先Ml讀背而之注意事項#寫本頁) 裝· 線· 205008 Λ 6 Μ 6 經濟部屮央標準而工消fr合作社印31 五、發明説明() ’可以得到含氧高於50 νοί*的氣體。 將沸石用作爲動態基礎(ki netics -based)吸附刺而應 用於分離,巳建議於文啟中 (D. W. Breck, J. Chem. ducat i 〇π, , 678,1964; E_ J· Pan et al· in "New Directions f〇r Sorption Technology", G. E. Keller and R, χ. Yang (ed.), Butterworth, 1973; H. S. Shin and K. S· Knaebel, AlChE J., 33, 654, 1987; H. s· Shin and Knaebel, AlChE J., 34, 1409, 1988) 。雖然其中了解到沸石的n2/〇2平衡選擇性損傷了 〇2/\的 動態選擇性’該等引證資料顯示了使用沸石進行一動態基 礎分離裡序爲可能的。此等文獻所揭示之工作重點在於程 序變數及循環流裎。所使用的沸石爲小孔物質(small P°re materials)其氣容量約5 cc/cc(於一大氣壓及常溫 下)〇 V〆以^ PSA法生產N2的成本爲方法支意j^(SCFH N2產品 /吸附則立方呎)及空氣毯避連(n2產品莫耳數/進料空氣莫 耳數)的函數。一操作單元的獲得率及生產力可藉改變程 序循爲間及/或其它操作條件而變化。除非在不想要的 操作範圓内,否則當増加一參數的值時常導致另一參數的 值的降低。 因爲\ PSA爲一動態基礎方法,因此可以預料對該方 法之最顯著改良,將藉由對吸附剤的動態吸附速率及/或 動態選擇性的改良而獲得。—般而言,较送的羞迷率可 產生校高生產力;而较真遷可導致一較高獲得率。同 -8 - 本紙法尺度Affl中8 smiUMCHS) τ讎(2K1X2H) (請先間讀背而之注意事項再碭寫本頁) 裝· 訂 線· 205008 經濟部屮央標準局β工消作合作社印奴 五、發明説明() 時提升吸附剤之吸附速率及選擇性兩者,或者即使只提升 其中一個而另一個保持不動,都非常困難。 很清楚地,於PSA製程中使用動態基礎吸附劑,尤其 破分子篩,有很大潛力,但是先前技抵均注袁龙汍附倒的 選展性及吸敗遑皋的改良,—&幾土淇„视矣抵本惠丨主盡起始 麩質的0容量。 發明之總結 相當出乎意料地,我們發現對N2 PSA方法的表現而言 吸〇 2„平衡—容量比吸附剩的氣體成縣違率或動態避 擇兰盖直.較J&键影盖〇此外,提异笔股刺的_也衡备養 »1增々:τ獲得率及生產力。尤其令人驚奇的是,獲得率隨 容量提界而被増加。 依我們的發明,提供了一種以變壓吸附而分離空氣產 生氮氣的方法,於該方法中使用一破分子篩作爲吸附劑, 該破分子篩具有一氧體積容量至少9.0 cc/CC(20°C及一大 氟壓力)。該破分子蒒宜爲具有至少10.0 cc/cc氣體積容量 者0 發明之詳細説明 一基於梛子殼炭並且具有一超高氧體積容量的破分子 篩已被描述於美國專利申請案號〇7/6M, 711(1991年1月23 曰申請);本案爲其部分延續申請案。該母案亦揭示了製 造此高容量破分子篩(CMS)的方法。於變壓吸附(PSA)分離 -9 - (請先閱讀背而之注意事項再填寫本頁) 本紙汰尺度边用中國S家準(CNS)T4規格(210X297公龙) 205008 Λ Γ> |{6 五 經濟部屮央標準而只工消价合作杜印虹 發明說明() 法中模擬使用此高容量CMs時,¥人發現此超高 =容量―法中具有比商用咖“獲得率及 ’即使此絲量GM__伽具有-较慢氧吸附 與吸附制Ϊ低〇2/_1 選择性。再者’亦發現此等政良 疋夠〜類ί闕。易言之’經由本發明的方法使用45 乃因爲在模擬評伽A空氣分離方法中的吸 時,只輸入包括物理、平衡及動態性質的吸附剤參數 ,而未限定吸附剩的化學本質或來源。 用於評估N2 PSA備環中之吸附刻的相對表現的計算 方法,是以吸_的縣性質及操作變數,包括計算一 N PSA床兩端位置之整體猶環穩定狀態的。2及~系統工作容2 量。此等工作容量是使用—電腦模擬而進行計算,該棋擬 正確地計算了城基収附狀目孔及微孔㈣物質輸送 。吾人發現^之。2及\吸附可藉定義兩物質輸送阻力而 被最佳地模擬;微孔入口處的一表面隔絶阻力及與其串聯 的-沿微孔方_均-卩且力。此計算是針對絶纽附床旅 且使用一多成分雙址(site) Langinuir程式來表示平衡容 量。 δ整體工作容量被得到時,使用床端點處的整體工作 容量算術料值及依下式計算出㈣率及生產力。此方法 不在用於準確地預測出獲得率及生產力的絶對值,相反地 此方法已知可良釾地兔驗工廠及商業化規模、PSA的 工佳^?,因而枝兔石is迎之 10 本紙张疋度边用中a a家烊準(CNS)T4规格(210x297公it) 205008 五、發明説明 獲得率 wc f - (1-Π (Γ~ wc - 〇wc p - (1-p〉 N wc 生產力 pif P f t 0 wc wc 產品純度(n2的莫耳分率) 進料組成(n2的莫耳分率) 循環時間 整體操作的〇2工作容量 整體操作的、工作容量 (請先閲讀背而之注意本項凡項窍本頁) 裝· 級裨部屮央棣準:^:::工消作合作社印^ 以上計算方法是用於評分吸附則並定義出一優良n2 SA吸附朗,时。吾人舰N2 PSA方法縣現受吸附剤 體锖平衡容量(莫耳/粒或片之cc)增加的影饗最大。對一 锖基礎的容量增加可藉提并吸附齊|的本身吸附容责及/ 或藉提弄粒的密度而達成。 高容量CMS可從椰殼製得。所製得CMS爲一高密度破分 :錦而通於被進-步修錦以生產出一氧選擇性咖。此物 ^僅因具有增進體積容量而通於多種進—步料成最終 ’而且此物質W製粒(pelletizing)即⑽ 後riar f_)°此炭之容量及氧吸附迷率可藉—氧化 理而増加不會將其微孔擴大《8埃。製逶此 尺度处用中 ®®r^^(CNS)T4jE{l«S(210><29V^J7 訂 線. 經濟部中央榀準局β工消fr合作杜印5i 205008 Α Γ, ________Π6 ---- 五、發明説明() 、7^的方法包括⑻打碎及筛選椰殼,使椰殼顆粒的尺寸 剛规合用於PSA的吸附床,⑻在流通惰性氣體下,將敎 顿粒以平料純 至’(c)進-步維持尖峰高溫,使得加溫及維持高溫 總共锋丛爲及:上放,(d)在情性氟體環境下降溫。 該顇粒狀榔殼炭不需經過修正其孔徑而吁使用於氧遇 擇检的空氣分離,其氣體積容量在常態下超遇8 〇cc/cc。 本發明亦提供一種氣化過的椰炭,將上述高容量炭在 65〇-9〇0 C下與二氧化破或二氣化破與水或惰性氟體中的 ,混合氟接觸。仏处妓具在二太於後氧 爸章.。氣化處理的時間必須足夠加大該炭的氧容量但對氧 從氮中選择出來之選擇性會下降。該榔殼炭亦可進—步與 一揮發性含破有機化合物在熱解條件下接觸而被修飾降低 該高容量炭的有效孔開口,該修飾可在該椰殻炭被原始破 化步驟形成後直接進行,或者在該氣化遇程後進行。 本發明由於能增加破分子篩(CMS〉的吸附容量,進而 對利用破分子篩進行空氣分離的技術有顯著之贡獻。由於 増加了吸附床單位體積之氣體容量,導致改變壓力吸脱附 空氟分離法之回收率及產皁的提高。吾人均注意選擇性及以 吸昧,卻|嚀了 J曾加CMS的!量之償值。J A紐!:¾CMs在2 5 Μ1 _㈣下丄氧之容賴之, 趁?55·/无,。這些商品的孔隙度均來自在製造CMs遇程中擠 壓成多土燒去黏考丨凑出來的大札隙及中孔隙。雖然 大孔隙T讓氟體穿過,但是對空氣分離毫無助益。 ' 12 - .................f.......^.....玎· · · 4 (請先間讀背而之注意事項#项筠本頁) 本紙张尺度i4用中國Η家访半(CNS) «Ρ4規格(2ΐ〇Χ2ί»公_it) --— 205008 Λ 6 \\6 五、發明説明() 經濟部+央桴準局A工消fr合作社印¾. 農年前技藝,無論所用的林料及方法二工《叫氣重 量m上―*艮今.8 c c /克(1 at m及常温)。雖然許多活化步驟 被發展出來増加重量容量(CC/克),卻也降低了密度及體 積容量(CC/CC)。相反地,附著聚合物類可熱解之破來増 加密度,但卻因填塞了橄孔(micropore)而減少了體積容 量,妓且此種處理將導致氣體吸附速率之大量降低。 /我們的發-明提-供了一教:¾:法可以匍浩十高容爭,高史 度的,此物質可用來當成基材進一步修整出一種 有效的氧選擇性CMS。本法產出的CMS有另一優點,gp &出 時攻_盖里矣_色五皇^。專U匕基材的玄音;g 吸附速jiXM藉一著III亂办後處理而増加’且其孔徂不會 超過8埃。無論是處理後或處理前之基材均爲有價值之物 質非常通合當成進一步用破氩熱解來缩小孔徑的基衬而形 成良舒的氧選擇性CMS。一種兩階段步驟方法在另案提出 ’提出案號爲美國專利申請序號575,474號,申請日期爲 1990年8月30曰。 文獻上到處可見如何増加破分子薛效能之彀計方法, 在破物質上,如煤、泥炭、通青、炭化聚合物、挪殼或其 他炭化殼等,加上一些含破成份物質後經熱解,將破附上 原先之起始破物質。參考本發明中發明背景所述,上述的 步驟都^^制在溫速年卷特風指定的上服溫度。 卻起4們發現針對 起攸的底處|與原材料的特1^7是―必須 力口以賴。爲了開發出较佳的起始原材料,我們發現挪殼 13 - (請先閱請背而之:/-t意本唄再碼衿本頁} 裝· 訂· 線 本紙張尺度边用中BH家烊iMCNS)T4規tM210x297公Λ) 2〇5〇〇8 部 屮 央 準 工 消 ί'ί· 合 η 杜 印 5i 五、終明説明() 無是成本上或品質上都是最佳的原料。 挪彀是-種Μ縫^物質,主要含有兩種不同比例 的有機物。纖維素及半纖維素合稱全纖維素,爲一種線狀 =轉聚合物’佔魅成尊62%。木質素是—種芳香醇類 的乂體激合物,佔35%,剩下約3,爲細胞内物質的衍生物( ^饥及羅伯’言,第2Q卷,第2G號,1G5頁,1982)。這 些成份的熱免乾在^:c以下,超遇此溫度幾無進一步的 々解。熱裂解則不然’可以破壞榔殻内的自然細胞結構。 本發明提出了一種製造高密度,高容量的起始原材料 而其吸附率可以改變。嘴先释新鮮椰子去除硬殼,红辟 桃幾出埤会在改變壓力處脱附法申吸附床内的大小辑隹 。