TW202337676A - 樹脂積層光學體的製造方法 - Google Patents

樹脂積層光學體的製造方法 Download PDF

Info

Publication number
TW202337676A
TW202337676A TW112121470A TW112121470A TW202337676A TW 202337676 A TW202337676 A TW 202337676A TW 112121470 A TW112121470 A TW 112121470A TW 112121470 A TW112121470 A TW 112121470A TW 202337676 A TW202337676 A TW 202337676A
Authority
TW
Taiwan
Prior art keywords
optical
base material
resin layer
resin
master
Prior art date
Application number
TW112121470A
Other languages
English (en)
Inventor
田澤洋志
Original Assignee
日商迪睿合股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商迪睿合股份有限公司 filed Critical 日商迪睿合股份有限公司
Publication of TW202337676A publication Critical patent/TW202337676A/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • B29C59/046Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts for layered or coated substantially flat surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/011Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion

Abstract

[課題]提供一種新穎且已改良的樹脂積層光學體及其製造方法,其可容易地調整源自於微細凹凸構造的光學特性以外的光學特性,進而減少光學裝置的製造成本。 [解決手段]為了解決上述課題,根據本發明的某一觀點,可提供一種樹脂積層光學體,其具備:光學基材,具有曲面;及樹脂層,設置於光學基材的曲面上,前述樹脂積層光學體之特徵在於:在樹脂層的表面形成有微細凹凸構造,且樹脂積層光學體具有:第1光學特性,源自於微細凹凸構造;及第2光學特性,源自於樹脂層的微細凹凸構造以外的特性,且和光學基材的光學特性不同。

