TW202322184A - 半導體裝置的形成方法 - Google Patents

半導體裝置的形成方法 Download PDF

Info

Publication number
TW202322184A
TW202322184A TW111114422A TW111114422A TW202322184A TW 202322184 A TW202322184 A TW 202322184A TW 111114422 A TW111114422 A TW 111114422A TW 111114422 A TW111114422 A TW 111114422A TW 202322184 A TW202322184 A TW 202322184A
Authority
TW
Taiwan
Prior art keywords
layer
gate
dielectric layer
metal
oxide
Prior art date
Application number
TW111114422A
Other languages
English (en)
Inventor
張翔筆
程仲良
張毅敏
黃耀陞
趙皇麟
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202322184A publication Critical patent/TW202322184A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823857Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/3115Doping the insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/477Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823431MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0924Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7851Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

此處揭露具有不同閘極結構設置的半導體裝置與其製作方法。方法包括形成鰭狀結構於基板上;形成閘極開口於鰭狀結構上;形成金屬氧化物層於閘極開口中;形成第一介電層於金屬氧化物層上,形成第二介電層於第一介電層上;形成功函數金屬層於第二介電層上;以及形成閘極金屬填充層於功函數金屬層上。形成第一介電層的步驟包括沉積氧化物材料,其氧面積密度小於金屬氧化物層的氧面積密度。

Description

半導體裝置的形成方法
本發明實施例提供多臨界電壓裝置,更特別關於功函數金屬層的厚度類似但臨界電壓較低及/或不同的n型場效電晶體與p型場效電晶體位於相同基板上的多臨界電壓裝置。
隨著半導體技術進展,對較高儲存能力、較快處理系統、較高效能、與較低成本的需求增加。為了符合這些需求,半導體產業持續縮小半導體裝置如金氧半場效電晶體(包含平面金氧半場效電晶體、鰭狀場效電晶體、或全繞式閘極場效電晶體)的尺寸。尺寸縮小亦增加半導體製造製程的複雜度。
在一些實施例中,半導體裝置的形成方法包括:形成鰭狀結構於基板上;形成閘極開口於鰭狀結構上;形成金屬氧化物層於閘極開口中;形成第一介電層於金屬氧化物層上;形成第二介電層於第一介電層上;形成功函數金屬層於第二介電層上;以及形成閘極金屬填充層於功函數金屬層上。形成第一介電層的步驟包括沉積氧化物材料,其氧面積密度小於金屬氧化物層的氧面積密度。
在一些實施例中,半導體裝置的形成方法包括形成第一鰭狀結構與第二鰭狀結構於基板上;分別形成第一閘極開口與第二閘極開口於第一鰭狀結構與第二鰭狀結構上;分別形成第一介電層的第一層部分與第二層部分於第一閘極開口與第二閘極開口中;以第一摻質選擇性摻雜第一介電層的第一層部分,其中第一摻質的電負度大於第一介電層的金屬或半導體的電負度;以第二摻質選擇性摻雜第一介電層的第二層部分,且第二摻質與第一摻質不同,其中第二摻質的電負度小於第一介電層的金屬或半導體的電負度;分別形成第二介電層的第一層部分與第二介電層部分於第一介電層的第一層部分與第二層部分上;以及分別形成第一閘極金屬填充層與第二閘極金屬填充層於第二介電層的第一層部分與第二層部分上。
在一些實施例中,半導體裝置包括:基板;鰭狀結構,位於基板上;半導體氧化物層,位於鰭狀結構上;金屬氧化物層,位於半導體氧化物層上;第一介電層,位於金屬氧化物層上;第二介電層,位於第一介電層上;功函數金屬層,位於第二介電層上;以及閘極金屬填充層,位於功函數金屬層上。金屬氧化物層的金屬材料的電負度大於第一介電層的金屬或半導體的電負度。
下述內容搭配圖式詳細說明,以利理解本發明實施例。下述內容搭配圖式說明例示性實施例。在圖式中,相似的標號通常表示相同、功能類似、及/或結構類似的單元。
下述內容提供的不同實施例或實例可實施本發明的不同結構。下述特定構件與排列的實施例係用以簡化本發明內容而非侷限本發明。舉例來說,形成第一構件於第二構件上的敘述包含兩者直接接觸的實施例,或兩者之間隔有其他額外構件而非直接接觸的實施例。此外,本發明之多個實例可重複採用相同標號以求簡潔,但多種實施例及/或設置中具有相同標號的元件並不必然具有相同的對應關係。
空間性的相對用語如「下方」、「其下」、「下側」、「上方」、「上側」、或類似用語可用於簡化說明某一元件與另一元件在圖示中的相對關係。空間性的相對用語可延伸至以其他方向使用之元件,而非侷限於圖示方向。元件亦可轉動90度或其他角度,因此方向性用語僅用以說明圖示中的方向。
值得注意的是,下述內容的「一實施例」、「一例示性的實施例」、「例示性」、或類似用語所述的實施例可包含特定的特徵、結構、或特性,但每一實施例可不必包含特定的特徵、結構、或特性。此外,這些用語不必視作相同實施例。此外,當結合實施例描述特定特徵、結構、或特性時,無論是否明確說明,本技術領域中具有通常知識者自可結合其他實施例以實施這些特徵、結構、或特性。
應理解的是,此處的措詞或用語的目的為說明而非限制,因此本技術領域中具有通常知識者可依此處說明解釋下述說明的措詞或用語。
在一些實施例中,用語「大約」和「實質上」指的是在5%之內變化的給定數值(比如數值±1%、±2%、±3%、±4%、或±5%)。這些數值僅用於舉例而非侷限本發明實施例。術語「大約」和「實質上」可指本技術領域中具有通常知識者依據此處交視的內容所解釋的數值的百分比。
可由任何合適方法圖案化鰭狀結構。舉例來說,可採用一或多道微影製程圖案化鰭狀結構,包括雙重圖案化製程或多重圖案化製程。雙重圖案化與多重圖案化製程可結合光微影與自對準製程,其產生的圖案間距可小於採用單一的直接光微影製程所得的圖案間距。舉例來說,可形成犧牲層於基板上,並採用光微影製程圖案化犧牲層。採用自對準製程,以沿著圖案化的犧牲層側部形成間隔物。接著移除犧牲層,而保留的間隔物或芯之後可用於圖案化鰭狀結構。
開啟場效電晶體所需的閘極電壓(臨界電壓)取決於場效電晶體通道區的半導體材料及/或場效電晶體的閘極結構的有效功函數值。舉例來說,對n型場效電晶體而言,減少n型場效電晶體閘極結構的有效功函數值與n型場效電晶體通道區材料的導帶能量(如矽的4.1 eV或矽鍺的3.8 eV)之間的差距,可降低n型場效電晶體的臨界電壓。對p型場效電晶體而言,減少p型場效電晶體閘極結構的有效功函數值與p型場效電晶體通道區材料的價帶能量(如矽的5.2 eV或矽鍺的4.8 eV)之間的差距,可降低p型場效電晶體的臨界電壓。場效電晶體閘極結構的有效功函數值可取決於場效電晶體閘極結構的每一層的厚度及/或材料組成。如此一來,可調整場效電晶體閘極結構的厚度及/或材料組成,以製造不同臨界電壓的場效電晶體。
由於對多功能低能耗的可攜裝置的需求增加,對較低及/或不同臨界電壓(比如臨界電壓低於200 mV)的場效電晶體的需求也增加。為了使多臨界電壓裝置具有低臨界電壓的場效電晶體,方法之一為閘極結構中的功函數金屬層厚度差異大於約4 nm (比如約5 nm至約10 nm)。然而不同的功函數金屬層厚度可能受限於場效電晶體的閘極結構之幾何形狀。此外,沉積不同厚度的功函數金屬層,可能會使場效電晶體(如全繞式閘極場效電晶體、鰭狀場效電晶體、及/或金氧半場效電晶體)在尺寸持續縮小的挑戰增加。
本發明實施例提供的多臨界電壓裝置所含有的場效電晶體(如鰭狀場效電晶體),可具有彼此不同的低臨界電壓。本發明實施例亦提供形成這些場效電晶體於相同基板上的方法。方法的例子可形成功函數金屬層的厚度類似但臨界電壓較低及/或不同的n型場效電晶體與p型場效電晶體於相同基板上。這些方法的例子與形成場效電晶體(尺寸與臨界電壓類似)於相同基板上的其他方法相較,在製造較低及/或不同臨界電壓的可信場效電晶體閘極結構時的成本較低(比如降低約20%至約30%)且時間更短(比如減少約15%至約20%)。此外,這些方法的例子所形成的場效電晶體閘極結構的尺寸(如閘極堆疊厚度),小於其他方法所形成的具有類似臨界電壓的場效電晶體閘極結構的尺寸。
在一些實施例中,n型場效電晶體與p型場效電晶體具有不同的閘極結構設置,但具有類似的功函數金屬層厚度。n型場效電晶體與p型場效電晶體可選擇性地形成於相同基板上,以達較低及/或不同的臨界電壓。不同閘極結構可具有摻雜不同金屬摻質的高介電常數的閘極介電層。不同的金屬摻質可誘發不同極性及/或濃度的偶極於高介電常數的閘極介電層與界面氧化物層之間的界面。偶極的不同極性及/或濃度造成閘極結構具有不同的有效功函數值與臨界電壓。因此控制高介電常數的閘極介電層中的摻質材料及/或濃度,可調整n型場效電晶體與p型場效電晶體的閘極結構的有效功函數值,因此可調整n型場效電晶體與p型場效電晶體的臨界電壓而不需改變功函數金屬層的厚度。在一些實施例中,p型場效電晶體閘極結構可包括金屬氧化物層夾設於高介電常數的閘極介電層與界面氧化物層之間,而非摻雜的高介電常數的閘極介電層,以誘發偶極於高介電常數的閘極介電層與界面氧化物層之間。
圖1A係一些實施例中,具有p型場效電晶體102P與n型場效電晶體102N的半導體裝置100的等角圖。在一些實施例中,p型場效電晶體102P與n型場效電晶體102N可具有不同剖視圖,如圖1B至1E所示。圖1B至1E顯示p型場效電晶體102P與n型場效電晶體102N沿著圖1A的個別剖線A-A及B-B的剖視圖。圖1B至1E係半導體裝置100的剖視圖,其額外結構未圖示於圖1A以簡化圖式。p型場效電晶體102P與n型場效電晶體102N中具有相同標號的單元說明可互通,除非另外說明。
如圖1A所示,n型場效電晶體102N可包括閘極結構112N的陣列位於鰭狀結構106N上,而p型場效電晶體102P可包括閘極結構112P的陣列位於鰭狀結構106P上。n型場效電晶體102N可進一步包括磊晶源極/汲極區110N的陣列位於閘極結構112N未覆蓋的鰭狀結構106N的部分上。類似地,p型場效電晶體102P可進一步包括磊晶源極/汲極區110P的陣列位於閘極結構112P未覆蓋的鰭狀結構106P的部分上。
半導體裝置100可進一步包括閘極間隔物114、淺溝槽隔離區116、蝕刻停止層117、與層間介電層118。在一些實施例中,閘極間隔物114、淺溝槽隔離區116、蝕刻停止層117、與層間介電層118可包含絕緣材料如氧化矽、氮化矽、碳氮化矽、碳氮氧化矽、或氧化矽鍺。在一些實施例中,閘極間隔物114的厚度可為約2 nm至約9 nm,以適當地電性隔離閘極結構112N及112P與相鄰的結構。
半導體裝置100可形成於基板104上,其具有p型場效電晶體102P與n型場效電晶體102N形成於基板104的不同區域上。其他場效電晶體及/或結構(如隔離結構)可形成於基板104上的p型場效電晶體102P與n型場效電晶體102N之間。基板104可為半導體材料如矽、鍺、矽鍺、絕緣層上矽結構、或上述之組合。此外,基板104可摻雜p型摻質(如硼、銦、鋁、或鎵)或n型摻質(如磷或砷)。在一些實施例中,沿著X軸延伸的鰭狀結構106P及106N包括的材料可與基板104的材料類似。
如圖1B及1C所示,p型場效電晶體102P與n型場效電晶體102N可包括源極/汲極區110P及110N與閘極結構112P及112N。對p型場效電晶體102P而言,源極/汲極區110P可包括磊晶成長的半導體材料如矽或矽鍺,以及p型摻質如硼或其他合適的p型摻質。對n型場效電晶體102N而言,源極/汲極區110N可包括磊晶成長的半導體材料如矽,以及n型摻質如磷或其他合適的n型摻質。
閘極結構112P及112N可為多層結構。閘極結構112P及112N可包括(i)閘極氧化物結構122P及122N位於個別的鰭狀結構106P及106N上,(ii)功函數金屬層124P及124N位於個別的閘極氧化物結構122P及122N上,以及(iii)閘極金屬填充層126P及126N位於個別的功函數金屬層124P及124N上。
如圖1B所示的一些實施例,閘極氧化物結構122P可包含(i)界面氧化物層128P位於鰭狀結構106P上、(ii)金屬氧化物層132P位於界面氧化物層128P上、(iii)偶極層130P位於界面氧化物層128P與金屬氧化物層132P之間的界面、(iv)第一高介電常數的閘極介電層134P位於金屬氧化物層132P上、以及(v)第二高介電常數的閘極介電層136P位於第一高介電常數的閘極介電層134P上。
界面氧化物層128P可包含鰭狀結構106P的材料的氧化物,比如氧化矽、氧化矽鍺、或氧化鍺。金屬氧化物層132P的材料可誘發形成p型偶極於偶極層130P中。偶極層130P可包括p型偶極,其來自金屬氧化物層132P的金屬離子與界面氧化物層128P的氧離子。金屬氧化物層132P可包括金屬材料的氧化物,其金屬材料的電負度大於第一高介電常數的閘極介電層134P所含的金屬或半導體材料的電負度。此外,金屬氧化物層132P可包括氧化物材料,其氧面積密度大於第一高介電常數的閘極介電層134P所含的氧化物材料的氧面積密度。此處所述的用語如氧化物材料的「氧面積密度」,指的是氧化物材料的單位面積的氧原子濃度。
與界面氧化物層128P與第一高介電常數的閘極介電層134P之間的界面(無金屬氧化物層132P)所誘發的偶極相較,金屬氧化物層132P的電負度與氧面積密度較大,可誘發較強的p型偶極於偶極層130P中。由於較強的p型偶極造成p型場效電晶體的臨界電壓較低,採用金屬氧化物層132P可形成臨界電壓低於200 mV (如約150 mV、100 mV、或50 mV)的p型場效電晶體102P。在第一高介電常數的閘極介電層134P包括氧化鉿的一些實施例中,金屬氧化物層132P可包括元素表13族的金屬材料的氧化物,比如氧化鎵、氧化鋁、或氧化銦。在一些實施例中,具有氧化鎵的金屬氧化物層132P可比具有氧化鋁的金屬氧化物層132P提供更佳的裝置效能。在一些實施例中,當金屬氧化物層132P包括氧化鎵、氧化鋁、或氧化銦時,偶極層130P可包含鎵-氧、鋁-氧、或銦-氧的p型偶極。在一些實施例中,金屬氧化物層132P的厚度可為約0.5 nm至約3 nm。若金屬氧化物層132P的厚度小於0.5 nm,則可能不誘發形成偶極於偶極層130P中。另一方面,若金屬氧化物層132P的厚度大於3 nm,自金屬氧化物層132P擴散的金屬原子可能劣化第一高介電常數的閘極介電層134P與第二高介電常數的閘極介電層136P,最後劣化裝置效能。
第一高介電常數的閘極介電層134P與第二高介電常數的閘極介電層136P可包含高介電常數的介電材料,比如氧化鉿、氧化鈦、氧化鉿鋯、氧化鉭、矽酸鉿、氧化鋯、或矽酸鋯。在一些實施例中,第一高介電常數的閘極介電層134P與第二高介電常數的閘極介電層136P包含的材料,可彼此類似或不同。在一些實施例中,第一高介電常數的閘極介電層134P與第二高介電常數的閘極介電層136P的厚度,可彼此類似或不同。在一些實施例中,第一高介電常數的閘極介電層134P與第二高介電常數的閘極介電層136P可未摻雜。
在一些實施例中,p型功函數金屬層124P可包含實質上無鋁的(i)鈦為主的氮化物或合金如氮化鈦、氮化鈦矽、鈦-金合金、鈦-銅合金、鈦-鉻合金、鈦-鈷合金、鈦-鉬合金、或鈦-鎳合金;(ii)鉭為主的氮化物或合金如氮化鉭、氮化鉭矽、鉭-金合金、鉭-銅合金、鉭-鎢合金、鉭-鉑合金、鉭-鉬合金、鉭-鈦合金、或鉭-鎳合金;或(iii)上述之組合。在一些實施例中,p型功函數金屬層124P的厚度可為約1 nm至約3 nm。p型功函數金屬層124P的其他合適尺寸亦屬於本發明實施例的範疇。閘極金屬填充層126P可包括合適的導電材料,比如鎢、鈦、銀、釕、鉬、銅、鈷、鋁、銥、鎳、金屬合金、或上述之組合。
如圖1C所示,一些實施例的閘極氧化物結構122N可包括(i)界面氧化物層128N位於鰭狀結構106N上;(ii)第一高介電常數的閘極介電層134N位於界面氧化物層128N上;(iii)第二高介電常數的閘極介電層136N位於第一高介電常數的閘極介電層134N上;以及(iv)偶極層130N位於界面氧化物層128N與第一高介電常數的閘極介電層134N之間的界面。界面氧化物層128N可包括鰭狀結構106N的材料的氧化物,比如氧化矽、氧化矽鍺、或氧化鍺。在一些實施例中,第一高介電常數的閘極介電層134N包含的摻質金屬的電負度,可小於第一高介電常數的閘極介電層134N所含的金屬或半導體材料的電負度。在一些實施例中,第一高介電常數的閘極介電層134N可包括稀土金屬的摻質,比如鑭、釔、鈧、鈰、鐿、鉺、鏑、或鎦。第一高介電常數的閘極介電層134N的金屬摻質可誘發形成n型偶極於偶極層130N中。偶極層130N可包括n型偶極,其來自金屬摻質的金屬離子以及來自界面氧化物層128N的氧離子。當第一高介電常數的閘極介電層134N包括鑭摻質時,偶極層130N可包含n型偶極如鑭-氧偶極。與誘發於界面氧化物層128P與未摻雜的第一高介電常數的閘極介電層134N之間的界面的偶極相較,第一高介電常數的閘極介電層134N的金屬摻質的電負度較低,因此其誘發於偶極層130N中的n型偶極較強。在一些實施例中,第一高介電常數的閘極介電層134N與第二高介電常數的閘極介電層136N包括的高介電常數的介電材料,可與第一高介電常數的閘極介電層134P與第二高介電常數的閘極介電層136P的材料類似。
在一些實施例中,n型功函數金屬層124N可包含鈦鋁、碳化鈦鋁、鉭鋁、碳化鉭鋁、摻雜鋁的鈦、摻雜鋁的氮化鈦、摻雜鋁的鉭、摻雜鋁的氮化鉭、或上述之組合。在一些實施例中,n型功函數金屬層124N的厚度可為約1 nm至約3 nm。n型功函數金屬層124N的其他合適尺寸亦屬本發明實施例的範疇。閘極金屬填充層126N包含的導電材料可與閘極金屬填充層126P的材料類似。
如圖1D所示的一些實施例,閘極氧化物結構122P不含金屬氧化物層132P並包含具有金屬摻質的第一高介電常數的閘極介電層135P,而非未摻雜的第一高介電常數的閘極介電層134P (如圖1B所示)。第一高介電常數的閘極介電層135P的金屬摻質取代金屬氧化物層132P,可誘發形成p型偶極於偶極層130P中。偶極層130P可包含p型偶極,其來自第一高介電常數的閘極介電層135P的金屬摻質之金屬離子,以及來自界面氧化物層128P的氧離子。第一高介電常數的閘極介電層135P包含的摻質金屬之電負度,大於第一高介電常數的閘極介電層135P所含的金屬或半導體材料的電負度。在一些實施例中,當第一高介電常數的閘極介電層135P包括氧化鉿時,第一高介電常數的閘極介電層135P可包含元素表13族的材料作為摻質,比如鎵、鋁、或銦。在一些實施例中,當第一高介電常數的閘極介電層135P包括鎵、鋁、或銦摻質時,偶極層130P可包含鎵-氧、鋁-氧、或銦-氧的p型偶極。
圖1F顯示一些實施例中,當第一高介電常數的閘極介電層135P包括氧化鉿與鎵摻質,而界面氧化物層128P包括氧化矽時,第一高介電常數的閘極介電層135P與界面氧化物層128P沿著圖1D的剖線C-C的鉿、鎵、氧、與矽的濃度輪廓138、140、142、及144。如圖1F所示,第一高介電常數的閘極介電層135P中的摻質濃度大於偶極層130P中的摻質濃度。
圖2係一些實施例中,製作圖1B及1C的剖視圖所示的p型場效電晶體102P與n型場效電晶體102N所用的方法200之流程圖。為了說明目的,圖2所示的步驟將搭配圖3A至15B所示的製作p型場效電晶體102P與n型場效電晶體102N所用的製作製程說明。圖3A至15B係多種實施例中,p型場效電晶體102P與n型場效電晶體102N於多種製作階段沿著圖1A的剖線A-A及B-B的剖視圖。可由不同順序進行步驟或不進行一些步驟,端視具體應用而定。值得注意的是,方法200可不產生完整的p型場效電晶體102P與n型場效電晶體102N。綜上所述,應理解在方法200之前、之中、與之後可提供額外製程,且一些其他製程僅簡述於此。圖3A至15B的單元與圖1A至1C中的上述類似單元可採用相同標號標示。
在步驟205中,多晶矽結構與源極/汲極區形成於p型場效電晶體與n型場效電晶體的鰭狀結構上。以圖3A及3B為例,多晶矽結構312P及312N與源極/汲極區110P及110N分別形成於基板104之上的鰭狀結構106P及106N上。在後續置換閘極的製程中,多晶矽結構312P及312N可置換為閘極結構112P及112N。在形成源極/汲極區110P及110N之後可形成蝕刻停止層117與層間介電層118,以形成圖3A及3B的結構。
如圖2所示,步驟210形成閘極開口於鰭狀結構上。以圖4A及4B為例,閘極開口412P及412N分別形成於鰭狀結構106P及106N上。形成閘極開口412P及12N的步驟,可包括自圖3A及3B的結構蝕刻多晶矽結構312P及312N。
如圖2所示,步驟215至235形成閘極氧化物結構於閘極開口中。以圖4A至12B為例,閘極氧化物結構122P及122N (如圖1B及1C所示)分別形成於閘極開口412P及412N中。
如圖2所示,步驟215形成界面氧化物層於閘極開口中。以圖5A及5B為例,界面氧化物層128P及128N形成於閘極開口412P及412N中。在一些實施例中,界面氧化物層128P及128N的形成方法可為暴露個別的閘極開口412P及412N中的鰭狀結構106P及106N的表面至氧化環境。氧化環境可包含臭氧,氫氧化銨、過氧化氫、與水的混合物,及/或氯化氫、過氧化氫、與水的混合物。
後續形成層狀物於界面氧化物層128P及128N之上的步驟220至240,如圖6A至13B所示。這些圖式為圖5A及5B所示的區域103P及103N的放大圖。
如圖2所示,步驟220選擇性形成金屬氧化物層於p型場效電晶體的界面氧化物層上。以圖6A至7B為例,金屬氧化物層132P形成於界面氧化物層128P上。選擇性形成金屬氧化物層132P的步驟可包括依序進行步驟(i)沉積金屬氧化物層132於圖5A及5B的結構上,以形成圖6A及6B的結構;以及(ii)在圖6A及6B的結構上採用微影圖案化製程,以選擇性移除界面氧化物層128N上的金屬氧化物層132的部分,而形成圖7A及7B的結構。移除界面氧化物層128N之上的金屬氧化物層132時,可移除金屬氧化物層132與與界面氧化物層128N之間的偶極層130P。沉積金屬氧化物層132的方法可包括沉積約0.5 nm至約3 nm的金屬材料(如鎵、鋁、或銦,其電負度大於第一高介電常數的閘極介電層134P所含的金屬或半導體材料(如鉿、鋯、或鈦)的電負度)的氧化物層。此外,氧化物層(如氧化鎵、氧化鋁、或氧化銦)的氧面積密度大於第一高介電常數的閘極介電層134P所含的氧化物材料(如氧化鉿、氧化鋯、或氧化鈦)的氧面積密度。
如圖2所示,步驟225形成第一高介電常數的閘極介電層,其具有第一層部分位於n型場效電晶體的金屬氧化物層上,以及第二層部分位於n型場效電晶體的界面氧化物層上。以圖8A及8B為例,第一層部分如第一高介電常數的閘極介電層134P位於金屬氧化物層132P上,而第二層部分如第一高介電常數的閘極介電層134N*位於界面氧化物層128N上。在一些實施例中,第一高介電常數的閘極介電層134P及134N*的形成方法,可採用氯化鉿作為前驅物且溫度為約250℃至約350℃的原子層沉積以沉積約1 nm至約2 nm的氧化鉿層。
如圖2所示,步驟230選擇性進行摻雜製程於第一高介電常數的閘極介電層的第二層部分上。以圖9A至11B為例,選擇性進行摻雜製程於第一高介電常數的閘極介電層134N*上。選擇性摻雜製程可包括依序進行步驟(i)沉積摻質源層946於圖8A及8B的結構上,以形成圖9A及9B的結構;(ii)在圖9A及9B的結構上採用微影圖案化製程,以選擇性移除第一高介電常數的閘極介電層134P上的摻質源層946的部分,而形成圖10A及10B的結構;(iii)在圖10A及10B的結構上進行驅入退火製程,以形成摻雜的第一高介電常數的閘極介電層134N與偶極層130N,如圖11B所示;以及(iv)自圖10B的結構移除摻質源層946,以形成圖11A及11B的結構。
驅入退火製程可自摻質源層946擴散金屬原子至第一高介電常數的閘極介電層134N*中,以佈植金屬摻質至第一高介電常數的閘極介電層134N*。佈植的金屬摻質可誘發形成偶極層130N。驅入退火製程可包括退火圖10A及10B的結構,其溫度為約600℃至約800℃,壓力可為約1 torr至約50 torr,且時間可為約0.1秒至約30秒。在一些實施例中,驅入退火製程可包含兩個退火製程:(i)浸入退火製程,其溫度為約600℃至約800℃,且時間為約2秒至約60秒;以及(ii)峰值退火,其溫度為約700℃至約800℃,且時間為約0.1秒至約2秒。
沉積摻質源層946的步驟可包括沉積稀土金屬(如鑭、釔、鈧、鈰、鐿、鉺、鏑、或鎦,其電負度低於第一高介電常數的閘極介電層134N所含的金屬或半導體材料(如鉿、鋯、或鈦)的電負度)的氧化物層,此外,氧化物層(如氧化鑭、氧化釔、氧化鈧、氧化鈰、氧化鐿、氧化鉺、氧化鏑、或氧化鎦)的氧面積密度小於第一高介電常數的閘極介電層134N之氧化物材料(如氧化鉿、氧化鋯、或氧化鈦)的氧面積密度。
如圖2所示,步驟235形成第二高介電常數的閘極介電層,其具有第一層部分與第二層部分於第一高介電常數的閘極介電層的第一層部分與第二層部分上。以圖12及12B為例,第二高介電常數的閘極介電層的第一層部分如第二高介電常數的閘極介電層136P形成於第一高介電常數的閘極介電層134P上,而第二高介電常數的閘極介電層的第二層部分如第二高介電常數的閘極介電層136N形成於第一高介電常數的閘極介電層134N上。在一些實施例中,第二高介電常數的閘極介電層136P及136N的形成方法,可採用氯化鉿作為前驅物且溫度可為約250℃至約350℃的原子層沉積製程,以沉積約5 nm至約8 nm的氧化鉿。在一些實施例中,第二高介電常數的閘極介電層136P及136N的沉積厚度,可大於第一高介電常數的閘極介電層134P及134N的沉積厚度。在一些實施例中,第二高介電常數的閘極介電層136P及136N的厚度,可為第一高介電常數的閘極介電層134P及134N的厚度的約1.5倍至約3倍。第一高介電常數的閘極介電層134N較薄,有利於摻雜第一高介電常數的閘極介電層134N。
如圖2所示,步驟240選擇性形成p型功函數金屬層於第二高介電常數的閘極介電層的第一層部分上,並選擇性形成n型功函數金屬層於第二高介電常數的閘極介電層的第二層部分上。以圖13A及13B為例,p型功函數金屬層124P選擇性地形成於第二高介電常數的閘極介電層136P上,而n型功函數金屬層124N選擇性地形成於第二高介電常數的閘極介電層136N上。可採用微影圖案化製程在圖12A及12B的結構上選擇性形成p型功函數金屬層124P與n型功函數金屬層124N,以形成圖13A及13B的結構。
如圖2所示,步驟245形成閘極金屬填充層於p型功函數金屬層與n型功函數金屬層上。以圖14A至15B為例,閘極金屬填充層126P及126N可分別形成於p型金屬功函數層124P與n型功函數金屬層124N上。形成閘極金屬填充層126P及126N的方法,可依序進行步驟(i)沉積導電層1426於圖13A及13B的結構上以填入閘極開口412P及412N,並形成圖14A及14B的結構;以及(ii)在圖14A及14B的結構上進行化學機械研磨製程,以形成圖15A及15B的結構,其閘極結構112P及112N的上表面與層間介電層118的上表面實質上共平面。一些實施例在化學機械研磨製程之後,可形成閘極蓋層(未圖示)於閘極結構112P及112N上,並形成接點結構於閘極結構112P及112N與源極/汲極區110P及110N上。
圖16係一些實施例中,製作具有圖1D及1E所示的剖視圖的p型場效電晶體102P與n型場效電晶體102N的方法1600之流程圖。為了說明目的,圖16所示的步驟將搭配圖16A至26B所示之製作p型場效電晶體102P與n型場效電晶體102N的製程說明。圖16A至26B係一些實施例中,p型場效電晶體102P與n型場效電晶體102N於多種製作階段沿著圖1A的剖線A-A及B-B的剖視圖。可由不同順序進行步驟或省略一些步驟,端視具體應用而定。應理解方法1600可不產生完整的p型場效電晶體102P與n型場效電晶體102N。綜上所述,應理解在方法1600之前、之中、與之後可提供額外製程,且一些其他製程僅簡述於此。圖16A至26B的單元與圖1A至1E中的上述類似單元可採用相同標號標示。
圖16所示的步驟1605至1615與圖2所示的步驟205至215類似。在步驟1615之後,可形成與圖5A及5B的結構類似的結構。後續形成層狀物於界面氧化物層128P及128N之上(如圖5A及5B所示)的步驟1620至1640,如圖17A至24B所示。這些圖式為圖5A及5B所示的區域103P及103N的放大圖。
如圖16所示,步驟1615至1635可形成閘極氧化物結構於閘極開口中。以圖17A至23B為例,閘極氧化物結構122P及122N (如圖1D及1E所示)分別形成於閘極開口412P及412N中(如圖4A及4B所示)。
如圖16所示,步驟1620分別形成具有第一層部分與第二層部分的第一高介電常數的閘極介電層於p型場效電晶體與n型場效電晶體的界面氧化物層上。以圖17A及17B為例,第一層部分如第一高介電常數的閘極介電層134P*形成於界面氧化物層128P上,以及第二層部分如第一高介電常數的閘極介電層134N*形成於界面氧化物層128N上。在一些實施例中,第一高介電常數的閘極介電層134P*及134N*的形成方法,可採用氯化鉿作為前驅物且溫度為約250℃至約350℃的原子層沉積以沉積約1 nm至約2 nm的氧化鉿層。
如圖16所示,步驟1625在第一高介電常數的閘極介電層的第一層部分上選擇性地進行摻雜製程。以圖18A至20B為例,在第一層部分如第一高介電常數的閘極介電層134P*上選擇性地進行摻雜製程。選擇性摻雜製程可依序進行步驟(i)沉積摻質源層1848於圖17A及17B的結構上,如圖18A及18B所示;(ii)採用微影圖案化製程移除圖18A及18B的結構上的第二層部分如第一高介電常數的閘極介電層134N*上的摻質源層1848的部分,以形成圖19A及19B的結構;(iii)進行驅入退火製程於圖19A及19B的結構上,以形成摻雜的第一高介電常數的閘極介電層135P與偶極層130P,如圖20A所示;以及(iv)自圖19A及19B的結構移除摻質源層1848,以形成圖20A及20B的結構。
驅入退火製程可自摻質源層1848擴散金屬原子至第一高介電常數的閘極介電層134P*中,以佈植金屬摻質至第一高介電常數的閘極介電層134P*。佈植的金屬摻質可誘發形成偶極層130P。驅入退火製程可包括退火圖19A及19B的結構,其溫度為約600℃至約800℃,壓力為約1 torr至約50 torr,且時間為約0.1秒至約30秒。在一些實施例中,驅入退火製程可包含兩個退火製程:(i)浸入退火製程,其溫度為約600℃至約800℃且時間可為約2秒至約60秒;以及(ii)峰值退火製程,其溫度為約700℃至約800℃且時間可為約0.1秒至約2秒。
圖27顯示一些實施例中,當第一層部分如第一高介電常數的閘極介電層134P*包括氧化鉿、摻質源層1848包括氧化鎵、且界面氧化物層128P包括氧化矽時,驅入退火製程之前沿著圖19A的剖線D-D的鉿、鎵、氧、與矽的濃度輪廓138、140、142、與144。圖28顯示驅入退火製程之後沿著圖19A的剖線的鉿、鎵、氧、與矽的濃度輪廓138、140、142、與144。在驅入退火製程之前,鎵原子的濃度峰值在摻質源層1848的區域中,如圖27所示。在驅入退火製程之後,鎵原子的濃度峰值偏移至第一高介電常數的閘極介電層135P的區域中(如圖28所示),其表示佈植鎵摻質至第一高介電常數的閘極介電層135P中。
沉積摻質源層1848的方法可包括沉積金屬材料(如鎵、鋁、或銦,其電負度大於第一高介電常數的閘極介電層135P所含的金屬或半導體材料(如鉿、鋯、或鈦)的電負度)的氧化物層。此外,氧化物層(如氧化鎵、氧化鋁、或氧化銦)的氧面積密度大於第一高介電常數的閘極介電層135P所含的氧化物材料(如氧化鉿、氧化鋯、或氧化鈦)的氧面積密度。
如圖16所示,步驟1630選擇性進行摻雜製程於第一高介電常數的閘極介電層的第二層部分上。以圖21A至23B為例,選擇性進行摻雜製程於第二層部分如第一高介電常數的閘極介電層134N*上。選擇性摻雜製程可依序進行步驟(i)沉積摻質源層946於圖20A及20B的結構上,以形成圖21A及21B的結構;(ii)採用微影圖案化製程選擇性移除圖21A及21B的結構上的第一高介電常數的閘極介電層135P之上的摻質源層946的部分,以形成圖22A及22B的結構;(iii)在圖22A及22B的結構上進行驅入退火製程,以形成摻雜的第一高介電常數的閘極介電層134N與偶極層130N,如圖23B所示;以及(iv)自圖23B的結構移除摻質源層946。沉積摻質源層946以及驅入退火製程可與上述步驟230類似。
如圖16所示,步驟1635分別形成第二高介電常數的閘極介電層的第一層部分及第二層部分於第一高介電常數的閘極介電層之摻雜的第一層部分與第二層部分上。以圖23A及23B為例,第二高介電常數的閘極介電層的第一層部分如第二高介電常數的閘極介電層136P形成於第一高介電常數的閘極介電層135P上,而第二高介電常數的閘極介電層的第二層部分如第二高介電常數的閘極介電層136N形成於第一高介電常數的閘極介電層134N上。第二高介電常數的閘極介電層136P及136N的形成步驟,可與上述步驟235類似。
如圖16所示,步驟1640選擇性形成p型功函數金屬層於第二高介電常數的閘極介電層的第一層部分上,並選擇性形成n型功函數金屬層於第二高介電常數的閘極介電層的第二層部分上。以圖24A及24B為例,選擇性形成p型功函數金屬層124P於第二高介電常數的閘極介電層136P上,並選擇性形成n型功函數金屬層124N於第二高介電常數的閘極介電層136N上。可採用微影圖案化製程選擇性形成p型功函數金屬層124P與n型功函數金屬層124N於圖23A及23B的結構上,以形成圖24A及24B的結構。
如圖16所示,步驟1645形成閘極金屬填充層於p型功函數金屬層與n型功函數金屬層上。以圖25A至26B為例,閘極金屬填充層126P及126N分別形成於p型功函數金屬層124P與n型功函數金屬層124N上。形成閘極金屬填充層126P及126N的方法與步驟245所述的方法類似。
本發明實施例提供的多臨界電壓裝置所含有的場效電晶體(如p型場效電晶體102P與n型場效電晶體120N),可具有彼此不同的低臨界電壓。本發明實施例亦提供形成這些場效電晶體於相同基板上的方法。方法的例子可形成功函數金屬層(如p型功函數金屬層124P與n型功函數金屬層124N)的厚度類似但臨界電壓較低及/或不同的n型場效電晶體與p型場效電晶體於相同基板上。
這些方法的例子與形成場效電晶體(尺寸與臨界電壓類似)於相同基板上的其他方法相較,在製造較低及/或不同臨界電壓的可信場效電晶體閘極結構時的成本較低(比如降低約20%至約30%)且時間更短(比如減少約15%至約20%)。此外,這些方法的例子所形成的場效電晶體閘極結構的尺寸(如閘極堆疊厚度),小於其他方法所形成的具有類似臨界電壓的場效電晶體閘極結構的尺寸。
在一些實施例中,具有不同的閘極結構設置(比如閘極結構112P及112N)與類似的功函數金屬層厚度的n型場效電晶體與p型場效電晶體,可選擇性地形成於相同基板(如基板104)上,以達較低及/或不同的臨界電壓。不同閘極結構的高介電常數的閘極介電層(如第一高介電常數的閘極介電層135P及134N)可摻雜不同的金屬摻質(如鎵摻質與鑭摻質)。不同金屬摻質可誘發不同極性極/或濃度的偶極於高介電常數的閘極介電層與界面氧化物層之間的偶極層(如偶極層130P及130N)之中。不同極性及/或濃度的偶極,可造成閘極結構具有不同的有效功函數與臨界電壓。因此控制高介電常數的閘極介電層中的摻質材料及/或濃度,可調整n型場效電晶體與p型場效電晶體的閘極結構的有效功函數值,進而調整n型場效電晶體與p型場效電晶體的臨界電壓而不需改變功函數金屬層的厚度。在一些實施例中,除了摻雜的高介電常數的閘極介電層,p型場效電晶體的閘極結構可包括金屬氧化物層(如金屬氧化物層132P)夾設於高介電常數的閘極介電層(如第一高介電常數的閘極介電層134P)與界面氧化物層(如界面氧化物層128P)之間,以誘發偶極於高介電常數的閘極介電層與界面氧化物層之間。
在一些實施例中,半導體裝置的形成方法包括:形成鰭狀結構於基板上;形成閘極開口於鰭狀結構上;形成金屬氧化物層於閘極開口中;形成第一介電層於金屬氧化物層上;形成第二介電層於第一介電層上;形成功函數金屬層於第二介電層上;以及形成閘極金屬填充層於功函數金屬層上。形成第一介電層的步驟包括沉積氧化物材料,其氧面積密度小於金屬氧化物層的氧面積密度。
在一些實施例中,形成金屬氧化物層的步驟包括沉積金屬材料的氧化物,且其金屬材料的電負度大於第一介電層的金屬或半導體的電負度。
在一些實施例中,形成金屬氧化物層的步驟包括沉積金屬材料的氧化物,且其金屬材料不同於第二介電層的金屬材料。
在一些實施例中,上述方法更包括形成界面氧化物層於鰭狀結構上。
在一些實施例中,形成金屬氧化物層的步驟包括沉積金屬氧化物層於界面氧化物層上。
在一些實施例中,形成金屬氧化物層的步驟包括沉積鎵、鋁、或銦的氧化物。
在一些實施例中,第二介電層的厚度大於第一介電層的厚度。
在一些實施例中,半導體裝置的形成方法包括形成第一鰭狀結構與第二鰭狀結構於基板上;分別形成第一閘極開口與第二閘極開口於第一鰭狀結構與第二鰭狀結構上;分別形成第一介電層的第一層部分與第二層部分於第一閘極開口與第二閘極開口中;以第一摻質選擇性摻雜第一介電層的第一層部分,其中第一摻質的電負度大於第一介電層的金屬或半導體的電負度;以第二摻質選擇性摻雜第一介電層的第二層部分,且第二摻質與第一摻質不同,其中第二摻質的電負度小於第一介電層的金屬或半導體的電負度;分別形成第二介電層的第一層部分與第二介電層部分於第一介電層的第一層部分與第二層部分上;以及分別形成第一閘極金屬填充層與第二閘極金屬填充層於第二介電層的第一層部分與第二層部分上。
在一些實施例中,以第一摻質選擇性摻雜第一介電層的第一層部分的步驟包括:形成金屬氧化物層於第一介電層的第一層部分與第二層部分上;移除第一介電層的第二層部分上的金屬氧化物層的部分;以及進行退火製程。
在一些實施例中,形成金屬氧化物層的步驟包括沉積氧化物材料,其氧面積密度大於第一介電層的氧化物材料的氧面積密度。
在一些實施例中,形成金屬氧化物層的步驟包括沉積鎵、鋁、或銦的氧化物。
在一些實施例中,以第二摻質選擇性摻雜第一介電層的第二層部分的步驟包括:形成稀土金屬氧化物層於第一介電層的第一層部分與第二層部分上;移除第一介電層的第一層部分上的稀土金屬氧化物層的部分;以及進行退火製程。
在一些實施例中,形成稀土金屬氧化物層的步驟包括沉積氧化物材料,其氧面積密度小於第一介電層的氧化物材料的氧面積密度。
在一些實施例中,上述方法更包括:選擇性形成p型功函數層於第二介電層的第一層部分上;以及選擇性形成n型功函數金屬層於第二介電層的第二層部分上。
在一些實施例中,第二介電層的厚度大於第一介電層的厚度。
在一些實施例中,半導體裝置包括:基板;鰭狀結構,位於基板上;半導體氧化物層,位於鰭狀結構上;金屬氧化物層,位於半導體氧化物層上;第一介電層,位於金屬氧化物層上;第二介電層,位於第一介電層上;功函數金屬層,位於第二介電層上;以及閘極金屬填充層,位於功函數金屬層上。金屬氧化物層的金屬材料的電負度大於第一介電層的金屬或半導體的電負度。
在一些實施例中,上述半導體裝置更包括偶極層位於金屬氧化物層與半導體氧化物層之間的界面。
在一些實施例中,偶極層包括來自金屬氧化物層的金屬原子與來自半導體氧化物層的氧原子。
在一些實施例中,第二介電層的厚度大於第一介電層的厚度。
在一些實施例中,金屬氧化物層的氧面積密度大於第一介電層的氧面積密度。
上述實施例之特徵有利於本技術領域中具有通常知識者理解本發明。本技術領域中具有通常知識者應理解可採用本發明作基礎,設計並變化其他製程與結構以完成上述實施例之相同目的及/或相同優點。本技術領域中具有通常知識者亦應理解,這些等效置換並未脫離本發明精神與範疇,並可在未脫離本發明之精神與範疇的前提下進行改變、替換、或更動。
A-A,B-B,C-C,D-D:剖線 100:半導體裝置 102P:p型場效電晶體 102N:n型場效電晶體 103N,130P:區域 104:基板 106N,106P:鰭狀結構 110N,110P:源極/汲極區 112N,112P:閘極結構 114:閘極間隔物 116:淺溝槽隔離區 117:蝕刻停止層 118:層間介電層 122N,122P:閘極氧化物結構 124N,124P:功函數金屬層 126N,126:閘極金屬填充層 128N,128P:界面氧化物層 130N,130P:偶極層 132,132P:金屬氧化物層 134N,134N*,134P,134P*,135P:第一高介電常數的閘極介電層 136N,136P:第二高介電常數的閘極介電層 138,140,142,144:濃度輪廓 200,1600:方法 205,210,215,220,225,230,235,240,245,1605,1610, 1615,1620,1625,1630,1635, 1640,1645:步驟 312N,312P:多晶矽結構 412N,412P:閘極開口 946,1848:摻質源層 1426:導電層
圖1A係一些實施例中,半導體裝置的等角圖。 圖1B至1E係一些實施例中,具有不同閘極結構的半導體裝置的剖視圖。 圖1F係一些實施例中,具有不同閘極結構的半導體裝置的裝置特性圖。 圖2係一些實施例中,製作具有不同閘極結構的半導體裝置的方法之流程圖。 圖3A至15A與圖3B至15B係一些實施例中,具有不同閘極結構的半導體裝置於製作製程的多種階段的剖視圖。 圖16係一些實施例中,製作具有不同閘極結構的半導體裝置的方法之流程圖。 圖17A至26A與圖17B至26B係一些實施例中,具有不同閘極結構的半導體裝置於製作製程的多種階段的剖視圖。 圖27及28係一些實施例中,具有不同閘極結構的半導體裝置於製作製程的多種階段的裝置特性圖。
200:方法
205,210,215,220,225,230,235,240,245:步驟

Claims (1)

  1. 一種半導體裝置的形成方法,包括: 形成一鰭狀結構於一基板上; 形成一閘極開口於該鰭狀結構上; 形成一金屬氧化物層於該閘極開口中; 形成一第一介電層於該金屬氧化物層上,其中形成該第一介電層的步驟包括沉積一氧化物材料,其氧面積密度小於該金屬氧化物層的氧面積密度; 形成一第二介電層於該第一介電層上; 形成一功函數金屬層於該第二介電層上;以及 形成一閘極金屬填充層於該功函數金屬層上。
TW111114422A 2021-08-19 2022-04-15 半導體裝置的形成方法 TW202322184A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/406,874 2021-08-19
US17/406,874 US11908702B2 (en) 2021-08-19 2021-08-19 Gate structures in semiconductor devices

Publications (1)

Publication Number Publication Date
TW202322184A true TW202322184A (zh) 2023-06-01

Family

ID=84696650

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111114422A TW202322184A (zh) 2021-08-19 2022-04-15 半導體裝置的形成方法

Country Status (3)

Country Link
US (1) US11908702B2 (zh)
CN (1) CN115527946A (zh)
TW (1) TW202322184A (zh)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101527535B1 (ko) * 2008-10-21 2015-06-10 삼성전자주식회사 반도체 소자의 형성 방법
JP5235784B2 (ja) * 2009-05-25 2013-07-10 パナソニック株式会社 半導体装置
US9236267B2 (en) * 2012-02-09 2016-01-12 Taiwan Semiconductor Manufacturing Company, Ltd. Cut-mask patterning process for fin-like field effect transistor (FinFET) device
US9105490B2 (en) * 2012-09-27 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Contact structure of semiconductor device
US8823059B2 (en) 2012-09-27 2014-09-02 Intel Corporation Non-planar semiconductor device having group III-V material active region with multi-dielectric gate stack
US9236300B2 (en) * 2012-11-30 2016-01-12 Taiwan Semiconductor Manufacturing Company, Ltd. Contact plugs in SRAM cells and the method of forming the same
US9136106B2 (en) * 2013-12-19 2015-09-15 Taiwan Semiconductor Manufacturing Company, Ltd. Method for integrated circuit patterning
US9406804B2 (en) * 2014-04-11 2016-08-02 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with contact-all-around
US9443769B2 (en) * 2014-04-21 2016-09-13 Taiwan Semiconductor Manufacturing Company, Ltd. Wrap-around contact
US9831183B2 (en) * 2014-08-07 2017-11-28 Taiwan Semiconductor Manufacturing Company, Ltd. Contact structure and method of forming
KR102395061B1 (ko) * 2015-07-02 2022-05-10 삼성전자주식회사 반도체 장치 및 그 제조 방법
US9520482B1 (en) * 2015-11-13 2016-12-13 Taiwan Semiconductor Manufacturing Company, Ltd. Method of cutting metal gate
US9548366B1 (en) 2016-04-04 2017-01-17 Taiwan Semiconductor Manufacturing Company, Ltd. Self aligned contact scheme
US10276690B2 (en) 2017-07-31 2019-04-30 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
KR102589667B1 (ko) 2017-12-22 2023-10-17 삼성전자주식회사 반도체 장치
US10304835B1 (en) * 2018-08-15 2019-05-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
US10985022B2 (en) * 2018-10-26 2021-04-20 Taiwan Semiconductor Manufacturing Co., Ltd. Gate structures having interfacial layers
US11264478B2 (en) * 2019-10-31 2022-03-01 Taiwan Semiconductor Manufacturing Company, Ltd. Transistors with reduced defect and methods forming same
US11374090B2 (en) 2019-10-31 2022-06-28 Taiwan Semiconductor Manufacturing Co., Ltd. Gate structures for semiconductor devices
US11784052B2 (en) * 2020-05-28 2023-10-10 Taiwan Semiconductor Manufacturing Co., Ltd. Dipole-engineered high-k gate dielectric and method forming same
US11658216B2 (en) * 2021-01-14 2023-05-23 Taiwan Semiconductor Manufacturing Company, Ltd. Method and structure for metal gate boundary isolation
US11581416B1 (en) * 2021-08-19 2023-02-14 Taiwan Semiconductor Manufacturing Co., Ltd. Gate structures in semiconductor devices

Also Published As

Publication number Publication date
CN115527946A (zh) 2022-12-27
US20230058221A1 (en) 2023-02-23
US11908702B2 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
US8895395B1 (en) Reduced resistance SiGe FinFET devices and method of forming same
US10128237B2 (en) Methods of gate replacement in semiconductor devices
US9018709B2 (en) Semiconductor device
US11694901B2 (en) Field-effect transistor and method for manufacturing the same
CN112687623A (zh) 半导体装置的制作方法
TW202147410A (zh) 製造半導體元件的方法
US20230387245A1 (en) Gate Spacers In Semiconductor Devices
TWI832245B (zh) 半導體裝置與其製造方法
CN113644120A (zh) 半导体装置的形成方法
CN114613850A (zh) 无结场效应晶体管及其制备方法
US20220320285A1 (en) Semiconductor Device and Method
JP4817813B2 (ja) ダイヤモンド半導体素子及びその製造方法
TW202322184A (zh) 半導體裝置的形成方法
JP2020102484A (ja) 半導体装置及びその製造方法、並びに電子機器
CN113257915A (zh) 半导体装置
US20230378324A1 (en) Strained Transistor with Conductive Plate
US20240150192A1 (en) Gate Structures In Semiconductor Devices
US20240079483A1 (en) Isolation structures in semiconductor devices
US20220336611A1 (en) Air inner spacers
CN117276343A (zh) 半导体器件及其制造方法
TW202314957A (zh) 半導體裝置及其製造方法
WO2024023603A1 (en) Isolation pillar structures for stacked device structures
TW202310015A (zh) 半導體裝置的製造方法
CN113113357A (zh) 半导体装置的制造方法
TW202308046A (zh) 半導體裝置的形成方法