顆粒尺寸不定,例如可以是〇.5吋的塊狀或2〇Omesh或更 的顆粒,但是無論尺寸,其大.】、一致倒是最重要。網眼 尺寸较合遒的爲^-25, 40-60, 60-80, 80-100,100. 14〇’及15〇-2〇0。在PSA製程中,不應選用細顆粒(>6〇網 眼),粉狀應避免。 B此顆隹患互iHitimT,最好是氮氣,小心的异 姐和龙’平均弄溫速率約在每分鐘2至12°C,较佳範圍爲 '1〇c,昇溫至775_9〇trc範園的尖峰溫度,較佳範面爲 775'825°c。【用於控制溫度的設計值熱電喁是裝於石英 B外面金屬的旁邊’所以石英管内的溫度十分接近設定溫 度】’如果昇溫速率非常緩慢且尖峰溫度是定在高限,挪 毅在逢到尖峰溫度時已完全破化 ,但通常仍需要在尖峰溫 度保持一段時間,使加熱時間及尖溫度^^總和能违刭 f請先間請背而之注意事項再碼WT本頁} 裝. 訂_ 線< -14 205008 經 濟 部 屮 央 標 準 局 工 消 合 杜 印 製 五、發明説明() 別晚,较佳的應用,尖峰洛度應有15分至丄小時。破化後的顆粒炭再於情性氣體環境下冷卻,本法製出 ==有不尋常的高體積氧容量,而且有少許動力 ;= 此炭的容量可以進-步提高,但會破壌 7 ^或氣’在高溫中進行氣化。本發明方法所製出的CMS 之氣體吸附迷率及密度均利用熱裂解條件加以控制, 條件包括加熱迷率、環境、尖峰溫度、氧化後處理、或都 利用熱裂解方秘缝化合物狀騎化微孔徑。 素有:氣容量,氣紐率,隸 大】、及肢蜜度。氧宴之今—最關_,其量化單位爲體積 量(CC/CC吸附則)或重量(cc/克吸附剤)。所有的容量量測 都在-般環境下進行(約23〇c,i大氣壓〉。本發明所製出 的獨特的榔殼炭在空氣分離應用時具有動力學上的氣選择 性,即使不進一步調整其孔徑尺寸,其氣體積容量亦超過 8.0CC/CC,此數字量測是在1大氣壓下以純氣在室溫測得 。如果CMS本y密度小,則可能有高的重量容量但是低的 體積容量。我.分出一^色雙移毅—炭1丛社吸腺床 的毛丄...„_..進-也隆'並錄成^本。吾人必須了解若單單提及重 量容量(cc/g)而沒有提及密度(及如何量得)是沒有意義的 。我們提出一個新的定義,就是體積容量及Hg顆粒密度。 本物粒乂.長虞羞H,節省吸附創在 製造中的步縣0因爲大的吸附床是採用壓力變換吸脱附法 ,床内的吸附則必須是擠出或壓出的顿粒CMS,因爲細粉 .................r : (請先IVJ請背而之:/.t意事項#填寫木頁) 裝· 訂- 線. 15 本紙法尺度边用中Η Η家標準(CNS)甲4規格(21〇^T^y Λ fi Π 6 205008 五、發明説叫() 會造成很大的壓降是叮能使用的。而且細粉充當原始材料 尚有無法進行破氩化合物熱裂解的缺點,所以細粉都必須 先使用減則結合,造出顆子。 雖然起始衬料有很大的容量,但是如果沒有適當的氟 體吸附速率仍是—種不妨的CMS。換言之,在後處理遇後 ,CMS的氣體吸取迷率必須與商品CMS相當(縱使不是一樣) 。考CMS吸附速率太慢將促使吸附時間段拉長,當然降低 生產力。 色色丞J3复悉二_ •果.其1夺一是·舞裔最r撒齋容-量共CHS 被用羞[S A空氟分呼方法.中時以容忍餐低讲氦體吸附 速率及選擇性例如,在2〇°C及1大氣壓下具有氧體積容 量爲10 cc/cc或更高的CMS,比已知具有低氧體積容量 (約S.5 cc/cc)的商業上CMS,具有相等或更高的pSA、方 法獲得率及生產力,即使該较高容量CMS比該较低容量CMS 在氧吸附速率及選择性上均低15%。吾人並無法葙知好情' 巧L童1丝里二—尤其至目前爲止所有的文獻均強調吸附迷皁及 選擇性。此等工作表現性質很難被同時提昇。通常當一工 作表現性質被提弄時,另一個則被損失掉。冬竺巧,藉選/ 擇具有高m冬量的CMS,9.0 cc/cc或更高,较隹祕5 少10 _ 〇cc/cc ’可獲得比商業上常用的典替CMS哚附剞相當 ?ιί:_ϋϋρ s a_氮丰產方法工作表現’即使其吸附迷率 毛里-擇性构比商業上常用的典型CMS吸附則所具有者爲他。 爲了吸附迷率與容量重要性外,CMS的命^分今亦十 分重要,吾人當然希求有更多的微孔體積能充分利用,作 -16 - (請先閜請背而之注意^項孙浈寫本真) 裝· 線. 經府部屮央梂準,局卩工消讣合作社印51 1 本紙张中㈣糾利哪⑻祕(21DX25H公 -------— 205008 Λ f» Π 6 經濟部屮央梂準局A工消fr合作社印!u 五、發明説叫() 是也希望有足夠的中、大孔能讓氟體通過而進入慠孔。本 發明所能製出的基本材料的微孔徂在g埃以下,非常通入 上述的破氩化物注入窄化步驟的使用。埃^^味衲 孔*赛.,?·1被、ia*實是.最.襄效的太·】來滅_.義《從省或.·中^分雖^,但是 如果原材料超過孔徂8埃,將很難窄化成要求的尺寸。 美國榔殻的商品货源有從加勒比海,主要爲哥斯大黎 加及多明尼加,有從夏威夷及新加坡〇所地土誠^不 同,包括1/S吋藻殼梛子及橄视球狀的吋厚殼的心奸扣 棕梠。疗碎原耒趣教的厚薄對| 針對薄的及厚的榔殼炭物質所 做的氧吸附測定,結果是相似的,此結果顯示椰殼的品 ,丨丨"丨,n ·-»·--« -· I 及色龙终鬼ϋ,不重.要的_激春風+ ,天候的大改 f如機風、乾旱等對挪子的品質是有料的,會影黎產出 炭的密度。另外-個重要影_子是命分含量。例如:含 有約〇%水份的榔殻,在弄温時水分逼出與其他排出氣體 反應或阻礙排出氣體在熱裂解初期的遂出,造成排出氣體 拼垮或限小了微孔孔徑。所以^ 了眺燥可以 避兔坆個麻烦。 在异Μ加熱階段時,必頊通入適使得 破的吸附能力及迷度能逹到最大可能,情性氣體通入量视 加熱爐的形狀及榔殼量而定,通入章必須能夠將所有會塞 住Hi,Ϊ赞il有機愈_全部帶出。示範例中所用的榔毂量 :氣氣的流量爲每分鐘。.5至7 5升,較佳的範園約爲每 刀鐘3至7幵。每分和料流量是不足⑽熱裂解中排出 -17 - 本紙乐尺度㈣中S H家糾伽)<F4删⑵0X297公从) (請先閲讀背而之注意市項#艰、巧木頁) 裴· 訂- 線< 205008 Λ (5 " ^—---------__ 五、發明說明() 氟體全部帶走,叮能產生微孔崩裂與堵死,將來製出的 CMS無法在合理的時間下產生氣體吸附平衡。在大部份範 J中充氣迷率約爲母分鐘6.5升。另外要注意的是情性 氣體必須能掃出反應器所有體積。 如ή1丨述奉名l爲每分鐘2至12。〇,较佳應用範固 爲2至10°C。這是一個平均弄溫速度,實際上的速度爲從 低増加至咼溫,而且是不同的。事實上本發明也可以昇 «•至5〇〇 c維持一陣子然後再以迤當的异溫速率加熱到尖 峰《α度,許多不同一步一步加熱方式的组合也是可行的。 爲了便於應用及控制,固定的异溫加熱方法是最対的操作 〇如果弄溫速度小於每分鐘2它則全程的加溫時間過長, 但如果弄溫速度大於每分鐘,則到達尖峰溫度過快及 有在弄溫時棑出氣體熱裂解的風險。爲了減少這種可能性 生里>JL的熱异泽_違牟必級姑_.俾調,遴免 排出氣體的累積而將炭的微孔堵塞。除了排出氣體的移除 及弄溫迷皁外,最後^^也會嚴重影響氡及氮的吸附 速率。我們發現超遇9〇crC產出的炭,無論其情氟沖洗速 率其吸附氣及氮比较慢且容量也较小。 經濟部中央橒準局只工消价合作杜印Μ 示範例中插述的榔殼炭製法,孔隙體積及密度分析是 使用水銀孔隙法及比重法。氧重量容量換算成氧體精容量 ,其中Hg顿粒密度的求得是利用水銀孔隙法。顆粒密度及 容量當溫度高於65〇它時隨溫度异高而増加,但是至775<^ 時増加趨勢爲停滯,所以妨的產品應是夸77 5 $至a 〇 p中 -18 - 205008 Λ fi W 6 經;ί部屮央櫺準^卩工消^合作杜印^ 五、發明説明() 體锖容量比⑽商品高出4〇%。從粉造成粒的分子薛 ”。其大孔㈣總隙度的比率高達恤。而本發明之挪毅 炭與商品分子筛—樣仍舊維持大孔㈣積比約在6〇%以下 Ο 本發;1所製成的椰殼走之Hg顆粒密度高批Ms商品或 活f生破之密度,每毫升約爲115克至12克之間。密度變 化是=到榔殼本身特性影響之故,最敏感的改變爲挪子成 熟季即時氣候的影響。傳統的總密度不能清楚區分不同物 質,從另一方面看,Hg顆粒密度倒也提供多一種量測方法 ’以資計算氧體積容量。 經過熱裂解階段後,颗粒挪殼炭在情性氣體環境下冷 ^我們發現榔殼炭在冷卻後最対再經過一種人爲氣氛下 (沒有h2〇,沒有(30〇的氣與氮)加熱族旁。 挪殻炭具有反應性極強的表面,除非也經上述條件鈍化遇 ’極易於空氣反應釋出熱來。純化遏的挪殼发可儲存在乾 空氣或氮氟下,對氮的吸附力的損失很小,然而若榔殻炭 是在濕的環境下(例如5〇%的相對濕度)儲存,縱使在使用 前的CAU分析以前也經完全的去水,其對氮氟之吸附率將 衰減到60* 〇 經遇65〇°C至9〇〇°C所製出的榔殼炭圣現不同動力學上 的氣選擇性及氟體吸附率,主因可歸於不同的熱裂解溫度 。當溫度异高’農内的.孔展改變成约4埃.,..對鬼的吸it曇 ~^*Γ·||·Γ" Ί- ~ 〜,.. * («經遇9 0 〇 °C所製出的炭仍保有4到4.3埃的孔徑 ,最大的氧選擇性,而CMS商品只有3 ·5埃。氧化後處理對 -19 - (請先間讀背而之注意事項朴碭寫本頁) 裝- ,1Γ_ 線· 本紙張尺度边用中Β Β家樣準(CNS) f 4規格(210x297公及) 經濟部屮央標準而A工消奸合作社印51 205008 Λ (ί -----------Π G____ 五、發明説明() 挪殻炭造成氧容量的増加,但明顯的降低了原有的氧選择 T。再進-步的改造m二階段或分二次的教用玉同 刀子量農峰氧作J5…物.來_重政孔徂八寸…可以使’具遴.择牲,孔 徑座半增奴二恢復對表的屋拣牲。改暹遇的炭或商品對氧 及氮的⑽吸附料幻目似^本顧翻^域^二 特點’就是大部份的微礼都疏過8埃,一秋都落在4至8 成之間’㈣是峡二次絲化合物改造遇的。 挪殻炭的孔徑尺寸可以依在尖峰溫度之維持時間長短 而改變。一般而言,維持時間在ls分至^】、時這一階段, 罢現较快的吸納能力,選擇能力則與維持時間達*小時的 炭相ft。此現象表示炭在維持時間短小時下可能有較 短的有效微粒子區間(微孔擴散路徑)。