TW202338055A - 聚醯亞胺黏著劑前驅物組合物、及使用其之蓄電裝置 - Google Patents

聚醯亞胺黏著劑前驅物組合物、及使用其之蓄電裝置 Download PDF

Info

Publication number
TW202338055A
TW202338055A TW112102567A TW112102567A TW202338055A TW 202338055 A TW202338055 A TW 202338055A TW 112102567 A TW112102567 A TW 112102567A TW 112102567 A TW112102567 A TW 112102567A TW 202338055 A TW202338055 A TW 202338055A
Authority
TW
Taiwan
Prior art keywords
polyimide
negative electrode
precursor composition
active material
polyimide adhesive
Prior art date
Application number
TW112102567A
Other languages
English (en)
Inventor
森本佳祐
飯泉暢
井上翔平
本間壮輔
Original Assignee
日商Ube股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Ube股份有限公司 filed Critical 日商Ube股份有限公司
Publication of TW202338055A publication Critical patent/TW202338055A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本發明提供一種可獲得不可逆容量較小,初始充放電效率較高,輕量且高容量之蓄電裝置之聚醯亞胺黏著劑。聚醯亞胺黏著劑前驅物組合物係包含四羧酸成分與二胺成分之反應物及溶劑之蓄電裝置電極用之聚醯亞胺黏著劑前驅物組合物,由該聚醯亞胺黏著劑前驅物組合物所獲得之聚醯亞胺黏著劑之不可逆容量為1200 mAh/g以下。

