TW202318565A - 製造半導體裝置的方法 - Google Patents

製造半導體裝置的方法 Download PDF

Info

Publication number
TW202318565A
TW202318565A TW110138432A TW110138432A TW202318565A TW 202318565 A TW202318565 A TW 202318565A TW 110138432 A TW110138432 A TW 110138432A TW 110138432 A TW110138432 A TW 110138432A TW 202318565 A TW202318565 A TW 202318565A
Authority
TW
Taiwan
Prior art keywords
gas
stage
pressure
spacer
sacrificial layer
Prior art date
Application number
TW110138432A
Other languages
English (en)
Other versions
TWI779882B (zh
Inventor
王治權
賴振益
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Priority to TW110138432A priority Critical patent/TWI779882B/zh
Priority to CN202111568443.7A priority patent/CN115985843A/zh
Application granted granted Critical
Publication of TWI779882B publication Critical patent/TWI779882B/zh
Publication of TW202318565A publication Critical patent/TW202318565A/zh

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Drying Of Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

一種製造半導體裝置的方法包括形成第一導體結構在基材上、形成第一間隔物在第一導體結構的側壁上、形成犧牲層在第一間隔物的側壁上、形成第二間隔物在犧牲層的側壁上、形成第二導體結構相鄰於第二間隔物、以及移除犧牲層以形成氣隙。移除犧牲層以形成氣隙的方法包括提供第一氣體以形成在第一氣壓的第一階段、提供第二氣體和第一氣體以形成在第一氣壓的第二階段、提供第三氣體、第二氣體和第一氣體以形成在第一氣壓的第三階段、以及提供第一氣體以形成在第二氣壓的第四階段,其中第二氣壓低於第一氣壓。犧牲層在第三階段中移除。