另一方面,弄溫速 度從2°c提到lot:卻只増加少許的吸附率,這個現象與較 短維持時間效果相互吻合,在同樣狀態下氬氣產出的炭較 慢但選擇性较佳的吸附劑。用二氧化破當沖洗氟,則氧選 擇性完全消失,雖然氣化處理只造成炭損失的密度,而 増加容量。 上述方法所製成的挪殼炭,可以進一步改造,方法爲 使用純二氣化破或惰性氣體與二氣化破或水或氧的混合氟 來氣化挪殼炭。在這個步驟毅炭在氡化氣體下异溫至 65〇~^^.圭範固750°C至9〇〇°C,而且維持在此洛度 —臭^^氧容重屋降低麗分氢與農氣的選擇性。以二氧 化碳與氬氣當氣化氣,榔殼炭汊附容量増加但喪失遴擇性 0這個步鄉,將原來的物質氣容量增加1〇%,比商品約多 -20 . 本IMfc尺度ΑΛ1中明8J家糾(CNS)τ4膽⑺〇χ297々Α) (請先閲請背而之注意事項洱埙寫本頁) 装· 訂- 線, 205008 Λ fi Η 6 經 濟 部 屮 央 標 準 A 工 η 社 印 3i 五、發明説明() 30% 〇 氟化步驟亦可以改爲在氣化之前,先蓝落專存 溶質的.溶,船矣\搜敦直乂签|1以是氩氡北鄭、 醋酸銘龙赌奧隻2.二氣化破反應後可以増加額外容量。殖 入醋酸鎳及二氧化破在8〇〇eC至9〇〇°C氧化合倂使用,有效 地増加榔殻炭的容量,加快吸附速率。殖入醋睃鎳及在 65〇°C與二氧化破與氬混合氟氣化亦能有效的同時増加容 量及吸附速率。在8〇〇它及純二氧化破下對炭進行氣化是 非常可行的’所需之時間僅爲用25*二氧化破與氬混合氣 的一半。例如,在8〇〇。〇及二氧化破與氬混合氣下氟化 1小時,炭的效能很釕,若使用純二氧化破則只需半小時 。加上無加鼗來加速氟化對炭容量有些助益。 二氧化破的氣化T以増加原始材料炭的容量,而利用 含揮發性破有機物的處理可以重新恢復CMS的選擇性,較 佳的應用爲使用三甲基環己垸在59〇°C到625。〇處理90到 工35分鐘。以同類形较小分子的有機物如異丁蜂在”(^它至 53〇°C處理is至6〇分的二次處理可以進一步増進選擇性。 如前述’以本發明方法利用榔殼來製造顆粒炭的成本 较利用炭分子篩造粒來得經濟。在變壓吸脱附法中,吸附 床經常重覆増壓減壓,所以床中的顆粒與床外殻有擠壓。 炭冬身±全蓋.,对麾it佳,無論是有加沙或不加沙滾動磨 法,可以磨去尖角避免對吸附床外殻產生磨托。 氧與氮的吸附特性是應用循環吸敗設端加以 測定’ CAU本身具備有Serv〇mix氧監測器,311 cell的 -21 - -------一- . + ® ¥:ii^(CNS)T4Jtatii(21〇x297^^) (請先間請背而之注意市項寫本頁) 裝. 訂_ 線' 3-〇〇8
Λ I? G 經濟部屮央桴準·而只工-*!奸合作杜印¾. 發明说明() 57〇A及旁管可流通每分鐘0.5至8幵的流量。CAU再接上 C〇le Parmer幫浦,N-7088-48,而其幫浦頭用控制器改遇 ,馬速爲高扭力馬達(G_K. Heller GT 21),藉調整壓力 (0.2至1.0大氟壓)在不變馬達轉速達成不同壓力及備環量 0幫浦接上一帶有熱電隅的破璃製吸附設備,破璃彀備再 連上氧監測器。該監測器爲MKS的壓力計’壓力轉換器 (#127AA001〇〇〇a)及電源供應器(#PDR-C-1C)。 氣監測器至9〇*刻度時的反應時間爲7秒,幫浦的〒操 作猶環量爲每分鐘15〇至7〇〇◦毫幵。單膜片式幫浦會有壓 縮波的產生,所以記錄數據的速率必須相對的快於繁迷率 MACSYM電腦,型式no,用來收集數據,本型電腦具馈1 調調頻數據收集功能。 CAU量測出的暫態壓力爲各氣體暫態壓力吸納的&和 ,依重量吸納公式,可以導出CAU所量出的氡量及壓力, 系^^式: p = pi - ρ〇2α - e'Lt) ' pN2(1-e'mt) (公式1) 其中Pi爲起始系統壓力 P02爲平衡吸附下之氧愿 PN2爲平衡吸附下之氣壓 L及Μ分別氧及氮之質傳系數 以空氣(m氣)爲對象’ 敌遗趙的氣教關係和下 (請先IV.I讀背而之:/Jt意事項再艰本頁) 襞_ 線, 本认法尺度边用中® Η家详準(CNS)T4規tJU2Kl><297公度) 22 205008 Λ 6 Η 6 五、發明説明() *氧=100[0·21Ρ -Ρ。(1 -e'Lt i 02 ]/[?,· * P02(1 'e -Lt } - PN2(1 (公式2) P02,PN2&Pi是在時間爲0及時間爲無窮大下量得,可 以用CAU量出,因此質傳系數叮以利用公式1的壓力數據或 公式2的%氧數據求出。所謂的犮立接i即盍货4束 Usutdi。在PSA操作上,較妨的氧選擇性物質l應大 於3,選擇率大於20 〇 在短時間内(1分鐘),氧的吸附量會大於平衡時的氧 吸附量’當亀良提蛑閑始滲透入微孔内而取代氧,所以氧 吸附量漸漸降低回平衝點。么、式1及公式2不能顯現上述現 象’導致預測的操作選擇率高於實際值。上述所觀察的 氣吸收超量主因爲動力學上的實驗是—種競爭性吸附效果 ,在短咬段古..氣充滿了吸故則而氳尚未開始滲入,氣佔 滿了吸附活點(Sites),當氮開始滲入吸附則,氮開始取 代已吸附職’此現象之產生是⑽在⑽下⑤大氣壓) CMS上氣的吸附熱高於氧’導致吸附物與吸附則奸衝時 朝向最滅纽。整_淨_可_魏的平衡 在非競爭性吸附時會高於有氣與氣競爭時(在平衡時 〇爲了因應上述現象,公式及公式2要加上另—項 (請先IVJlfi背而之注意事項种瑱寫本頁) -1Γ 線, 經 濟 妁ί 中 央 準 工 :η 1\·, 合 作 杜 印
(P 02 P e'mt)(l -e'Ltx ex 八 )^ p c Λ -mt, N2U "e %氧=100[0·21Ρ. -p (Ρ (Ρ 02 η -mt 02 + Ρβχβ )(1 Ρ e'mt)(l ex (公式3) -e •It PN2<'1 -mt -e )j (公式4) 23 205008 經濟部屮央榀準灼A工消"合作社印51 五、發明説明() 其中Pe+爲泰在短時期吸糞趄出平衡# <吸量,_i_p_sA 應用上,較佳CMS之P v通常爲3至1〇 tor r。當額外項列入 *" ***"'. 赛丨·. .............. 計算,結果與實際十分吻合,選择率之值與從重量法及體 積法的計算結果非常一致。在PSA應用上,较佳氧選擇性 CMS物質的最終壓力值,Pf,應小於3〇〇 torr。 隨時^壓立值代基麻农發生吸附的值 .L而v 氧之i僅反應所發生的選擇性吸附,此二者之差表示所發 生的非選擇性吸附。將氧與炭的平衡吸附值(最後實驗狀 態的量測值)與利用公式4所計算的氧吸附值相比较,我們 可以定出里里盖1擇趣轧內與座還親旌lk里約J: 0 CAU步驟描述: CAU敫備中共有體積1〇6毫升,其中a毫升爲吸附瓶, 爲了得到最精確的結果,瓶内填滿炭(通常爲^ 5至13.9 克’依顿粒密度及大小而定),在則工下,為真玄联^一 直社壓力土於0 01 torr,在此真空下繼續1小時。在繼續 抽真空下將樣品回至室溫(約23。〇 ,塞住樣品阻絶大氟後 移至CAU。連接壓力計及氧監測器至電腦以便記錄數據, 在將上樣品瓶之前,未.^玄名乂21,丄%.氧^9%氮>沣洗 系統5分鐘’所用的混和氣必須-致以保證起始組成均相 同,此祕重要’因爲Μ據是蚊在GAU數據的演算程 式内’不可用普通空氣,因爲組成會有變化 。用〇型環及 管夾將樣品瓶接上後,卿浦轉速爲約 250 rpm後,啓動 f浦’二科後’肖時"打開樣品瓶之塞子及氧監測器’當 -24 - 本紙法尺度边用中困Η家详準(CNS) 1, Ί規格(210X2 (請先間-背而之注意事項孙填寫木玎) 裝· 訂 線· 經濟部屮央標準劝β工消合作杜印¾ 20500^050°8 一 iU;_ 五、發明説明() *氧秩定後,調降幫浦轉速至60rPm以下。前3〇秘內,電腦 每秒取2〇次數據,接下來的90秒,電腦每秒取2次數捸, 接下來的8分鐘,每秒一次’再接下來至平衡時,每4秒1 次。典型的量測總共約1小時。在高流量時,吸附剤快速 的吸附氧,儀錶反應時間也快,對*氧的值沒有明顯的移 動。在最大氧吸附量遇後,調吟流量,期使氪的量測有最 大的準確性與信號雜訊比。數據的雜訊並非來自實驗的人 爲誤差,而是顒示幫浦楯環動作對系統的各部份產生的影 響。我們可以將這些點平均掉,但是原始數據更能真實的 表達成份分佈,沒有平均的原始數據再用來做曲線對應及 計算。 爲了能進一步描述本發明,下列的示範例是用來彩顯 本發明而非限制本發明。示範例^56示範高容量榔殻(^3 的製備,示範例57_61顯示高〇2體積容量吸附刺於PSA 空氣分離的一般優點。 示範 除去榔象與外皮,將1〇〇〇至11〇〇克的碎榔殻(約半寸 大小)置入一蒙蜉爐(muffle furnace〉,以每分鐘2。〇外 溫至的〇°C,維持4小時。其間,均以每分鐘7公升多的氮 氣沖洗爐子;這第-次處理中的3〇〇至η。克的炭再以每分 鐘2t:至10〇C界溫至8〇crc,維持15分鐘,其間以約6r㈣的 轉歧轉爐子,確保均勾處理,第二次加熱的氣氣冲洗量 爲每分鐘6·5幵。在其他5個實驗裡,挪殼直接以每分竣2 -25 - 本紙张尺度边用+ SH家烊毕(CNS)T4規格(210x^7^y (請先閲讀背而之注总事項孙塡艿木頁) 裝. 訂 ki05008