Description

樹脂積層光學體的製造方法
發明領域 本發明是有關於一種樹脂積層光學體及其製造方法。
發明背景 近年來,內含多數個光學元件的光學機器(例如各種圖像投影裝置、攝像裝置等)的開發、普及一直在進行中。於這些光學機器中,從對人體的裝設、對各種機器或車輛等之基礎結構的組裝之類的觀點來看,所強烈地期望的是小型輕量化。為了因應於像這樣的期望,已有如例如專利文獻1、2所揭示地,使複數個光學元件複合化的技術被提出。具體而言,在專利文獻1、2中,是使具有微細凹凸構造的樹脂層於光學透鏡的表面複合化。根據專利文獻1、2,可以對光學透鏡賦與源自於微細凹凸構造的光學特性。 先前技術文獻 專利文獻
專利文獻1:日本專利特開2013-256015號公報 專利文獻2:日本專利特開2001-300944號公報
發明概要 發明欲解決之課題 像這樣,專利文獻1、2所揭示的複合透鏡(將樹脂層於光學透鏡的表面複合化而成之透鏡),會具有源自於微細凹凸構造的光學特性。然而,複合透鏡的其他光學特性(例如焦點距離)和原本的光學透鏡是同樣的。因此,為了調整其他的光學特性,必須將其他光學特性不同的光學透鏡配置在光路上。具體而言,必須準備複數個種類之用於製作光學透鏡的模具,並利用這些模具來製作具有所期望的光學特性的光學透鏡。因此,在其他光學特性的調整上非常地耗時費工,結果,有裝置的大型化、或光學裝置的製造成本增加之類的問題。
於是,本發明是有鑒於上述問題而完成的發明,本發明之目的在於提供一種新穎且已改良的樹脂積層光學體及其製造方法,其不僅對原本的光學基材賦與源自於微細凹凸構造的光學特性,並且可以同時地賦與且容易地調整源自於微細凹凸構造的光學特性以外的光學特性,進而能夠實現光學裝置的省空間化、及製造成本的減少。 用以解決課題之手段
為了解決上述課題,根據本發明的某一觀點,可提供一種樹脂積層光學體,其具備:光學基材,具有曲面;及樹脂層,設置於光學基材的曲面上,前述樹脂積層光學體之特徵在於:在樹脂層的表面形成有微細凹凸構造,且樹脂積層光學體具有:第1光學特性,源自於微細凹凸構造;及第2光學特性,源自於樹脂層的微細凹凸構造以外的特性,且和光學基材的光學特性不同。
在此,第2光學特性亦可藉由樹脂層的微細凹凸構造以外的形狀來賦與於樹脂積層光學體。
又,亦可為:樹脂層按光學基材的曲面的每個區域而具有不同的厚度。
又,亦可為:樹脂層的最小厚度與最大厚度之比值T比1更小。
又,亦可為:樹脂層的表面是形成為曲面,且樹脂層的表面的曲率半徑和光學基材的曲面的曲率半徑不同。
又,亦可為:樹脂層的表面的曲率半徑與光學基材的曲面的曲率半徑之比值R比1更大。
又,亦可為:樹脂層的折射率和光學基材的折射率不同。
又,亦可為:微細凹凸構造為蛾眼(moth eye)構造、光擴散構造、微透鏡陣列(microlens array)構造、或繞射光柵構造之任意1個種類以上。
根據本發明的其他觀點,可提供一種樹脂積層光學體的製造方法,其特徵在於: 包含以下步驟: 第1步驟,準備具有曲面的光學基材; 第2步驟,在光學基材的曲面上形成未硬化樹脂層; 第3步驟,準備在表面形成有微細凹凸構造之反轉構造並且具有可撓性的可撓性母盤; 第4步驟,使可撓性母盤接近於未硬化樹脂層; 第5步驟,藉由對可撓性母盤施加印壓,而一邊使可撓性母盤變形一邊將可撓性母盤的反轉構造壓抵於未硬化樹脂層;及 第6步驟,在已將可撓性母盤的反轉構造壓抵於未硬化樹脂層的狀態下,使未硬化樹脂層硬化,藉此在光學基材的曲面上形成樹脂層, 在第5步驟中,是藉由調整印壓,而調整樹脂層的微細凹凸構造以外的形狀,且藉由樹脂層的微細凹凸構造以外的形狀而賦與於樹脂積層光學體的光學特性,和光學基材的光學特性不同。
在此,亦可為:在第5步驟中,是將可撓性母盤的表面與光學基材的曲面之距離,按光學基材的曲面的每個區域來設成不同的值。
又,亦可為:在第5步驟中,是藉由調整印壓,而將可撓性母盤的表面與光學基材的曲面之最小距離與最大距離之比值設為比1更小的值。
又,亦可為:在第5步驟中,是藉由調整印壓,而將可撓性母盤的曲率半徑設為和光學基材的曲率半徑不同的值。
又,亦可為:在第5步驟中,是藉由調整印壓,而將可撓性母盤的曲率半徑設成其與光學基材的曲率半徑之比值為比1更大的值。
又,亦可為:樹脂層的折射率和光學基材的折射率不同。
又,亦可為:微細凹凸構造為蛾眼構造、光擴散構造、微透鏡陣列、或繞射光柵之任意1個種類以上。 發明效果
如以上所說明,根據本發明,可以對原本的光學基材賦與源自於微細凹凸構造的第1光學特性。此外,可以藉由調整樹脂層的特性,而將第2光學特性(亦即,源自於微細凹凸構造的光學特性以外的光學特性)和上述第1光學特性同時地賦與於樹脂積層光學體。從而,在欲調整第2光學特性的情況下,毋須按每個第2光學特性來準備不同的光學基材。亦即,不需要為了調整第2光學特性而準備複數個種類的光學基材的模具。從而,可以容易地調整第2光學特性。此外,可以藉由將樹脂積層光學體適用於光學裝置,而實現光學裝置的省空間化與製造成本的減少。
用以實施發明的形態 以下,參照附圖並且針對本發明之較佳的實施形態詳細地說明。再者,在本說明書及圖式中,對於實質上具有相同功能構成的構成要素會賦予相同符號,藉此省略重複說明。
<1.樹脂積層光學體的構成> 首先,根據圖1~圖2來說明本實施形態之樹脂積層光學體1的構成。如圖1所示,樹脂積層光學體1具備光學基材10與樹脂層20。光學基材10為凸透鏡,且具有凸型的曲面11。再者,在圖1的例子中,雖然光學基材10是形成為平凸透鏡(單面成為平面的凸透鏡),但亦可為雙凸透鏡(兩面形成為凸面的凸透鏡)。光學基材10的材料並無特別限制,只要是可使用於光學透鏡的材料即可。作為光學基材10的材料之一例,可列舉聚碳酸酯、丙烯酸酯、環烯烴聚合物、環烯烴共聚物、聚丙烯、玻璃等。光學基材10的材料,只要因應於樹脂積層光學體1的用途等來適當選擇即可。
在曲面11上,為了提升與樹脂層20的密合性,亦可施行各種前處理(將樹脂層20積層於曲面11前的處理)。作為像這樣的前處理,可列舉例如電暈處理、準分子處理、UV臭氧處理、加熱處理、火焰處理(讓火焰作用於曲面11的處理)、溶劑洗淨、底漆塗布處理等。
樹脂層20是設置在光學基材10的曲面11上。如圖2所示,在樹脂層20的表面21上形成有微細凹凸構造30。微細凹凸構造30是以多數個微細凸部30a及微細凹部30b所構成。具體而言,微細凹凸構造30亦可為例如蛾眼構造、光擴散構造、微透鏡陣列構造、或繞射光柵構造。在微細凹凸構造30為蛾眼構造的情況下,是將微細凸部30a或微細凹部30b以可見光波長以下的平均週期來配置排列於表面21。藉此,可抑制表面21上的環境光線的反射。微細凹凸構造30具有光擴散構造的情況下,是將微細凸部30a或微細凹部30b的形狀調整成使通過光學基材10內而到達微細凹凸構造30的光擴散而朝外部放射。微細凹凸構造30為微透鏡陣列構造的情況下,微細凸部30a或微細凹部30b是形成為微米級的微透鏡。微細凹凸構造30為繞射光柵構造的情況下,微細凸部30a或微細凹部30b具有繞射光柵的形狀。當然,微細凹凸構造30並不限定於上述的例子。又,在樹脂層20的表面21上,亦可讓前述所例示的複數個種類的構造混合存在來配置排列。此外,亦可讓已調整成即使是同種的圖案但光學特性仍然不同的微細凹凸構造30於樹脂層20的表面21上混合存在來配置排列。例如將光擴散構造配置於樹脂層20的表面21上的情況下,也可因應於設計上的必要,而在表面21的中央部與周邊部配置排列擴散特性不同的構造。
樹脂層20是以硬化性樹脂的硬化物所構成。硬化性樹脂的硬化物宜具有透明性。硬化性樹脂包含聚合性化合物與硬化引發劑。聚合性化合物是藉由硬化引發劑而硬化的樹脂。作為聚合性化合物,可列舉例如環氧聚合性化合物及丙烯酸聚合性化合物等。環氧聚合性化合物是在分子內具有1個或2個以上的環氧基之單體、寡聚物、或預聚物。作為環氧聚合性化合物,可列舉各種雙酚型環氧樹脂(雙酚A型、F型等)、酚醛型環氧樹脂、橡膠及胺甲酸乙酯等之各種改質環氧樹脂、萘型環氧樹脂、聯苯型環氧樹脂、苯酚酚醛型環氧樹脂、二苯乙烯型環氧樹脂、三酚甲烷型環氧樹脂、二環戊二烯型環氧樹脂、三苯甲烷型環氧樹脂、及其等的預聚物等。
丙烯酸聚合性化合物是在分子內具有1個或2個以上的丙烯酸基的單體、寡聚物、或預聚物。在此,可將單體進一步分類成分子內具有1個丙烯酸基的單官能單體、分子內具有2個丙烯酸基的二官能單體、分子內具有3個以上丙烯酸基的多官能單體。
作為「單官能單體」,可列舉例如:羧酸類(丙烯酸等)、羥基類(2-羥基乙基丙烯酸酯、2-羥基丙基丙烯酸酯、4-羥基丁基丙烯酸酯)、烷基或脂環類的單體(異丁基丙烯酸酯、t-丁基丙烯酸酯、異辛基丙烯酸酯、月桂基丙烯酸酯、十八烷基丙烯酸酯、異莰基丙烯酸酯、環己基丙烯酸酯)、其他功能性單體(2-甲氧基乙基丙烯酸酯、甲氧基乙二醇丙烯酸酯、2-乙氧基乙基丙烯酸酯、四氫呋喃甲基丙烯酸酯、苄基丙烯酸酯、乙基卡必醇丙烯酸酯、苯氧基乙基丙烯酸酯、N,N-二甲基胺基乙基丙烯酸酯、N,N-二甲基胺基丙基丙烯醯胺、N,N-二甲基丙烯醯胺、丙烯醯基𠰌啉、N-異丙基丙烯醯胺、N,N-二乙基丙烯醯胺、N-乙烯基吡咯啶酮、2-(全氟辛基)乙基丙烯酸酯、3-全氟己基-2-羥基丙基丙烯酸酯、3-全氟辛基-2-羥基丙基-丙烯酸酯、2-(全氟癸基)乙基丙烯酸酯、2-(全氟-3-甲基丁基)乙基丙烯酸酯)、2,4,6-三溴酚丙烯酸酯、2,4,6-三溴酚甲基丙烯酸酯、2-(2,4,6-三溴苯氧基)乙基丙烯酸酯)、2-乙基己基丙烯酸酯等。
作為「二官能單體」,可列舉例如三(丙二醇)二丙烯酸酯、三羥甲基丙烷-二烯丙基醚、胺甲酸乙酯丙烯酸酯等。
作為「多官能單體」,可列舉例如三羥甲基丙烷三丙烯酸酯、二新戊四醇五及六丙烯酸酯、二三羥甲基丙烷四丙烯酸酯等。