Description

製造半導體裝置的方法
本揭示案是關於一種製造半導體的方法,尤其是關於一種製造具有氣隙之半導體的方法。
隨著科技進步,半導體裝置變得更加高度整合,半導體裝置內的導體之間的距離越來越靠近,導致導體之間產生的寄生電容(parasitic capacitance)和電阻電容延遲(RC delay)變得顯著。由於空氣具有低介電常數(約等於1),使用氣隙在半導體裝置中可有效地降低寄生電容和阻容延遲。因此,優化氣隙製程可有助於半導體裝置的生產品質。
根據本揭示案的一些實施方式,一種製造半導體裝置的方法包括形成第一導體結構在基材上、形成第一間隔物在第一導體結構的側壁上、形成犧牲層在第一間隔物的側壁上、形成第二間隔物在犧牲層的側壁上使得犧牲層介於第一間隔物和第二間隔物之間、形成第二導體結構相鄰於第二間隔物、以及藉由氣相蝕刻製程移除犧牲層以形成氣隙。移除犧牲層以形成氣隙的方法包括提供第一氣體以形成在第一氣壓的第一階段、提供第二氣體和第一氣體以形成維持在第一氣壓的第二階段、提供第三氣體、第二氣體和第一氣體以形成維持在第一氣壓的第三階段、以及提供第一氣體以形成在第二氣壓的第四階段,其中第二氣壓低於第一氣壓。在第三階段中,犧牲層經移除而形成氣隙。
在一些實施例中,製造半導體裝置的方法更包含在形成氣隙之後排出第二氣體與第三氣體。
在一些實施例中,第三氣體包括含氟的氣體。
在一些實施例中,第二氣體包括含氮的氣體。
在一些實施例中,第一氣體包括惰性氣體、含氮的氣體、或上述之組合。
在一些實施例中,藉由調整第一氣體的氣壓使第二階段維持在第一氣壓。
在一些實施例中,藉由調整第一氣體的氣壓使第三階段維持在第一氣壓。
在一些實施例中,在第四階段之後,重複第二階段、第三階段、和第四階段。
根據本揭示案的一些實施方式,一種製造半導體裝置的方法包括形成位元線結構在基材上、形成第一間隔物在位元線結構的側壁上、形成犧牲層在第一間隔物的側壁上、形成第二間隔物在犧牲層的側壁上、形成接觸塞相鄰並接觸第二間隔物、形成著陸墊相鄰並接觸第二間隔物、提供第一氣體以形成在第一氣壓的第一階段、提供第二氣體和第一氣體以形成維持在第一氣壓的第二階段、提供第三氣體、第二氣體和第一氣體以形成維持在第一氣壓的第三階段、以及提供第一氣體以形成在第二氣壓的第四階段,其中第二氣壓低於第一氣壓。在第三階段中,犧牲層經移除而形成氣隙。
在一些實施例中,第一氣體對犧牲層的反應活性低。
在一些實施例中,調整第一氣體之氣壓使第二階段和第三階段維持在第一氣壓。
根據本揭示案的一些實施方式,本揭示案提供一種製造半導體的方法,藉由提升氣相蝕刻製程的穩定性而改善蝕刻選擇比。藉此降低間隔物的損失從而提升半導體裝置良率。
當一個元件被稱為「在…上」時,它可泛指該元件直接在其他元件上,也可以是有其他元件存在於兩者之中。相反地,當一個元件被稱為「直接在」另一元件,它是不能有其他元件存在於兩者之中間。如本文所用,詞彙「及/或」包含了列出的關聯項目中的一個或多個的任何組合。
在本揭示案中,使用第一、第二與第三等等之詞彙,是用於描述各種元件、組件、區域、層與/或區塊是可以被理解的。但是這些元件、組件、區域、層與/或區塊不應該被這些術語所限制。這些詞彙只限於用來辨別單一元件、組件、區域、層與/或區塊。因此,在下文中的一第一元件、組件、區域、層與/或區塊也可被稱為第二元件、組件、區域、層與/或區塊,而不脫離本揭示案的本意。
關於本揭示案中所使用之「約」一般通常係指數值之誤差或範圍約百分之二十以內,較好地是約百分之十以內,而更佳地則是約百分五之以內。文中若無明確說明,其所提及的數值皆視作為近似值,即如「約」所表示的誤差或範圍。
本揭示案是關於一種製造半導體裝置的方法,尤其是在半導體裝置中形成氣隙的方法。在尺寸減小的半導體裝置中,可藉由氣相蝕刻製程來形成具有細小通道寬度的氣隙。形成氣隙的氣相蝕刻製程中雖然存有蝕刻選擇比,但由於氣相蝕刻製程的穩定性不足,導致實際的蝕刻選擇比亦不穩定,進而對相鄰於氣隙的間隔層造成預期之外的損失而產生漏電之可能性。為了改善氣相蝕刻製程中的蝕刻選擇比,本揭示案的實施例提供一種提升氣相蝕刻製程的穩定性之方法。
第1圖至第6圖和第10圖為根據本揭示案的一些實施例而繪示了製造半導體裝置的方法在各製程階段的剖面示意圖。應注意的是,當第1圖至第6圖和第10圖繪示或描述成一系列的操作或事件時,這些操作或事件的描述順序不應受到限制。例如,部分操作或事件可採取與本揭示案不同的順序、部分操作或事件可同時發生、部分操作或事件可以不須採用、及/或部分操作或事件可重複進行。並且,實際的製程可能須在第1圖至第6圖和第10圖繪示的製程流程之前、過程中、或之後進行額外的操作步驟以完整形成具有氣隙的半導體裝置。因此,本揭示案可能將簡短地說明其中一些額外的操作步驟。再者,除非額外說明,第1圖至第6圖和第10圖談論到相同的元件之說明可直接應用至其他圖片上。
參見第1圖,形成第一導電結構110在基材100上。第一導電結構110基本上垂直於基材100並且以遠離基材100的方向延伸(例如,沿Z軸向上)。