Λ ί» Η G 發明說明 每1鎊^昇恤至8〇〇°C,維持1至4小時,其間用氮或氬以 5升冲洗。產品在僅通入沖洗氣(氮)沒有另加冷 卻下冷卻至室溫。 考Λ s 1中的㈣爲商品或先前方法所產出的非氧暹擇性 j =择^的—些_,包括氧重量容量,㈣粒密度 明古达的氧體積容量及孔㈣積。這些數據是用來與本發 扣私1斤製出的_毅炭相比較0示範例1中,炭以每分鐘2 至800 〇後維持4小時。示範例2中,以每分鐘升溫2 8。。。8。。。。後維持丄小時。示範例项以每分鐘1〇。。升溫至 後’准持1小時。示範例爲不用示範例1,2及3中的氣沖 =’改用氬氣來沖洗。示範例5,仍用氣氟沖洗,以每 :童2 C升溫至_。〇並維持*小時。顆粒密度量測與 式得到粒子的方法—樣,以便於商品粒子做比较, 法爲栗錄岐,使錢備爲隊 omeritics汞孑匕瞎量、- ,魏9220。如果㈣㈣古_曰,采孔陕量測器 戈禾供應商沒有數據,則用5〇〇(;£:的量苘填 滿顆粒,桕打固體表_次,然後記錄量㈣物質的務 與重量。這些示範例的結果顯示最 明方法。 裳. 訂. 線· M濟部中央梂準而cx工消疗合作杜印51 26 本紙《•尺度边用 t a H i^(CNS) f Ί«^(21〇χ297*^) Λ (i η ο ^〇〇〇〇8 五、發明説明 密度(克/CC) 孔瞎體積(cc/克) 氧容量 炭種類 總量 顆粒a 總量b 汞C #孔」 〈cc/先) (cc/c 示範例if 0.64 1.15 0.32 0.14 0.18 7.5 8.6 示範例2 1.11 0.36 0.18 0.18 8.1 8.9 示範例3 0.60 1.10 0.37 0.18 0.19 7.9 8.6 示範例4 0.57 1.09 0.38 0.19 0.19 7-9 8.6 示範例5 1.18 0.33 0.12 0.22 7 Λ 8.8 Ag 0.44 0.67 1.03 0.57 0.46 8.1 5.4 B 0.53 1.02 0.56 0.36 0.20 7.1 7.2 C 0.58 1.04 0.58 0.40 0.25 7.7h 8.0 D 0.27 0.45 1.76 1.17 0.60 8.5 3.8 E 0. 55-0.65 0.9-1.1 NAVk 0 5-0.6 NAVk -8.0 -8.0 e (請先間讀背而之注意苹項孙峭寫木頁) 裝. *?!' 線· (a)汞孔隙計求得之顆粒密度 <b)(l/氦密度)-(1/汞密度)求得 (c) 6〇,〇〇〇psi下以汞孔隙計求得 (d) 氣體重量容量;i大氣壓,氧,25Ό (e) 氣體積容量由重量容量乂顿粒密度求得,(a〉x(d) (f) 示範例1至5的炭具部分氣選擇性 選擇性的炭(CMS) (g) A至E中的炭代表商品或彻先前技術所獲得的無 本紙》尺度边用中(CNS)IfM腿⑽㈣./公幻 27 - 經濟部屮央標準而只工消ri··合作社印3i ^0〇008 Λ fi ρ--— ___It G _ 五、發明說明() A - Norit Activated Carbon^ "Sorbonorit 3» B - Sutcliffe Speekman #2〇3c c _ Kaneb。 Ltd·, Tokyo, Japan (美國專利第 4,933,314號) D - Anderson, Super Carbon GX-31 E - Takeda MSC from Mishin。等作者,Kaguku to FCogyo,第59卷,第 5號,第 161-170 頁 (1985) (h)從25·5毫克/克,i7.9cc/克在6·7大氣壓下計算 出之容量(’314,表2 ) (j) 從(總PV-采 PV) (k) NAV=從參考資料中查不到 示範例中的挪殼炭質地硬,顆粒形狀不規則,在變恩 吸脱附應用上不需要另行造粒加工。一般而言,本發明方 法所製出之梛殼炭具高密度(每克大於l.lcc)及高重量容 量(每克大於7 .5cc ), 因此有较高的體積容量(每CC大於 8,2cc) ’值得注意的是,維持時il·小時的產品H掩4小 時產选專换4表4 )。 示範例0 _ 9 在不同的維捧1息連下,製出4種椰 殻炭,再分別量測其對氧及氮的氣體吸附量及吸附速皁, 結果列於表2。 -28 - 本紙張尺度边用中s s家㈣⑽Ή職(21〇X2H) (請先閱讀背而之注意事項再碭艿木頁) 裝· 線. L〇w〇〇8
Λ (i G 五、發明説明() 4_2_ 維持溫沖洗氣流速氣體吸附量(a) k〇2(b) kN2(b)選擇率 示範例度°C升/分 毫克氣毫克氮(秒4)(秒_1) (k〇2/kN2) 6 800 6. .5 1. .14 0, .970 2, .23 0, ‘278 8 • 0 7 8〇〇 10, ,0 1_ .18 〇, • 93 1, .46 0. ,20 7, ,3 8 982 6, ,5 0. .32 〇_ .09 0_ .391 0_ ,048 8, .2 9 982 9. .9 0. ,53 〇_ .10 〇_ .391 0· ,033 11, .9 (請先閲-背而之注-事項补塡艿木钉) 經濟部屮央標準杓π工消fr合作社印^ (a) 在25°C,1大氣壓,氧平衡下,最後樣品吸附的 氧及氮之質量。 (b) 在室溫下(約23°C),量得氧及氮之吸附速率,再 利用一般指數曲線:N(t)=N(s)[l-eV 1做曲 線對應,其中N(t)爲在時間t之吸附量,N(s)爲 飽和吸附量,k爲質傳系數。 以上數據顯示熱裂解溫度982°C(1800°F)與800°C所產 出炭相比,氧及氮的吸附速率顯著下降;每分鐘1〇升及 6.5升的沖洗氣流速對800°C裂解溫度而言,只有輕微影響 。數捸證明的操在益度石僅使氣及氮的吸附量大幅 度下降,連帶吸附速率也下降。從上面數據可以清楚看出 | -I ·*'"«·' ... ______Γ-—-~*·*~*·Β·* 圓’—J ,沖洗氟流速在超過一定量能有效地吹出因熱解而產生的 氟體,最後的熱裂解溫度影響氮及氧的吸附率比沖洗氣流 量來得大。上述實驗的設計儘量與美國專利第4,594,163 -29 - 本紙法尺度边用中S S家i?準(CHS) Ή規岱(210x297公及) Λ (ί 15 Γ) 五、發明説明() 號一樣(不一樣點爲恆溫爐比之於我們變溫爐),所以可以 區分我們的產品與先前專利揭露的方法。 示範例1 〇 -18 示範例10-18中,8〇克的農毅以每分鐘2。〇幵溫,以 每分鐘2升的氮氟沖洗,並在尖峄溫度維持4小時。反應器 在沖洗氣下及常壓下峰溫至室溫,以乾燥空氣取代氮氣, 再將反應器內物質升溫至150°C使之穩定。 在溫度範固65〇°C至900°C下,製成不同的榔炭,對這 些挪炭進行顆粒密度分析如同榔殻顆粒所製出一樣(沒有 造粒〉,孔隙體積分析,氧吸附速率及選擇率分析及氣重 量容量及體積容量分析。表3爲其結果。 (請先閲筇背而之注意苹項#填寫木I) 裝· 訂 線 經濟部屮央桴準局3工消价合作社印製 本紙5良尺度边用中S S家·liiMCNS) T4規岱(210x297公没) ^〇50〇S__ 五、發明説明( Λ (i M fi 示範例 維持溫度 °pa 汞颟粒密 孔隙體積 氧°及附率選擇率C 氣容量 重量體積 106 Vw-« 650 先/cc 1.11 cc/克13 0.09 分-1 4 1 氧/氣 cc/克 cc/cc 11 75〇 1.07 0.20 3.6 2.5 1.7 6,2 6.9 12 775 1.2d 3.8 5.3 7.3 7.8 8.1 9.7 13 14® 800 800 1.21 1 η·* 0.15 2.1 6.4 8.1 9.8 15f 16S 17 e 825 121 1.2d 0.18 1.4 1.1 8.3 7,7 8.4 10.2 7.0 8.4 850 85〇 1.21 1.21 0.17 1.0 1.1 7,9 9.0 8.4 10.2 8.2 9.9 18 900 1.27 0.18 1.4 8.3 8.1 10.3 (a)升溫速率每分鐘2。〇 ’維待時間4小時,氮氣沖洗 (請先閱-背而之注意卞項朴填寫本豇) 裝· 訂* 經濟部中央標準而A工消作合作杜印3i (b) 解释如同表2中之註解(b〉。 (c) 由(氧吸附率/氮吸附率)計算而得。 (d) 估計。 (e) 使用之榔毅比其他示範例厚。 (f) 使用之榔殼比其它示範例大塊。 (S)在製成後,沒有經過乾燥空氣及150°C的秩定階段。 上述數據顯示在大於75JTG以上的熱裂解溫度處理, -31 - 本紙張尺度边用中a Η家烊準(CNS) 规岱(210x29./公及) -2tT50Qi 五、發明説明( 濟 部 央 準 A 工 消 合 社 印 3i 較高ϋ各_量及選擇率,示範例^及“顯示在85〇。〇下 =製,的產品有最高的重量容量達8々。/克。超適剛七 氧的吸附率下⑨至可接受的程度以下。因爲這些炭的 .、大所以體積容量可達1〇.2cc/cc,比商品CMS大23% P炭具有__些魏擇性,但謂率較慢,若將炭再打碎 ^粒’ 75至114微米’其選擇性只有很小的改變, m it # mM ?a a. m 及選料有上料趨勢;溫度再高到9⑸。㈣重量容 f及選择衫些微下降。示範_是-個,在8抑 人下製成’卻有校小的容量,但是时如此,其體 量仍比商品CMS大。 γ升料特Μ附㈣錢奴__,雖然 文廠上報導在5〇〇。〇下能製出 ,,L r . p戏炭内的微孔,但大部份 的微孔會被熱裂解出的物質楮住. 能蔽内的堵物帶去。格使心,兔高二些減加'解然 °C後維持4小時所製成的炭與J^5〇〇°C再急速提高至_ 似,而且在CMI測試T,並沒有’定外溫至_°C的產品相 -相似的做法,將榔殻首先在氣广】孔隙度有何改善。另 500。〇,冷卻至室溫再以每分鐘每分鐘2°C升溫至 5〇o°C以每分鐘2°C幵至8〇(TC,私C外姐至500。〇,然後從 透性仍高但是氮的滲透性卻比以鵪具示此種方法氧的滲 的低。吾人選擇性希m參透^弄溫至8QQ°C所製出 限制進一步擴張孔隙度時所用的碳〜·,因爲低滲透速皁捋 乳化合物量。
匕尺度樹巧—^(21°χϋΓ
^OiiOQR
