TW202407314A - 檢量線液製造系統、測定系統及檢量線液製造方法 - Google Patents

檢量線液製造系統、測定系統及檢量線液製造方法 Download PDF

Info

Publication number
TW202407314A
TW202407314A TW112115689A TW112115689A TW202407314A TW 202407314 A TW202407314 A TW 202407314A TW 112115689 A TW112115689 A TW 112115689A TW 112115689 A TW112115689 A TW 112115689A TW 202407314 A TW202407314 A TW 202407314A
Authority
TW
Taiwan
Prior art keywords
liquid
line
standard
calibration
measuring device
Prior art date
Application number
TW112115689A
Other languages
English (en)
Inventor
梅澤千陽
津田晃彦
市原史貴
Original Assignee
日商奧璐佳瑙股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商奧璐佳瑙股份有限公司 filed Critical 日商奧璐佳瑙股份有限公司
Publication of TW202407314A publication Critical patent/TW202407314A/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/83Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/23Mixing of laboratory samples e.g. in preparation of analysing or testing properties of materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Accessories For Mixers (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本發明提供一種檢量線液製造系統,用於對使用檢量線測定分析對象液的總有機碳濃度的測定裝置,製造並供給用於製作檢量線的檢量線液,其具有:分析對象液管線(100),往TOC(Total Organic Carbon,總有機碳)計(500)輸送分析對象液;標準液管線(110),對分析對象液管線(100)輸送標準液(210);以及混合部(400),被設置在分析對象液管線(100),且將標準液(210)與稀釋液混合,而稀釋標準液(210);將在混合部(400)所混合而成之稀釋液與標準液(210)的混合液作為檢量線液,而供給至TOC計(500)。