基材100進一步包括隔離區域102和主動區域104,隔離區域102電性隔離相鄰的主動區域104。基材100可包括矽,例如,結晶矽、多晶矽、或無晶矽。基材100可包括合金半導體,例如,鍺化矽(SiGe)、磷化鎵砷(GaAsP)、砷化鋁銦(AlInAs)、砷化鋁鎵(AlGaAs)、砷化銦鎵(InGaAs)、磷化鎵銦(GaInP)、和/或砷磷化鎵銦(GaInAsP)、或其他合適的材料。基材100可包括化合物半導體,例如碳化矽(SiC)、砷化鍺(GeAs)、磷化鎵、磷化銦、砷化銦(InAs)、銻化銦、或類似者。再者,基材100可包括絕緣層上矽(silicon-on-insulator, SOI)結構。
在一些實施例中,隔離區域102是使用淺溝隔離(shallow trench isolation, STI)技術而形成,以界定並隔開主動區域104。在一些實施例中,隔離區域102為STI區域。隔離區域102可包括氧化矽(silicon oxide)、氮化矽(silicon nitride)、氮氧化矽(silicon oxynitride)、氟化物摻雜矽酸鹽玻璃(fluoride-doped silicate glass,FSG)、低介電常數材料、其他適合的材料、或上述之組合。
基材100可進行離子佈植製程以摻雜N型或P型摻雜物。在一些實施例中,藉由摻雜N型或P型摻雜物至基材100的主動區域104中可形成源極和汲極區域(未繪出)。
在第1圖的例子中,基材100上的絕緣層106覆蓋隔離區域102的上表面和主動區域104的上表面,藉此與其他後續形成的元件隔離。在第1圖的例子中,絕緣層106具有開口108H。開口108H可延伸至基材100內部並顯露出部分的主動區域104。在後續製程中,開口108H會填入導電材料進而形成直接接觸件(direct contact)108。直接接觸件108可與主動區域104電性連接。
繼續參見第1圖,第一導電結構110形成在基材100上。相鄰的第一導電結構110彼此隔開,並且第一導電結構110可形成在絕緣層106上或在直接接觸件108上。在第1圖所示的實施例中,第一導電結構110實質上為位元線(bit line)結構,因此,第一導電結構110沿垂直於基材100方向(例如,Z軸方向)可分為兩個部分:一部分為位於底部的導電層112,以及另一部分為位於頂部的絕緣覆蓋層(insulation capping layer)114。除此之外,當第一導電結構110形成在直接接觸件108上時,位於底部的導電層112可與直接接觸件108電性連接。
第一導電結構110可包括半導體材料、經摻雜的半導體材料、金屬、金屬氮化物、金屬矽化物、其他合適的具導電性的材料、或上述之組合。在位元線結構之實施例中,第一導電結構110的導電層112可包括鎢、氮化鎢、及/或氮化鈦。第一導電結構110的絕緣覆蓋層114為絕緣材料,例如但不限於氮化矽。
參見第2圖,形成第一間隔物200在第一導電結構110的水平側壁上、形成犧牲層202在第一間隔物200的水平側壁上、以及形成第二間隔物204在犧牲層202的水平側壁上,其中犧牲層202介於第一間隔物200和第二間隔物204之間。應理解的是,上述「水平」的用語表示與基材100延伸方向平行之方向(例如,平行X軸)。
可使用一或多個沉積製程以形成第一間隔物200、犧牲層202、和第二間隔物204。舉例來說,使用保形式沉積(conformal deposition)製程來依序沉積第一間隔物200、犧牲層202、和第二間隔物204在第一導電結構110和基材100上,使第一間隔物200、犧牲層202、和第二間隔物204具有與第一導電結構110和基材100相似的輪廓。沉積製程可包括化學氣相蝕刻 (chemical vapor deposition, CVD) 製程、原子層沉積(atomic layer deposition, ALD)製程、物理氣相沉積(physical vapor deposition, PVD)製程、其他合適的沉積製程、或上述之組合。
再者,可依據裝置設計或製程條件,交替地進行沉積製程與蝕刻製程。在如第2圖所示之實施例中,沉積製程可搭配一或多個蝕刻製程以移除位於水平位置(例如,平行X軸)的第一間隔物200、犧牲層202、或第二間隔物204、或上述之組合。在一些實施例中,位於第一導電結構110之頂表面110T上的第二間隔物204可保留下來,並覆蓋住第一間隔物200犧牲層202。
第一間隔物200、犧牲層202、或第二間隔物204的各自厚度可介於約1奈米(nanometers)到約10奈米之間。在一些實施例中,犧牲層202的厚度小於約5奈米。
在一些實施例中,第一間隔物200、犧牲層202、或第二間隔物204中的任相鄰二層可為相異的材料,並且任相鄰二層的材料具有對同一蝕刻劑(etchant)的不同蝕刻選擇比(etching selectivity)。在一些實施例中,第一間隔物200與第二間隔物204可由相同的材料形成。當第一間隔物200與第二間隔物204為氧化物(例如,氧化矽)的情況下,犧牲層202可為氮化物(例如,氮化矽)。當第一間隔物200與第二間隔物204為氮化物(例如,氮化矽)的情況下,犧牲層202可為氧化物(例如,氧化矽)。