Λ (i It G 五、發明説明 示範例19-25 表4表示示範例lg_25中梛炭的製法及顆粒密度,氧 及氮叹附迷率及選擇率的分析結果,同時也將前面示範例 的°果一起比较,做爲改變維持時間,維持溫度;升溫速 率及冲洗氣種類的説明。除非另有標明,所有的沖洗氣均 爲氮氣。 維持維持 溫度時間 示範例°c小時 800 900 650 750 850 1(C) 18 19(C) 20 21 2 3 4 4 4 4 (請先閲詁背而之注意本項孙蜞寫木页) 經濟部中央標準局只工消&合作杜印驭 4 22 23 24 25 <d) (c)(d) (c) 800 800 800 800 800 800 升'狐汞颟粒吸附速率(a) a (b〉 速率密度 0氧 遊择率容量 秒秒 n2/〇2 cc/c 41 521 ^ 8.6 113 1351 3 14 56 332 138 2650 18 198 °c/分尤/ce 2 1-15 2 1 · 27 2 2 2 10 10 10 10 10 800 0.3 1〇 丄-05 1 · 〇9 1-〇5 !-11 1 · 1〇 1 · 〇9 1 · 18 1.15 1 · 19 !-10 '33 25 12 12 12 13 7 286 146 133 145 142 93 12 5 6 , 11 11 12 11 12 11 13 體積 10.3 8 . 裝- 線· 表紙张尺度边用中國S家標毕(CNS) t.0.i008_Llii_ 五、發明説明() u)決定θ吸附速度之體積法:到達6八頁载量之時間 ,Ρ(起始〉=0,Ρ(總體)= 760 torr,20°C,數字越 小表示速率越大。 (b) α選擇率爲Θ吸附速率之比值,N2/〇2。 (c) 示範樣品從同一批原料一起磨出。 (d) 用氬氟當沖洗氟。 上述數據顯示減少維持時間從4小時至1小時,増加炭 的吸附速率,但對氮/氣選擇率沒有顯著改變;炭在最高 溫度只維持1 8分鐘(示範例2 5 )顯示比在6 5 〇 °C以上所製成 炭的吸附速率都快,而產生高體積袞量是必須的 。在每分鐘2°C與l〇°C之間的弄致逮率,對吸附速率只有 一些影響,數據同時指出,利用氮或氬當沖洗氟對炭的特 性沒有顯著影響。 比較示範例1及18,吸附速率随溫度從800°C上升至 9〇〇°C而下降,而選擇率保持不變。同樣的結果也可以從 示範例19及2〇看出。 當熱裂解溫度從75〇°C升至85〇°C且維持時間從4小時 降至1小時(示範例2〇及21),吸附速率繼蜻下降,但選擇 經濟部屮央捣準而只工消讣合作社印5i 皁大幅廋増加,此點顯示平均微孔徂的減小。所以熱裂解 - - — * ·~* ___一;一--.- 溫度在800°C且錐持時間小小時,可以得到最佳的炭资 .......'·- — .·--- ----------------------------------- - 度(由汞顆粒密度量出)及氧容量而且仍維持高的吸附速率。 表5列出針對不同示範例條件下測出的C A U吸附速率 ,熱裂解溫度在65〇至9〇〇°C之間。 -34 - 本紙尺度边用中國國家4iiMCNS)T4規(;U21〇x29_/公犮) 五、發明説明 支 5 示範例 10 11 41 12 13 15 17 維持 溫度 °c 650 750 750 775 800 825 850 14(a〉 800 8(a) 900 時間 1_〇2 (分) 18 0.3 16.6 0,3 15.8 0.4 14.7 0.A 14.6 0.4 14.3 0.5 14.1 0.6 14.3 0.4 13.4 0.7 吸附鮭
(請先間讀背而之注意本項再埸寫木頁) 裝- 經濟部屮央樑準杓A工消f1'·合作杜印" U)從哥斯大黎加來的厚椰殼。 從上述數捸看來,厚及薄椰殼的CAU氧吸附迷率相仿 (示範例1A及I8)。在最高_色矣下,礼的結構變小,破變, 破纖維(graphitic),所以吸附率不存在了。在高溫下, 775°C以上,清楚顯示氧吸附容量増加,此點可以從Cau丨 氣比例測試及最後壓力看出。 示範例 26-40 氣相雇琪是甩來H性蓋容遣,氣體的組成 35 本紙張尺度边用中國®家4?平(CNS)*M規岱(210x297公及) ^- 五、發明説明() 是氪中含的二氧化破,氦中含3%水,及氦中含1*氧。 在8〇〇及9〇o°C之間的氣化處理,三種混合氣體均有效果。 示範例3〇,32及33中,爲了催化氣化反應,在榔殼炭内浸 泡0.〇3摩耳濃度的醋酸鎳或醋酸鈣。表6數據包括這些示 範例的炭製造條件,氣化條件,颗粒密度及氧容量的分析 (請先閱讀背而之注意事項#塡筠木頁) 裝· 訂_ 線- 經濟部屮央標準局A工消"合作社印31 -36 - 本紙尺度边用中as家iiiMCNShM規岱(210父297公设) 經濟部屮央標準而^工消斤合作杜印^ 1$ π ^ΟοΟΟΒ 五、發明説明() A_6
炭製造__氣 化_ 汞顆粒 氣袞音 示範例 溫度 °c 時間炭示處理 小時範例 氣 溫度 °c 時間 小時 密度 g/cc 重量 cc/e 體積 cc /cc 26 800 4 1 . 14 8 , _ 6 9 , _ 8 27 26 3%H2〇 800 1 1 . 19 8 , ,9 10, ,6 28 26 25%C〇2 800 1 . 75 1 . 26 9 _ ,1 11 , ,5 29 26 25%C〇2 800 3 . 75 1 · 22 8 . .4 10. ,2 19 650 4 1 · 05 6 , ,5 6, ,9 30(a) 19 25%C〇2 1 1 . 06 8, .7 9 _ ,2 31 800 4 1 . 12 8 , ,7 9 _ 7 32(b) 31 25%C〇2 900 0 .5 1 . 07 10 _ ,2 10. 9 33(a) 31 25%C〇2 800 0 .5 1 . 09 9 · ,3 10 . 1 34 800 4 1 . 08 5. ,3 5 8 35 34 25%C〇2 800 0 .9 1 . 21 8 , .9 10. ,7 17 850 4 1 . 21 9 . ,2 11 · 1 36 17 3%H2〇 800 1 1 . 16 10. ,1 11 . ,1 37 17 l%〇2 800 0 .02 0 . 99 10 _ .0 9 , ,9 38 17 l%〇2 650 0 .1 1 . 09 10 . ,7 11 . ,7 39 800 4 1 . 14 8 .3 9 , ,5 40 39 25%C〇2 800 1 1 . 12 9 . • 7 10. ,8 41 800(c )1 1 . 27 6 . .8 8 · .6 42 41 25%C〇2 800 0 .25 1 . 19 7 . .7 9 . _ 1 43 800(c )1 1. 15 7, ,9 9 . _ 1 44 43 25%C〇2 800 0 .25 1 . 10 7, .9 8 , .7 45 800(c ) 1 . 14 7 .4 8. .4 46 45 25%C〇2 800 0 .25 1 , 15 8 .0 9. ,2 47 800“〉 1 . 18 7 .2 8, ,5 48 47 25%C〇2 800 0 .5 1 . 17 7 .9 9 .2 (a) 加上0·〇3Μ醋酸鎳觸媒 (b) 加上0·0;3Μ醋酸钙觸媒 (c) 升溫速度每分鐘10°C -37 - (請先間-背而之注意事項补塡艿木頁) 本紙?良尺度边用中國HiUPMCNS)1!,*!規IM210X29V公垃)
組濟部+央楛準局Π工消t'r合作杜印ft-lJ ----------- Λ (; __ _Π G __ 五、發明説明() 在800t:下,用氦含二氧化破來處理揶殼炭1小時 氧谷量至少8.4 ,大部分高於9.1CC/CC,但^的 炭沒有愚择隹。既然氣化處理會減低微孔對氣體滲透的阻 在原始炭材要製成氣遴擇性的CMS材料則必須透過 多階段的處理。用3%水及u氣兩種混合氣也發現有效。使 用0酸錄殖入(示範例3Q及33)能提高氧容量及吸附速率。 雖…、在650 C下的氟化條件(示範例3〇)也能增加氧容量, 炭的密度下降,使得體積容量不能達到像80CTC及850°c 條件下製出的炭一樣。在9〇〇。〇下,使用醋駿糾示範例 32)亦能増加炭的容量。 示範例Q-48中,在8〇(TC下用產生小微孔的方法製出 的挪炭有较快的氧吸附率,隨後以氣及25%二氧化破混合 氣氧化。氧化時間的長短依CMJ分析中氮的吸附速率而定 ,在本系列產出的炭,CAU氮吸附常敫爲〇 1至1 5之間, 氧化時間的調整方法爲使的氣吸附速率則氧化時間長。除 了 一個例外’氣化時間長造成校快的氮吸附迷率及較高的 氧容量,例外爲示範例44。氣化處理對密度影響很小,最 大的密度損失只有6%。對原已有快的氧吸附速年的炭(示 範例U及43),二氣化破氧化對氧重量吸附迷率的影黎亦 小Ο 帝範例49-54 表7列出示範例的的數據,在8〇(TC下製出的揶炭 再經過一階段的處理以求増加氣吸附特性。處狸方法爲氣 -38 - 本紙又度通用中a Η純杯US) W鹏(21GX抓公及) (請先間讀背而之注*事項#4寫木頁) 裝· ’?!- 線. 經濟部屮央桴準局CX工消f1.·-合作杜印¾ Λ (i --- 五、發明説明() 稀釋過的異丁嫌的裂解處理。分子侦測計(plug gauge experiments)顯示微孔徑的分佈在3.7至6埃之間,與其他 氧選擇性的CMS商品相似。從這裡可以看出在8〇〇。〇下製成 的未反應榔炭之微孔分佈與4埃CMS相似(例如:MSC-A或 MSC-4A ,依1970年Kawazoe及Kawai在Seisan Kenkyu第22 期所發表的)基本炭材是利用顆粒榔殼(-8至+25 mesh)在 8〇〇°C(示範例的)氮氟沖洗下,以每分鐘2°C升溫,在最高 溫度維持4小時。在主要爲5〇〇°C條件下,進行一系列的焦 化(coking)步驟來製出氧選擇性的炭分子篩(示範例54) ,其CAU氧量小於1M,選擇率27〇 (請先間讀背而之注意事項祌艰艿本玎) 裝· A_LCAU結杲原材料異丁燔處理(b)氣吸附 壓力 來源 時間 溫度 時間 吸附 迷卒 起始 最終 示範例 示範例 (分) °c % (分) 氣⑴ 氮(M) (torr) (torr) 49 基本材料 15.2 0.5 7.7 0.31 575 258 50 A9 30 500 14.1 0.3 10.6 0.5 579 255 51 50 60 500 13.1 0.4 8.4 0.A2 593 260 52 51 60 500 12.4 0.6 7.2 0.27 596 260 53 52 150 625 14.7 0.4 11.4 0.17 597 260 54 53 30 500 11.9 0.7 5.6 0.21 599 270 (b)氦中含20%的異丁烯 -39 - 本紙法尺度边用中a B家烊準(CNS)IM規岱(2丨0x297公及) .ΐτ. 線