Description

檢量線液製造系統、測定系統及檢量線液製造方法
本發明係關於檢量線液製造系統、測定系統及檢量線液製造方法。
一般而言,使用總有機碳分析儀,來管控液體中所含有的總有機碳(Total Organic Carbon,TOC)之濃度。在此總有機碳分析儀所使用的檢量線係使用標準液而被製作而成。
作為測定TOC的濃度(低濃度)之總有機碳分析儀,有人考量在總有機碳分析儀的內部調製低濃度的試驗液之裝置(例如,參照專利文獻1。)。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特許第3265830號
﹝發明所欲解決之問題﹞
一般所使用的檢量線為使用TOC濃度為高濃度範圍的標準液而被製作者。一旦將「使用TOC濃度為高濃度範圍的標準液所製作的檢量線」用於TOC濃度(低濃度)的測定,則高濃度範圍內的誤差之比率在低濃度範圍變大。因此,變得不能求出正確的TOC濃度。於是,在測定超純水中所含有的TOC的濃度之總有機碳分析儀中,有使用與超純水中所含有的TOC的濃度(低濃度)相當的濃度之標準液,來製作檢量線之必要。另一方面,標準液的濃度越低,受到來自環境的污染之影響或在調製標準液時的人為的誤差之影響越大。又,在專利文獻1所記載的裝置為藉由蒸餾樣品而得到低有機物濃度的裝置。此情況,變得需要燃燒管或加熱爐等設備。因此,有準備專用的設備之必要,且有花費時間或金錢等問題點。
本發明之目的在於提供可以讓「能夠求出更正確的TOC濃度的檢量線之製作」容易進行之檢量線液製造系統、測定系統及檢量線液製造方法。 ﹝解決問題之技術手段﹞
本發明的檢量線液製造系統, 係一種對「使用檢量線測定分析對象液的總有機碳濃度之測定裝置」,製造並供給「用於製作該檢量線的檢量線液」之檢量線液製造系統; 其具有:第一液體輸送管線,往該測定裝置輸送稀釋液; 第二液體輸送管線,對該第一液體輸送管線輸送標準液;以及 混合部,被設置在該第一液體輸送管線,且將該標準液與該稀釋液混合而稀釋該標準液; 將在該混合部所混合而成之該稀釋液與該標準液的混合液作為該檢量線液,而供給至該測定裝置。
又,本發明的測定系統,具有: 測定裝置;以及對「使用檢量線測定分析對象液的總有機碳濃度之該測定裝置」,製造並供給「用於製作該檢量線的檢量線液」之檢量線液製造系統; 該檢量線液製造系統,具有:第一液體輸送管線,往該測定裝置輸送稀釋液; 第二液體輸送管線,對該第一液體輸送管線輸送標準液;以及 混合部,被設置在該第一液體輸送管線,且將該標準液與該稀釋液混合而稀釋該標準液;且 將在該混合部所混合而成之該稀釋液與該標準液的混合液作為該檢量線液,而供給至該測定裝置。
又,本發明的檢量線液製造方法, 係一種對「使用檢量線測定分析對象液的總有機碳濃度之測定裝置」,製造並供給「用於製作該檢量線的檢量線液」之檢量線液製造方法; 將從輸送標準液的第二液體輸送管線向該第一液體輸送管線輸送的該標準液,與往該測定裝置之在第一液體輸送管線中所輸送的稀釋液混合,而稀釋該標準液; 將該混合完之該稀釋液與該標準液的混合液作為該檢量線液,而供給至該測定裝置。 ﹝發明效果﹞
在本發明中可以讓「能夠求出更正確的TOC濃度的檢量線之製作」容易進行。
在以下,針對本發明的實施的態樣參照圖式來進行說明。圖1係顯示本發明的檢量線液製造系統之實施的一態樣的圖式。依本態樣的檢量線液製造系統係如圖1所示,具有分析對象液管線100、標準液管線110、泵300、混合部400以及控制部600。在此檢量線液製造系統的混合部400所混合完的檢量線液被供給至TOC計500。補正部700亦可與TOC計500連接。又,補正部700亦可被具備於TOC計500的內部。又,在分析對象液管線100設置了測定在分析對象液管線100所輸送的分析對象液之流量的流量計40。又,TOC計500係作為檢量線液製造系統的1個構成要素而被包含者亦可。
分析對象液管線100為將分析對象液(例如,在本實施的態樣為超純水)往TOC計500輸送的第一液體輸送管線。作為被輸送往TOC計500的超純水,例如亦可為提取「由具備前處理裝置、一純水製造裝置及二次純水製造裝置(子系統)的超純水製造系統向使用端所供給的超純水的至少一部分」者,或亦可為被儲存於既定的儲存槽的超純水。在分析對象液管線100所輸送的分析對象液作為用於稀釋後述的標準液210的稀釋液而被使用。在分析對象液管線100所輸送的稀釋液不僅限於分析對象液,亦可為非分析對象的超純水等。此情況,分析對象液和與分析對象液相異的稀釋液亦可由彼此相異的配管所供給。