Description

聚醯亞胺黏著劑前驅物組合物、及使用其之蓄電裝置
本發明係關於一種鋰離子二次電池等蓄電裝置用之聚醯亞胺系黏著劑,詳細而言係關於一種聚醯亞胺黏著劑前驅物組合物、電極混合劑膠、負極活性物質層、負極片及蓄電裝置。
鋰離子二次電池等蓄電裝置具有較高之能量密度且為高容量,因此作為移動資訊終端之驅動電源等而被廣泛使用。近年來,一直在研究搭載於電動/油電混合汽車、無人飛行器等在產業用途上之應用,並且正在推進鋰離子二次電池等蓄電裝置之進一步之高容量化。作為高容量化之一例,對於負極,開展了使用每單位體積之鋰吸藏量較多之矽或錫、或者包含該等之合金來增大充放電容量之研究。
然而,已知如矽或錫、或者包含該等之合金般之充放電容量較大之電極活性物質會隨著充放電而引起非常大之體積變化。因此,若使用該等電極活性物質,利用聚偏二氟乙烯或橡膠系樹脂等通用之黏著劑來形成負極活性物質層,則會產生如下問題,即該負極活性物質層因電極活性物質之體積變化而發生層之破裂或集電體與負極活性物質層之界面剝離等,從而導致鋰離子二次電池等蓄電裝置之循環特性下降。
針對此問題,提出有使用聚醯亞胺系黏著劑作為改善因反覆充放電時之體積變化而引起之循環特性下降之方法(例如,參照專利文獻1~3)。
另一方面,專利文獻4(US2006/0099506號公報)指出,在使用聚醯亞胺系黏著劑時,可觀察到較大之不可逆容量。專利文獻4中,作為降低不可逆容量之解決方案,提出了如下方案:具體而言,於由3,3'4,4'-二苯甲酮四羧酸二酐與4,4'-二胺基二苯醚所獲得之聚醯亞胺系黏著劑中,將四羧酸二酐之一部分或全部取代為作為鏈狀脂肪族四羧酸二酐之1,2,3,4-丁烷四羧酸二酐。
又,專利文獻5(日本專利特開2019-3873號公報)中記載了於包含矽系負極活性物質之負極活性物質層中使用拉伸彈性模數為3.0 GPa以上,並且包含對於鋰離子之反應性為1200 mAh/g以下之含醯亞胺基高分子化合物的黏著劑。 [先前技術文獻] [專利文獻]
[專利文獻1]國際公開第2013/035806號 [專利文獻2]國際公開第2017/022796號 [專利文獻3]國際公開第2018/174299號 [專利文獻4]US2006/0099506號公報 [專利文獻5]日本專利特開2019-3873號公報
[發明所欲解決之問題]
發明者等人研究發現,於黏著劑本身具有不可逆容量之情形時,考慮到初次充電時黏著劑中亦會吸收Li,並且放電時未被釋出之Li會殘留於黏著劑中,因此預想需要負極活性物質之理論容量以上之Li。因此,存在如下顧慮,即黏著劑本身之不可逆容量越大,必然越會於正極中蓄積更多之Li,從而電池整體之重量增大。為了消除此顧慮,要求開發具有更小之不可逆容量之聚醯亞胺系黏著劑。如上所述,專利文獻4雖目的在於降低不可逆容量,但降低程度並不充分,並且未進行組成上之研究。又,專利文獻5雖提示對於鋰離子之反應性與循環特性有關,但並未對初始之不可逆容量進行測定。為了正確評估對初始效率之影響,需要對黏著劑本身之充放電容量進行評估,並掌握其差即不可逆容量。又,亦幾乎未提及聚醯亞胺之結構,從而無法掌握詳情。
又,就鋰離子電容器而言,預想到於黏著劑之不可逆容量較大之情形時,預摻雜所需之鋰離子增多,使預摻雜處理時間等大幅變化之情況。
本發明係解決上述課題者,其目的在於提供一種不可逆容量較小之聚醯亞胺黏著劑及其前驅物組合物。又,藉由使用本發明之聚醯亞胺黏著劑,可提供一種初始充放電效率較高之鋰離子二次電池等蓄電裝置。 [解決問題之技術手段]
本發明係關於以下各項。 1.一種聚醯亞胺黏著劑前驅物組合物,其係包含四羧酸成分與二胺成分之反應物及溶劑之蓄電裝置電極用之聚醯亞胺黏著劑前驅物組合物, 由該聚醯亞胺黏著劑前驅物組合物所獲得之聚醯亞胺黏著劑之不可逆容量為1200 mAh/g以下。
2.如上述項1所記載之聚醯亞胺黏著劑前驅物組合物,其中上述聚醯亞胺黏著劑前驅物組合物包含含有50莫耳%以上之脂環式四羧酸二酐的四羧酸成分與二胺成分之反應物及溶劑。
3.如上述項1或2所記載之聚醯亞胺黏著劑前驅物組合物,其中上述二胺成分含有50莫耳%以上之芳香族二胺化合物。
4.一種蓄電裝置用負極混合劑膠,其含有如上述項1至3中任一項所記載之聚醯亞胺黏著劑前驅物組合物與包含含矽物質及/或石墨之活性物質。
5.一種蓄電裝置用負極,其具備: (a)負極活性物質層,其含有:包含含矽物質及/或石墨之活性物質、及 聚醯亞胺黏著劑,其係如上述項1至3中任一項所記載之聚醯亞胺黏著劑前驅物組合物中所含之聚醯亞胺前驅物之加熱產物,並且黏結有上述活性物質;及 (b)集電體。
6.一種蓄電裝置,其具備如上述項5所記載之蓄電裝置用負極。
7.一種蓄電裝置用負極之製造方法,其具有以下步驟: 將如上述項4所記載之負極混合劑膠流延或塗佈於集電體上之步驟; 對所塗佈之負極混合劑膠之層進行加熱處理,形成負極活性物質層之步驟。
8.一種蓄電裝置之製造方法,其具有如上述項7之負極之製造方法作為1個步驟。 [發明之效果]
根據本發明,可提供一種不可逆容量較小之聚醯亞胺黏著劑及其前驅物組合物。又,藉由使用本發明之聚醯亞胺黏著劑,可提供一種初始充放電效率較高之鋰離子二次電池等蓄電裝置。若將該聚醯亞胺黏著劑作為例如負極黏著劑使用,則可降低填補不可逆容量之正極側之活性物質量,其結果,可獲得輕量且高容量之蓄電裝置。
本發明之聚醯亞胺黏著劑前驅物組合物包含四羧酸成分與二胺成分之反應物及溶劑。聚醯亞胺黏著劑前驅物組合物中之四羧酸成分與二胺成分之反應物係如以下說明之聚醯亞胺前驅物。又,藉由將本發明之聚醯亞胺黏著劑前驅物組合物與例如活性物質等粒子一同進行加熱處理而去除溶劑,並視需要進行醯亞胺化反應,可將其轉換為黏結活性物質等粒子之聚醯亞胺黏著劑。因此,於本發明中,「(本發明之)聚醯亞胺黏著劑」係由本發明之聚醯亞胺黏著劑前驅物組合物所獲得之黏著劑,並且係於例如電極中黏結有活性物質等粒子之物質。
由本發明之聚醯亞胺黏著劑前驅物組合物所獲得之聚醯亞胺黏著劑具有1200 mAh/g以下之不可逆容量。不可逆容量較佳為1100 mAh/g以下,更佳為1000 mAh/g以下,進而更佳為900 mAh/g以下,進而更佳為800 mAh/g以下。
聚醯亞胺黏著劑之不可逆容量可以如下方式決定。 (1)以不同比率混合聚醯亞胺黏著劑前驅物組合物與負極活性物質,製造複數個評估用混合劑膠。使用評估用混合劑膠,製造聚醯亞胺黏著劑之含有比率不同之複數個評估用負極。 (2)將例如金屬鋰作為相對電極來測定評估用負極之初始充電容量及初始放電容量,將活性物質層之充電容量(mAh/g)與放電容量(mAh/g)之差作為評估用負極之不可逆容量(mAh/g)。此處,每單位質量之充電容量及放電容量係基於活性物質與黏著劑之總質量來算出。 (3)相對於聚醯亞胺黏著劑之含有比率(質量%),對評估用負極之不可逆容量(mAh/g)進行繪圖,並製作校準曲線。將聚醯亞胺黏著劑之含有比率為100%之評估用負極之不可逆容量作為「聚醯亞胺黏著劑之不可逆容量」。
用於製造評估用負極之負極活性物質無需為矽系材料,較佳為使用容量較其小之石墨類。又,作為相對電極,為了排除相對電極之不可逆容量之影響,較佳為金屬鋰。
聚醯亞胺黏著劑於機械特性優異方面亦較佳。已知機械特性優異之黏著劑於使用矽系等引起較大之體積變化之物質作為電極活性物質之情形時,亦可承受伴隨充放電之膨脹收縮,因此防止活性物質脫落等,循環特性優異。 聚醯亞胺黏著劑之機械特性可使用由聚醯亞胺黏著劑前驅物組合物形成之聚醯亞胺膜來進行測定。 代表性之機械特性係彈性模數,較佳為1.0 GPa以上,更佳為2.0 GPa以上,進而更佳為2.5 GPa以上。又,於伸長係數(斷裂伸長率)較大之方面亦較佳,具體而言,較佳為30%以上,更佳為40%以上,進而更佳為50%以上,進而更佳為60%以上,進而更佳為70%以上。關於斷裂能量,較佳為40 MJ/m 3以上,更佳為50 MJ/m 3以上,進而更佳為60 MJ/m 3以上。 尤佳為彈性模數、伸長係數(斷裂伸長率)及斷裂能量全部同時滿足「較佳」之範圍。
以下對聚醯亞胺黏著劑前驅物組合物之成分及製造方法進行說明。
<四羧酸成分與二胺成分之反應物> 於本說明書中,四羧酸成分包含可用作製造聚醯亞胺之原料之四羧酸、四羧酸二酐、其他四羧酸矽烷酯、四羧酸酯、四羧酸醯氯等四羧酸衍生物。雖並不特別限定,但於製造上,使用四羧酸二酐較為簡便,主要對使用四羧酸二酐作為四羧酸成分之例進行說明。又,二胺成分係可用作製造聚醯亞胺之原料之具有兩個胺基(-NH 2)之二胺化合物。
此處,四羧酸成分與二胺成分之反應物通常被稱為聚醯亞胺前驅物,代表性而言,可為含有重複單元由下述通式(I)所表示之聚醯胺酸(及其衍生物),但進一步進行了醯亞胺化而成之結構。式中,X 1來自四羧酸成分,Y 1來自二胺成分。
[化1] (通式I中,X 1為四價脂肪族基或芳香族基,Y 1為二價脂肪族基或芳香族基,R 1及R 2相互獨立地為氫原子、碳數為1~6之烷基或碳數為3~9之烷基矽烷基)
通式(I)進一步醯亞胺化而成之重複單元係通式(I)中存在之兩個醯胺鍵中之一個或兩個轉換為醯亞胺鍵而成之結構,具體而言,由以下通式(Ib)、(Ic)及(II)表示:
[化2]
[化3]
[化4]
於聚醯亞胺前驅物中之所有重複單元均為通式(I)之情形時,醯亞胺化率為0%,於所有重複單元均為通式(Ib)及/或(Ic)之情形時,醯亞胺化率為50%,若所有重複單元均為通式(II),則醯亞胺化率為100%(即聚醯亞胺)。聚醯亞胺前驅物之醯亞胺化率可為0~100%中之任意範圍。於本申請中,即使醯亞胺化率為100%,亦應將聚醯亞胺黏著劑前驅物組合物中存在者稱為聚醯亞胺前驅物。
於較佳之一形態中,可包含式(I)之重複單元,例如可以醯亞胺化率為0~50%,作為一例為0~30%,進而為0~20%之方式包含選自式(I)、(Ib)及/或(Ic)、以及式(II)中之重複單元。又,於不同之一形態中,可包含式(II)之重複單元,例如可以醯亞胺化率為超過50%~100%之方式包含選自上述各式中之重複單元。
作為四羧酸成分,可使用脂肪族四羧酸二酐或芳香族四羧酸二酐。作為脂肪族四羧酸二酐,較佳為脂環式四羧酸二酐,例如較佳為於作為脂環式基之X 1上直接鍵結有4個羧基之四羧酸二酐。藉由使用環式四羧酸二酐,可達成因降低聚醯亞胺黏著劑之不可逆容量而實現之蓄電裝置之高容量化與機械強度之兼顧。
於本發明之較佳之一形態中,於所有四羧酸成分中,脂環式四羧酸二酐之比率為50莫耳%以上,更佳為60莫耳%以上,進而更佳為70莫耳%以上,進而更佳為80莫耳%以上(含100莫耳%)。其餘四羧酸成分較佳為芳香族四羧酸二酐。
於聚醯亞胺前驅物係使用包含脂環式四羧酸二酐與其他四羧酸二酐(較佳為芳香族四羧酸二酐)之四羧酸成分而獲得之情形時,無論是共聚物、還是嵌段(共)聚合物、抑或是均聚物之摻合物、還是共聚物與均聚物之摻合物,其形態均不限制。共聚物係於1個分子中具有作為脂環式基之X 1與作為芳香族基之X 1者,嵌段(共)聚合物係包含作為脂環式基之X 1之重複單元的嵌段與包含作為芳香族基之X 1之重複單元的嵌段發生反應而形成1個分子者,均聚物之摻合物係僅具有作為脂環式基之X 1的聚合物與僅具有作為芳香族基之X 1的聚合物之摻合物。
若對脂環式四羧酸二酐進行說明,則作為脂環式基即X 1,較佳為具有碳數為4~40之脂環結構之四價基,更佳為具有至少一個脂肪族4~12員環、更佳為脂肪族4員環或脂肪族6員環。作為較佳之具有脂肪族4員環或脂肪族6員環之四價基,可例舉下述者。
[化5] (式中,R 31~R 38分別獨立地為直接鍵或二價之有機基。R 41~R 47、及R 71~R 73分別獨立地表示選自由式:-CH 2-、-CH=CH-、-CH 2CH 2-、-O-、-S-所表示之基所組成之群中之一種。R 48係包含芳香環或脂環結構之有機基)
作為R 31、R 32、R 33、R 34、R 35、R 36、R 37、R 38,具體而言,可例舉直接鍵、包含芳香環或脂環結構之有機基、碳數為1~6之脂肪族烴基、或氧原子(-O-)、硫原子(-S-)、羰基鍵、酯鍵、醯胺鍵。
作為以包含芳香環之有機基為R 31~R 38或R 48之例,例如可例舉下述者。
[化6] (式中,W 1為直接鍵或二價之有機基,n 11~n 13分別獨立地表示0~4之整數,R 51、R 52、R 53分別獨立地為碳數為1~6之烷基、鹵基、羥基、羧基或三氟甲基)
作為W 1,具體而言,可例舉直接鍵、由下述式(5)所表示之二價基、由下述式(6)所表示之二價基。
[化7] (式(6)中之R 61~R 68分別獨立地表示直接鍵或由上述式(5)所表示之二價基中之任意一種)