經濟部中央榀準局KX工消作合作杜印¾ 205008 五、發明説明 上述表中列出歎捸爲利用前示範例的炭做爲起始基本 材料。利用計算方法(利用詳細的顆粒内的货傳來表示基 本的㈤特轉贱〉料示範例54的GMS特性,值管其導 擇性及氡°4胜速專較商品分+薜低」但生.產—力仍此商品分 子薛南出h ’回收率高Μ,主因爲較高的體積容量。 ^Jl_55 經過氣化的榔毅炭再進一步以破氟化合物來製出氧選 择性物質。以示範例5所得到的椰炭,在氦氣下加熱至8〇〇 C,再以含25%二氧化碳的氦氧化3〇分鐘,然後在氦氟下 冷卻至室溫,所得到的炭具有〇 34cc/克孔隙體積, o.ikc/克汞孔隙體積,〇 22cc/克的微孔體猜及i 18克 /cc的汞顆粒密度。 將12·0克的氣化過樣品置入不轉動的爐子内,在含有 20*異丁烯的氪氟下,以每分鐘^^加熱至尖峰溫度,尖 峰溫度定爲5〇〇。〇且保持3〇分鐘,然後再經過^叫^待工小 時’ 5〇0°C再1小時’ 525〇Cl3分鐘再5〇〇。〇3〇分鐘。在每次 處理中,樣品先降至室溫,以CAU分析預測其功能。最後 產品的L值爲5.6,Μ值爲0.U。系統壓力在I】、時時爲 265mm汞柱高,氧容量爲8.2cc/克,體積容量爲 9.6 cc/cc’此特性表示炭會有.較商*高的生產力表5枚奉。 示範例5 6經遇氣化的示範例48之榔炭先以丨,2,4三甲基環己燒 -40 - 本紙張尺度边用中國囤家標半(CNS) T4規岱(210X297公:¢) (請先間讀背而之注意事項#塡寫本頁) 裝· 訂- 線-
經濟部中央櫺準^β工消合作社印^ 五、發明說明() (TMC)在626°C下處理,再以再丁练在525<^下處理。TMC的 處理時間爲3〇分鐘,空間流連爲每分鐘“固體積量,氦中 的TMC的氣體濃度爲1%。氦中含2〇%異丁烯的處理空間流速 爲〇·8/分,時間爲6〇分鐘。CAU分析結果顯示在〇.4分鐘最 小氡滚度爲13.6*,L爲8.2,Μ是0.18,有80的是考擇性。 _示範例57 前述示範例所製備的一高容量榔毅炭基礎的CMS,其 平衡及動態性質藉下列程序被測定。含有一已知重量吸附 刻的一樣品穴(cell)的死體積(dead volumn)籍由He比重 瓶(pycnometry)法被測得。測試氟體(〇2或n2)接著從一巳 知體積的供應穴膨脹進入已預先被抽空之樣品穴。整個系 統被小心地調節溫度並維持在2〇它。壓力隨時間下降並記 錄之。當平衡到達時’前述供應氣體的過程被重復三次。 在獲得每個步驟的供應及最終壓力後,可以計算出等 溫點(isotherm point)。雙址(Duai site〉Langmuir 棋式 被用來探討此等數捸的關係。壓力與時間的變化數據被套 入一包括有串聯兩阻力丄如名的物質輸送模式。依 此’微孔入口及微孔内部的物質輸送係數被獲得。特性時 間,即當一CMS從起初零壓力突然被暴露於i 洗氟體 時,到達2/3負载所需時間,藉使用該等被測得物質輸送 係數進行棋擬而計算出。 一典型、高品質及商業上可獲得空氟分離CMS,依前 述方式被評佑,以作爲基礎比較例。兩種吸附剤之粒子密 -41 - (請先間讀背而之注意事項#填寫木頁) 裝- 線· 經濟部屮央梂準局员工消作合作社印52. Λ fi MG · 一v--- "' "" 五、發明説明()度係藉Hg比重瓶(pycnometry)法測定,實密度係藉以比重 瓶(pycnometry)測定’而巨孔體積藉Hg灌入法(intrusi〇n )測定。整體孔體積係從實密度及粒子密度計其出。兩種 物質之性質被列於表8。 A_8 基礎例 高容音CMS 粒子密度(g/cc) 0.943 1.19 巨孔體積(CC/g) 0.334 0.114 整體孔體積(CC/g) 0.552 0.280 2〇°C時性贅 ^2 ^2 -2 物質輸送係數 , -3 -1 (10 sec ) 微孔入口 130 3.1 93 2.7 橄孔内部 19 0.55 9.9 0.8 特性時間(sec) 31 1127 4A 941 〇2/n2動態選擇性 36 21 〇2容量, 1 atm(cc/g) 8.1 g η 02 容量,1 atm(cc/cc) 7.6 104使用前述之評分計算方法進行評估,一使用本示範例 之咼容量CMS的N2 PSA方法比該基礎比较例具有一高6%的 獲得率及咼22*的生產力。此等比较係依各自(^3的最佳化 -42 - 本紙張尺度边用中S困家標华(CNS)〒4規怙(210父297公设) (請先閲請背而之注S事項神塡寫本頁) 裝. 訂 線· 經濟部屮央榀準而β工消作合作社印^ Λ (ί II Γ)Q:〇^S -Ί、發明説明() 循環時間。最佳化循環時間之定義爲獲得率最太政的循環 時間。此高容量CMS顯示出雖然其動態選擇性及%吸附速 率均比該基礎比較例低,但是確爲一較佳的空氣分離CMS。 示範例58 於此例中,對一理論CMS進行評分計算,該理論CMS除 了比示範例57中的基礎比较例具有増加5〇*的基本吸附容 量(或Langmuir方程式中的單層容量)外,其它性質均與其 相同。此物質產生比該基礎比较例之CMS高出m的N2 PSA 獲得率及高出74%的\ PSA生產力。此改良CMS的性質被列 於表9。 A_9_ (請先間-背而之注意事項孙填寫木頁) 裝· 粒子密度(g/cc) 0.943 巨孔體積(cc/g) 0.334 整體孔體積(CC/g) -2 0.552 物質輸送係數 -3 -1 (10 sec ) 橄孔入口 130 3.1 微孔内部 19 0.55 特性時間(s ec ) 31 1127 〇2/n2動態選擇性 36 : 〇2容量,1 atm (cc/g) 12.2 02容量,1 atm (cc/cc ) 11.5 -43 訂- 線, 本紙5fc尺度边用中a Η家详準(CNS) Ή^ΙΜ210χ297公龙) Λ IU3 五、發明説明(^05008 示範例5 9 於此例中,對一理論CMS進行評分計算,該理論CMS除 了因峰低其巨孔性質而增加其粒子密度外,其它性質均與 示範例57之基礎比较例的CMS相同。此CMS具有比該基礎比 較例之CMS高出I4%的農度类及高出68*的生產_力。此CMS之 性質被列於表1 0。 表 10 粒子密度(g/cc) 巨孔體積(cc/g) 整體孔體積(cc/g) 1 .15 0.136 0.357 (請先閲讀背而之注意事項#填寫本頁) 裝. 經濟部屮央標準局CX工消作合作杜印¾ 物質輸送係數 -3 -1 (10 sec ) 微孔入口 微孔内部 特性時間(sec) 〇2/n2動態選擇性 〇2容量(cc/g) 〇2容量(cc/cc) 130 19 31 36 8 0.55 1127 此等在操作表現上的顯著改良係因爲巨性贺 (cc/cc)被稼的結杲。此巨孔性赏的降低使得體積基 礎的容量(cc/cc)增加22% 〇 -A4 - 本紙法尺度边用中a國家標準(CHS) lMmtM210x29‘/公) 訂_ 線. 五、發明説明() 205008 帝範例% 於此例中,對—理⑽s進行評分計算,該理論㈤除 了因増及附速率而增加其動態選擇性_外,其它性 質均與示範例57之基礎比较例的咖相同。此乃依文純 導所作之嫌*秋航下,職飢较例的 C帖具有高出7*的獲得率及高出44%的生產力。此CMS之性 質被列於表11。 (請先IV.!讀背而之注意事項再填寫本頁) 粒子密度(g/ C 巨孔體積(cc/g) 整體孔體積(cc/g)
CC 0.943 0.334 0.552 物質輸送係數 (1〇 sec 1) -2 微孔入口 260 3.1 微孔內部 38 0.55 特性時間(sec) 15.5 1127 裝. 線. 經濟部屮央枝芈而A工消奸合作社印5i %/Ν2動態選擇性 容量(cc/g) 〇2容量(cc/cc) 72 8 · 1 7-6 經由提异選擇性100*所獲得的操作改良僅爲經由提异 45 典家標JMCNS)T4規格(210x297公放) 五、 Λ fi Π 6 發明說Η;]() 2 Ο 5 Ο 5处it獲赴巧操作?文良(示範例58)的60*左右〇 而氣例61 本示範例爲依文獻敎導所作之比較例。對一理論CMS 進行評分計算,該理論CMS除了 〇2及1^氣體吸附速率被増 加1〇(Η外,其它性質均與示範例57之基礎比较例的CMS相 同。吾人發現,此例之CMS較該基礎比较例CMS具有低h的 獲得率及高出60*的生產力。此例之(:!113的性質被列於表 A. 2 (請先間續背而之注意"項4碼*Γ木頁〕 經濟部屮央桴準而β工消"合作社印製 粒子密度(g/ CC ) 巨孔體積(cc/g) 整體孔體積(cc/g) 物質輸送係數 (10 sec 1) 微孔入口 微孔内部 特性時間(s ec ) 〇2/n2動態選擇性 〇2 容量(cc/g) 〇2 容量(cc/cc) 0.943 0.334 0.552 裝_ *?τ- 260 38 15 564 46 - 36 8 .6 本紙張尺度邮中a B家糾(⑽W鹏(21Clx297公龙) Λ (] 116 五、發明説明() 2〇5〇〇8吸附速率必雌加財能獲得經由提#容量50%所獲 得生產力改良(示範例58)。此外,此例中之獲得率實際上 較基礎比较例低。 ‘' 雖然不欲將本發明如何作用的理由限制於理論,但是 我們相信我們已經示範了、PSA方法之生產力基本上爲整 體〇2工作容量的函數,而獲得率基本上爲〇2對^整雅工作 容量比值的函數。將平衡吸附容量增加,會増加CMS之〇2 复宴.量,並因而提弄生產力。 2 將平衝吸附容量加大,亦増加被吸附物質對吸附床中 交的空間的比值(如月狀吸附則間、其內的巨孔、容器及 管路間等)〇由於空免遷摟软甚量,於是增加此 值亦増加〇2對\整體工作容量的比值,於是導致方法旳獲 得事增加。此爲吸附創/方法互相作,.甩的、 因说-附剩-恢赛迎致〇 本發明係基於Mg PSA方誇氟作表現受GM3乎衡容量影 瘳’ m键!附速專或食態選择性影響來得大的發現。 此發現爲出乎意料地,因爲CMS分離空氟爲一動態、非平 衡矣礎。尤其令人驚奇的是,獲硬^备矣馨音.的-彩黎 美國專利4,526,887載有容量爲一 CMS有效程度的重要 因索’然而其所有申請專利範園均與速率及選擇性有關而 补容量。很明顯地,速率及選择性被视爲最重要的因素。 爲了了解容量之初次重要性,吾人必須整體性地考量n2 pSA方法,而非僅是CMS性質而已。 -47 - 家辟(卿τ彳職(210x297公没) (請先間讀背而之注意事項#项寫本頁) 裝· 訂- 線· 五、發明説叫 Λ Γ> Ιϊ 6 ?〇5〇〇8 本發明之其它優點及實施方式,對於熟悉本項技藝人 士而言,可從以上揭露内容及以下申請專利範園明顯地推 知,而不脱離本發明之精神及範圍。 (請先閲讀背而之注意事項#填寫本頁) 裝· 訂 線. 經濟部中央#準局CX工消赀合作杜印31 本紙Λ尺度边用中SS家4規格(210x297公:it)