作為上述所列舉的丙烯酸聚合性化合物以外的例子,可列舉:丙烯醯基𠰌啉、甘油丙烯酸酯、聚醚系丙烯酸酯、N-乙烯甲醯胺、N-乙烯己內酯、乙氧基二乙二醇丙烯酸酯、甲氧基三乙二醇丙烯酸酯、聚乙二醇丙烯酸酯、EO改質三羥甲基丙烷三丙烯酸酯、EO改質雙酚A二丙烯酸酯、脂肪族胺甲酸乙酯寡聚物、聚酯寡聚物等。
可以藉由調整硬化性樹脂的構成單位,亦即單體、寡聚物、或預聚物的種類、混合比例等,來調整樹脂層20的特性,例如折射率、黏度等。
硬化引發劑是使硬化性樹脂硬化的材料。作為硬化引發劑的例子,可列舉例如熱硬化引發劑、光硬化引發劑等。硬化引發劑亦可為藉由熱、光以外之任意的能量線(例如電子束)等而硬化的材料。在硬化引發劑為熱硬化引發劑的情況下,硬化性樹脂是熱硬化性樹脂,在硬化引發劑為光硬化引發劑的情況下,硬化性樹脂是光硬化性樹脂。
在此,從樹脂層20的透明性之觀點來看,硬化引發劑宜為紫外線硬化引發劑。紫外線硬化引發劑是光硬化引發劑的一種。作為紫外線硬化引發劑,可列舉例如2,2-二甲氧基-1,2-二苯基乙烷-1-酮、1-羥基-環己基苯酮、2-羥基-2-甲基-1-苯基丙烷-1-酮等。從而,硬化性樹脂宜為紫外線硬化性樹脂。從透明性的觀點來看,較佳的是,硬化性樹脂為紫外線硬化性丙烯酸樹脂。
上述硬化性樹脂可以配合構成光學基材10的材料的光學特性、或裝置的光學設計來適當選擇、調整。例如,藉由不僅是利用具有和光學基材10同等的折射率之硬化性樹脂使曲率變更來調整焦點距離,還利用具有和光學基材10不同的折射率波的波長分散特性之硬化性樹脂,也可以期待焦點距離或像差特性的調整效果。如此,即使藉由硬化性樹脂的材料,也可以對樹脂積層光學體1賦與和光學基材10的光學特性不同的光學特性。
由於樹脂積層光學體1具有上述之樹脂層20,因此具有源自於微細凹凸構造30的第1光學特性(例如反射防止特性)。此外,樹脂積層光學體1具有和光學基材10的光學特性不同的第2光學特性。
在此,第2光學特性是藉由樹脂層20的微細凹凸構造30以外的特性(例如,形狀、折射率等)而賦與於樹脂積層光學體1。更具體而言,如圖1所示,樹脂層20是按光學基材10的曲面11的每個區域而具有不同的厚度。更具體而言,光學基材10的光軸(中心軸)上的厚度T1為最小,外緣部中的厚度T2為最大。亦即,樹脂層20的最小厚度T1與最大厚度T2之比值T1/T2(以下也稱為「厚度之比值T」)為比1更小。厚度的測定方法容後敘述。
從而,樹脂層20的表面21是形成為曲面,表面21的曲率半徑和光學基材10的曲面11的曲率半徑不同。更具體而言,表面21的曲率半徑是比光學基材10的曲面11的曲率半徑更大。亦即,樹脂層20的表面21的曲率半徑R1與光學基材10的曲面11的曲率半徑R2之比值R1/R2(以下也稱為「曲率半徑之比值R」)為比1更大。
在此,如上述,由於在樹脂層20的表面21形成有微細凹凸構造30,因此並非平坦。於是,樹脂層20的表面21的曲率半徑及樹脂層20的厚度是藉由例如以下的方法來測定。觀察樹脂積層光學體1的中心之截面(通過光軸,且平行於光軸的截面)。然後,藉由最小平方法對所得到的表面21的曲線進行球面擬合(fitting)。藉此取得表面21的曲線,並且依據此曲線來算出表面21的曲率半徑。
此外,觀察光學基材10(亦即,加工前)的中心之截面(通過光軸,且平行於光軸的截面),並將所得到的圖像與樹脂積層光學體1的中心之截面進行對比,藉此特定樹脂層20的區域。並且,將從藉由上述之球面擬合而得到的表面21的曲線到曲面11的曲線之距離設為樹脂層20的厚度。可將樹脂層20的厚度按樹脂層20的每個區域來測定。
作為曲率半徑及厚度的測定所使用的測定裝置,可列舉例如各種3維測定器(例如,Panasonic公司製造的3維測定器UA3P)。在後述的實施例中,是藉由上述的方法來測定曲率半徑及厚度。
從而,在圖1的例子中,樹脂積層光學體1的焦點距離(或像差特性)和光學基材10的焦點距離(或像差特性)不同。從而,焦點距離(或像差特性)成為第2光學特性。當然,第2光學特性並不限定於此例,只要是可藉由樹脂層20的形狀來賦與於樹脂積層光學體1的光學特性,無論是何種光學特性皆可。亦即,在本實施形態中,可以藉由調整樹脂層20的形狀,來對樹脂積層光學體1賦與第2光學特性。再者,由於第2光學特性是藉由樹脂層20的形狀來賦與於樹脂積層光學體1,因此大多是所謂的幾何光學特性。
又,第2光學特性並不一定是限定於藉由樹脂層20的形狀來賦與於樹脂積層光學體1的光學特性。例如,可以藉由將樹脂層20的折射率(更詳細而言,為硬化後的折射率)設為和光學基材10的折射率不同的值,而對樹脂積層光學體1賦與第2光學特性(具體而言為焦點距離或像差特性)。在此情況下,雖然樹脂層20的表面21的曲率半徑和光學基材10的曲率半徑相同亦可,但較佳為不同。
如此,在本實施形態中,可以對原本的光學基材10賦與源自於微細凹凸構造30的第1光學特性。此外,可以藉由調整樹脂層20的特性(具體而言為形狀、折射率等),而將第2光學特性(例如,焦點距離或像差特性)和上述第1光學特性同時地賦與於樹脂積層光學體1。更具體而言,可以藉由調整樹脂層20的曲率半徑或折射率,而調整樹脂積層光學體1的焦點距離或像差特性。從而,在欲調整第2光學特性的情況下,毋須按每個第2光學特性來準備不同的光學基材10。亦即,不需要為了調整第2光學特性而準備複數個種類的光學基材10的模具。從而,可以容易地調整第2光學特性。此外,可以藉由將樹脂積層光學體1適用於光學裝置,而實現光學裝置的省空間化與製造成本的減少。
再者,雖然在圖1的例子中光學基材10是形成為凸透鏡,但是當然亦可如圖3所示地為凹透鏡。亦即,光學基材10只要是具有曲面11的基材,無論是何種光學基材皆可。雖然在圖3中光學基材10是形成為平凹透鏡(單面成為平面的凹透鏡),但亦可為雙凹透鏡(兩面形成為凹面的凹透鏡)。在此例中,也是在樹脂層20的表面形成有微細凹凸構造30。此外,樹脂層20是按光學基材10的曲面11的每個區域而具有不同的厚度。更具體而言,光學基材10的光軸(中心軸)上的厚度T2為最大,外緣部中的厚度T1為最小。亦即,厚度之比值T為比1更小。
從而,樹脂層20的表面21是形成為曲面,且表面21的曲率半徑是比光學基材10的曲面11的曲率半徑更大。亦即,曲率半徑之比值R比1更大。
<2.樹脂積層光學體的製造方法> 樹脂積層光學體1可以藉由所謂的壓印(imprinting)法來製作。以下,依據圖4~圖8來說明樹脂積層光學體1的製造方法。再者,在圖4~圖8的例子中,光學基材10是形成為雙凸透鏡。
(2-1.第1步驟) 首先,準備上述之光學基材10。
(2-2.第2步驟) 接著,如圖4所示,將光學基材10設置(set)於光學基材固定治具600。接著,利用塗布裝置700,於光學基材10的曲面11(在此為單側的凸面)上塗布未硬化的硬化性樹脂。藉此,在光學基材10的曲面11上形成未硬化樹脂層20a。在此,硬化性樹脂的折射率亦可和光學基材10的折射率不同。塗布裝置700的種類並無特別限制,亦可為例如旋轉塗布機、分配器(dispenser)、噴墨裝置等。塗布裝置700的種類只要因應於未硬化樹脂層20a的屬性等來選擇即可。為了調整未硬化樹脂層20a對光學基材10的密合性、未硬化樹脂層20a的黏度等,亦可在塗布之前或塗布之期間將光學基材10加熱。又,亦可因應於未硬化樹脂層20a的種類,在塗布後對未硬化樹脂層20a施行加熱處理。再者,塗布裝置700亦可組裝於後述之腔室裝置500,亦可和腔室裝置500為分開獨立。
(2-3.第3步驟) 在第3步驟中,是準備圖5所示的可撓性母盤400。在此,可撓性母盤400是具有可能性的薄膜,且在其表面形成有微細凹凸構造30的反轉構造(以下也稱為「反轉凹凸構造430」)。可撓性母盤400有時也稱為軟性模具(soft mold)。反轉凹凸構造430是顯示於圖13。針對可撓性母盤400的製造方法容後敘述。第3步驟只要至少在後述之第4步驟進行前進行即可。
(2-4.第4步驟) 第4步驟是以光學基材與可撓性母盤設置(set)步驟、及光學基材接近步驟所構成。
(光學基材與可撓性母盤設置步驟) 如圖5所示,將光學基材固定治具600及光學基材10設置於腔室裝置500中。在此,腔室裝置500是中空的裝置,且具有上腔室模箱510、下腔室模箱520、薄膜固定治具530、及可動工作台540。上腔室模箱510是於下側開口之箱型的構件,下腔室模箱520是於上側開口之箱型的構件。
於上腔室模箱510及下腔室模箱520連接有真空泵浦或氣動泵浦,且可以將各自的內部空間設為負壓或正壓狀態。在此,將各腔室模箱內的空間設為正壓狀態時,是將各種流體導入至各腔室模箱內的空間。在此,流體的例子雖然為例如空氣等之氣體,但亦可為液體。各腔室模箱內的壓力之具體的值、保持那樣的壓力的時間是可任意調整的。又,在上腔室模箱510內設置有未圖示的紫外線照射裝置。紫外線照射裝置亦可設置於下腔室模箱520內。紫外線的強度、照射時間是可任意調整的。再者,在此例中雖然是未硬化樹脂層20a為紫外線硬化性樹脂之情形成為前提,但是在為其他種類的硬化性樹脂的情況下,只要可將用於使該硬化性樹脂硬化的裝置設置於上腔室模箱510或下腔室模箱520內即可。又,亦可在各腔室模箱中設置有加熱裝置。薄膜固定治具530是將後述之可撓性母盤400固定於下腔室模箱520的開口面之治具。可動工作台540是配置於下腔室模箱520內,並且成為可藉由未圖示驅動裝置而朝上下移動。
具體而言,是將光學基材10連同光學基材固定治具600一起設置於可動工作台540。接著,將可撓性母盤400固定於薄膜固定治具530。藉由可撓性母盤400以封閉下腔室模箱520的開口面。可撓性母盤400是在薄膜固定治具530固定成使反轉凹凸構造430朝向光學基材10。