參見第3圖,形成第二導電結構300相鄰於第二間隔物204。進一步描述,形成接觸開口300H在相鄰的第一導電結構110所隔開的空間中,並在後續製程中,將第二導電結構300的導電材料形成於接觸開口300H和相鄰的第一導電結構110之間,從而形成第二導電結構300。其中,藉由接觸開口300H,使得第二導電結構300突伸至基材100中。當第一導電結構110為位元線結構時,第二導電結構300實質上為接觸塞(contact plug) ,並接觸基材100的主動區域104。
第二導電結構300可包括半導體材料、經摻雜的半導體材料、金屬、金屬氮化物、金屬矽化物、其他合適的具導電性的材料、或上述之組合。在一些實施例中,第二導電結構300可包括含矽的材料,例如經摻雜的多晶矽,但本揭示案不限於此例。
請參見第4圖,形成導電材料層400在第二導電結構300上,並覆蓋第一導電結構110和第二導電結構300。在一些實施例中,導電材料層400可包含金屬,例如鎢(tungsten)、銅(copper)或其他適合的金屬。在一些實施例中,導電材料層400可由覆蓋式沉積(blanket deposition)所形成。
請參見第5圖,移除導電材料層400的一部份以形成數個第三導電結構500。一些實施例中,藉由蝕刻製程以移除導電材料層400的一部份。
形成的第三導電結構500覆蓋第一導電結構110的部分頂表面110T和第二間隔物204的水平側壁。第三導電結構500具有頂表面500T,頂表面500T大致上為平行基材100的平面(例如,平行XY面之平面),並且彼此可為共平面。第三導電結構500電性連接第二導電結構300。在一些實施例中,第三導電結構500實質上為著陸墊(landing pad)。
在第5圖所示的實施例中,除了移除導電材料層400的一部份之外,亦可移除第一導電結構110的一部分、第一間隔物200的一部分、犧牲層202的一部分、第二間隔物204的一部分、或上述之組合。移除導電材料層400的一部分後所形成的空間為開口502,開口502位在相鄰的第三導電結構500之間。犧牲層202的一端顯露在開口502中。
請參見第6圖,移除犧牲層202以形成氣隙600。由於犧牲層202厚度小於約5奈米,可藉由氣相蝕刻製程以形成具有窄通道的氣隙600。在形成第三導電結構500時,因犧牲層202的一端暴露在開口502中,使得氣體蝕刻劑能接觸犧牲層202,並逐步將犧牲層202移除。犧牲層202移除之後的空間便可形成氣隙600。
在本揭示案之一些實施例中,第6圖中所使用的氣相蝕刻製程可採用方法700來進行,其中第7圖為方法700的流程圖、第8圖為根據方法700繪示氣相蝕刻製程中總氣壓-時間圖、以及第9圖為根據方法700繪示氣相蝕刻製程中第一氣體的氣壓-時間圖,即第一氣體在氣相蝕刻製程中所佔之分壓。總氣壓為各種組成氣體的氣壓(分壓)之總和。在一些實施例中,在大致上固定的操作溫度下執行方法700中的各步驟。
請參見第7圖,首先進行步驟702,提供第一氣體以形成在第一氣壓P1的第一階段S1。第一階段S1中使用第一氣體以清潔第6圖的半導體裝置與其所在之腔室(未繪出)。由於第一階段S1作為清潔之目的,第一階段S1中的第一氣體所選之組成氣體不會與第6圖的半導體裝置內的材料產生反應以免損害半導體裝置內的材料。換言之,第一氣體所選之組成氣體對半導體裝置之材料的反應活性低。舉例來說,第一氣體可包括低活性之氣體分子,例如氮氣、惰性氣體(氦、氖、氬、氪、氙)、其他合適的低活性之氣體、或上述之組合。在一些實施例中,第一氣體可包括惰性氣體中之一者和氮。在一些實施例中,第一氣體可包括氬和氮。
請參見第8圖和第9圖,第一階段S1僅由第一氣體所組成,所以第8圖的總氣壓與第9圖的第一氣體的氣壓實質上相同。可藉由控制第一氣體的流量以調整第一氣體的氣壓,進而使總氣壓達到預期的氣壓數值,例如第8圖中的總氣壓為第一氣壓P1。在一些實施例中,第一氣壓P1可實質上與後續氣相蝕刻劑之反應階段(例如後續的第三階段S3)的總氣壓相同。
步驟702將持續第一時間長度T1,即在第一時間長度T1中持續提供第一氣體以形成總氣壓在第一氣壓P1的第一階段S1。第一時間長度T1取決於半導體裝置所在之腔室(未繪出)的大小,隨著腔室尺寸的增加而拉長第一時間長度T1,以確保第6圖的半導體裝置與其所在之腔室(未繪出)之清潔。
接著請參見第7圖,進行步驟704,提供第二氣體和第一氣體以形成在第一氣壓P1的第二階段S2。第二氣體所選之組成氣體可根據犧牲層202的材料而有所不同。在犧牲層202為氧化物(例如,氧化矽)之實施例中,第二氣體可包括含氮之氣體。在一些實施例中,第二氣體可為氨氣。再者,第二氣體所選之組成氣體在第二階段S2中未與第6圖的半導體裝置內的材料產生反應。
請參見第8圖,第二階段S2的總氣壓穩定地保持在第一氣壓P1,即第二階段S2的總氣壓與第一階段S1的總氣壓皆處在實質上相同第一氣壓P1。第二階段S2由第一氣體與第二氣體所組成,所以總氣壓由第二氣體與第一氣體共同貢獻。相較於第一階段S1,第二階段S2如同額外加入第二氣體至第一階段S1中。為了保持總氣壓在第一氣壓P1,可藉由調整第一氣體的氣壓使第二階段S2與第一階段S1具有相同的總氣壓。舉例來說,如第9圖所示,當加入的第二氣體之氣壓為第二氣壓P2的時候,可對第一氣體相應地調降第二氣壓P2數值,而使第一氣體的氣壓從第一氣壓P1降至第三氣壓P3。因此,第二階段S2中維持在第一氣壓P1之總氣壓為第二氣體在第二氣壓P2之氣壓(分壓)和第一氣體在第三氣壓P3之 氣壓(分壓)之總和,即P1=P2+P3。同樣地如前所述,可藉由調控第一氣體或第二氣體的氣體流量來影響第一氣體或第二氣體的氣壓值。