泵300抽取儲存於容器200的標準液210。在本態樣中,作為泵300的性能,需要送液速度的安定性及正確性。泵300以來自接觸液體的部件之TOC溶出較少者為佳。泵300例如以雙活塞型態為佳,但不限於此。泵300只要為具備同功能者,則為泵以外者亦可。泵300從容器200抽取標準液210的抽取速度(換句話說,泵300從容器200經由作為第二液體輸送管線的標準液管線110,往分析對象液管線100輸送標準液210的送液速度)係根據分析對象液管線100輸送超純水的送液速度與標準液210的TOC濃度而被控制。關於此控制會在後面敘述。此外,標準液210亦可為稀釋與國際標準相應的標準液(鄰苯二甲酸氫鉀)而被調製而成者。又,標準液210亦可為稀釋超純水中實際上所含有的有機物,例如尿素溶液而被調製而成者。標準液管線110往分析對象液管線100輸送使用泵300所抽取的標準液210。
混合部400將「泵300抽取完的標準液210」與「由分析對象液管線100所輸送而來的超純水」混合。於是,在混合部400使用由分析對象液管線100所輸送而來的超純水,來稀釋泵300抽取完的標準液210。亦可使用混合旋管作為混合部400。在混合部400混合完的液體作為檢量線液往TOC計500供給。
控制部600控制泵300的標準液210的抽取速度(來自泵300的標準液210的供給量)。控制部600根據超純水的送液速度與標準液210的TOC濃度,控制泵300的標準液210的抽取速度,俾令在混合部400混合過後的液體的TOC濃度變為既定之値以下。例如,將在分析對象液管線100中的超純水的送液速度(流量)設為1000mL/分,將標準液210的TOC濃度設為100ppb-C,且欲將在混合部400混合過後的液體的TOC濃度設在低濃度範圍(0.1ppb-C+超純水的TOC濃度)的情況下,控制部600令泵300以1mL/分的抽取速度抽取標準液210的方式,來控制泵300。如上文所言,控制部600以令「泵300從容器200抽取標準液210的抽取速度」變為「分析對象液管線100輸送超純水的送液速度之既定的比率(例如,100分之1)以下」的方式來進行控制。藉此,利用了超純水進行稀釋之標準液210的稀釋倍率變為既定的倍率(例如100倍)以上。藉由稀釋標準液210的方式,即使在標準液210中有污染或濃度的誤差,而當稀釋倍率越高時其誤差的影響亦變得越小。藉此,能夠調製更正確的濃度之標準液。此外,標準液210的TOC濃度亦可使用比100ppb-C更高者。在此情況下,控制部600將泵300抽取標準液210的速度控制在比1mL/分更慢的速度。又,當泵300抽取標準液210的速度(性能)為固定値時,調整標準液210的TOC濃度,俾使在混合部400混合過後的液體的TOC濃度變為既定的値以下。控制部600至少具備使泵300的抽取動作停止或運作的功能。關於控制部600,亦可輸入根據從外部接收到的操作的資訊,來進行根據輸入的資訊的控制。又,控制部600亦可接收從其他的裝置所發送來的信號,進行根據接收到的信號表示的資訊的控制。又,控制部600亦可針對輸入完的資訊或接收到的信號表示的資訊進行既定的處理,並隨著其處理的結果來進行控制。
TOC計500係進行成為分析對象液的液體的總有機碳濃度的測定之測定裝置。TOC計500具有對被供給的液體進行有機物分解,並以其前後的導電率或比電阻值作為回應値而輸出的功能。又,TOC計500具有從其回應値之差(輸出値)製作用於算出總有機碳濃度的檢量線之功能。TOC計500分解在混合部400所混合的檢量線液內的有機物,並測定分解完有機物的液體之導電率或比電阻值。TOC計500根據測定過的導電率或比電阻值,並使用上述的檢量線算出液體的總有機碳濃度。TOC計500為進行周期性測定的連續式總有機碳分析儀。此周期亦可為預先設定過的周期。又,此周期亦可為能夠由外部設定的周期。又,所謂連續式為一使TOC計500開始動作,只要沒輸入動作結束的指示,就在每個既定的時間點持續測定者。TOC計500係總有機碳濃度的測定範圍為0.1~500ppb-C的測定裝置。由圖1中顯示的檢量線液製造系統與TOC計500構成測定系統。