作為具有脂環結構之四價基,尤佳為下述者。
[化8]
作為脂環式四羧酸二酐,例如可例舉:1,2,3,4-環丁烷四羧酸二酐、環己烷-1,2,4,5-四羧酸二酐等單環之脂環式四羧酸二酐;[1,1'-雙(環己烷)]-3,3',4,4'-四羧酸二酐、[1,1'-雙(環己烷)]-2,3,3',4'-四羧酸二酐、[1,1'-雙(環己烷)]-2,2',3,3'-四羧酸二酐、4,4'-亞甲基雙(環己烷-1,2-二羧酸酐)、4,4'-(丙烷-2,2-二基)雙(環己烷-1,2-二羧酸酐)、4,4'-氧基雙(環己烷-1,2-二羧酸酐)、4,4'-硫代雙(環己烷-1,2-二羧酸酐)、4,4'-磺醯基雙(環己烷-1,2-二羧酸酐)、4,4'-(二甲基矽烷二基)雙(環己烷-1,2-二羧酸酐)、4,4'-(四氟丙烷-2,2-二基)雙(環己烷-1,2-二羧酸酐)、八氫并環戊二烯-1,3,4,6-四羧酸二酐、雙環[2.2.1]庚烷-2,3,5,6-四羧酸二酐、6-(羧甲基)雙環[2.2.1]庚烷-2,3,5-三羧酸二酐、雙環[2.2.2]辛烷-2,3,5,6-四羧酸二酐、雙環[2.2.2]辛-5-烯-2,3,7,8-四羧酸二酐、三環[4.2.2.02,5]癸烷-3,4,7,8-四羧酸二酐、三環[4.2.2.02,5]癸-7-烯-3,4,9,10-四羧酸二酐、9-氧雜三環[4.2.1.02,5]壬烷-3,4,7,8-四羧酸二酐、降𦯉烷-2-螺-α-環戊酮-α'-螺-2''-降𦯉烷5,5'',6,6''-四羧酸二酐、(4arH,8acH)-十氫-1t,4t:5c,8c-二甲橋萘-2c,3c,6c,7c-四羧酸二酐、(4arH,8acH)-十氫-1t,4t:5c,8c-二甲橋萘-2t,3t,6c,7c-四羧酸二酐、十氫-1,4-乙醇-5,8-甲橋萘-2,3,6,7-四羧酸二酐、十四氫-1,4:5,8:9,10-三甲橋蒽-2,3,6,7-四羧酸二酐等具有兩個以上之環之脂環式四羧酸二酐。該等可單獨使用,又亦可組合複數種使用。
芳香族四羧酸二酐較佳為具有2~3個芳香族環。作為芳香族基即X 1,可例舉具有以下結構之化合物。
[化9] (式中,Z 1為直接鍵或下述二價基:
[化10] 中之任意一種。其中,式中之Z 2為二價之有機基,Z 3、Z 4分別獨立地為醯胺鍵、酯鍵、羰基鍵,Z 5為包含芳香環之有機基)
作為Z 2,具體而言,可例舉碳數為2~24之脂肪族烴基、碳數為6~24之芳香族烴基。
作為Z 5,具體而言,可例舉碳數為6~24之芳香族烴基。
作為芳香族四羧酸二酐,並無特別限定,可較佳地例舉:3,3',4,4'-聯苯四羧酸二酐、2,3,3',4'-聯苯四羧酸二酐、2,2',3,3'-聯苯四羧酸二酐、均苯四甲酸二酐、二苯甲酮四羧酸二酐、4,4'-氧二鄰苯二甲酸二酐、二苯基碸四羧酸二酐、對聯三苯四羧酸二酐、間聯三苯四羧酸二酐等未經鹵素取代之芳香族四羧酸二酐;4,4'-(六氟異亞丙基)二鄰苯二甲酸酐、3,3'-(六氟異亞丙基)二鄰苯二甲酸酐、5,5'-[2,2,2-三氟-1-[3-(三氟甲基)苯基]亞乙基]二鄰苯二甲酸酐、5,5'-[2,2,3,3,3-五氟-1-(三氟甲基)亞丙基]二鄰苯二甲酸酐、1H-二氟[3,4-b:3',4'-i]𠮿-1,3,7,9(11H)-四酮、5,5'-氧基雙[4,6,7-三氟-均苯四甲酸酐]、3,6-雙(三氟甲基)均苯四甲酸二酐、4-(三氟甲基)均苯四甲酸二酐、1,4-二氟均苯四甲酸二酐、1,4-雙(3,4-二羧基三氟苯氧基)四氟苯二酐等經鹵素取代之四羧酸二酐等。該等可使用一種或兩種以上。
作為二胺成分,可使用芳香族二胺化合物或脂肪族二胺化合物。於本發明之較佳之一實施方式中,於全部二胺成分中,芳香族二胺化合物之比率為50莫耳%以上,更佳為60莫耳%以上,進而更佳為70莫耳%以上,進而更佳為80莫耳%以上(含100莫耳%)。其餘二胺成分為脂肪族二胺化合物,較佳為具有脂環結構之二胺化合物。又,於不同之一實施方式中,二胺成分可以於全部二胺成分中為50莫耳%以上,更佳為60莫耳%以上,進而更佳為70莫耳%以上,進而更佳為80莫耳%以上(含100莫耳%)之比率含有脂肪族二胺化合物、較佳為脂環式二胺化合物。
若對芳香族二胺化合物進行說明,則作為芳香族基即Y 1,例如可例舉下述者。
[化11] (式中,W 1為直接鍵或二價之有機基,n 11~n 13分別獨立地表示0~4之整數,R 51、R 52、R 53分別獨立地為碳數為1~6之烷基、鹵基、羥基、羧基或三氟甲基)
作為W 1,具體而言,可例舉直接鍵、由下述式(5)所表示之二價基、由下述式(6)所表示之二價基。
[化12] (式(6)中之R 61~R 68分別獨立地表示直接鍵或由上述式(5)所表示之二價基中之任意一種)
作為提供Y 1為具有芳香族環之二價基即通式(I)之重複單元的二胺成分,例如可例舉:對苯二胺、間苯二胺、2,4-甲苯二胺、3,3'-二羥基-4,4'-二胺基聯苯、雙(4-胺基-3-羧基苯基)甲烷、聯苯胺、3,3'-二胺基-聯苯、2,2'-雙(三氟甲基)聯苯胺、3,3'-雙(三氟甲基)聯苯胺、間聯甲苯胺、4,4'-二胺基苯甲醯苯胺、3,4'-二胺基苯甲醯苯胺、N,N'-雙(4-胺基苯基)對苯二甲醯胺、N,N'-對伸苯基雙(對胺基苯甲醯胺)、4-胺基苯氧基-4-二胺基苯甲酸酯、雙(4-胺基苯基)對苯二甲酸酯、聯苯-4,4'-二羧酸雙(4-胺基苯基)酯、對伸苯基雙(對胺基苯甲酸酯)、雙(4-胺基苯基)-[1,1'-聯苯]-4,4'-二羧酸酯、[1,1'-聯苯]-4,4'-二基雙(4-胺基苯甲酸酯)、4,4'-二胺基二苯醚(別名4,4'-二胺基二苯醚)、3,4'-二胺基二苯醚、3,3'-二胺基二苯醚、對亞甲基雙(苯二胺)、1,3-雙(4-胺基苯氧基)苯、1,3-雙(3-胺基苯氧基)苯、1,4-雙(4-胺基苯氧基)苯、4,4'-雙(4-胺基苯氧基)聯苯、4,4'-雙(3-胺基苯氧基)聯苯、2,2-雙(4-(4-胺基苯氧基)苯基)丙烷、2,2-雙(4-(4-胺基苯氧基)苯基)六氟丙烷、2,2-雙(4-胺基苯基)六氟丙烷、雙(4-胺基苯基)碸、3,3'-雙(三氟甲基)聯苯胺、3,3'-雙((胺基苯氧基)苯基)丙烷、2,2'-雙(3-胺基-4-羥基苯基)六氟丙烷、雙(4-(4-胺基苯氧基)二苯基)碸、雙(4-(3-胺基苯氧基)二苯基)碸、八氟聯苯胺、3,3'-二甲氧基-4,4'-二胺基聯苯、3,3'-二氯-4,4'-二胺基聯苯、3,3'-二氟-4,4'-二胺基聯苯、2,4-雙(4-胺基苯胺基)-6-胺基-1,3,5-三𠯤、2,4-雙(4-胺基苯胺基)-6-甲基胺基-1,3,5-三𠯤、2,4-雙(4-胺基苯胺基)-6-乙基胺基-1,3,5-三𠯤、2,4-雙(4-胺基苯胺基)-6-苯胺基-1,3,5-三𠯤。作為提供Y 1為具有含有氟原子之芳香族環之二價基即通式(I)之重複單元的二胺成分,例如可例舉:2,2'-雙(三氟甲基)聯苯胺、3,3'-雙(三氟甲基)聯苯胺、2,2-雙[4-(4-胺基苯氧基)苯基]六氟丙烷、2,2-雙(4-胺基苯基)六氟丙烷、2,2'-雙(3-胺基-4-羥基苯基)六氟丙烷。此外,作為較佳之二胺化合物,可例舉:9,9-雙(4-胺基苯基)茀、4,4'-(((9H-茀-9,9-二基)雙([1,1'-聯苯]-5,2-二基))雙(氧基))二胺、[1,1':4',1''-聯三苯]-4,4''-二胺、4,4'-([1,1'-聯萘]-2,2'-二基雙(氧基))二胺。二胺成分可單獨使用,又亦可組合複數種使用。
若對具有脂環結構之二胺化合物進行說明,則作為具有脂環結構之基即Y 1,例如可例舉下述者。
[化13] (式中,V 1、V 2分別獨立地為直接鍵或二價之有機基,n 21~n 26分別獨立地表示0~4之整數,R 81~R 86分別獨立地為碳數為1~6之烷基、鹵基、羥基、羧基或三氟甲基,R 91、R 92、R 93分別獨立地為選自由式:-CH 2-、-CH=CH-、-CH 2CH 2-、-O-、-S-所表示之基所組成之群中之一種)
作為V 1、V 2,具體而言,可例舉直接鍵及由上述式(5)所表示之二價基。
作為提供Y 1為具有脂環結構之二價基即通式(I)之重複單元的二胺成分,例如可例舉:1,4-二胺基環己烷、1,4-二胺基-2-甲基環己烷、1,4-二胺基-2-乙基環己烷、1,4-二胺基-2-正丙基環己烷、1,4-二胺基-2-異丙基環己烷、1,4-二胺基-2-正丁基環己烷、1,4-二胺基-2-異丁基環己烷、1,4-二胺基-2-第二丁基環己烷、1,4-二胺基-2-第三丁基環己烷、1,2-二胺基環己烷、1,3-二胺基環丁烷、1,4-雙(胺基甲基)環己烷、1,3-雙(胺基甲基)環己烷、二胺基雙環庚烷、二胺基甲基雙環庚烷、二胺基氧基雙環庚烷、二胺基甲基氧基雙環庚烷、異佛爾酮二胺、二胺基三環癸烷、二胺基甲基三環癸烷、雙(胺基環己基)甲烷、雙(胺基環己基)亞異丙基、6,6'-雙(3-胺基苯氧基)-3,3,3',3'-四甲基-1,1'-螺環二茚滿、6,6'-雙(4-胺基苯氧基)-3,3,3',3'-四甲基-1,1'-螺環二茚滿。二胺成分可單獨使用,又亦可組合複數種使用。
<溶劑> 作為溶劑,較佳為二甲苯、甲苯、乙基苯等芳香族烴;戊烷、己烷、庚烷等脂肪族烴類;苯甲酸甲酯、苯甲酸乙酯、苯甲酸丙酯等苯甲酸酯類等非極性溶劑(相對介電常數為6以下之溶劑);水、甲醇、乙醇、丙酮、N,N-二甲基甲醯胺、二甲基醯胺、N,N-二甲基乙醯胺、N,N-二乙基甲醯胺、N-甲基-2-吡咯啶酮、N-乙基-2-吡咯啶酮、1,3-二甲基-2-咪唑啶酮、N-甲基己內醯胺、六甲基磷醯三胺、1,2-二甲氧基甲烷、雙(2-甲氧基乙基)醚、1,2-雙(2-甲氧基乙氧基)乙烷、四氫呋喃、雙[2-(2-甲氧基乙氧基)乙基]醚、1,4-二㗁烷、二甲基亞碸、二甲基碸、二苯醚、環丁碸、二苯基碸、四甲基脲、苯甲醚、間甲酚、苯酚、γ-丁內酯等極性溶劑(相對介電常數超過6之溶劑)、該等溶劑之混合物等,尤佳為水、N-甲基-2-吡咯啶酮、N-乙基-2-吡咯啶酮、γ-丁內酯。
<聚醯亞胺黏著劑前驅物組合物> 本發明之聚醯亞胺黏著劑前驅物組合物係使四羧酸成分與二胺成分於反應溶劑中發生反應而獲得。該反應溶劑可為上述中所例舉之溶劑,較佳為聚醯亞胺黏著劑前驅物組合物中直接含有反應溶劑。
該反應係使用大致等莫耳之四羧酸成分(四羧酸二酐)與二胺成分,於例如25℃以上100℃以下、較佳為80℃以下之較低溫下進行。雖無限定,但通常反應溫度為25℃~100℃,較佳為25℃~80℃,更佳為30℃~80℃,反應時間例如為0.1~72小時左右,較佳為2~60小時左右。反應於空氣氛圍下亦可進行,但通常於惰性氣體氛圍下、較佳為於氮氣氛圍下適宜地進行。
又,關於大致等莫耳之四羧酸成分(四羧酸二酐)與二胺成分,具體而言,以莫耳比[四羧酸成分/二胺成分]計為0.90~1.10左右,較佳為0.95~1.05左右。
聚醯亞胺黏著劑前驅物組合物之固形物成分濃度(以聚醯亞胺換算之聚醯亞胺前驅物濃度)較佳為超過5質量%~45質量%,更佳為超過10質量%~40質量%,進而較佳為超過10質量%~30質量%。若固形物成分濃度低於5質量%,則有可能使組合物之黏度過低,若高於45質量%,則有可能使組合物失去流動性。可將四羧酸成分與二胺成分之反應液直接用作聚醯亞胺黏著劑前驅物組合物,亦可視需要進行濃縮或稀釋來調整濃度。
關於溶液黏度(聚醯亞胺黏著劑前驅物組合物之黏度),30℃下之溶液黏度較佳為1000 Pa・sec以下,更佳為500 Pa・sec以下,進而較佳為300 Pa・sec以下,尤佳為200 Pa・sec以下。若溶液黏度為1000 Pa・sec以下,則容易進行電極活性物質粉末之混合及對集電體上之均勻塗佈而較佳。
聚醯亞胺黏著劑前驅物組合物中亦可預先含有以下<電極混合劑膠>項中說明之除了電極活性物質以外之添加劑。其後將以鋰離子二次電池為例對詳情進行說明。
<電極混合劑膠> 作為本發明之實施方式之一的電極混合劑膠係包含聚醯亞胺黏著劑前驅物組合物、電極活性物質、視需要追加之溶劑之組合物。
可在本發明之電極混合劑膠中使用之電極活性物質可適宜地使用公知者。本發明之聚醯亞胺黏著劑前驅物組合物可用於負極及正極中之任一者中。因此電極活性物質可為負極活性物質及正極活性物質中之任一種。通常,負極使用本發明之聚醯亞胺黏著劑前驅物組合物之效果更大。於該情形時,電極活性物質包含負極活性物質。作為電極活性物質,例如較佳為含鋰之金屬複合氧化物、碳粉末、矽粉末、錫粉末或者包含矽或錫之合金粉末。電極混合劑膠中之電極活性物質之量並無特別限定,可根據所需之容量而適當決定。通常,關於電極活性物質之量,相對於聚醯亞胺黏著劑前驅物組合物中之固形物成分(以聚醯亞胺換算之質量),以質量為基準較佳為0.1倍以上,更佳為1倍以上,進而更佳為5倍以上,進而更佳為10倍以上。若處於該等範圍內,則負極活性物質層中活性部分增多,故而可作為電極而充分發揮功能。另一方面,為了使電極活性物質充分黏結於集電體從而有效地防止脫落,電極活性物質之量相對於聚醯亞胺黏著劑前驅物組合物中之固形物成分通常較佳為1000倍以下。