步驟704將持續第二時間長度T2,即在第二時間長度T2中持續提供第二氣體和第一氣體以形成總氣壓在第一氣壓P1的第二階段S2。第二時間長度T2隨著不同機台能力和製程條件而有所不同。在一些實施例中,第二時間長度T2應大於在第二階段S2中達到穩定狀態的所需時間。如果第二階段S2在終止之前尚未完全處於穩定狀態,則可能會影響後續階段(例如第三階段S3)的總氣壓穩定性。
接著請參見第7圖,進行步驟706,提供第三氣體、第二氣體、和第一氣體以形成在第一氣壓P1的第三階段S3。第三階段S3作為氣相蝕刻製程之反應階段,並在此階段中移除犧牲層202而形成氣隙600(如第6圖所示)。第三階段S3所選之組成氣體可根據犧牲層202的材料而有所不同。在犧牲層202為氧化物(例如,氧化矽)之實施例中,第三氣體可包括含氟之氣體。在第二氣體包括氨氣之實施例中,作為氣相蝕刻劑的第三氣體與第二氣體兩者在混合之後,可與犧牲層202產生反應並移除犧牲層202,進而形成氣隙600。
請參見第8圖,第三階段S3的總氣壓穩定地保持在第一氣壓P1,即第三階段S3的總氣壓與第一階段S1的總氣壓和第二階段S2的總氣壓皆處在實質上相同第一氣壓P1。第三階段S3由第三氣體、第二氣體與第一氣體所組成,所以總氣壓由第三氣體、第二氣體與第一氣體共同貢獻。相較於第二階段S2,第三階段S3如同額外加入第三氣體至第二階段S2中。為了保持總氣壓在第一氣壓P1,可藉由調整第一氣體的氣壓使第三階段S3的總氣壓保持在第一氣壓P1。舉例來說,如第9圖所示,當加入的第三氣體之氣壓為第四氣壓P4的時候,可對第一氣體再次相應地調降第四氣壓P4數值,使第一氣體的氣壓從第三氣壓P3降至第五氣壓P5。故,第三階段S3中維持在第一氣壓P1之總氣壓為第二氣體在第二氣壓P2之氣壓(分壓)、第三氣體在第四氣壓P4之氣壓(分壓)和第一氣體在第五氣壓P5之氣壓(分壓)之總和,即P1=P2+P4+P5。同樣地如前所述,可藉由調整第一氣體、第二氣體、或第三氣體的氣體流量來影響第一氣體、第二氣體、或第三氣體的氣壓值。
應注意的是,在另一些第三階段S3的實施例中,在氣相蝕刻中反應消耗的氣壓量與反應形成的氣壓量可能不一致,因此,第一氣體調降的氣壓數值可能異於前述的第四氣壓P4(即加入第三氣體之氣壓為第四氣壓P4),才能維持總氣壓在第一氣壓P1。
步驟706將持續第三時間長度T3,即在第三時間長度T3中持續提供第三氣體、第二氣體和第一氣體以形成總氣壓在第一氣壓P1的第三階段S3。第三時間長度T3可根據製程條件和半導體裝置設計而調整,例如作為氣相蝕刻劑的第三氣體與第二氣體兩者與犧牲層202之間的反應條件、或是犧牲層202的結構(例如深寬比(aspect ratio)),本揭示案不限於上述之列舉。
接著請參見第7圖,進行步驟708,提供第一氣體以形成第六氣壓P6的第四階段S4,其中第六氣壓P6低於第一氣壓P1。第四階段S4類似於第一階段S1,第四階段S4亦作為清潔之目的,使用第一氣體從半導體裝置與其所在之腔室(未繪出)中清除第三氣體和第二氣體,以避免預期之外的蝕刻反應持續進行。一般而言,藉由排出腔室內的所有氣體(例如,第一氣體、第二氣體、和第三氣體)使總氣壓從第一氣壓P1降至第六氣壓P6,即P6<P1,可迅速移除第三氣體與第二氣體和清潔腔室(未繪出)。
步驟708將持續第四時間長度T4,即在第四時間長度T4中持續提供第一氣體以形成總氣壓在第六氣壓P6的第四階段S4。第四時間長度T2取決於半導體裝置所在之腔室(未繪出)的大小,隨著腔室尺寸的增加而拉長第四時間長度T4,以確保第6圖的半導體裝置與其所在之腔室(未繪出)之清潔。
步驟708完成之後,基於製程需求而可能重複步驟704、706和708,如第7圖所示。
請參見第8圖,在重複的步驟704之實施例中,提供第二氣體和第一氣體以形成在第一氣壓P1的第五階段S5。第五階段S5相似於第二階段S2,即在第五階段S5中穩定地保持總氣壓在第一氣壓P1。然而,由於第五階段S5的前一步驟的總氣壓(即第四階段S4的第六氣壓P6)低於第一氣壓P1,因此進入第五階段S5後有一段氣壓爬升段,以使總氣壓由第六氣壓P6提升至第一氣壓P1,並於第一氣壓P1維持第五時間長度T5。
在一些實施例中,在氣壓爬升段中可先大幅提升總氣壓至約95%的第一氣壓P1至約97%的第一氣壓P1之間,接著精確調整至約100%的第一氣壓P1。
當總氣壓到達第一氣壓P1後,於第一氣壓P1維持第五時間長度T5。第五時間長度T5隨著不同機台能力和製程條件而有所不同。在一些實施例中,第五時間長度T5應大於在第五階段S5中達到穩定狀態的所需時間。如果第五階段S5在終止之前尚未處於穩定狀態,則可能會影響後續階段(例如第六階段S6)的總氣壓穩定性。除此之外,在一些實施例中,為了確保半導體裝置與其所在之腔室(未繪出)的潔淨度,亦可在第五階段S5中延長第五時間長度T5。