(光學基材接近步驟) 接著,如圖6所示,連結上腔室模箱510與下腔室模箱520。藉此,可將腔室裝置500內的空間密閉。此時,亦可對腔室裝置500內進行升溫。接著,對腔室裝置500內的空間進行真空抽吸。接著,藉由使可動工作台540上升,而使可撓性母盤400與光學基材10相接近。可撓性母盤400與光學基材10的距離只要可因應於光學基材10的形狀等來適當調整即可。圖6中的箭頭是顯示可動工作台540的移動方向。
(2-5.第5步驟(壓製步驟)) 接著,藉由將流體導入上腔室模箱510,而將上腔室模箱510內的空間設為正壓狀態。藉此,將印壓施加於可撓性母盤400。圖7中的箭頭是顯示印壓的方向。藉由此步驟,一邊使可撓性母盤400變形一邊將可撓性母盤400的反轉凹凸構造430壓抵於未硬化樹脂層20a。藉此,未硬化樹脂層20a廣布於曲面11(單側的凸面)的整體,且未硬化樹脂層20a侵入反轉凹凸構造430的微細凸部間。在此,在未硬化樹脂層20a與可撓性母盤400之間宜儘量不形成間隙。這是因為若留有間隙的話,會有氣泡的夾入、或未能充分地將反轉凹凸構造430轉印至樹脂層20之類的現象發生的可能性。
(2-6.第6步驟(硬化步驟)) 並且,在此狀態下使未硬化樹脂層20a硬化。具體而言,是對未硬化樹脂層20a照射紫外線。藉此,未硬化樹脂層20a會成為樹脂層20,且將反轉凹凸構造430轉印至樹脂層20的表面。亦即,可在樹脂層20的表面21形成反轉凹凸構造430的反轉構造,亦即微細凹凸構造30。藉由以上的步驟,即可製作樹脂積層光學體1。
在此,在本實施形態中,是藉由調整施加於可撓性母盤400的印壓,來調整樹脂層20的微細凹凸構造30以外的形狀。具體而言,將可撓性母盤400的表面(形成有反轉凹凸構造430的表面)與光學基材10的曲面11之距離,按光學基材10的曲面11的每個區域來設成不同的值。更具體而言,是將可撓性母盤400的表面與光學基材10的曲面11之最小距離與最大距離之比值設為比1更小的值。
更具體而言,是將可撓性母盤400的曲率半徑設成和光學基材10的曲率半徑不同的值。更具體而言,是將可撓性母盤400的曲率半徑設成比光學基材10的曲率半徑更大。亦即,將可撓性母盤400的表面的曲率半徑與光學基材10的曲面11的曲率半徑之比值設成比1更大。
藉此,可以對樹脂層20賦與上述之形狀。亦即,可以將樹脂層20的厚度,按光學基材10的曲面11的每個區域來設成不同的值。更具體而言,可以將光學基材10的光軸(中心軸)上的厚度T1設為最小,並且將外緣部中的厚度T2設為最大。亦即,可以將厚度之比值T設為比1更小。
更具體而言,可以將樹脂層20的表面21設為曲面,並且可以將表面21的曲率半徑設成比光學基材10的曲面11的曲率半徑更大。亦即,可以將曲率半徑之比值R設為比1更大。
再者,如後述之實施例所示,施加於可撓性母盤400的印壓越大,則厚度之比值T、曲率半徑之比值R全都會越接近於1。亦即,樹脂層20的表面21之形狀接近於光學基材10的曲面11之形狀。印壓的具體的範圍只要因應於可撓性母盤400的可撓性、構成未硬化樹脂層20a的硬化性樹脂等來調整即可,但作為一例,亦可為0.1MPa~1.0MPa。再者,如後述之實施例所示,藉由調整未硬化樹脂層20a的黏度、構成可撓性母盤400的可撓性基材410的厚度等,也可以調整樹脂層20的表面21的曲率半徑。
(2-7.第7步驟(剝離步驟)) 接著,如圖8所示,藉由使可動工作台540下降,而使樹脂積層光學體1從可撓性母盤400剝離。再者,在此步驟中,亦可進行用於促進可撓性母盤400與樹脂積層光學體1的剝離之剝離輔助步驟。作為像這樣的剝離輔助步驟,可列舉:將刀片插入至可撓性母盤400與樹脂積層光學體1之間、將空氣等之氣體吹入可撓性母盤400與樹脂積層光學體1之間等。
之後,將腔室裝置500內的空間設為大氣壓狀態,並且拆卸上腔室模箱510。接著,將可撓性母盤400及樹脂積層光學體1從下腔室模箱520中取出。再者,亦可以樹脂層20的硬化促進為目的而進行更進一步的紫外線照射處理,且亦可以樹脂層20內的應力緩和為目的而進行加熱處理。
可以藉由以上的步驟而在光學基材10的單側的曲面11形成樹脂層20。亦可因應於需要而在相反側的曲面也藉由和上述同樣的步驟來形成樹脂層20。
再者,當光學基材10為凹透鏡的情況下也可以藉由和上述同樣的步驟來製作樹脂積層光學體1。將步驟的概要顯示於圖9及圖10。如圖9所示,在光學基材10的曲面11上形成未硬化樹脂層20a。接著,將光學基材10及可撓性母盤400設置(set)於腔室裝置500內。接著,使可撓性母盤400與光學基材10相接近。接著,如圖10所示,對可撓性母盤400施加印壓。圖10中的箭頭是顯示印壓的方向。藉由此步驟,一邊使可撓性母盤400變形一邊將可撓性母盤400的反轉凹凸構造430壓抵於未硬化樹脂層20a。藉此,使未硬化樹脂層20a廣布於曲面11的整體,且使未硬化樹脂層20a侵入反轉凹凸構造430的微細凸部間。在此,在未硬化樹脂層20a與可撓性母盤400之間宜儘量不形成間隙。在此狀態下使未硬化樹脂層20a硬化。具體而言,是對未硬化樹脂層20a照射紫外線。藉此,未硬化樹脂層20a會成為樹脂層20,且將反轉凹凸構造430轉印至樹脂層20的表面。亦即,可在樹脂層20的表面21形成反轉凹凸構造430的反轉構造,亦即微細凹凸構造30。藉由以上的步驟,即可製作樹脂積層光學體1。
在此,在本實施形態中,藉由調整施加於可撓性母盤400的印壓,即可以調整樹脂層20的微細凹凸構造30以外的形狀。詳細內容如以上所述。接著,使樹脂積層光學體1從可撓性母盤400剝離,並且將可撓性母盤400及樹脂積層光學體1從腔室裝置500中取出。
可以藉由以上的步驟而在光學基材10的單側的曲面11形成樹脂層20。亦可因應於需要而在相反側的曲面也藉由和上述同樣的步驟來形成樹脂層20。根據上述之樹脂積層光學體1的製造方法,可以藉由調整施加於可撓性母盤400的印壓,而調整樹脂層20的形狀、乃至樹脂積層光學體1的第2光學特性。從而,可以容易地調整樹脂積層光學體1的第2光學特性。
<3.可撓性母盤的詳細構成及製造方法> 接著,針對可撓性母盤400的詳細構成及製造方法來說明。如圖13所示,可撓性母盤400具備可撓性基材410、及形成於可撓性基材410的表面之樹脂層425。可撓性基材410是具有可撓性的平板狀之基材。作為構成可撓性基材410的材料,可列舉例如丙烯酸樹脂(聚甲基丙烯酸甲酯等)、聚碳酸酯、PET(聚對苯二甲酸乙二酯。再者,不問PET的屬性,亦可為非晶質,亦可為已延伸的材料)、TAC(三醋酸纖維素)、聚乙烯、聚丙烯、聚碳酸酯、環烯烴聚合物、環烯烴共聚物、氯乙烯等。
樹脂層425是以硬化性樹脂所構成。硬化性樹脂的種類並無特別限制,亦可為例如和構成樹脂層20的硬化性樹脂同樣的硬化性樹脂。在樹脂層425形成有反轉凹凸構造430。反轉凹凸構造430是以多數個微細凸部430a及微細凹部430b所構成。
接著,針對可撓性母盤400的製造方法來說明。可撓性母盤400的製造方法包含: 第1母盤製作步驟,製作具有反轉凹凸構造430的反轉構造之轉印模; 第2母盤製作步驟,在可撓性基材410的表面形成未硬化樹脂層420;及 第3母盤製作步驟,使未硬化樹脂層420硬化,並且將轉印模的凹凸構造轉印於硬化後的樹脂層425。
(3-1.第1母盤製作步驟) 第1母盤製作步驟是製作具有反轉凹凸構造430的反轉構造之轉印模的步驟。轉印模為例如圖11所示的母盤100。
(3-1-1.母盤的構成) 在此,針對母盤100的構成進行說明。母盤100是形成為圓筒形狀。母盤100亦可為圓柱形狀,亦可為其他形狀(例如平板狀)。但是,在母盤100為圓柱或圓筒形狀的情況下,可以藉由輥對輥方式將母盤100的凹凸構造(亦即,母盤凹凸構造)120無縫地轉印於樹脂基材等。藉此,能夠以較高的生產效率在可撓性基材410的表面上形成反轉凹凸構造430。從這樣的觀點來看,母盤100的形狀宜為圓筒形狀或圓柱形狀。
母盤100具備母盤基材110、及形成於母盤基材110的周面之母盤凹凸構造120。母盤基材110為例如玻璃體,具體而言是以石英玻璃所形成。但是,母盤基材110只要是SiO 2純度較高的基材即可,並未特別限定,亦可用熔融石英玻璃或合成石英玻璃等來形成。母盤基材110亦可為在金屬母材上積層有上述之材料的基材或金屬母材(例如Cu、Ni、Cr、Al)。雖然母盤基材110的形狀為圓筒形狀,但是亦可為圓柱形狀、其他形狀。但是,如上所述,母盤基材110以圓筒形狀或圓柱形狀為宜。母盤凹凸構造120具有反轉凹凸構造430的反轉構造。
(3-1-2.母盤的製造方法) 接著,說明母盤100的製造方法。首先,在母盤基材110上,形成(成膜)基材光阻層。在此,構成基材光阻層的光阻材並未特別限制,可為有機光阻材及無機光阻材之任一種。作為有機光阻材,可列舉例如酚醛系光阻或化學放大型光阻等。又,作為無機光阻材,可列舉例如包含鎢(W)或鉬(Mo)等之1種或2種以上的過渡金屬之金屬氧化物等。作為其他無機光阻材,可列舉Cr、Au等。但是,為了進行熱反應光刻法,基材光阻層較佳是以包含金屬氧化物的熱反應型光阻來形成。
在使用有機光阻材的情況下,亦可藉由使用旋轉塗布、狹縫塗布、浸漬塗布、噴霧塗布、或網版印刷等而於母盤基材110上形成基材光阻層。又,於基材光阻層使用無機光阻材的情況下,亦可藉由使用濺鍍法來形成基材光阻層。亦可將有機光阻材與無機光阻材併用。
接著,藉由曝光裝置200(參照圖12)對基材光阻層的一部分進行曝光,藉此在基材光阻層形成潛像。具體而言,曝光裝置200是調變雷射光200A,並將雷射光200A對基材光阻層照射。藉此,因為已照射到雷射光200A的基材光阻層的一部分改質,所以可以在基材光阻層形成對應於母盤凹凸構造120的潛像。
接著,藉由在形成有潛像的基材光阻層上滴下顯影液,而對基材光阻層進行顯影。藉此,可在基材光阻層形成凹凸構造。接著,藉由將基材光阻層作為遮罩來對母盤基材110及基材光阻層進行蝕刻,而在母盤基材110上形成母盤凹凸構造120。再者,蝕刻的方法雖然並未特別限制,但以具有垂直異向性之乾式蝕刻為宜,較佳是例如反應性離子蝕刻(Reactive Ion Etching:RIE)。藉由以上的步驟而製作母盤100。蝕刻亦可為濕式蝕刻。