作為鋰離子二次電池用負極活性物質,可單獨使用鋰金屬或鋰合金及可吸藏及釋出鋰之碳材料[易石墨化碳、(002)面之晶面間隔為0.37 nm以上之難石墨化碳、(002)面之晶面間隔為0.34 nm以下之石墨等]、錫(單質)、錫化合物、矽(單質)、矽化合物或Li 4Ti 5O 12等鈦酸鋰化合物等中之一種或組合兩種以上使用。於本發明中,作為負極活性物質,較佳為至少包含錫(單質)、錫化合物、矽(單質)或矽化合物等含矽物質(於以下說明中,有時亦記載為含矽負極活性物質或含矽活性物質)。尤其是矽(單質)或矽化合物等含矽物質相較於石墨理論容量極大,另一方面,充電時電極活性物質自身之體積膨脹率亦極大。
使用本發明之聚醯亞胺黏著劑前驅物組合物之鋰離子二次電池可抑制伴隨體積膨脹之電極活性物質之劣化,不僅循環特性等使用時之特性優異,高溫保存後之低溫特性及於產生氣體等之廣泛之溫度範圍內之特性亦優異。
含矽活性物質之種類並無特別限定,例如可例舉矽(單質)、矽化合物、矽之部分取代物、矽化合物之部分取代物、矽化合物之固溶體等。作為矽化合物之具體例,可適宜地例舉由SiOx(0.05<x<1.95)所表示之矽氧化物、由式:SiCy(0<y<1)所表示之矽碳化物、由式:SiNz(0<z<4/3)所表示之矽氮化物、矽與異種元素M之合金即矽合金等。於矽合金中,作為異種元素M1,可適宜地例舉選自由Fe、Co、Sb、Bi、Pb、Ni、Cu、Zn、Ge、In、Sn及Ti所組成之群中之至少一種元素。
又,矽之部分取代物係以異種元素M2取代矽(單質)及矽化合物中所含之矽之一部分而成之化合物。作為異種元素M2之具體例,例如可適宜地例舉B、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、N及Sn等。於該等含矽物質之中,較佳為矽(單質)、矽氧化物或矽合金,更佳為矽(單質)或矽氧化物。
作為含矽活性物質之量,以負極混合劑中之淨矽質量計,為了高容量化,較佳為1質量%以上,更佳為5質量%以上,進而較佳為10質量%以上,就提高循環特性之觀點而言,較佳為95質量%以下,更佳為65質量%以下,進而較佳為45質量%以下。
可於電極混合劑膠中使用之溶劑較佳為二甲苯、甲苯、乙基苯等芳香族烴;戊烷、己烷、庚烷等脂肪族烴類;苯甲酸甲酯、苯甲酸乙酯、苯甲酸丙酯等苯甲酸酯類等非極性溶劑;水、甲醇、乙醇、丙酮、N,N-二甲基甲醯胺、二甲基醯胺、N,N-二甲基乙醯胺、N,N-二乙基甲醯胺、N-甲基-2-吡咯啶酮、N-乙基-2-吡咯啶酮、1,3-二甲基-2-咪唑啶酮、N-甲基己內醯胺、六甲基磷醯三胺、1,2-二甲氧基甲烷、雙(2-甲氧基乙基)醚、1,2-雙(2-甲氧基乙氧基)乙烷、四氫呋喃、雙[2-(2-甲氧基乙氧基)乙基]醚、1,4-二㗁烷、二甲基亞碸、二甲基碸、二苯醚、環丁碸、二苯基碸,四甲基脲、苯甲醚、間甲酚、苯酚、γ-丁內酯,尤佳為水、N-甲基-2-吡咯啶酮、N-乙基-2-吡咯啶酮、γ-丁內酯。
關於溶劑,可直接使用聚醯亞胺黏著劑前驅物組合物中之溶劑,或者可視需要進行濃縮或以追加之形式添加溶劑來製成適於塗佈之濃度。
於本發明之電極混合劑膠中,於製成水溶劑系之情形時,較佳為含有吡啶類化合物、咪唑化合物。藉此,可使所獲得之聚醯亞胺相對於電解液之膨潤度更小,並使伸長係數(斷裂伸長率)及斷裂能量更大。又,可將用於獲得負極活性物質層之加熱處理溫度抑制得較低。吡啶類化合物係化學結構中具有吡啶骨架之化合物,例如可適宜地例舉吡啶、3-吡啶醇、喹啉、異喹啉、喹㗁啉、6-第三丁基喹啉、吖啶、6-喹啉羧酸、3,4-二甲基吡啶、嗒𠯤等。該等吡啶類化合物可使用一種或兩種以上。作為咪唑化合物,可例舉1,2-二甲基咪唑、2-乙基-4-甲基咪唑、4-乙基-2-甲基咪唑、1-甲基-4-乙基咪唑等。所使用之咪唑類可為一種,亦可為複數種之混合物。
吡啶類化合物之調配量並無限定,相對於聚醯亞胺前驅物(尤其是聚醯胺酸)之重複單元1莫耳,較佳為0.05~2.0莫耳當量,更佳為0.1~1.0莫耳當量。若添加量處於該範圍外,則有可能難以製成水溶劑系。咪唑化合物之調配量並無限定,相對於聚醯胺酸之醯胺酸重複單元1莫耳為1.6莫耳當量以上,更佳為2.0莫耳當量以上,進而較佳為2.4莫耳當量以上。
本發明之電極混合劑膠中可視需要調配公知之添加劑。例如,可於不損害本發明之效果之範圍內使用負極導電劑、鹼、界面活性劑、黏度調整劑、導電助劑、矽烷偶合劑、除聚醯亞胺系以外之黏著劑等。
負極導電劑並無特別限定,只要為不引起化學變化之電子導電材料即可,較佳為使用銅、鎳、鈦或鋁等金屬粉末或碳材料等。作為可用作導電劑或負極活性物質之碳材料,可適宜地例舉天然石墨(鱗片狀石墨等)、人造石墨等石墨;選自乙炔黑、科琴黑、煙囪黑、爐黑、燈黑及熱碳黑中之一種以上之碳黑;奈米碳管、碳纖維等纖維狀碳粉末。
又,作為負極導電劑,更佳為如石墨與碳黑、石墨與纖維狀碳粉末或碳黑與纖維狀碳粉末般適當混合來使用。尤其是,若使用纖維狀碳粉末,則具有為確保導電性而較少地使用比表面積較大之導電劑即可之效果,故而較佳。碳材料可用作導電劑或負極活性物質,該碳材料對負極混合劑之添加量較佳為1~90質量%,進而較佳為10~70質量%。
於將碳材料與含矽負極活性物質混合用作負極導電劑之情形時,關於含矽負極活性物質與碳材料之比率,就基於藉由與碳材料之混合所帶來之提高電子導電性之效果的循環改善之觀點而言,相對於負極混合劑中之含矽負極活性物質之淨矽之總質量,較佳為碳材料為10質量%以上,更佳為20質量%以上。又,若與含矽負極活性物質混合之碳材料之比率過多,則有降低負極混合劑層中之含矽負極活性物質量,減小高容量化之效果之虞,因此相對於碳材料之總質量,含矽負極活性物質之淨矽之質量較佳為1質量%以上,更佳為2質量%以上,進而較佳為5質量%以上。又,上述導電劑更佳為藉由預先與含矽活性物質混合並適當進行熱處理而複合化而成者。
於使用石墨之情形時,進而較佳為使用具有石墨之晶格面(002)之晶面間隔(d002)為0.340 nm(奈米)以下、尤其為0.335~0.337 nm之石墨型結晶結構的碳材料。尤佳為使用具有複數個扁平狀之石墨質微粒子相互非平行地集合或鍵結而成之塊狀結構的人造石墨粒子、或反覆施加壓縮力、摩擦力、剪力等機械作用,對鱗片狀天然石墨進行球形化處理而得之粒子。
若將負極之除集電體以外之部分之密度加壓成形為1.5 g/cm 3以上之密度時的負極片之由X射線繞射測定所得之石墨結晶之(110)面之峰值強度I(110)與(004)面之峰值強度I(004)之比I(110)/I(004)為0.01以上,則會提昇於更為廣泛之溫度範圍內之電化學特性,故而較佳,更佳為0.05以上,進而較佳為0.1以上。又,由於存在過度地過處理而降低結晶性並且降低電池之放電容量之情形,因此峰值強度之比I(110)/I(004)之上限較佳為0.5以下,更佳為0.3以下。
又,若高結晶性之碳材料(芯材)被結晶性低於芯材之碳材料被覆,則於廣泛之溫度範圍內之電化學特性會變得更加良好,故而較佳。被覆之碳材料之結晶性可藉由TEM(Transmission Electron Microscope,穿透式電子顯微鏡)確認。若使用高結晶性之碳材料,則有於充電時與非水電解液發生反應,因界面電阻增加而使高溫保存後之低溫特性及於產生氣體等之廣泛之溫度範圍內之鋰離子二次電池之特性下降之傾向,而於使用本發明之聚醯亞胺黏著劑前驅物組合物之情形時,鋰離子二次電池之特性會變得良好。
負極用混合劑膠中使用本發明之聚醯亞胺黏著劑前驅物組合物。亦可以95質量%以下之量、較佳為45質量%以下之量並用其他黏著劑。
作為除本發明之聚醯亞胺黏著劑前驅物組合物以外之黏著劑,例如可例舉:聚偏二氟乙烯、聚四氟乙烯、苯乙烯丁二烯橡膠、丁二烯橡膠、腈橡膠、聚丙烯腈、乙烯-乙烯醇共聚樹脂、乙烯丙烯二烯橡膠、聚胺基甲酸酯、聚丙烯酸、聚醯胺、聚丙烯酸酯、聚乙烯醚、氟橡膠、羧甲基纖維素、羧甲基纖維素鈉。
又,本發明之電極混合劑膠進而亦可包含固體電解質。作為固體電解質,例如可例舉:鈣鈦礦型結晶之La 0.51Li 0.34TiO 2.94、石榴石型結晶之Li 7La 3Zr 2O 12、NASICON型結晶之Li 1.3Al 0.3Ti 1.7(PO 4) 3、非晶形之LIPON(Li 2.9PO 3.3N 0.46)等氧化物系固體電解質、Li 2S-SiS 2系或Li 2S-P 2S 5系等硫化物系固體電解質。
本發明之電極混合劑膠可藉由應用公知之製造方法,對上述之成分進行添加、攪拌、混合等來製造成均勻之組合物。例如,於製造將聚醯亞胺系黏著劑與溶劑混合而得之溶液或分散液後,亦可藉由添加混合各種添加劑來製造電極混合劑膠。
<負極活性物質層、負極片> 藉由將本發明之負極混合劑膠流延或塗佈於導電性之集電體上,並進行加熱處理來去除溶劑,及視需要進行醯亞胺化反應,可形成於集電體上具有負極活性物質層之負極(負極片)。亦較佳為於形成負極片之製程中,使用滾筒壓機進行衝壓,直至達到目標電極密度。集電體可使用公知者。
存在於聚醯亞胺黏著劑前驅物組合物中之聚醯亞胺前驅物藉由加熱處理而被轉換為聚醯亞胺黏著劑,在使活性物質及導電劑等粒子相互黏結之同時黏結於集電體上。藉由加熱處理來去除溶劑,又,推進聚醯亞胺前驅物之醯亞胺化,降低了對於電解液等溶劑之溶解性,從而提昇了耐溶劑性。加熱處理可於例如80℃~450℃下實施。為了推進醯亞胺化,較佳為以最高溫度較佳為180℃~450℃、更佳為200℃~450℃,例如為250℃~380℃以上之方式進行加熱。於200℃以下(或未達)、尤其是180℃以下(或未達)之溫度範圍內主要進行溶劑加熱。因此,可分為主要去除溶劑之階段與主要推進醯亞胺化之階段,並分為於80℃~200℃(或180℃)下加熱之步驟1與於200℃以上(或180℃以上)之溫度下加熱之步驟2來階段性或連續性地進行加熱處理。實際上,於步驟1之高溫側有可能會進行醯亞胺化,又,根據步驟1中之溶劑去除程度,步驟2中亦會產生脫溶劑。
步驟1與步驟2之時間可考慮製程之簡便性及目標醯亞胺化率等而適當決定。步驟1之時間可為0秒(無步驟1之情形),較佳為1分鐘以上,更佳為10分鐘以上,較佳為5小時以下,更佳為2小時以下,另一方面,步驟2之時間較佳為10分鐘以上,更佳為30分鐘以上,較佳為24小時以下,更佳為12小時以下。
於存在於聚醯亞胺黏著劑前驅物組合物中之聚醯亞胺前驅物之醯亞胺化率較高之情形時,例如於醯亞胺化率為70%以上、較佳為80%以上(可為90%以上,亦可為100%)之情形時,有可能只需以加熱處理之方式主要去除溶劑之上述步驟1即可。然而,為了確實地去除溶劑及/或提高醯亞胺化率,亦可實施上述步驟2。
本發明之負極活性物質層之厚度可視用途或所需之容量而適當決定。並無限定,例如較佳為於0.1 μm~500 μm之範圍內使用。更佳為1 μm以上,進而更佳為10 μm以上,進而更佳為20 μm以上,更佳為300 μm以下,進而更佳為100 μm以下,進而更佳為50 μm以下。
<正極活性物質> 作為鋰二次電池用正極活性物質,可使用含有選自鈷、錳及鎳中之一種以上的與鋰之複合金屬氧化物。該等正極活性物質可單獨使用一種或組合兩種以上使用。 作為此種鋰複合金屬氧化物,例如可例舉選自LiCoO 2、LiMn 2O 4、LiNiO 2、LiCo 1-xNi xO 2(0.01<x<1)、LiCo 1/3Ni 1/3Mn 1/3O 2、LiNi 1/2Mn 3/2O 4及LiCo 0.98Mg 0.02O 2中之一種以上。又,亦可如LiCoO 2與LiMn 2O 4、LiCoO 2與LiNiO 2、LiMn 2O 4與LiNiO 2般併用。