Claims (1)

  1. 經濟部中夬標準局S工-費合作·ΐ£Ι,'Μ AT B? C7 _____ D7 六、申绮專利範® 二Όυν)υσι_ —種藉變壓吸附以分離空氣之生產氮的方法,其改 良之處包含於該方法中使用一作爲吸附則的破分子蒒,該 破分子篩具有一在2〇°C及1大氣壓下不小於9.0 cc/cc的氧 體積容量。 2. 依申請專利範園第1項所述之方法’其中該破分子 篩爲顆粒狀榔殼炭。 3. 依申請專利範園第1項所述之方法,其中該破分子 具有一在2〇°C及1大氣壓下不小於10.0£:(::/(:(::的氧體積容量 〇 4. 依申請專利範固第3項所述之方法,其中該破分子 篩比一具有氧體積容量8.5cc/cc或更小的破分子篩’具有 一低至少15*的氧吸附速率及一低至少的動態選擇性 (〇2/N2),但是在相等操作及最佳化猶環時間的變壓吸附 空氟分離中卻具有大約相同的生產力及獲得率。 (-先5?"背面之注意事項再填寫木頁) -49 - 木紙饭尺度適川屮闷柯ίαΐ厚(CNS)MAIJ格(210x297公 81. 4. 5,000 (H)
TW081107498A 1992-01-30 1992-09-23 TW205008B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/828,264 US5240474A (en) 1991-01-23 1992-01-30 Air separation by pressure swing adsorption with a high capacity carbon molecular sieve