(3-1-3.曝光裝置的構成) 接著,根據圖12來說明曝光裝置200的構成。曝光裝置200是對基材光阻層進行曝光的裝置。曝光裝置200具備雷射光源201、第1鏡203、光二極體(Photodiode:PD)205、偏向光學系統、控制機構230、第2鏡213、移動光學工作台220、主軸馬達225、及轉盤227。又,母盤基材110是載置於轉盤227上而形成為可以旋轉。
雷射光源201是發射雷射光200A之光源,且可為例如固體雷射或半導體雷射等。雷射光源201所發射的雷射光200A的波長並未特別限定,亦可為例如400nm~500nm的藍色光帶域的波長。又,雷射光200A的點徑(照射於光阻層之點的直徑)只要比母盤凹凸構造120的凹部的開口面之直徑更小即可,較佳為例如200nm左右。從雷射光源201所發射的雷射光200A是受控制機構230所控制。
雷射光源201所射出的雷射光200A是以平行光束的狀態原樣直進,並在第1鏡203上反射而導向至偏向光學系統。
第1鏡203是以偏振光束分光器所構成,具有使其中一個偏光成分反射,並使其他的偏光成分透射的功能。於第1鏡203透射之偏光成分是被光二極體205所接收,並且進行光電轉換。又,已藉由光二極體205進行光電轉換的光接收訊號是輸入至雷射光源201,雷射光源201是依據所輸入的光接收訊號來進行雷射光200A的相位調變。
又,偏向光學系統具備聚光透鏡207、電光偏轉元件(Electro Optic Deflector:EOD)209、及準直儀透鏡211。
在偏向光學系統中,雷射光200A是藉由聚光透鏡207而聚光於電光偏轉元件209。電光偏轉元件209是可控制雷射光200A的照射位置之元件。曝光裝置200亦可藉由電光偏轉元件209改變被導向至移動光學工作台220上的雷射光200A的照射位置(所謂的偏擺機構(Wobble機構))。雷射光200A是在被電光偏轉元件209調整照射位置後,藉由準直儀透鏡211再次進行平行光束化。從偏向光學系統射出的雷射光200A是被第2鏡213所反射,並且以水平且平行的方式被導向至移動光學工作台220上。
移動光學工作台220具備擴束器(Beam expader:BEX)221以及接物鏡223。被導向至移動光學工作台220的雷射光200A是藉由擴束器221整形成所期望的光束形狀後,透過接物鏡223來照射於已形成在母盤基材110上的基材光阻層。又,移動光學工作台220是母盤基材110每旋轉1次而朝箭頭R方向(進給間距方向)移動相當於1個進給間距(軌距(track pitch))。在轉盤227上設置有母盤基材110。主軸馬達225是藉由使轉盤227旋轉,而使母盤基材110旋轉。藉此,使雷射光200A在基材光阻層上掃描。在此,沿著雷射光200A的掃描方向形成基材光阻層的潛像。
又,控制機構230具備格式器231及驅動器233,並控制雷射光200A的照射。格式器231是生成控制雷射光200A的照射之調變訊號,驅動器233是依據格式器231所生成的調變訊號來控制雷射光源201。藉此,可控制雷射光200A對母盤基材110的照射。
格式器231是依據描繪於基材光阻層之任意圖案所畫出的輸入圖像,而生成用於對基材光阻層照射雷射光200A的控制訊號。具體而言,首先,格式器231是取得輸入圖像,前述輸入圖像畫有要描繪於基材光阻層之任意的描繪圖案。輸入圖像相當於下述之圖像:在軸方向上將基材光阻層的外周面切開並攤平成一平面之基材光阻層的外周面的展開圖。在此展開圖中畫有相當於母盤100的周面形狀的圖像。此圖像是顯示反轉凹凸構造430的反轉構造。再者,亦可製作母盤100之轉印有母盤凹凸構造120之轉印用薄膜,並且將此轉印用薄膜使用作為轉印模而在可撓性基材410上形成反轉凹凸構造430。在此情況下,母盤凹凸構造120會成為具有和反轉凹凸構造430相同的凹凸構造。
接著,格式器231是將輸入圖像分割成規定的大小之小區域(例如分割成格子狀),並判斷在各個小區域中是否包含有凹部描繪圖案(亦即,相當於母盤100的凹部之圖案)。然後,格式器231是生成控制訊號,前述控制訊號是控制成使雷射光200A照射於已判斷為包含有凹部描繪圖案的各小區域。此控制訊號(亦即,曝光訊號)較佳是和主軸馬達225的旋轉同步,但是亦可為不同步。又,亦可在母盤基材110每旋轉1次時重設控制訊號與主軸馬達225的旋轉之同步。此外,驅動器233是依據格式器231所生成的控制訊號來控制雷射光源201的輸出。藉此,可控制雷射光200A對基材光阻層的照射。再者,曝光裝置200亦可進行如焦點伺服裝置(focus servo)、雷射光200A之照射點的位置補正等之公知的曝光控制處理。焦點伺服裝置(focus servo)亦可使用雷射光200A的波長,亦可參照使用其他波長。
又,亦可將從雷射光源201照射的雷射光200A於複數個系統的光學系統分歧後再照射至基材光阻層。在此情況下,可在基材光阻層形成複數個照射點。在此情況下,只要於從一個光學系統所射出的雷射光200A已到達藉由另一個光學系統所形成的潛像時,將曝光結束即可。
從而,只要根據本實施形態,就可以將因應於輸入圖像的描繪圖案之潛像形成於光阻層。並且,對光阻層進行顯影,並將顯影後的光阻層作為遮罩來對母盤基材110及基材光阻層進行蝕刻,藉此在母盤基材110上形成因應於輸入圖像的描繪圖案的母盤凹凸構造120。亦即,可以形成因應於描繪圖案的任意的母盤凹凸構造120。從而,作為描繪圖案,只要準備畫有反轉凹凸構造430的反轉構造之描繪圖案,就可以形成具有反轉凹凸構造430的反轉構造之母盤凹凸構造120。
再者,在本實施形態中可使用的曝光裝置並非限定於曝光裝置200,只要是具有和曝光裝置200同樣的功能之裝置,使用何種曝光裝置皆可。
(3-1-4.關於使用了母盤之凹凸構造的形成方法) 接著,參照圖13來說明使用了母盤100之反轉凹凸構造430的形成方法之一例。反轉凹凸構造430可藉由使用了母盤100的輥對輥方式的轉印裝置300來形成於可撓性基材410上。在圖13所示的轉印裝置300中,是成為構成樹脂層425的硬化性樹脂為所謂的紫外線硬化性樹脂。利用轉印裝置300,以進行上述之第2及第3母盤製作步驟。
轉印裝置300具備母盤100、基材供給輥301、捲取輥302、導引輥303、304、軋輥(nip roll)305、剝離輥306、塗布裝置307、及光源309。
基材供給輥301是將長條的可撓性基材410捲繞成輥狀的輥,捲取輥302是捲取可撓性母盤400的輥。又,導引輥303、304是搬送可撓性基材410的輥。軋輥305是使積層有未硬化樹脂層420的可撓性基材410,即被轉印薄膜450密合於母盤100的輥。剝離輥306是將可撓性母盤400從母盤100剝離的輥。
塗布裝置307具備塗布機等之塗布組件,並將未硬化的硬化性樹脂塗布於可撓性基材410,以形成未硬化樹脂層420。塗布裝置307亦可為例如凹版塗布機、線棒塗布機、或模具塗布機等。又,光源309是發出可使未硬化樹脂硬化的波長的光之光源,亦可為例如紫外線燈具等。
在轉印裝置300中,首先,是從基材供給輥301透過導引輥303將可撓性基材410連續地送出。再者,在送出的途中亦可將基材供給輥301變更成其他批的基材供給輥301。可藉由塗布裝置307來對已送出的可撓性基材410塗布未硬化樹脂,而將未硬化樹脂層420積層於可撓性基材410。藉此,製作被轉印薄膜450。被轉印薄膜450是藉由軋輥305而與母盤100相密合。光源309是藉由對已密合於母盤100的未硬化樹脂層420照射紫外線,而將未硬化樹脂層420硬化。藉此,使未硬化樹脂層420成為樹脂層425,且將母盤凹凸構造120轉印至樹脂層425的表面。亦即,在樹脂層425的表面形成母盤凹凸構造120的反轉構造,亦即反轉凹凸構造430。接著,將形成有反轉凹凸構造430的可撓性基材410藉由剝離輥306而從母盤100剝離。然後,將形成有反轉凹凸構造430的可撓性基材410透過導引輥304來捲取於捲取輥302。再者,母盤100可為縱置亦可為橫置,且亦可另外設置補正母盤100的旋轉時的角度、偏心之機構。亦可例如在夾持機構中設置偏心傾斜機構。轉印亦可藉由氣動轉印來進行。
如此,在轉印裝置300中,是一方面以輥對輥的方式來搬送被轉印薄膜450,一方面將母盤100的周面形狀轉印至被轉印薄膜450。藉此,可在可撓性基材410上形成反轉凹凸構造430。
再者,在將可撓性基材410設為熱塑性樹脂薄膜的情況下,即不需要塗布裝置307及光源309。在此情況下,是將加熱裝置配置在比母盤100更上游側。藉由此加熱裝置對可撓性基材410加熱以使其變柔軟,之後,將可撓性基材410壓抵於母盤100。藉此,可將形成於母盤100的周面之母盤凹凸構造120轉印至可撓性基材410。再者,亦可將可撓性基材410設為以熱塑性樹脂以外的樹脂所構成的薄膜,並積層可撓性基材410與熱塑性樹脂薄膜。在此情況下,是將積層薄膜在以加熱裝置加熱後,壓抵於母盤100。從而,轉印裝置300可以在可撓性基材410上連續地製作形成有反轉凹凸構造430的轉印物。
又,亦可製作母盤100之轉印有母盤凹凸構造120之轉印用薄膜,並且將此轉印用薄膜使用作為轉印模以在可撓性基材410上形成反轉凹凸構造430。亦可將已進一步轉印了轉印用薄膜的凹凸構造之轉印用薄膜作為轉印模。在此情況下,是將母盤凹凸構造120形成為:使形成於樹脂層425的微細凹凸構造成為反轉凹凸構造。又,亦可藉由電鑄或熱轉印等來複製母盤100,並將此複製品使用作為轉印模。此外,毋須將母盤100的形狀限制為輥形狀,亦可為平面狀的母盤,且除了對光阻照射雷射光200A的方法之外,還可以選擇使用了遮罩的半導體曝光、電子束描繪、機械加工、陽極氧化等各種加工方法。 [實施例]