又,為了提高過量充電時之安全性及循環特性,或實現於4.3 V以上之充電電位下之使用,鋰複合金屬氧化物之一部分可用其他元素取代。例如,亦可用Sn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cu、Bi、Mo、La等至少一種以上之元素取代鈷、錳、鎳之一部分,或用S或F取代O之一部分,或被覆含有該等其他元素之化合物。 其中,較佳為如LiCoO 2、LiMn 2O 4、LiNiO 2般之可於滿充電狀態下以Li為基準計為4.3 V以上之正極之充電電位下使用之鋰複合金屬氧化物,更佳為LiCo 1-xM xO 2(其中,M為選自Sn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn及Cu中之一種以上之元素,0.001≦x≦0.05)等異種元素取代鋰鈷氧化物;如LiNi 1/3Mn 1/3Co 1/3O 2、LiNi 0.5Mn 0.3Co 0.2O 2、LiNi 1/2Mn 3/2O 4、或Li 2MnO 3與LiMO 2(M為Co、Ni、Mn或Fe等過渡金屬)之固溶體般之於除鋰原子以外之全部金屬元素中鎳原子及錳原子所占之比率為50原子%以上100原子%以下之鋰複合金屬氧化物等、可於4.4 V以上使用之鋰複合金屬氧化物。若使用於高充電電壓下動作之鋰複合金屬氧化物,則容易因充電時與電解液之反應而降低於廣泛之溫度範圍內使用之情形時之鋰離子二次電池之特性,但若使用本發明之聚醯亞胺黏著劑前驅物組合物,則可抑制該等鋰離子二次電池之特性降低。
進而,作為正極活性物質,亦可使用含鋰之橄欖石型磷酸鹽。尤佳為包含選自鐵、鈷、鎳及錳中之一種以上之含鋰之橄欖石型磷酸鹽。作為其具體例,可適宜地例舉選自LiFePO 4、LiCoPO 4、LiNiPO 4及LiMnPO 4中之一種以上。 該等含鋰之橄欖石型磷酸鹽之一部分可用其他元素取代,亦可用選自Co、Mn、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、W及Zr等中之一種以上之元素取代鐵、鈷、鎳、錳之一部分,或者用含有該等其他元素之化合物或碳材料被覆。其中,較佳為LiFePO 4或LiMnPO 4。 又,含鋰之橄欖石型磷酸鹽亦可與例如上述之正極活性物質混合來使用。
<正極導電劑> 正極之導電劑並無特別限制,只要為不引起化學變化之電子導電材料即可。例如,可適宜地例舉天然石墨(鱗片狀石墨等)、人造石墨等石墨;選自乙炔黑、科琴黑、煙囪黑、爐黑、燈黑及熱碳黑中之一種以上之碳黑;奈米碳管、碳纖維等纖維狀碳粉末。又,更佳為如石墨與碳黑、石墨與纖維狀碳粉末或碳黑與纖維狀碳粉末般適當混合來使用。導電劑對正極混合劑之添加量較佳為1~10質量%,尤佳為2~5質量%。
<正極黏著劑> 正極用混合劑膠中可使用本發明之聚醯亞胺黏著劑前驅物組合物,作為其他黏著劑,亦可使用聚四氟乙烯(PTFE)、聚偏二氟乙烯(PVDF)、苯乙烯與丁二烯之共聚物(SBR)、丙烯腈與丁二烯之共聚物(NBR)、羧甲基纖維素(CMC)或乙烯丙烯二烯三元聚合物。 又,亦可將本發明之聚醯亞胺黏著劑前驅物組合物與其他黏著劑併用,此時之較佳之態樣與[負極黏著劑]中記載之態樣相同。
<正極片> 正極片係將正極黏著劑、正極活性物質以及適當之導電劑等任意之成分混合而成之電極混合劑膠流延或塗佈於集電體上形成活性物質層而獲得者。
<鋰離子二次電池> 作為本發明之實施方式之一的鋰離子二次電池係包含上述之負極(負極片)者,關於正極(正極片)、電解液、以及隔離膜等視需要而具備之構成,可採用鋰離子二次電池所需之公知之構成。又,該鋰離子二次電池亦可為使用凝膠電解質作為電解質之鋰聚合物電池、或使用氧化物系、硫化物系等無機固體電解質之全固體電池。
<其他蓄電裝置> 除鋰離子二次電池以外,本發明之聚醯亞胺黏著劑亦可使用於具有與鋰離子二次電池類似之機構之其他蓄電裝置、例如鋰離子電容器等中。 [實施例]
以下,藉由實施例及比較例對本發明進一步具體地進行說明,但本發明並不限於該等實施例。
對以下例中使用之化合物之縮略符號進行說明。 <四羧酸類> H''-PMDA:環己烷-1,2,4,5-四羧酸二酐(椅子型異構物) H'-PMDA:環己烷-1,2,4,5-四羧酸二酐(船型異構物) CBDA:1,2,3,4-環丁烷四羧酸二酐 CpODA:降𦯉烷-2-螺-α-環戊酮-α'-螺-2''-降𦯉烷5,5'',6,6''-四羧酸二酐 DNDAxx:(4arH,8acH)-十氫-1t,4t:5c,8c-二甲橋萘-2t,3t,6c,7c-四羧酸二酐 BTA:雙環[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐 H-sBPDA:[1,1'-雙(環己烷)]-3,3',4,4'-四羧酸二酐 PPHT:(八氫-1,3-二側氧-5-異苯并呋喃羧酸)1,4-苯二胺 PMDA:均苯四甲酸二酐 s-BPDA:3,3',4,4'-聯苯四羧酸二酐
<二胺類> ODA:4,4'-二胺基二苯醚 PPD:對苯二胺 TPE-R:1,3-雙(4-胺基苯氧基)苯 BAPP:2,2-雙[4-(4-胺基苯氧基)苯基]丙烷 MBAA:雙(4-胺基-3-羧基苯基)甲烷 DABAN:4,4'-二胺基苯甲醯苯胺 DATP:4,4''-二胺基對聯三苯
<其他> EC:碳酸乙二酯 DEC:碳酸二乙酯 VC:碳酸伸乙烯酯 NMP:N-甲基-2-吡咯啶酮
[表1]
<聚醯亞胺黏著劑之不可逆容量之計算> (A1)評估用負極之製作 將作為負極活性物質之石墨(MAG-D;塊狀人造石墨,昭和電工材料公司製造,平均粒徑20 μm)與聚醯亞胺黏著劑前驅物組合物(實施例、比較例)以按固形物成分比計成為92:8及95:5及97:3(質量%)之方式進行調配,並以漿料濃度成為約50質量%之方式添加NMP並進行混合,藉此製備負極混合劑膠。
將負極混合劑膠塗佈於作為集電體之鍍鎳鋼箔(厚度10 μm)上,並於110℃之加熱板上進行3分鐘預乾燥。其後進行滾筒衝壓,並放入電熱爐中於氬氣流下、360℃下進行1.5小時熱處理,藉此製作評估用負極(2 mAh/cm 2)。
(A2)評估用電池之製作 使用上述(1)中所獲得之評估用負極,以下述構成製作評估用電池。 • 電池形狀:2032型硬幣電池 • 相對電極:鋰箔(金屬鋰) • 電解液:以1M LiPF 6/EC:DEC=1:1(體積%) 添加VC1質量% • 隔離膜
(A3)電池評估 於以下條件下實施充放電。 • 測定溫度:30℃ • 充放電範圍:0.001~2.0 V (其中,最初之充電係於自然電位(約3 V)至0.001 V之範圍內進行) • 充放電電流值:0.02 C 充電容量與放電容量(mAh/g)係基於活性物質層整體之重量(活性物質之重量與黏著劑之重量之和)算出,並算出第1次之充電容量與第1次之最高為1 V時之放電容量之差作為不可逆容量。再者,此處將「評估用負極」吸藏Li視為「充電」,將自「評估用負極」釋出Li視為放電。
(A4)聚醯亞胺黏著劑本身之不可逆容量計算 如圖1所示,相對於聚醯亞胺黏著劑添加量(質量%),對上述(A3)中算出之電池之不可逆容量進行繪圖,並製作校準曲線。於所獲得之校準曲線中,將黏著劑添加量100%下之不可逆容量作為聚醯亞胺本身之不可逆容量。
<使用有聚醯亞胺黏著劑之矽單質系負極之評估> (B1)矽單質系負極之製作 將作為負極活性物質之矽(Elkem公司製造 平均粒徑3 μm)、聚醯亞胺黏著劑前驅物組合物(實施例、比較例)及導電助劑(DENKA公司製造之乙炔黑)以60:30:10(質量%)之固形物成分比混合,製備負極混合劑膠。將負極混合劑膠塗佈於作為集電體之鍍鎳鋼箔(厚度10 μm)上,於110℃下進行3分鐘預乾燥。其後進行滾筒衝壓,並放入電熱爐中於氬氣流下、360℃下進行1.5小時熱處理,藉此製作負極(3 mAh/cm 2)。
(B2)使用有矽單質系負極之電池評估 以與上述(A2)同樣之方式製作電池,並於以下條件下實施充放電。 • 測定溫度:30℃ • 充放電範圍:0.001~1.0 V (其中,最初之充電係於自然電位(約3 V)至0.001 V之範圍內進行) • 充放電電流值:0.1 C (B3)初始充放電效率 初始充放電效率係藉由下式求出。 初始充放電效率=(第1次之最高為1 V時之放電容量)/(第1次之充電容量)×100%
<聚醯亞胺黏著劑之機械特性之評估> 使用旋轉塗佈機將聚醯亞胺黏著劑前驅物組合物(實施例、比較例)塗佈於玻璃基板上,於80℃下乾燥10分鐘後,於氮氣氛圍下,於120℃下進行30分鐘、於150℃下進行10分鐘、於200℃下進行10分鐘、於250℃下進行10分鐘、及於350℃下進行10分鐘(升溫速度為5℃/分鐘)之熱處理,獲得厚度為10 μm之膜。將所獲得之膜分割成寬度10 mm、長度200 mm之短條狀而製作試驗樣品。 將試驗樣品設置於夾頭間距離被設定為100 mm之拉力試驗機上,以速度50 mm/分鐘拉伸樣品,並根據所獲得之應力-應變曲線計算出彈性模數、伸長係數(斷裂伸長率)、斷裂能量。測定環境為室溫、大氣中。
<聚醯亞胺黏著劑前驅物組合物之製造實施例、比較例> [組合物PI-1] 向反應容器中加入NMP 160 g,於用氮氣置換之狀態下使容器內成為50℃之狀態。向其中投入ODA 23.5916 g並使其溶解後,將H''-PMDA共計26.3424 g(相對於二胺之莫耳比為1)分階段地與NMP40 g一同加入,並於50℃下攪拌一晚而獲得聚醯亞胺黏著劑前驅物組合物PI-1。 黏度  49 P
[組合物PI-2~PI-12] 使用表2所示之四羧酸二酐及二胺,使其以與組合物PI-1同樣之方式發生反應而獲得聚醯亞胺黏著劑前驅物組合物PI-2~PI-12。將黏度及濃度示於表2中。
[組合物PI-10'](聚醯亞胺溶液型組合物) 由與組合物PI-10相同之單體組成推進醯亞胺化而製造聚醯亞胺溶液型之聚醯亞胺黏著劑前驅物組合物。首先,向反應容器中加入NMP 160 g,於用氮氣置換之狀態下使容器內成為50℃之狀態。向其中投入BAPP 32.3399 g並使其溶解後,將反應浴之溫度上升至70℃,並將H''-PMDA共計17.6601 g(相對於二胺之莫耳比為1)分階段地與NMP40 g一同加入。於70℃下攪拌30分鐘後,於170℃下攪拌3小時進行醯亞胺化,藉此獲得聚醯亞胺黏著劑前驅物組合物PI-10'。將黏度及濃度示於表2中。
[組合物PI-13~PI-14](共聚聚醯亞胺前驅物) 使用表2所示之兩種四羧酸二酐作為四羧酸成分,同樣地使用表2所示之二胺,使其以與組合物PI-1同樣之方式發生反應而獲得聚醯亞胺黏著劑前驅物組合物PI-13、PI-14。將黏度及濃度示於表2中。再者,關於使用有兩種以上之化合物作為四羧酸成分及二胺成分之組合物,將莫耳比示於單體後之( )內。
[組合物PI-15~PI-18] 使用表2所示之四羧酸二酐及二胺,使其以與組合物PI-1同樣之方式發生反應而獲得聚醯亞胺黏著劑前驅物組合物PI-15~PI-18。
[組合物PI-MIX](聚醯亞胺前驅物之摻合物) 如表2所示,將兩種聚醯亞胺黏著劑前驅物組合物摻合,獲得聚醯亞胺黏著劑前驅物組合物PI-MIX。將黏度及濃度示於表2中。於表2中,將混合比率以莫耳比(總單體單元數之比)示於( )內。
[組合物PI-19~PI-23] 使用表2所示之四羧酸二酐及二胺,使其以與組合物PI-1同樣之方式發生反應而獲得聚醯亞胺黏著劑前驅物組合物PI-19~PI-23。將黏度及濃度示於表2中。
[表2]
   四羧酸二酐/二胺 四羧酸成分/二胺比 黏度 聚合時濃度wt%
PI-1 H"-PMDA/ODA 1 49 P 20
PI-2 H'-PMDA/ODA 1 2 P 20
PI-3 CBDA/ODA 1 6 P 20
PI-4 CpODA/ODA 0.99 75 P 20
PI-5 DNDAxx/ODA 0.99 80 P 20
PI-6 BTA/ODA 1 0.1 P 10
PI-7 H-sBPDA/ODA 1 52 P 12
PI-8 PPHT/ODA 1 6 P 20
PI-9 H"-PMDA/TPE-R 1 66 P 20
PI-10 H"-PMDA/BAPP 1 62 P 20
PI-10' H"-PMDA/BAPP之PI溶液 1 2 P 20
PI-11 H"-PMDA/MBAA 1 1 P 20
PI-12 H"-PMDA/DABAN 0.99 69 P 20
PI-13 H"-PMDA(8)/s-BPDA(2)//ODA 1 75 P 20
PI-14 H"-PMDA(2)/s-BPDA(8)//ODA 1 110 P 20
PI-19 H"-PMDA//ODA(2)/DABAN(8) 1 18 P 18
PI-20 H"-PMDA//ODA(8)/DABAN(2) 0.99 7 P 18
PI-21 CBDA//TPE-R(3)/ODA(7) 0.99 26 P 14
PI-22 CBDA//TPE-R(5)/PPD(5) 0.99 43 P 14
PI-23 CBDA//BAPP 1 50 P 17
              