補正部700係根據第一輸出値與第二輸出値,並使用標準添加法,來補正TOC計500製作的檢量線。此第一輸出値為在沒有泵300的狀態(或控制部600使泵300的標準液210的抽取停止的狀態)下,TOC計500測定的値。又,此第二輸出値為在控制部600使泵300的抽取運作的狀態下,TOC計500測定的値。具體而言,補正部700將「使用標準添加法所得到的超純水的總有機碳濃度」加上「由泵300抽取並使用超純水所稀釋過之標準液210的總有機碳濃度」,來補正TOC計500製作的檢量線。補正部700亦可被具備在TOC計500。
圖2係為了說明在圖1中顯示的補正部700補正檢量線的方法的一例之圖式。在圖2中,x軸顯示泵300抽取之標準液210之TOC濃度(「0」表示沒有進行藉由泵300抽取標準液210的動作)。y軸顯示TOC計500的輸出値。補正部700,使用至少關於「『藉由泵300抽取之添加濃度為0之時的1點(第一濃度)』與『藉由泵300抽取之添加濃度不為『0』之時的1點(第二濃度)』之合計2點的TOC濃度」在TOC計500輸出的値。補正部700以使用關於「『藉由泵300抽取之添加濃度為『0』之時的1點』與『藉由泵300抽取之添加濃度不為『0』之時的2點以上』之合計3點以上的TOC濃度」在TOC計500輸出的値為佳。在圖2中顯示的圖表上,繪製了「藉由泵300抽取之添加濃度為『0』之時(停止泵300的動作之狀態)、『藉由泵300所抽取的標準液210被稀釋之後的TOC濃度為0.5ppb-C之時與TOC濃度為1.0ppb-C之時』」之3點的輸出値。在圖2中顯示的圖表,以實線表示連接所繪製的3點之直線。由於在藉由泵300抽取之添加濃度為「0」(x=0)之情況下,來自分析對象液管線100的超純水中亦含有TOC,故TOC計500的測定値不會為「0」(y=0)。於是,補正部700使用標準添加法,並延長實線(以虛線表示),來求出虛線與x軸的交點。將根據「虛線與x軸的交點之座標」和「0」之間的距離而得到之濃度設為超純水的TOC濃度。補正部700,根據此超純水的TOC濃度的量,使實線部分與虛線部分的檢量線往x軸的正方向移動。將移動後的直線以一點鍊線表示。將此一點鍊線設為補正後的檢量線。
圖3係顯示TOC濃度為在高濃度範圍下製作了檢量線的情況之輸出値的一例的圖式。在圖3中顯示的輸出値為TOC計500為了算出TOC濃度而測定的導電率、比電阻值或不限於該等的其他値,且為用於算出TOC濃度之際的値。此輸出値針對在以下說明的圖4中亦為相同。圖3顯示裝置的量測誤差為1%以內的情況。如圖3所示,標準液的TOC濃度在500ppb-C時的理論上的輸出値為「500」,但實際的輸出値為「502」。又,標準液的TOC濃度在1000ppb-C時的理論上的輸出値為「1000」,但實際的輸出値為「997」。又,標準液的TOC濃度在1500ppb-C時的理論上的輸出値為「1500」,但實際的輸出値為「1494」。將這些結果在圖3的下圖中作為圖表來表示。此TOC濃度(x)與輸出値(y)的關係式(檢量線)將成為y=0.992x+5.6667。當藉由此檢量線,算出TOC濃度為在低濃度之時亦即在1ppb-C之時的輸出値,則輸出值為「6.6587」,而產生了大的誤差。如上文所言,若利用「使用高濃度的標準液而製作的檢量線」,變換進行低濃度的測定所得到的輸出値,則藉由該變換所得到的測定値為可靠度低的值。
圖4係顯示TOC濃度為在低濃度範圍下製作了檢量線的情況之輸出値的一例的圖式。圖4顯示裝置的量測誤差為1%以內的情況。如圖4所示,標準液的TOC濃度在0.5ppb-C時的理論上的輸出値為「0.5」,但實際的輸出値為「0.52」。又,標準液的TOC濃度在1.0ppb-C時的理論上的輸出値為「1.0」,但實際的輸出値為「0.997」。又,標準液的TOC濃度在1.5ppb-C時的理論上的輸出値為「1.5」,但實際的輸出値為「1.494」。將這些結果在圖4的下圖中作為圖表來表示。此TOC濃度(x)與輸出値(y)的關係式(檢量線),將成為y=0.992x+0.0057。當藉由此檢量線,算出TOC濃度在低濃度之時亦即在1ppb-C之時的輸出値,則輸出值為「0.9977」,而誤差變小。如上文所言,若利用「使用在測定對象濃度附近的標準液而製作的檢量線」,變換進行測定所得到的輸出値,則在該變換所得到的測定値為可靠度高的値。