<1.實施例1> 接著,針對本實施形態之實施例進行說明。在實施例1中,是藉由以下的步驟而製作了樹脂積層光學體1。
(1-1.可撓性母盤的製作) 藉由進行上述之第1~第3母盤製作步驟,而製作出可撓性母盤400。具體而言,是準備厚度75μm的PET薄膜來作為可撓性基材410。並且,利用圖13所示的轉印裝置300,在可撓性基材410的一邊的表面形成樹脂層425。在此,是使用迪睿合(Dexerials)公司製的紫外線硬化性丙烯酸樹脂組成物SK1120,來作為紫外線硬化性樹脂。形成於樹脂層425的表面之反轉凹凸構造430是設為所謂的蛾眼構造。亦即,微細凸部430a及微細凹部430b是以可見光波長以下的平均週期來配置排列於表面21。
(1-2.光學基材的準備) 使用圓形平凸透鏡來作為光學基材10。在此,光學基材10的直徑(φ)為50mm,材質為BK7,曲率半徑為102mm。又,光學基材10的折射率為1.52。在此,曲率半徑是藉由Panasonic公司製的3維測定器UA3P來測定,折射率是藉由愛宕(ATAGO)公司製的阿貝(Abbe)折射率計來測定。再者,將折射率設為相對於波長587nm的折射率。
(1-3.紫外線硬化樹脂的準備) 準備以下的組成之丙烯酸系紫外線硬化性樹脂,來作為構成樹脂層20的紫外線硬化性樹脂。丙烯酸系紫外線硬化性樹脂的未硬化時的黏度(cP)為1240cP,折射率為1.52。在此,黏度是藉由Brookfield公司製的旋轉黏度計來測定,折射率是在硬化後藉由愛宕(ATAGO)公司製的阿貝折射率計來測定。折射率是設為相對於波長587nm的折射率。 單體:東亞合成 Aronix M305:45質量份 寡聚物:日本合成化學 UV-1700:20質量份 反應性稀釋劑:KJ化學 DMAA:30質量份 光聚合引發劑:Irgacure 184:5質量份
(1-4.樹脂積層光學體的製作) 藉由進行上述之第1~第7步驟,而製作出樹脂積層光學體1。在此,可撓性母盤400是使用了可撓性基材410的厚度為75μm的基材。將第5步驟中的印壓(施加於可撓性母盤400的印壓(壓製壓力))設為0.2MPa。藉此,製作出樹脂積層光學體1。藉由上述之方法來測定樹脂層20的表面21的曲率半徑後,曲率半徑為111.4mm。從而,曲率半徑之比值R為1.092。此外,藉由上述之方法來測定樹脂層20的最小厚度T1、最大厚度T2後,最小厚度T1為0.062mm,最大厚度T2為0.332mm。從而,厚度之比值T為0.187。測定裝置是使用Panasonic公司製的3維測定器UA3P。
(1-5.焦點距離的測定) 對焦點距離進行評價來作為第2光學特性。具體而言,是藉由測節器(nodal slide)方法來測定光學基材10的焦點距離、以及樹脂積層光學體1的焦點距離。將以上的結果彙整並顯示於表1。
<2.實施例2> 除了將第5步驟中的印壓(施加於可撓性母盤400的印壓(壓製壓力))設為0.4MPa以外,進行和實施例1同樣的處理。將結果彙整並顯示於表1。
<3.實施例3> 除了將第5步驟中的印壓(施加於可撓性母盤400的印壓(壓製壓力))設為0.6MPa以外,進行和實施例1同樣的處理。將結果彙整並顯示於表1。
<4.實施例4> 除了將構成樹脂層20的紫外線硬化性樹脂的黏度設為1150cP,並將折射率設為1.57以外,進行和實施例1同樣的處理。將結果彙整並顯示於表1。再者,紫外線硬化性樹脂的黏度及折射率是藉由調整上述各成分的混合比例來變更。
<5.實施例5> 除了將構成可撓性母盤400的可撓性基材410的厚度設為125μm以外,進行和實施例1同樣的處理。將結果彙整並顯示於表1。
<6.實施例6> 使用圓形平凹透鏡來作為光學基材10。在此,光學基材10的直徑(φ)為50mm,材質為BK7,曲率半徑為102mm。又,光學基材10的折射率為1.52。除了使用了像這樣的光學基材10以外,進行和實施例1同樣的處理。將結果彙整並顯示於表1。
<7.實施例7> 除了將第5步驟中的印壓(施加於可撓性母盤400的印壓(壓製壓力))設為0.4MPa以外,進行和實施例1同樣的處理。將結果彙整並顯示於表1。
<8.實施例8> 除了將第5步驟中的印壓(施加於可撓性母盤400的印壓(壓製壓力))設為0.6MPa以外,進行和實施例1同樣的處理。將結果彙整並顯示於表1。
<9.實施例9> 除了將第5步驟中的印壓(施加於可撓性母盤400的印壓(壓製壓力))設為0.7MPa以外,進行和實施例1同樣的處理。將結果彙整並顯示於表1。
<10.比較例1> 作為Dry-AR(反射防止)的例子,而在實施例1中所使用的光學基材10的曲面11上,藉由濺鍍依序成膜134nm的ZrO 2、100nm的MgF 2。雖然測定了藉此所製作出的Dry-AR複合光學體的曲率半徑,但是並無法變更曲率半徑。將結果彙整並顯示於表1。
<11.比較例2> 作為Wet-AR(反射防止)的例子,而在實施例1中所使用的光學基材10的曲面11上,以厚度100nm來塗布了塗布材。塗布材的折射率(相對於波長587nm的折射率)為1.38。雖然測定了藉此所製作出的Wet-AR複合光學體的曲率半徑,但是並無法變更曲率半徑。將結果彙整並顯示於表1。
<12.比較例3> 除了將光學基材10變更成在實施例6中所使用的光學基材以外,進行和比較例1同樣的處理。雖然測定了藉此所製作出的Dry-AR複合光學體的曲率半徑,但是並無法變更曲率半徑。將結果彙整並顯示於表1。
<13.比較例4> 除了將光學基材10變更成在實施例6中所使用的光學基材以外,進行和比較例2同樣的處理。雖然測定了藉此所製作出的Wet-AR複合光學體的曲率半徑,但是並無法變更曲率半徑。將結果彙整並顯示於表1。
[表1]
<14.考察> 根據實施例1~9已很清楚的是,藉由調整印壓、可撓性基材410的厚度、及構成樹脂層20的紫外線硬化性樹脂的黏度之任一者,可以調整樹脂層20的形狀,更具體而言,是調整曲率半徑之比值R、厚度之比值T。此外,已很清楚的是,藉由像這樣地調整樹脂層20的形狀,可以調整焦點距離。從而,根據實施例1~9,由於即使不變更光學基材10也可以調整焦點距離,因此毋須為了調整焦點距離而準備複數個種類的光學基材10的模具。從而,可減少光學機器的製造成本。另一方面,在比較例1~4中,結果物即光學體的曲率半徑和原本的光學基材10的曲率半徑相同,並無法調整焦點距離。從而,在像這樣的光學體中欲調整焦點距離的情況下,就必須利用按每個焦點距離而不同的模具來製作光學基材。
接著,根據實施例1~9,針對印壓與曲率半徑之比值R或厚度之比值T的相關性進行考察。將結果顯示於圖14及圖15。橫軸是顯示印壓(壓製壓力)(MPa),縱軸是顯示曲率半徑之比值R或厚度之比值T。圖形L1、L3是顯示實施例1~5(亦即將平凸透鏡作為光學基材10的實施例)的結果,圖形L2、L4是顯示實施例6~9(亦即將平凹透鏡作為光學基材10的實施例)的結果。如從這些圖所清楚地顯示的,將印壓設得越高,曲率半徑之比值R或厚度之比值T越接近於1。亦即,樹脂層20的表面21之形狀接近於光學基材10的曲面11之形狀。從而,可以藉由調整印壓,而調整曲率半徑之比值R或厚度之比值T。
以上,雖然已參照附圖來詳細說明本發明之較佳的實施形態,但是本發明並不限定於所述的例子。只要是本發明所屬技術領域中具有通常知識者,在申請專利範圍所記載的技術性思想之範疇內,顯然可設想到各種變更例或修正例,而關於該等變更例或修正例,當然也應被理解為屬於本發明的技術性範圍。
1:樹脂積層光學體 10:光學基材 11:光學基材的曲面 20:樹脂層 20a、420:未硬化樹脂層 21:樹脂層的表面 30:微細凹凸構造 30a、430a:微細凸部 30b、430b:微細凹部 100:母盤 110:母盤基材 120:母盤凹凸構造 200:曝光裝置 200A:雷射光 201:雷射光源 203:第1鏡 205:光二極體 207:聚光透鏡 209:電光偏轉元件 211:準直儀透鏡 213:第2鏡 220:移動光學工作台 221:擴束器 223:接物鏡 225:主軸馬達 227:轉盤 230:控制機構 231:格式器 233:驅動器 300:轉印裝置 301:基材供給輥 302:捲取輥 303、304:導引輥 305:軋輥 306:剝離輥 307:塗布裝置 309:光源 400:可撓性母盤 410:可撓性基材 425:樹脂層 430:反轉凹凸構造 450:被轉印薄膜 500:腔室裝置 510:上腔室模箱 520:下腔室模箱 530:薄膜固定治具 540:可動工作台 600:光學基材固定治具 700:塗布裝置 L1、L2、L3、L4:圖形 T1:最小厚度 T2:最大厚度
圖1是顯示本發明實施形態之樹脂積層光學體的一例的截面圖。 圖2是顯示形成於同實施形態之樹脂積層光學體的表面的微細凹凸構造之一例的截面圖。 圖3是顯示樹脂積層光學體的其他例之截面圖。 圖4是用於說明樹脂積層光學體的製造方法之截面圖。 圖5是用於說明樹脂積層光學體的製造方法之截面圖。 圖6是用於說明樹脂積層光學體的製造方法之截面圖。 圖7是用於說明樹脂積層光學體的製造方法之截面圖。 圖8是用於說明樹脂積層光學體的製造方法之截面圖。 圖9是用於說明樹脂積層光學體的製造方法之截面圖。 圖10是用於說明樹脂積層光學體的製造方法之截面圖。 圖11是顯示本實施形態之母盤的外觀例之立體圖。 圖12是顯示曝光裝置的構成例之方塊圖。 圖13是顯示以輥對輥(roll to roll)方式來製造可撓性母盤的轉印裝置之一例的示意圖。 圖14是顯示印壓(壓製壓力)(MPa)與R(樹脂層的表面的曲率半徑與光學基材的曲面的曲率半徑之比值)的對應關係之圖表。 圖15是顯示印壓(壓製壓力)(MPa)與T(樹脂層的最小厚度與最大厚度之比值)的對應關係之圖表。
1:樹脂積層光學體
10:光學基材
11:光學基材的曲面
20:樹脂層
21:樹脂層的表面
T1:最小厚度
T2:最大厚度