Publications (1)

Publication Number Publication Date
TW205008B true TW205008B (zh) 1993-05-01

Family

ID=25251316

Family Applications (1)

Application Number Title Priority Date Filing Date
TW081107498A TW205008B (zh) 1992-01-30 1992-09-23

Country Status (6)

Country Link
US (1) US5240474A (zh)
EP (1) EP0554805A1 (zh)
JP (1) JP2516159B2 (zh)
KR (1) KR950014208B1 (zh)
CA (1) CA2088034A1 (zh)
TW (1) TW205008B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI725505B (zh) * 2018-08-14 2021-04-21 美商氣體產品及化學品股份公司 經改良碳分子篩吸附劑
TWI725506B (zh) * 2018-08-14 2021-04-21 美商氣體產品及化學品股份公司 多床體快速循環動力學變壓吸附

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482915A (en) * 1993-09-20 1996-01-09 Air Products And Chemicals, Inc. Transition metal salt impregnated carbon
US5382280A (en) * 1993-11-16 1995-01-17 Air Products And Chemicals, Inc. Two stage pressure swing adsorption process for producing the less strongly adsorbed component of a feed gas mixture
WO1996030318A1 (fr) 1995-03-30 1996-10-03 Nippon Sanso Corporation Matiere carbonee poreuse, procede de production de ladite matiere et utilisation de cette derniere
DE69621996T2 (de) * 1995-04-27 2003-06-18 Nippon Oxygen Co Ltd Kohlenartiges adsorbens, verfahren zu dessen herstellung und methode und vorrichtung zur gastrennung
FR2799991B1 (fr) * 1999-10-26 2002-10-11 Air Liquide Procede de production d'hydrogene utilisant un adsorbant carbone a parametres de dubinin selectionnes
US6626981B2 (en) * 2000-07-07 2003-09-30 Advanced Fuel Research, Inc. Microporous carbons for gas storage
US6916358B2 (en) * 2001-08-29 2005-07-12 Taiyo Nippon Sanso Corporation Adsorbent for separating nitrogen from mixed gas of oxygen and nitrogen
JP3524527B2 (ja) * 2001-09-05 2004-05-10 日本酸素株式会社 吸着剤およびこれを用いた窒素製造方法ならびに製造装置
US6605136B1 (en) * 2002-07-10 2003-08-12 Air Products And Chemicals, Inc. Pressure swing adsorption process operation and optimization
GB0516154D0 (en) * 2005-08-05 2005-09-14 Ntnu Technology Transfer As Carbon membranes
EP2141184B1 (en) 2006-10-20 2016-06-29 Air Water Inc. Carbon electrode material powder
BR112012031526A2 (pt) * 2010-06-10 2017-05-16 Multisorb Tech Inc absorvedor de oxigênio e método de absorver oxigênio
WO2012022376A1 (de) * 2010-08-18 2012-02-23 Ulrich Stieler Kunststoffservice E.K. Vorrichtung und verfahren zur abtrennung von stickstoff
CA3092028C (en) 2012-01-13 2022-08-30 Lummus Technology Llc Process for separating hydrocarbon compounds
US9670113B2 (en) 2012-07-09 2017-06-06 Siluria Technologies, Inc. Natural gas processing and systems
WO2014089479A1 (en) 2012-12-07 2014-06-12 Siluria Technologies, Inc. Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US20160121258A1 (en) * 2013-02-06 2016-05-05 The Trustees Of Princeton University Methods of separating molecules
EP3074119B1 (en) 2013-11-27 2019-01-09 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US9468904B2 (en) 2013-12-31 2016-10-18 Ada Carbon Solutions, Llc Sorbent compositions having pneumatic conveyance capabilities
CA2935937A1 (en) 2014-01-08 2015-07-16 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
AU2015204709B2 (en) 2014-01-09 2019-08-15 Lummus Technology Llc Oxidative coupling of methane implementations for olefin production
US9314767B2 (en) * 2014-03-07 2016-04-19 Ada Carbon Solutions, Llc Sorbent compositions having pneumatic conveyance capabilities
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US20160289143A1 (en) 2015-04-01 2016-10-06 Siluria Technologies, Inc. Advanced oxidative coupling of methane
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US20170107162A1 (en) 2015-10-16 2017-04-20 Siluria Technologies, Inc. Separation methods and systems for oxidative coupling of methane
CA3019396A1 (en) 2016-04-13 2017-10-19 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
US20180169561A1 (en) * 2016-12-19 2018-06-21 Siluria Technologies, Inc. Methods and systems for performing chemical separations
AU2018273238B2 (en) 2017-05-23 2022-02-10 Lummus Technology Llc Integration of oxidative coupling of methane processes
CA3069314A1 (en) 2017-07-07 2019-01-10 Lummus Technology Llc Systems and methods for the oxidative coupling of methane

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884830A (en) * 1971-04-07 1975-05-20 Calgon Corp Controlled selectivity activated carbon
GB1364674A (en) * 1971-04-23 1974-08-29 Bergwerksverband Gmbh Carbon-containing molecular sieves
JPS4937036A (zh) * 1972-08-18 1974-04-06
US4540678A (en) * 1982-09-07 1985-09-10 Calgon Carbon Corporation Carbon molecular sieves and a process for their preparation and use
US4594163A (en) * 1982-09-07 1986-06-10 Calgon Carbon Corporation Use of carbon molecular sieves for separating gas or liquid mixtures
ES8606827A1 (es) * 1982-09-07 1985-10-01 Calgon Carbon Corp Un procedimiento para la manufactura continua de tamices moleculares de carbono
US4526887A (en) * 1983-03-16 1985-07-02 Calgon Carbon Corporation Carbon molecular sieves and a process for their preparation and use
US4629476A (en) * 1983-03-16 1986-12-16 Calgon Carbon Corporation Carbon molecular sieves and a process for their preparation and use
US4528281A (en) * 1983-03-16 1985-07-09 Calgon Carbon Corporation Carbon molecular sieves and a process for their preparation and use
US4627857A (en) * 1983-12-13 1986-12-09 Calgon Carbon Corporation Carbon molecular sieves and a process for their preparation and use
JPS62176908A (ja) * 1986-01-29 1987-08-03 Kuraray Chem Kk 炭素分子篩の製法
JPH07108365B2 (ja) * 1986-10-18 1995-11-22 鐘紡株式会社 空気分離法およびその装置
US4933314A (en) * 1987-03-10 1990-06-12 Kanebo Ltd. Molecular sieving carbon
US4820681A (en) * 1987-12-24 1989-04-11 Allied-Signal Inc. Preparation of hydrophobic carbon molecular sieves
US4820318A (en) * 1987-12-24 1989-04-11 Allied-Signal Inc. Removal of organic compounds from gas streams using carbon molecular sieves
US4810266A (en) * 1988-02-25 1989-03-07 Allied-Signal Inc. Carbon dioxide removal using aminated carbon molecular sieves
DE3830506A1 (de) * 1988-09-08 1990-03-15 Bergwerksverband Gmbh Verfahren zur gewinnung von stickstoff aus sauerstoff und stickstoff enthaltenden gasgemischen mittels druckwechseladsorption an kohlenstoff-molekularsieben
US5098880A (en) * 1990-08-30 1992-03-24 Air Products And Chemicals, Inc. Modified carbon molecular sieves for gas separation
US5071450A (en) * 1990-09-14 1991-12-10 Air Products And Chemicals, Inc. Modified carbon molecular sieve adsorbents
US5164355A (en) * 1991-01-23 1992-11-17 Air Products And Chemicals, Inc. High capacity coconut shell char for carbon molecular sieves

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI725505B (zh) * 2018-08-14 2021-04-21 美商氣體產品及化學品股份公司 經改良碳分子篩吸附劑
TWI725506B (zh) * 2018-08-14 2021-04-21 美商氣體產品及化學品股份公司 多床體快速循環動力學變壓吸附

Also Published As

Publication number Publication date
EP0554805A1 (en) 1993-08-11
JPH05269331A (ja) 1993-10-19
JP2516159B2 (ja) 1996-07-10
KR950014208B1 (ko) 1995-11-23
KR930016341A (ko) 1993-08-26
CA2088034A1 (en) 1993-07-31
US5240474A (en) 1993-08-31

Similar Documents

Publication Publication Date Title
TW205008B (zh)
TW209205B (zh)
Rashidi et al. Potential of palm kernel shell as activated carbon precursors through single stage activation technique for carbon dioxide adsorption
Goel et al. CO2 capture by adsorption on biomass-derived activated char: A review
Hameed et al. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies
US8337594B2 (en) Use of a microporous crystalline material of zeolitic nature with RHO structure in natural gas processing
Hameed et al. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust
CN101423213A (zh) 一种活性炭的制备方法
CN110354803A (zh) 一种分离甲烷和氮气的整体式复合多孔炭吸附材料及其制备方法
Querejeta et al. Sustainable coffee‐based CO2 adsorbents: toward a greener production via hydrothermal carbonization
WO2017072891A1 (ja) 水素回収法
Isinkaralar et al. Equilibrium study of benzene, toluene, ethylbenzene, and xylene (BTEX) from gas streams by black pine cones-derived activated carbon
Ge et al. Nitrogen-doped microporous carbon materials derived from DBU-modified carboxylic acid polymers for CO2 capture
JP4180991B2 (ja) 二酸化炭素の吸着方法
CN103894080A (zh) 填充水凝胶微球调节膜中水含量的杂化膜及制备和应用
CN103265028B (zh) 用于分离co2和ch4的高吸附选择性活性炭的制备方法
Mallesh et al. Termanalia arjuna Waste Biomass‐Derived Porous Activated Carbons for Efficient CO2 Capture
JP2008094710A (ja) 分子ふるい炭素の製造方法及び分子ふるい炭素
CN109433155A (zh) 一种吸附甲醛的改性活性炭材料及其制备方法
JPH07508215A (ja) 水酸化カリウムおよび/または水酸化ナトリウムまたはその塩で亜炭を処理することによる活性炭およびそれによる吸着
Chowdhury et al. Biomass-derived microporous adsorbents for selective CO2 capture
JP4876307B2 (ja) 活性炭の製造方法
JP2546797B2 (ja) 気体混合物の分離法
RU2184080C1 (ru) Способ получения активного угля
JP3062759B2 (ja) 二酸化炭素吸着剤の製法