如上文所言,用於測定低TOC濃度而被使用的測定裝置之檢量線,有為了讓使用檢量線所得到的測定値的可靠度為高者,而使用低濃度的標準液來製作檢量線之必要。然而,一般而言,標準液在從調製到使用,有被環境污染之虞。例如,假設因為來自環境的污染之TOC濃度的增加為5ppb-C,則即使調製低濃度5ppb-C的標準液,也因為環境而在使用時TOC濃度變為10ppb-C。TOC濃度的增加之比率為100%。在另一方面,在調製了一般所使用的TOC濃度250ppb-C的標準液的情況下,因為環境而在使用時TOC濃度變為255ppb-C。TOC濃度的增加之比率為2%。如上文所言,以調製低濃度的標準液來進行使用為佳。然而,低濃度的標準液由於其濃度的誤差會變大,故調製困難。因此,變得需要在調製時使用一般所使用的TOC濃度的標準液,並往測定裝置供給之際,稀釋此標準液為低濃度來進行使用。於是,使用本發明,調整從分析對象液管線輸送超純水的送液速度與以泵抽取標準液的速度,而將與一般所使用的TOC濃度同等的TOC濃度之該標準液與超純水混合。接著,以混合後的液體之TOC濃度變為低濃度的方式進行稀釋,並在管線內往測定裝置供給。進一步而言,由於考量與標準液混合的超純水中所包含的TOC濃度,故使用藉由標準添加法所得到的分析對象液之TOC濃度來補正檢量線。藉此,在測定低濃度範圍(例如,1ppb-C以下)的TOC濃度之際,能夠製作量測誤差少的檢量線。
圖5係顯示本發明的檢量線液製造系統的應用例的圖式。在圖5中顯示的例子設置了:超純水槽10、泵20、熱交換器30、紫外線氧化裝置31、非再生型離子交換裝置32、脫氣膜裝置33、超濾器34、流量計40、分析對象液管線100、儲存有標準液210的容器200、泵300、控制部600、混合旋管410、TOC計500和補正部700。
超純水係使用泵20而從超純水槽10被供給往熱交換器30,並從熱交換器30經由紫外線氧化裝置31、非再生型離子交換裝置32、脫氣膜裝置33及超濾器34,而被輸送往分析對象液管線100。在分析對象液管線100設置有流量計40。每個在作為水處理裝置的熱交換器30、紫外線氧化裝置31、非再生型離子交換裝置32、脫氣膜裝置33及超濾器34中的處理,係與在一般的水處理系統中的處理相同。
又,流量計40、容器200、標準液210、泵300、控制部600、TOC計500及補正部700各自與在圖1顯示之各者相同。混合旋管410相當於在圖1顯示的混合部400。混合旋管410將「泵300抽取完的標準液210」與「由分析對象液管線100所輸送而來的超純水」混合,來稀釋標準液210。
以上,雖然個別說明了各構成要素,但其構成亦可任意地組合,或亦可將該等分配給1個或複數個裝置。例如,如上述般,補正部700被具備在TOC計500中亦可。又,控制部600及補正部700被具備在TOC計500中亦可。又,控制部600及補正部700亦可被具備在與TOC計500不同的裝置,且該裝置與TOC計500進行通信,而進行信號的傳遞。進一步而言,本系統具備一般的超純水製造裝置或水處理裝置(例如,超濾器)亦可。
以上,雖然參照實施的態樣,來說明本發明,但本發明並非限定於上述實施的態樣。能夠對本發明的構成或細部,在本發明的範圍內進行當業者能夠理解的各式各樣的變更。
本申請案主張以2022年5月20日申請之日本申請案特願2022-083008為基礎之優先權,並將其揭示的全部內容援用於此。
10:超純水槽 100:分析對象液管線 110:標準液管線 20:泵 200:容器 210:標準液 30:熱交換器 31:紫外線氧化裝置 32:非再生型離子交換裝置 33:脫氣膜裝置 34:超濾器 300:泵 40:流量計 400:混合部 410:混合旋管 500:總有機碳計 600:控制部 700:補正部
[圖1]係顯示本發明的檢量線液製造系統之實施的一態樣的圖式。 [圖2]係為了說明在圖1中顯示的補正部補正檢量線的方法的一例之圖式。 [圖3]係顯示TOC濃度為在高濃度範圍下製作了檢量線的情況之輸出値的一例的圖式。 [圖4]係顯示TOC濃度為在低濃度範圍下製作了檢量線的情況之輸出値的一例的圖式。 [圖5]係顯示本發明的檢量線液製造系統的應用例的圖式。
100:分析對象液管線
110:標準液管線
200:容器
210:標準液
300:泵
40:流量計
400:混合部
500:總有機碳計
600:控制部
700:補正部