Claims (9)

  1. 一種樹脂積層光學體的製造方法,前述樹脂積層光學體的製造方法的特徵在於: 包含以下步驟: 第1步驟,準備具有曲面的光學基材; 第2步驟,在前述光學基材的曲面上形成未硬化樹脂層; 第3步驟,準備在表面形成有微細凹凸構造之反轉構造並且具有可撓性的可撓性母盤; 第4步驟,使前述可撓性母盤接近於前述未硬化樹脂層; 第5步驟,藉由對前述可撓性母盤施加印壓而一邊使前述可撓性母盤變形一邊將前述可撓性母盤的前述反轉構造壓抵於前述未硬化樹脂層;及 第6步驟,在已將前述可撓性母盤的前述反轉構造壓抵於前述未硬化樹脂層的狀態下,使前述未硬化樹脂層硬化,藉此在前述光學基材的曲面上形成樹脂層, 在前述第5步驟中,是藉由調整前述印壓,而將前述樹脂層的厚度調整成在每個前述光學基材的曲面的區域為不同的厚度,其結果,將前述樹脂層的表面的曲率半徑調整成和前述光學基材的曲面的曲率半徑為不同的曲率半徑, 藉由前述樹脂層的表面的曲率半徑而賦與於前述樹脂積層光學體的第2光學特性,和藉由前述光學基材的曲面的曲率半徑而賦與於前述樹脂積層光學體的第3光學特性不同。
  2. 如請求項1之樹脂積層光學體的製造方法,其在前述第5步驟中,是將前述可撓性母盤的表面與前述光學基材的曲面之距離,按前述光學基材的曲面的每個區域來設成不同的值。
  3. 如請求項2之樹脂積層光學體的製造方法,其在前述第5步驟中,是藉由調整前述印壓,而將前述可撓性母盤的表面與前述光學基材的曲面之最小距離與最大距離之比值設為比1更小的值。
  4. 如請求項2或3之樹脂積層光學體的製造方法,其在前述第5步驟中,是藉由調整前述印壓,而將前述可撓性母盤的曲率半徑設為和前述光學基材的曲率半徑不同的值。
  5. 如請求項4之樹脂積層光學體的製造方法,其在前述第5步驟中,是藉由調整前述印壓,而將前述可撓性母盤的曲率半徑設成其與前述光學基材的曲率半徑之比值為比1更大的值。
  6. 如請求項1至3中任一項之樹脂積層光學體的製造方法,其中前述樹脂層的折射率和前述光學基材的折射率不同。
  7. 如請求項1至3中任一項之樹脂積層光學體的製造方法,其中前述微細凹凸構造為蛾眼構造、光擴散構造、微透鏡陣列、或繞射光柵之任意1個種類以上。
  8. 如請求項1至3中任一項之樹脂積層光學體的製造方法,其中源自於被轉印至前述樹脂層的前述微細凹凸構造的第1光學特性為反射防止特性,前述樹脂層的前述第2光學特性是與前述光學基材的前述第3光學特性同種的特性,且是為了調整前述光學基材的前述第3光學特性而被賦與。
  9. 如請求項8之樹脂積層光學體的製造方法,其中前述第2光學特性及前述第3光學特性為焦點距離或像差特性之任一者或兩者。
TW112121470A 2018-03-30 2019-03-06 樹脂積層光學體的製造方法 TW202337676A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018068744A JP7265319B2 (ja) 2018-03-30 2018-03-30 樹脂積層光学体の製造方法
JP2018-068744 2018-03-30