PI-15 s-BPDA/ODA 1 51 P 20
PI-16 s-BPDA(5)/ODPA(5)//ODA(7)/PPD(3) 1 55 P 33
PI-17 PMDA/ODA 0.99 48 P 14
PI-18 s-BPDA/DATP 0.98 20 P 14
PI-MIX PI-1(7)+PI-15(3)摻合物 1 50 P 20
<聚醯亞胺黏著劑之評估結果> 使用所製造之聚醯亞胺黏著劑前驅物組合物,根據<聚醯亞胺黏著劑之不可逆容量之計算>來製作評估用電池,進行電池評估並作成校準曲線,計算出聚醯亞胺黏著劑之不可逆容量。將結果示於表3中。
<使用有聚醯亞胺黏著劑之矽單質系負極之評估結果> 使用所製造之聚醯亞胺黏著劑前驅物組合物,根據<使用有聚醯亞胺黏著劑之矽單質系負極之評估>來製作使用矽作為負極活性物質之負極,並製作電池,對初始充放電效率進行評估。將結果示於表3中。
[表3]
實施例 黏著劑前驅物組合物 單體組成 黏著劑不可逆容量 mAh/g Si負極電池評估
初始充放電效率%
實施例1 PI-1 H''-PMDA//ODA 405 86.5
實施例2 PI-2 H'-PMDA//ODA 188 -
實施例3 PI-3 CBDA//ODA 509 85.5
實施例4 PI-4 CpODA//ODA 44 -
實施例5 PI-5 DNDAxx//ODA 108 -
實施例6 PI-6 BTA//ODA 110 -
實施例7 PI-7 H-sBPDA//ODA 97 -
實施例8 PI-8 PPHT//ODA 211 80.7
實施例9 PI-9 H"-PMDA//TPE-R 667 81.5
實施例10 PI-10 H''-PMDA//BAPP 31 -
實施例11 PI-10' H''-PMDA//BAPP(PI溶液) 8 -
實施例12 PI-11 H''-PMDA//MBAA 1063 -
實施例13 PI-12 H"-PMDA//DABAN 756 84.1
實施例14 PI-13 H''-PMDA(8)/s-BPDA(2)//ODA 1108 82.1
實施例15 PI-MIX PI-1(7)+PI-15(3)摻合物 1090 81.6
實施例16 PI-19 H"-PMDA//ODA(2)/DABAN(8) 828 84.1
實施例17 PI-20 H"-PMDA//ODA(8)/DABAN(2) 911 87.0
實施例18 PI-21 CBDA//TPE-R(3)/ODA(7) 557 -
實施例19 PI-22 CBDA//TPE-R(5)/PPD(5) 581 85.1
實施例20 PI-23 CBDA//BAPP 105 -
              