Claims (10)

  1. 一種檢量線液製造系統,製造用於製作檢量線的檢量線液,並對使用該檢量線測定分析對象液的總有機碳濃度的測定裝置進行供給; 其具有:第一液體輸送管線,往該測定裝置輸送稀釋液; 第二液體輸送管線,對該第一液體輸送管線輸送標準液;以及 混合部,被設置在該第一液體輸送管線,且將該標準液與該稀釋液混合而稀釋該標準液; 且,將在該混合部所混合而成之該稀釋液與該標準液的混合液作為該檢量線液,而供給至該測定裝置。
  2. 如請求項1所述之檢量線液製造系統,更具有: 泵,被設置在該第二液體輸送管線,並向該第一液體輸送管線供給該標準液;以及 控制部,控制該泵的供給量; 該控制部根據在該第一液體輸送管線中的該稀釋液的送液速度及該標準液的總有機碳濃度,控制該泵,俾使該檢量線液的總有機碳濃度變為既定値以下。
  3. 如請求項2所述之檢量線液製造系統,其中, 該既定値為100ppb-C。
  4. 如請求項2或3所述之檢量線液製造系統,其中, 該控制部控制該泵,以在該第一液體輸送管線中的該稀釋液的送液速度的100分之1以下之送液速度,向該第一液體輸送管線供給該標準液。
  5. 如請求項2或3所述之檢量線液製造系統,更具有: 補正部,根據使用標準添加法,從在該控制部使該泵停止且該稀釋液被輸送至該測定裝置的狀態下該測定裝置測定到的第一濃度,以及在該控制部使該泵運作且該檢量線液被輸送至該測定裝置的狀態下該測定裝置測定到的第二濃度,所得到的該稀釋液的總有機碳濃度,而補正該測定裝置製作的檢量線。
  6. 如請求項5所述之檢量線液製造系統,其中, 該補正部,將使用該標準添加法所得到的該稀釋液的總有機碳濃度,加上該泵運作而使用該稀釋液進行稀釋後的標準液之總有機碳濃度,補正該測定裝置製作的檢量線。
  7. 如請求項1至3中任一項所述之檢量線液製造系統,其中, 其製造用於製作該測定裝置的檢量線的檢量線液;該測定裝置,分解在該混合部混合過後的液體內之有機物,並測定該有機物被分解後之液體的導電率或比電阻值,且根據該測定到的導電率或比電阻值,而算出該液體的總有機碳濃度。
  8. 如請求項1至3中任一項所述之檢量線液製造系統,其中, 該測定裝置之總有機碳濃度的測定範圍為0.1~500ppb-C。
  9. 一種測定系統,具有如請求項1至3中任一項所述之檢量線液製造系統;以及該測定裝置。
  10. 一種檢量線液製造方法, 對使用檢量線測定分析對象液的總有機碳濃度的測定裝置,製造並供給用於製作該檢量線的檢量線液; 將從輸送標準液的第二液體輸送管線向第一液體輸送管線輸送的該標準液,與往該測定裝置之在該第一液體輸送管線中所輸送的稀釋液混合,而稀釋該標準液; 將該混合完之該稀釋液與該標準液的混合液作為該檢量線液,而供給至該測定裝置。
TW112115689A 2022-05-20 2023-04-27 檢量線液製造系統、測定系統及檢量線液製造方法 TW202407314A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-083008 2022-05-20
JP2022083008A JP2023170910A (ja) 2022-05-20 2022-05-20 検量線液製造システム、測定システムおよび検量線液製造方法