Publications (1)

Publication Number Publication Date
TW202337676A true TW202337676A (zh) 2023-10-01

Family

ID=68061210

Family Applications (2)

Application Number Title Priority Date Filing Date
TW112121470A TW202337676A (zh) 2018-03-30 2019-03-06 樹脂積層光學體的製造方法
TW108107440A TW201941913A (zh) 2018-03-30 2019-03-06 樹脂積層光學體及其製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108107440A TW201941913A (zh) 2018-03-30 2019-03-06 樹脂積層光學體及其製造方法

Country Status (6)

Country Link
US (1) US11897182B2 (zh)
EP (1) EP3757627A4 (zh)
JP (1) JP7265319B2 (zh)
CN (1) CN111971590B (zh)
TW (2) TW202337676A (zh)
WO (1) WO2019187907A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11635622B1 (en) * 2018-12-07 2023-04-25 Meta Platforms Technologies, Llc Nanovided spacer materials and corresponding systems and methods

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300944A (ja) 2000-04-20 2001-10-30 Sony Corp 複合レンズの成形方法及び複合レンズ
JP2006039450A (ja) 2004-07-30 2006-02-09 Seiko Epson Corp 反射防止膜の形成方法、反射防止膜の形成装置、反射防止膜および光学部品
JP4819447B2 (ja) * 2005-09-02 2011-11-24 キヤノン株式会社 光学系及びそれを有する撮像装置
JP2007101661A (ja) 2005-09-30 2007-04-19 Fujifilm Corp マイクロレンズアレイおよびマイクロレンズアレイの製造方法
JP2008213210A (ja) 2007-03-01 2008-09-18 Olympus Corp 転写方法及びその転写方法によって製造された光学素子
JP2008285375A (ja) * 2007-05-18 2008-11-27 Panasonic Corp 接合光学素子及びその製造方法
JP4798468B2 (ja) * 2009-01-30 2011-10-19 ソニー株式会社 レンズの製造装置及びレンズの製造方法
US8917457B2 (en) 2010-03-26 2014-12-23 Konica Minolta Advanced Layers, Inc. Imaging lens, imaging optical device, and digital equipment
KR20140010386A (ko) * 2011-05-19 2014-01-24 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 나노 임프린트용 몰드 및 곡면체
JPWO2013047753A1 (ja) 2011-09-29 2015-03-30 Scivax株式会社 成形装置及び成形方法、インプリント用型、並びに当該インプリント用型を用いたインプリント方法
JP6032196B2 (ja) * 2011-12-27 2016-11-24 三菱レイヨン株式会社 スタンパの製造方法、および成形体の製造方法
JP5948157B2 (ja) 2012-06-11 2016-07-06 オリンパス株式会社 表面形状の成形方法
US20150231854A1 (en) 2012-10-22 2015-08-20 Mitsubishi Rayon Co., Ltd. Layered structure and method for manufacturing same, and article

Also Published As

Publication number Publication date
JP2019179159A (ja) 2019-10-17
US11897182B2 (en) 2024-02-13
WO2019187907A1 (ja) 2019-10-03
US20210094220A1 (en) 2021-04-01
TW201941913A (zh) 2019-11-01
EP3757627A4 (en) 2021-11-03
CN111971590A (zh) 2020-11-20
JP7265319B2 (ja) 2023-04-26
CN111971590B (zh) 2023-03-10
EP3757627A1 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
KR101020634B1 (ko) 기능성 나노패턴을 갖는 렌즈의 제조방법
EP3462081B1 (en) Optical body, method for manufacturing optical body, and light-emitting apparatus
JP2023126273A (ja) 樹脂積層光学体、光源ユニット、光学ユニット、光照射装置、画像表示装置、樹脂積層光学体の製造方法、及び光源ユニットの製造方法
WO2013038912A1 (ja) 微細構造形成用型および光学素子の製造方法
TW202337676A (zh) 樹脂積層光學體的製造方法
US20240045109A1 (en) Optical body, master, and method for manufacturing optical body
EP3462082B1 (en) Optical body and light emitting device
EP3355085B1 (en) Optical body, master, and method for manufacturing optical body
MX2010012582A (es) Fabricacion de herramientas a microescala.
TWI287504B (en) Manufacturing method of a 3-D micro lens array with predetermined surface curvature controlled by centrifugal force surface
TWI810305B (zh) 光學積層體、轉印用積層體、及光學積層體之製造方法
JP6871705B2 (ja) 光学体、光学体の製造方法、および発光装置
TWI836590B (zh) 光學體、母盤、及光學體之製造方法
JP2000167939A (ja) 光造形方法
JPH07281182A (ja) 面状光学素子の製造方法
JP2002361653A (ja) レンズシートの製造方法
JP2005346000A (ja) 光学物品の製造方法及び製造装置