比較例1 PI-14 H''-PMDA(2)/s-BPDA(8)//ODA 1373 77.4
比較例2 PI-15 s-BPDA//ODA 1482 78.2
比較例3 PI-16 s-BPDA(5)/ODPA(5)//ODA(7)/PPD(3) 1488 78.2
比較例4 PI-17 PMDA/ODA 1483 -
比較例5 PI-18 s-BPDA/DATP 1431 -
根據表3可知,若聚醯亞胺黏著劑之不可逆容量為1200 mAh/g以下,則使用矽單質作為負極活性物質之電池之初始充放電效率為80%以上。因此,若使用本發明之聚醯亞胺黏著劑前驅物組合物,則可實現鋰離子二次電池之高容量化。
<聚醯亞胺黏著劑之機械特性之評估結果> 使用所製造之聚醯亞胺黏著劑前驅物組合物,根據<聚醯亞胺黏著劑之機械特性之評估>來對黏著劑之機械特性(彈性模數、伸長係數(斷裂伸長率)、斷裂能量)進行測定。將結果示於表4中。根據該結果顯示,由本發明之聚醯亞胺黏著劑前驅物組合物所獲得之聚醯亞胺黏著劑之機械特性優異,並可充分發揮作為黏著劑之功能。
[表4]
實施例 黏著劑前驅物組合物 單體組成 彈性模數 GPa 伸長係數 (斷裂伸長率) % 斷裂能量 MJ/m 3
實施例1 PI-1 H''-PMDA//ODA 3 119 134
實施例3 PI-3 CBDA//ODA 3.4 50 65
實施例8 PI-8 PPHT//ODA 1.3 100 76
實施例9 PI-9 H"-PMDA//TPE-R 2.5 167 162
實施例10 PI-10 H"-PMDA//BAPP 2.2 155 163
實施例11 PI-10' H"-PMDA//BAPP(PI溶液) 2.2 155 163
實施例13 PI-12 H"-PMDA//DABAN 4.4 38 56
實施例14 PI-13 H''-PMDA(8)/s-BPDA(2)//ODA 2.4 107 124
實施例16 PI-19 H"-PMDA//ODA(2)/DABAN(8) 3.8 49 68
實施例17 PI-20 H"-PMDA//ODA(8)/DABAN(2) 2.9 87 112
實施例18 PI-21 CBDA//TPE-R(3)/ODA(7) 3.8 65 93
實施例19 PI-22 CBDA//TPE-R(5)/PPD(5) 4.6 95 136
實施例20 PI-23 CBDA//BAPP 2.5 131 129
[產業上之可利用性]
本發明可適宜地用作鋰離子二次電池等蓄電裝置之電極黏著劑。
圖1係表示本發明中之聚醯亞胺黏著劑本身之不可逆容量計算方法之一個態樣之圖。