由於第五階段S5相似於第二階段S2,第五階段S5亦由第二氣體與第一氣體所組成,因此,基於第二氣體的氣壓量而對第一氣體相應地調整,以維持總氣壓在第一氣壓P1。在一些實施例中,當第五階段S5的總氣壓爬升到達第一氣壓P1之後,為了保持總氣壓在第一氣壓P1,如前所述,可依據第二氣體所加入的氣壓為第二氣壓P2而調整第一氣體的氣壓在第三氣壓P3,因此,第五階段S5中維持在第一氣壓P1之總氣壓為第二氣體在第二氣壓P2之氣壓(分壓)和第一氣體在第三氣壓P3之氣壓(分壓)之總和,即P1=P2+P3,如第9圖示。
請參見第8圖和第9圖,在重複的步驟706之實施例中,提供第三氣體、第二氣體、和第一氣體以形成在第一氣壓P1的第六階段S6。由於進入至第六階段S6的總氣壓實質上等於第一氣壓P1,因此第六階段S6的總氣壓-時間圖實質上等同於前述的第三階段S3的總氣壓-時間圖,在此不再贅述。
請參見第8圖和第9圖,在重複的步驟708之實施例中,提供第一氣體以形成在第六氣壓P6的第七階段S7,其中第六氣壓P6低於第一氣壓P1。由於前述第六階段S6之總氣壓-時間圖實質上等同於前述的第三階段S3之總氣壓-時間圖,因此接續的第七階段S7之總氣壓-時間圖實質上等同於前述的第四階段S4之總氣壓-時間圖,故在此不再贅述。
重複的步驟708完成之後,基於製程需求而可能第二次重複步驟704、706和708,如第7圖所示。在第二次重複步驟704、706和708之實施例中形成了第八階段S8、第九階段S9和第十階段S10,如第8圖和第9圖所示。其中,第八階段S8之總氣壓-時間圖實質上等同於前述的第五階段S5之總氣壓-時間圖、第九階段S9之總氣壓-時間圖實質上等同於前述的第三/六階段S3/S6、以及第十階段S10之總氣壓-時間圖實質上等同於前述的和第四/七階段S4/S7的總氣壓-時間圖,因此在此不再贅述。
氣相蝕刻製程的方法700中,藉由調整第一氣體使進入氣相蝕刻製程之反應階段前的總氣壓保持目標氣壓值,藉此提升各階段切換過程中的總氣壓穩定性。換言之,氣相蝕刻製程的方法700中,藉由調整第一氣體使在第一階段S1至第三階段S3中的總氣壓皆維持在第一氣壓P1,其中,第一氣壓P1為氣相蝕刻製程之反應階段(例如第三階段S3)之總氣壓。當保持總氣壓為目標氣壓值之狀態下進入至氣相蝕刻製程之反應階段,可有效掌握蝕刻劑的濃度,從而改善犧牲層202與間隔物(例如,第一間隔物200、第二間隔物204)之間的蝕刻選擇比,使間隔物可維持適當的厚度。
請參見第10圖,形成覆蓋層1000在基材100上以覆蓋住氣隙600的通道開口。覆蓋層1000可保護氣隙600免於其他材料的填入氣隙600內,而對具有低介電常數特性的氣隙600造成損害。覆蓋層1000為絕緣材料,例如但不限於氮化矽。藉由氣隙600、第一間隔物200與第二間隔物204三者來電性隔離第一導電結構110和第二導電結構300。
本揭示案是關於一種製造半導體裝置的方法,在移除犧牲層以形成氣隙的氣相蝕刻製程中,使各階段的總氣壓保持在與反應階段相同的氣壓條件下,以提升氣相蝕刻製程的穩定性。藉此,有效掌握蝕刻劑的濃度,從而改善蝕刻選擇比。蝕刻選擇比經改善後可減少間隔物的損失,以確實地電性隔離相鄰的導電結構,進而減少半導體裝置漏電的可能性並提升半導體裝置良率。
上述內容除了應用於半導體裝置形成氣隙的結構之外,亦可應用於任何移除犧牲層而形成細小通道的裝置。在一些實施例中,通道中最窄之邊長可小於約5奈米。基於本揭示案,使用與方法700相同實施概念但不同操作裝置或系統皆在本揭示案之精神及範圍內。
以上概略說明了本揭示案數個實施例的特徵,使所屬技術領域內具有通常知識者對於本揭示案可更為容易理解。任何所屬技術領域內具有通常知識者應瞭解到本說明書可輕易作為其他結構或製程的變更或設計基礎,以進行相同於本發明實施例的目的及/或獲得相同的優點。任何所屬技術領域內具有通常知識者亦可理解與上述等同的結構並未脫離本發明之精神及保護範圍內,且可在不脫離本揭示案之精神及範圍內,可作更動、替代與修改。
100:基材 102:隔離區域 104:主動區域 106:絕緣層 108:直接接觸件 108H:開口 110:第一導電結構 110T:頂表面 112:導電層 114:絕緣覆蓋層 200:第一間隔物 202:犧牲層 204:第二間隔物 300:第二導電結構 300H:開口 400:導電材料層 500:第三導電結構 500T:頂表面 502:開口 600:氣隙 700:方法 702:步驟 704:步驟 706:步驟 708:步驟 P1,P2,P3,P4,P5,P6:氣壓 S1,S2,S3,S4,S5,S6,S7,S8,S9,S10:階段 T1,T2,T3,T4,T5:時間長度 X,Y,Z:軸
閱讀以下實施方法時搭配附圖以清楚理解本揭示案的觀點。應注意的是,根據業界的標準做法,各種特徵並未按照比例繪製。事實上,為了能清楚地討論,各種特徵的尺寸可能任意地放大或縮小。 第1圖至第6圖和第10圖為根據本揭示案的一些實施例繪示製造半導體裝置在不同製程階段的剖面示意圖。 第7圖為根據本揭示案的一些實施例繪示製造半導體裝置的方法之流程圖。 第8圖為根據本揭示案的一些實施例繪示製造半導體裝置在氣相蝕刻製程中的總氣壓-時間圖。 第9圖為根據本揭示案的一些實施例繪示製造半導體裝置在氣相蝕刻製程中第一氣體的氣壓-時間圖。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
700:方法
702:步驟
704:步驟
706:步驟
708:步驟