Publications (1)

Publication Number Publication Date
TW202407314A true TW202407314A (zh) 2024-02-16

Family

ID=88835195

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112115689A TW202407314A (zh) 2022-05-20 2023-04-27 檢量線液製造系統、測定系統及檢量線液製造方法

Country Status (3)

Country Link
JP (1) JP2023170910A (zh)
TW (1) TW202407314A (zh)
WO (1) WO2023223649A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246661A (ja) * 1987-03-31 1988-10-13 Shimadzu Corp 燃焼式水質分析計
JPH0894639A (ja) * 1994-09-26 1996-04-12 Fujitsu Ltd 分析装置及び分析方法
JP3320050B2 (ja) * 1999-11-26 2002-09-03 東亜ディーケーケー株式会社 有機炭素含量の測定方法及び測定装置
JP2002210454A (ja) * 2001-01-19 2002-07-30 Japan Organo Co Ltd 冷却水系における水処理用薬品の濃度管理方法及び装置
JP4538604B2 (ja) * 2004-09-21 2010-09-08 独立行政法人産業技術総合研究所 光反応管内蔵型光反応装置及びこれを用いる水質モニタリング装置
US9791430B2 (en) * 2014-05-23 2017-10-17 Hach Company Measurement of total organic carbon
CN208705151U (zh) * 2018-09-10 2019-04-05 浙江省方正校准有限公司 一种在线toc水质监测仪检定用标准液体稀释装置

Also Published As

Publication number Publication date
JP2023170910A (ja) 2023-12-01
WO2023223649A1 (ja) 2023-11-23

Similar Documents

Publication Publication Date Title
EP0864123B1 (en) Two-stage chemical mixing system
JP4698784B2 (ja) 液体混合物を製造する方法及び装置
JP3741811B2 (ja) アルカリ現像原液の希釈方法および希釈装置
CN103091152B (zh) 用于在线分析仪的智能稀释系统和智能稀释方法
US6947126B2 (en) Dilution apparatus and method of diluting a liquid sample
CN100593718C (zh) 一种流动注射式溶解氧表检验方法及装置
TW202407314A (zh) 檢量線液製造系統、測定系統及檢量線液製造方法
CN107727789A (zh) 一种浓度测量装置及其浓度系数自校正方法、蚀刻装置
US20200316543A1 (en) Method and apparatus for supplying water of specified concentration
US20220184571A1 (en) Dilute chemical solution production device
JP3837105B2 (ja) 金属水溶液自動希釈装置
JP5198187B2 (ja) 液処理装置および処理液供給方法
CN107449744B (zh) 一种检测纺织印染行业中过氧化氢酶活力的分析方法
KR20060095640A (ko) 약액 혼합 공급 장치 및 방법
CN211718259U (zh) 水质分析仪
JP3120817B2 (ja) 現像液の自動希釈装置
CN201046385Y (zh) 将化学品原液量稀释的装置
CN109030704A (zh) 离子色谱仪进样体积测定装置和进样体积测定方法
EP2498084A1 (en) Method and apparatus for electrolyte measurements
CN210690396U (zh) 一种硅酸盐测量装置
JPH0661136A (ja) 現像液の連続自動希釈装置
CN112305036A (zh) 确定过程介质的化学吸入容量的测量点中的方法和测量点
CN215910218U (zh) 电解质分析仪的液路系统及电解质分析仪
JP2012093164A (ja) 濃度測定装置
CN218725896U (zh) 一种用于钻井液的离子检测装置