Claims (8)

  1. 一種聚醯亞胺黏著劑前驅物組合物,其係包含四羧酸成分與二胺成分之反應物及溶劑之蓄電裝置電極用之聚醯亞胺黏著劑前驅物組合物, 由該聚醯亞胺黏著劑前驅物組合物所獲得之聚醯亞胺黏著劑之不可逆容量為1200 mAh/g以下。
  2. 如請求項1之聚醯亞胺黏著劑前驅物組合物,其中上述聚醯亞胺黏著劑前驅物組合物包含含有50莫耳%以上之脂環式四羧酸二酐的四羧酸成分與二胺成分之反應物及溶劑。
  3. 如請求項1之聚醯亞胺黏著劑前驅物組合物,其中上述二胺成分含有50莫耳%以上之芳香族二胺化合物。
  4. 一種蓄電裝置用負極混合劑膠,其含有如請求項1之聚醯亞胺黏著劑前驅物組合物與包含含矽物質及/或石墨之活性物質。
  5. 一種蓄電裝置用負極,其具備: (a)負極活性物質層,其含有:包含含矽物質及/或石墨之活性物質、及 聚醯亞胺黏著劑,其係如請求項1至3中任一項之聚醯亞胺黏著劑前驅物組合物中所包含之聚醯亞胺前驅物之加熱產物,並且黏結有上述活性物質;及 (b)集電體。
  6. 一種蓄電裝置,其具備如請求項5之蓄電裝置用負極。
  7. 一種蓄電裝置用負極之製造方法,其具有以下步驟: 將如請求項4之負極混合劑膠流延或塗佈於集電體上之步驟; 對所塗佈之負極混合劑膠之層進行加熱處理,形成負極活性物質層之步驟。
  8. 一種蓄電裝置之製造方法,其具有如請求項7之負極之製造方法作為1個步驟。
TW112102567A 2022-01-21 2023-01-19 聚醯亞胺黏著劑前驅物組合物、及使用其之蓄電裝置 TW202338055A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-007980 2022-01-21
JP2022007980 2022-01-21
JP2022105139 2022-06-29
JP2022-105139 2022-06-29

Publications (1)

Publication Number Publication Date
TW202338055A true TW202338055A (zh) 2023-10-01

Family

ID=87348314

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112102567A TW202338055A (zh) 2022-01-21 2023-01-19 聚醯亞胺黏著劑前驅物組合物、及使用其之蓄電裝置

Country Status (2)

Country Link
TW (1) TW202338055A (zh)
WO (1) WO2023140276A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105492496B (zh) * 2013-06-27 2017-09-22 宇部兴产株式会社 聚酰亚胺前体和聚酰亚胺
KR102162042B1 (ko) * 2019-02-01 2020-10-06 윙고 테크놀로지 가부시키가이샤 폴리이미드 화합물 및 해당 폴리이미드 화합물을 포함하는 성형물
WO2021053800A1 (ja) * 2019-09-19 2021-03-25 ウィンゴーテクノロジー株式会社 溶媒可溶性ポリイミド化合物、該溶媒可溶性ポリイミド化合物を含むリチウムイオン二次電池負極作製用樹脂組成物、該リチウムイオン二次電池負極作製用樹脂組成物を用いて構成されるリチウムイオン二次電池用負極、及び該リチウムイオン二次電池用負極を備えるリチウムイオン二次電池
JPWO2021153147A1 (zh) * 2020-01-30 2021-08-05

Also Published As

Publication number Publication date
WO2023140276A1 (ja) 2023-07-27

Similar Documents

Publication Publication Date Title
JP5130273B2 (ja) 非水系二次電池用負極およびその製造方法
KR102459626B1 (ko) 수용성 폴리아믹산 및 이의 제조방법, 상기 폴리아믹산을 포함하는 리튬 전지용 바인더 조성물 및 이를 이용하여 제조된 리튬 전지
JP5684620B2 (ja) 非水系二次電池用バインダー樹脂組成物、非水系二次電池用負極及び非水系二次電池
KR102504976B1 (ko) 리튬 이차 전지의 전극용 바인더 수지, 리튬 이차 전지용 전극 및 리튬 이차 전지
WO2015046304A1 (ja) 蓄電デバイス用ポリイミドバインダー、それを用いた電極シート及び蓄電デバイス
WO2016051784A1 (ja) 二次電池用負極、及びその製造方法、並びにこれを備えたリチウムイオン二次電池
KR20210059436A (ko) 폴리아믹산 수용액 조성물
TW201343840A (zh) 鋰離子二次電池用電極合劑漿料及電極、以及鋰離子二次電池
JP7246182B2 (ja) 二次電池、及び二次電池用多孔質セパレータ
JP2023113663A (ja) 電極
JP7144794B2 (ja) リチウムイオン二次電池製造用バインダー及びこれを用いたリチウムイオン二次電池
JP2011142068A (ja) バインダー用樹脂前駆体、樹脂前駆体溶液、及びバインダー組成物
TW202338055A (zh) 聚醯亞胺黏著劑前驅物組合物、及使用其之蓄電裝置
JP2013175316A (ja) リチウムイオン二次電池およびそれを搭載する車両
KR101711437B1 (ko) 이차전지 음극재용 바인더
TW202041642A (zh) 蓄電裝置用聚醯亞胺系黏結劑、電極合劑膏、負極活性物質層、蓄電裝置用負極片及蓄電裝置
WO2011071106A1 (ja) 二次電池用負極及びこれを用いた二次電池、並びに、二次電池の形成に用いるバインダー用樹脂前駆体、樹脂前駆体溶液、及びバインダー組成物