Claims (11)

  1. 一種製造半導體裝置的方法,包括: 形成一第一導體結構在一基材上; 形成一第一間隔物在該第一導體結構的側壁上; 形成一犧牲層在該第一間隔物的側壁上; 形成一第二間隔物在該犧牲層的側壁上,其中該犧牲層介於該第一間隔物和該第二間隔物之間; 形成一第二導體結構相鄰於該第二間隔物;以及 藉由氣相蝕刻製程移除該犧牲層以形成一氣隙,包括: 提供一第一氣體以形成一第一階段,其中該第一階段在一第一氣壓; 提供一第二氣體和該第一氣體以形成一第二階段,其中該第二階段維持在該第一氣壓; 提供一第三氣體、該第二氣體和該第一氣體,以形成一第三階段,其中該第三階段維持在該第一氣壓,並且該犧牲層在該第三階段中經移除而形成該氣隙;以及 提供該第一氣體以形成一第四階段,其中該第四階段氣體環境在一第二氣壓,該第二氣壓低於該第一氣壓。
  2. 如請求項1所述之製造半導體裝置的方法,更包含在形成該氣隙之後,排出該第二氣體與該第三氣體。
  3. 如請求項1所述之製造半導體裝置的方法,其中該第三氣體包括一含氟的氣體。
  4. 如請求項1所述之製造半導體裝置的方法,其中該第二氣體包括一含氮的氣體。
  5. 如請求項1所述之製造半導體裝置的方法,其中該第一氣體包括一惰性氣體、一含氮的氣體、或上述之組合。
  6. 如請求項1所述之製造半導體裝置的方法,其中藉由調整該第一氣體的氣壓使該第二階段維持在該第一氣壓。
  7. 如請求項1所述之製造半導體裝置的方法,其中藉由調整該第一氣體的氣壓使該第三階段維持在該第一氣壓。
  8. 如請求項1所述之製造半導體裝置的方法,其中在該第四階段之後,重複該第二階段、該第三階段、和該第四階段。
  9. 一種製造半導體裝置的方法,包括: 形成一位元線結構在一基材上; 形成一第一間隔物在該位元線結構的側壁上; 形成一犧牲層在該第一間隔物的側壁上; 形成一第二間隔物在該犧牲層的側壁上; 形成一接觸塞在該基材上,相鄰且接觸該第二間隔物; 形成一著陸墊在該接觸塞上,相鄰且接觸該第二間隔物; 提供一第一氣體以形成一第一階段,其中該第一階段在一第一氣壓; 提供一第二氣體和該第一氣體以形成一第二階段,其中該第二階段維持在該第一氣壓; 提供一第三氣體、該第二氣體和該第一氣體,以形成一第三階段,其中該第三階段維持在該第一氣壓,並且該犧牲層在該第三階段中經移除而形成一氣隙;以及 提供該第一氣體以形成一第四階段,其中該第四階段氣體環境在一第二氣壓,該第二氣壓低於該第一氣壓。
  10. 如請求項9所述之製造半導體裝置的方法,其中該第一氣體對該犧牲層的反應活性低。
  11. 如請求項9所述之製造半導體裝置的方法,其中調整該第一氣體之氣壓使該第二階段和該第三階段維持在該第一氣壓。
TW110138432A 2021-10-15 2021-10-15 製造半導體裝置的方法 TWI779882B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110138432A TWI779882B (zh) 2021-10-15 2021-10-15 製造半導體裝置的方法
CN202111568443.7A CN115985843A (zh) 2021-10-15 2021-12-21 制造半导体装置的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110138432A TWI779882B (zh) 2021-10-15 2021-10-15 製造半導體裝置的方法

Publications (2)

Publication Number Publication Date
TWI779882B TWI779882B (zh) 2022-10-01
TW202318565A true TW202318565A (zh) 2023-05-01

Family

ID=85475791

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110138432A TWI779882B (zh) 2021-10-15 2021-10-15 製造半導體裝置的方法

Country Status (2)

Country Link
CN (1) CN115985843A (zh)
TW (1) TWI779882B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102452593B1 (ko) * 2015-04-15 2022-10-11 삼성전자주식회사 반도체 장치의 제조 방법
US10861953B2 (en) * 2018-04-30 2020-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Air spacers in transistors and methods forming same
US10861753B2 (en) * 2018-10-30 2020-12-08 Taiwan Semiconductor Manufacturing Co., Ltd. Air gap formation between gate spacer and epitaxy structure
TW202103260A (zh) * 2019-06-28 2021-01-16 台灣積體電路製造股份有限公司 半導體裝置
CN110993499B (zh) * 2019-11-05 2022-08-16 北京北方华创微电子装备有限公司 一种刻蚀方法、空气隙型介电层及动态随机存取存储器

Also Published As

Publication number Publication date
CN115985843A (zh) 2023-04-18
TWI779882B (zh) 2022-10-01

Similar Documents

Publication Publication Date Title
US20220328356A1 (en) Mechanisms for Forming FinFET Device
KR102073395B1 (ko) 분리 병합된 소스/드레인 구조체를 가지는 반도체 디바이스를 제조하는 방법
CN103022102B (zh) 用于超薄界面介电层的多层清除金属栅极堆叠件
TWI604613B (zh) 包含延伸環繞一個或多個通道區之閘極電極的電晶體
TWI643252B (zh) 半導體裝置的形成方法
US10192985B2 (en) FinFET with doped isolation insulating layer
TWI729539B (zh) 半導體裝置及其形成方法
CN105529357A (zh) 用于FinFET的方法和结构
CN112563318A (zh) 半导体装置
TWI725557B (zh) 半導體裝置的製造方法
US11271103B2 (en) Semiconductor device and manufacturing process thereof
US20230215866A1 (en) Integrated circuit devices and methods of manufacturing the same
US12068162B2 (en) Semiconductor device and method
CN103811538A (zh) 具有器件收益和生产率改进的金属栅极结构
TWI779882B (zh) 製造半導體裝置的方法
CN104217957B (zh) 晶体管及其形成方法
TW202314868A (zh) 製造半導體元件的方法
KR20220043834A (ko) 집적 회로 구조체 및 그 제조 방법
US20230387312A1 (en) Semiconductor device having isolation structure to reduce current leakage
US11855167B2 (en) Structure and formation method of semiconductor device with nanosheet structure
TWI852111B (zh) 半導體元件及其形成方法
US20230343834A1 (en) Semiconductor gate and contact formation
CN110534414B (zh) 半导体器件及其制作方法
CN111223780B (zh) 一种半导体器件及其形成方法
US20230040843A1 (en) Nanostructure field-effect transistor device and method of forming

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent