TW202300796A - 渦電流式阻尼器 - Google Patents
渦電流式阻尼器 Download PDFInfo
- Publication number
- TW202300796A TW202300796A TW111112540A TW111112540A TW202300796A TW 202300796 A TW202300796 A TW 202300796A TW 111112540 A TW111112540 A TW 111112540A TW 111112540 A TW111112540 A TW 111112540A TW 202300796 A TW202300796 A TW 202300796A
- Authority
- TW
- Taiwan
- Prior art keywords
- peripheral surface
- conductive member
- holding member
- magnet holding
- eddy current
- Prior art date
Links
- 230000002093 peripheral effect Effects 0.000 claims abstract description 177
- 239000000463 material Substances 0.000 claims abstract description 22
- 230000005291 magnetic effect Effects 0.000 description 20
- 230000000694 effects Effects 0.000 description 5
- 230000005294 ferromagnetic effect Effects 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
- F16F15/03—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2222/00—Special physical effects, e.g. nature of damping effects
- F16F2222/06—Magnetic or electromagnetic
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Vibration Prevention Devices (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Magnetically Actuated Valves (AREA)
- Surgical Instruments (AREA)
Abstract
本發明所提供的渦電流式阻尼器(10),係具備:導電構件(1)、磁鐵保持構件(2)、複數個永久磁鐵(3)、以及滑動材(91,92)。磁鐵保持構件(2)是配置在導電構件(1)的內側。永久磁鐵(3)是被保持在磁鐵保持構件(2)的外周面,並且隔著間隙(G)而與導電構件(1)的內周面相對向。在導電構件(1)的內周面及磁鐵保持構件(2)的外周面之其中一方或者雙方設有凸部(11、12、21、22)。從沿著中心軸的剖面來觀看阻尼器(10)時,在凸部(11、12、21、22)與對向部之間,形成有間隙(g1、g2)。凸部(11、12、21、22)與對向部的間隙(g1、g2)是小於導電構件(1)的內周面與永久磁鐵(3)的間隙(G)。滑動材(91、92)是被設置在:凸部(11、12、21、22)、或者導電構件(1)的內周面或磁鐵保持構件(2)的外周面中之與凸部(11、12、21、22)相對向的部分。
Description
本申請案是關於渦電流式阻尼器。
為了從地震等所造成的振動來護建築物,乃使用了制振裝置。制振裝置,例如是安裝在建築物的柱子或樑上,用來抑制建築物的振動。習知的制振裝置之其中一種,是渦電流式阻尼器。
專利文獻1所揭示的渦電流式阻尼器,係包含有:圓筒狀的導電構件、圓筒狀的磁鐵保持構件、以及複數個永久磁鐵。在專利文獻1的渦電流式阻尼器中,磁鐵保持構件,例如是被配置在導電構件的內側。永久磁鐵是被磁鐵保持構件所保持,且隔著間隙與導電構件相對向。在磁鐵保持構件之軸方向上的其中一端部,係固定著滾珠螺桿的螺母。滾珠螺桿的螺桿軸係貫穿過螺母而延伸到磁鐵保持構件內。螺桿軸及導電構件分別經由安裝構件而被安裝在建築物的柱子或樑上。
因為地震等的因素而導致建築物發生振動,當振動被輸入到專利文獻1的渦電流式阻尼器時,滾珠螺桿的螺桿軸將會沿著其軸方向進行移動。隨著這個移動,滾珠螺桿的螺母及磁鐵保持構件將會在螺桿軸的外周進行旋轉。如此一來,被磁鐵保持構件所保持的永久磁鐵將會對於導電構件進行相對性的旋轉,因此,將會在導電構件產生渦電流。因為這種渦電流與永久磁鐵所形成的磁場的相互作用,因而產生了與螺母及磁鐵保持構件的旋轉方向相反方向的阻力(洛倫茲力),使得螺母及磁鐵保持構件的旋轉受到阻礙。其結果,螺桿軸之在軸方向上的移動也受到阻礙,建築物的振動就被衰減。
專利文獻2及3所揭示的渦電流式阻尼器,也是包含有:導電構件、磁鐵保持構件、以及複數個永久磁鐵。在專利文獻2的渦電流式阻尼器中,永久磁鐵是被配置在:設置於磁鐵保持構件的外周面上的凹部內。亦可在磁鐵保持構件的外周面上之位於軸方向上的凹部之兩側的位置處的端部,設有散熱片。根據專利文獻2,藉由將散熱片與磁鐵保持構件一起旋轉,而使得渦電流式阻尼器內的空氣進行流動,以將導電構件及永久磁鐵的熱予以擴散。
專利文獻3的渦電流式阻尼器,係在磁鐵保持構件的外周面設置了強磁性環狀部。強磁性環狀部是設置在磁鐵保持構件之軸方向上的兩端部。強磁性環狀部是隔著間隙與導電構件的內周面相對向。專利文獻3中係記載著:在永久磁鐵的旁邊,形成了由強磁性環狀部所產生的磁性迴路,這個磁性迴路的磁場並不朝向滾珠螺桿的螺母。如此一來,可以防止形成在永久磁鐵旁邊的磁性迴路之磁場的洩漏,而可防止磁場抵達螺母。因此,能夠防止起因於磁性迴路之磁場的洩漏所導致的振動衰減性能的降低。
[先前技術文獻]
[專利文獻]
[專利文獻1]國際公開第2019/044722號
[專利文獻2]日本特開2019-100438號公報
[專利文獻3]日本特開2019-078332號公報
[發明所欲解決之問題]
如各專利文獻所揭示般地,在使用了永久磁鐵的渦電流式阻尼器中,複數個永久磁鐵是隔著間隙與導電構件相對向。這個間隙愈小的話,永久磁鐵的磁場愈容易對於導電構件造成影響。因此,如果想要提高渦電流式阻尼器的阻力,最好是儘量地縮小永久磁鐵與導電構件之間的間隙。然而,如果縮小永久磁鐵與導電構件之間的間隙的話,將會有讓永久磁鐵接觸到導電構件之虞慮。
例如:滾珠螺桿的螺母,在進行旋轉的同時也會朝往徑向進行搖擺,而其搖擺量係等於:螺母與在螺紋溝內滾動的滾珠之間的間隙。在這種情況下,用來保持永久磁鐵之磁鐵保持構件也與螺母一起朝往徑向進行搖擺。渦電流式阻尼器的使用時間愈長,滾珠的磨損量愈大,會擴大滾珠與螺母之間的間隙,因而,在進行旋轉時之螺母的搖擺量也會變得更大。隨著這種螺母的搖擺量的變大,永久磁鐵與導電構件就會有發生接觸之可能性。
或者,用來保持永久磁鐵之磁鐵保持構件也會發生朝往徑向移動的現象,而其移動量係等於:構成渦電流式阻尼器之各零件之間的間隙(晃動量)。因為永久磁鐵的磁力(吸引力)是作用在永久磁鐵與導電構件之間,因而永久磁鐵及磁鐵保持構件很容易往導電構件靠近。所以,也會有發生永久磁鐵接觸到導電構件之可能性。
或者,如果來自建築物的振動,是從與軸方向形成傾斜的角度加諸到滾珠螺桿之螺桿軸的情況下,構成渦電流式阻尼器之各個零件會發生變形或者朝往徑向移動。基於這種原因,也會有永久磁鐵與導電構件發生接觸之可能性。
是以,基於:螺母的搖擺、永久磁鐵的吸引力、振動的輸入方向的其中一種原因,或者這些原因的組合,導致渦電流式阻尼器在使用中會有永久磁鐵與導電構件發生接觸之可能性。尤其是在永久磁鐵與導電構件之間的間隙很小的情況下,特別容易發生永久磁鐵與導電構件接觸之情事。如果永久磁鐵接觸到導電構件的話,會有造成永久磁鐵破損之虞慮。然而,基於提高渦電流式阻尼器之阻力的觀點考量,又必須縮小永久磁鐵與導電構件之間的間隙。
本申請案的技術課題是想要提供:既可以縮小永久磁鐵與導電構件的間隙,又可以防止永久磁鐵接觸到導電構件之渦電流式阻尼器。
[解決問題之技術手段]
本申請案的渦電流式阻尼器,係具備:導電構件、磁鐵保持構件、複數個永久磁鐵、以及滑動材。導電構件是呈筒狀。磁鐵保持構件是被配置在導電構件的內側。磁鐵保持構件是呈筒狀。磁鐵保持構件是被設置成:能夠以其中心軸為中心進行旋轉。永久磁鐵是被排列在磁鐵保持構件的外周方向上。永久磁鐵是被保持在磁鐵保持構件的外周面上。永久磁鐵是隔著間隙與導電構件的內周面相對向。滑動材的摩擦係數,是小於導電構件的內周面及磁鐵保持構件的外周面之摩擦係數。在導電構件的內周面及磁鐵保持構件的外周面之其中一方或雙方,設有凸部。凸部是朝向導電構件或磁鐵保持構件的徑向突出且沿著外周方向延伸。從沿著上述中心軸的剖面觀看渦電流式阻尼器時,是在凸部與在徑向上和該凸部相對向的對向部之間形成有間隙。從沿著上述中心軸的剖面觀看渦電流式阻尼器時,凸部與對向部的間隙,是小於導電構件的內周面與永久磁鐵的間隙。滑動材是被設置在例如:凸部。或者,也可以將滑動材設置在:導電構件的內周面或磁鐵保持構件的外周面中之與凸部相對向的部分。
[發明之效果]
根據本申請案的渦電流式阻尼器,既可以縮小永久磁鐵與導電構件的間隙,又可以防止永久磁鐵與導電構件的接觸。
實施方式的渦電流式阻尼器,係具備:導電構件、磁鐵保持構件、複數個永久磁鐵、以及滑動材。導電構件係呈筒狀。磁鐵保持構件係配置在導電構件的內側。磁鐵保持構件係呈筒狀。磁鐵保持構件係被製作成可朝向其中心軸的外周進行旋轉。永久磁鐵係沿著磁鐵保持構件的外周方向排列。永久磁鐵係被磁鐵保持構件的外周面所保持。永久磁鐵係隔著間隙與導電構件的內周面相對向。滑動材的摩擦係數小於導電構件的內周面及磁鐵保持構件的外周面的摩擦係數。在導電構件的內周面及磁鐵保持構件的外周面的其中一方或者雙方,設有凸部。凸部係朝向導電構件或磁鐵保持構件的徑向突出,並且沿著外周方向延伸。從沿著上述中心軸的剖面觀看渦電流式阻尼器時,凸部與在徑向上和該凸部相對向的對向部之間,係形成有間隙。從沿著上述中心軸的剖面觀看渦電流式阻尼器時,凸部與對向部之間的間隙,係小於導電構件的內周面與永久磁鐵之間的間隙。滑動材,例如是設在:凸部。或者,滑動材也可以是設在:導電構件的內周面或磁鐵保持構件的外周面中之與凸部相對向的部分(第1種構成方式)。
第1種構成方式的渦電流式阻尼器,是在導電構件的內周面、及與這個內周面相對向之磁鐵保持構件的外周面的其中一方或雙方,設置了凸部。從沿著磁鐵保持構件的中心軸的剖面(縱剖面)觀看渦電流式阻尼器時,凸部與和該凸部相對向的對向部之間的間隙,係小於導電構件的內周面與永久磁鐵之間的間隙。因此,當被磁鐵保持構件所保持的永久磁鐵,基於某些原因而以接近導電構件的方式進行移動時,導電構件的內周面與磁鐵保持構件的外周面,是在凸部的位置優先地進行接觸。這種情況下,永久磁鐵並不接觸到導電構件的內周面。因此,根據第1種構成方式的渦電流式阻尼器,係可以防止永久磁鐵與導電構件進行接觸。又,藉由不要使其發生永久磁鐵與導電構件進行接觸之情事,可以將永久磁鐵與導電構件的間隙予以縮小。其結果,係可提高渦電流式阻尼器的阻力。
第1種構成方式的渦電流式阻尼器,是在:形成於導電構件的內周面及/或磁鐵保持構件的外周面的凸部、或者在導電構件的內周面或磁鐵保持構件的外周面中之與凸部相對向的部分,設置了滑動材。因此,可以降低在位於凸部的位置之導電構件的內周面與磁鐵保持構件的外周面之間的摩擦阻力。因此,當導電構件的內周面與磁鐵保持構件的外周面,在凸部的位置進行接觸時,可以抑制(減少)因為這個接觸而阻礙磁鐵保持構件的旋轉之情事。此外,可以減輕導電構件的內周面及磁鐵保持構件的外周面的磨損,因而可以將位於凸部的位置之導電構件的內周面與磁鐵保持構件的外周面之間的間隙都一直維持在很小的狀態。如此一來,可以長期間都能夠防止永久磁鐵與導電構件進行接觸。
凸部與其對向部之間的間隙,是設定在:導電構件的內周面與永久磁鐵之間的間隙之70%以下為佳(第2種構成方式)。
上述渦電流式阻尼器,也可以還具備有:滾珠螺桿。滾珠螺桿係包含有:螺母、以及螺桿軸。螺母,例如是被固定在磁鐵保持構件之軸方向上的其中一端部。螺桿軸是貫穿過這個螺母。在這種情況下,在軸方向中,也可以將凸部配置在:較諸於磁鐵保持構件的另一端部更靠近供固定螺母之其中一端部的位置(第3種構成方式)。
如前所述,造成永久磁鐵與導電構件發生接觸的其中一種原因,係可以舉出:滾珠螺桿之螺母的搖擺。相對於此,第3種構成方式,是將凸部配置在:在磁鐵保持構件之軸方向上的兩個端部中,比較靠近供固定螺母的這一個端部的位置。因此,使用渦電流式阻尼器時,即使因為旋轉中的螺母搖擺而使得磁鐵保持構件與螺母一起往導電構件側移動的情況下,也可以藉由凸部率先與導電構件的內周面或磁鐵保持構件的外周面進行接觸,來限制磁鐵保持構件的移動。如此一來,可以更有效果地防止永久磁鐵與導電構件發生接觸。
凸部,也可以是分別配置在磁鐵保持構件之軸方向上的兩端部。或者,凸部,也可以是分別配置在導電構件中之與磁鐵保持構件的兩端部相對應的位置(第4種構成方式)。
第4種構成方式,是將凸部配置在:磁鐵保持構件之軸方向上的兩端部、或者是配置在:導電構件中之與磁鐵保持構件的兩端部相對應的位置。這種情況下,導電構件的內周面與磁鐵保持構件的外周面是利用複數個凸部來進行接觸。因此,係可將導電構件的內周面與磁鐵保持構件的外周面之間的荷重予以分散到複數個凸部,而可減輕各凸部與導電構件的內周面或磁鐵保持構件的外周面之間的接觸面壓力。
亦可將凸部設在磁鐵保持構件的外周面(第5種構成方式)。
凸部的形狀,也可以是製作成:從沿著中心軸的剖面觀看渦電流式阻尼器時,凸部是呈圓弧狀(第6種構成方式)。
第6種構成方式,從渦電流式阻尼器的縱剖面觀看時,凸部是呈圓弧狀。這種情況下,凸部與其對向部是可以進行線狀的接觸,因而凸部與對向部的接觸面積變小。如此一來,可以減少位於凸部的位置之導電構件的內周面與磁鐵保持構件的外周面之間的摩擦阻力。
以下,將佐以圖面來說明本申請案的實施方式。針對於各圖中之相同或等同的構成要件,都標註同一元件符號,且不做重複的說明。
<第1實施方式>
[渦電流式阻尼器的整體結構]
圖1係顯示第1實施方式之渦電流式阻尼器10的概略結構之縱剖面圖。渦電流式阻尼器10,例如是藉由安裝構件20a、20b而被安裝在建築物的柱子或樑上,用來抑制建築物的振動。
如圖1所示,渦電流式阻尼器10係具備:導電構件1、磁鐵保持構件2、複數個永久磁鐵3、以及滾珠螺桿4。
(導電構件)
導電構件1,係以圖1所示的單點鏈線X為中心軸之筒狀形狀。導電構件1,實質上例如是呈圓筒狀。以下,有關於渦電流式阻尼器10及其構成零件,係將導電構件1之中心軸X的延伸方向稱為軸方向,而將中心軸X外周的圓或圓筒的徑向,簡稱為徑向。
導電構件1之軸方向上的兩端部是受到支承構件51、52所支承。支承構件51、52都是呈筒狀。在本實施方式中,在支承構件51、52的導電構件1側的部分是形成圓錐筒狀,其他部分是形成圓筒狀。支承構件51、52都是被配置成與導電構件1實質上是在同一軸線上。其中一方的支承構件51是連接於導電構件1之軸方向上的其中一端部。另外一方的支承構件52是連接於導電構件1之軸方向上的另一端部。支承構件52是藉由安裝構件20b而被安裝在建築物的柱子或樑上。如此一來,導電構件1就被固定在建築物上。
在圖1所示的例子中,雖然支承構件51、52是與導電構件1形成一體。但是,支承構件51、52也可以是與導電構件1不同的個體。如果支承構件51、52與導電構件1是不同個體的話,可以使用例如螺栓等來將支承構件51、52連接到導電構件1。
導電構件1是以具有導電性的材質所構成的。導電構件1的材質,例如是碳鋼、鑄鐵之類的強磁性體。導電構件1的材質,可以是肥粒鐵系不鏽鋼之類的弱磁性體,也可以是鋁合金、沃斯田鐵系不鏽鋼、或銅合金之類的非磁性體。
(磁鐵保持構件)
磁鐵保持構件2是呈筒狀。磁鐵保持構件2,實質上例如是呈圓筒狀。磁鐵保持構件2是具有與導電構件1共通的中心軸X,且被配置在導電構件1的內側。亦即,磁鐵保持構件2係被配置成:在徑向上是位於導電構件1的內側,且實質上係與導電構件1在同一軸線上。磁鐵保持構件2係被製作成:可以中心軸X為中心進行旋轉。
磁鐵保持構件2之軸方向上的兩端部是被支承構件61、62所支承。支承構件61、62在徑向上都是被配置在導電構件1之支承構件51、52的內側。
其中一方的支承構件61,例如是包含有:環狀的凸緣部611、和筒部612。凸緣部611及筒部612都是被配置成:實質上係與磁鐵保持構件2在同一軸線上。凸緣部611是藉由滾珠螺桿4而被固定在磁鐵保持構件2之軸方向上的其中一端部。筒部612是從凸緣部611朝往安裝構件20a側延伸。筒部612是插入在導電構件1之支承構件51之圓筒狀的部分。
另外一方的支承構件62,例如是包含有:環狀的凸緣部621、和筒部622。凸緣部621及筒部622都是被配置成:實質上係與磁鐵保持構件2在同一軸線上。凸緣部621是連接在磁鐵保持構件2之軸方向上的另一端部。筒部622是從凸緣部621朝往安裝構件20b側延伸。筒部622是插入在導電構件1之支承構件52之圓筒狀的部分。
在圖1所示的例子中,支承構件62是與磁鐵保持構件2形成一體。但是,支承構件62也可以是與磁鐵保持構件2不同的個體。如果支承構件62是與磁鐵保持構件2不同個體的話,可以使用例如螺栓等來將支承構件62連接到磁鐵保持構件2。
在導電構件1之支承構件51、52與磁鐵保持構件2的支承構件61、62之間,設置著用來承受軸方向上的荷重之軸承71、72。在本實施方式中,軸承71在軸方向上,是被配置在:支承構件51之圓筒狀的部分與支承構件61的凸緣部611之間。軸承72在軸方向上,是被配置在:支承構件52之圓筒狀的部分與支承構件62的凸緣部621之間。
在導電構件1的支承構件51、52與磁鐵保持構件2的支承構件61、62之間,還設置著用來承受徑向的荷重之軸承81、82。在本實施方式中,軸承81在徑向上,是被配置在支承構件51之圓筒狀的部分與支承構件61的筒部612之間。軸承82在徑向上,是被配置在支承構件52之圓筒狀的部分與支承構件62的筒部622之間。
軸承71、72、81、82係可以適當地選用公知的軸承。用來承受軸方向的荷重之軸承71、72,可以採用例如:滾珠軸承、滾柱軸承之類的滾動型軸承,也可以採用滑動型軸承。同樣地,用來承受徑向的荷重之軸承81、82,可以採用例如:滾珠軸承、滾柱軸承之類的滾動型軸承,也可以採用滑動型軸承。
在本實施方式中,磁鐵保持構件2是以具有磁性的材質所構成的。磁鐵保持構件2的材質是採用具有高透磁率的材質為宜。所謂的高透磁率的材質,例如是碳鋼、鑄鐵之類的強磁性體。
(永久磁鐵)
複數個永久磁鐵3是被保持在磁鐵保持構件2的外周面。永久磁鐵3都是利用例如:接著劑而被固定在磁鐵保持構件2的外周面。永久磁鐵3也可以都是利用螺栓之類的零件來固定在磁鐵保持構件2的外周面。永久磁鐵3是隔著間隙而與導電構件1的內周面相對向。
圖2是以垂直於中心軸X的平面將渦電流式阻尼器10截斷後的剖面圖(橫剖面圖)。圖2中係僅顯示出:導電構件1、磁鐵保持構件2、以及複數個永久磁鐵3的其中一部分。
如圖2所示,永久磁鐵3在磁鐵保持構件2的外周面上,是沿著磁鐵保持構件2的外周方向排列。這些永久磁鐵3實質上是等間隔地排列在磁鐵保持構件2的整個外周上。在本實施方式中,永久磁鐵3的各個磁極(N極及S極)是排列在徑向上。並且是以在磁鐵保持構件2的外周方向上相鄰的兩個永久磁鐵3之磁極方向互為相反的方式,將永久磁鐵3設置在磁鐵保持構件2上。亦即,某一個永久磁鐵3是配置成:N極朝徑向外側且S極朝徑向內側的話,位於這個永久磁鐵3兩側位置的永久磁鐵3就配置成:S極朝徑向外側,N極朝徑向內側。
(滾珠螺桿)
如圖1所示,滾珠螺桿4係包含有:螺母41與螺桿軸42。
螺母41係包含有:環狀的凸緣部411及筒部412。凸緣部411及筒部412是配置成:實質上係與磁鐵保持構件2同一軸線。凸緣部411是配置在磁鐵保持構件2與支承構件61之間。更詳細地說,凸緣部411是配置在:磁鐵保持構件2之軸方向上的其中一端部與支承構件61的凸緣部611之間。筒部412是從凸緣部411往磁鐵保持構件2內延伸。
螺母41是被固定在磁鐵保持構件2。更具體地說,螺母41是藉由凸緣部411而被固定在磁鐵保持構件2之軸方向上的其中一端部。螺母41也被固定在磁鐵保持構件2的支承構件61。更具體地說,螺母41是藉由凸緣部411而被固定在支承構件61的凸緣部611。螺母41是利用例如:螺栓之類的零件,而被固定在磁鐵保持構件2及支承構件61。
螺桿軸42是貫穿過螺母41。螺桿軸42是可相對於螺母41朝軸方向移動,並且隨著螺桿軸42之朝軸方向的移動,而可使得螺母41在螺桿軸42(中心軸X)的外周進行旋轉。隨著螺母41的旋轉,磁鐵保持構件2也在中心軸X的外周進行旋轉。
在螺桿軸42的外周面與螺母41的內周面之間,是裝設著滾珠。當螺桿軸42朝軸方向移動時,滾珠將會沿著設置在螺桿軸42的外周面及螺母41的內周面的螺紋溝滾動。螺桿軸42之軸方向上的其中一端部是藉由安裝構件20a而安裝在建築物的柱子或樑上。亦即,螺桿軸42是固定在建築物上。
[渦電流式阻尼器的詳細結構]
圖3是渦電流式阻尼器10之縱剖面(圖1)的局部放大圖。以下,將佐以圖3來說明渦電流式阻尼器10之更詳細的結構。
如圖3所示,在本實施方式中,是在磁鐵保持構件2的外周面設有朝徑向突出的凸部21、22。凸部21、22是磁鐵保持構件2的外周面中之較諸其他的部分更朝向導電構件1側突出的部分。凸部21、22是相對於永久磁鐵3更往導電構件1這一側突出。亦即,凸部21、22之表面的其中一部分,是位於在徑向上之較諸永久磁鐵3更外側的位置。
凸部21、22都是朝向磁鐵保持構件2的外周方向延伸。凸部21、22都是設置在磁鐵保持構件2的整個外周為佳。凸部21、22都是設置成例如:在磁鐵保持構件2的整個外周上且中途沒有中斷開來。亦即,凸部21、22都是例如:圓環狀。或者,凸部21、22也可以都是例如:在磁鐵保持構件2的外周方向上分割成複數個部分。
凸部21、22,在軸方向上是被配置於永久磁鐵3的兩側。凸部21、22是分別被配置於磁鐵保持構件2之軸方向上的兩端部。其中一方的凸部21,在磁鐵保持構件2的外周面上,是被設在軸方向上的其中一端部,換言之,是被設在與螺母41鄰接的端部。另外一方的凸部22,在磁鐵保持構件2的外周面上,是被設在軸方向上的另一端部,換言之,是被設在遠離螺母41的端部。
在本實施方式中,渦電流式阻尼器10還具備:滑動材91、92。滑動材91,是被設置在:導電構件1的內周面中之與設在磁鐵保持構件2的外周面的凸部21相對向的部分。滑動材92,是被設置在:導電構件1的內周面中之與設在磁鐵保持構件2的外周面的凸部22相對向的部分。滑動材91、92都是毫無中斷地設在導電構件1的整個外周。
滑動材91、92都是具有較諸導電構件1的內周面及磁鐵保持構件2的外周面之摩擦係數更小的摩擦係數。滑動材91、92係可以採用例如:含氟樹脂等之低摩擦係數的材料來構成。例如:也可以在導電構件1的內周面形成溝部,再將低摩擦係數的材料埋設在這個溝部來當作滑動材91、92。或者,也可以將低摩擦係數的材料塗敷在導電構件1的內周面上來當作滑動材91、92。
從沿著中心軸X(圖1)的剖面(縱剖面)觀看渦電流式阻尼器10時,在設於磁鐵保持構件2的外周面上的凸部21、與在渦電流式阻尼器10的徑向中之和凸部21相對向的部分(對向部)之間,形成有間隙g1。間隙g1是小於導電構件1的內周面與永久磁鐵3之間的間隙G。同樣地,從縱剖面觀看渦電流式阻尼器10時,在設於磁鐵保持構件2的外周面上的凸部22、與在渦電流式阻尼器10的徑向中之和凸部22相對向的部分(對向部)之間,形成有間隙g2。間隙g2也是小於導電構件1的內周面與永久磁鐵3之間的間隙G。間隙g1、g2是設在凸部21、22的位置處之導電構件1的內周面與磁鐵保持構件2的外周面之間的空間。間隙g1、g2,從縱剖面觀看渦電流式阻尼器10時,係取決於:凸部21、22與其對向部之間的最短距離。如本實施方式這樣子在導電構件1的內周面設有滑動材91、92的話,間隙g1、g2分別就是從凸部21、22的頂面至滑動材91、92的表面之在徑向上的距離。另一方面,間隙G,從縱剖面觀看渦電流式阻尼器10時,係取決於:導電構件1與永久磁鐵3之間的最短距離。換言之,間隙G就是從永久磁鐵3的表面至導電構件1的內周面之在徑向上的距離。
形成於凸部21、22與滑動材91、92之間的間隙g1、g2,可以設定為例如:導電構件1與永久磁鐵3之間的間隙G之70%以下。雖然並不是特別地限定,但是,可以將導電構件1與永久磁鐵3之間的間隙G予以設定為例如:0.5mm以上且2.0mm以下。可以將各個凸部21、22之與永久磁鐵3在軸方向上的距離設定為例如:間隙G的5倍的程度。
[渦電流式阻尼器的動作]
再次如圖1所示,當因為地震等的原因造成建築物振動,而將振動輸入至渦電流式阻尼器10時,滾珠螺桿4的螺桿軸42就會沿著軸方向移動。如此一來,滾珠螺桿4的螺母41就會在中心軸X的外周進行旋轉。磁鐵保持構件2及永久磁鐵3也會與螺母41一起在中心軸X的外周進行旋轉。如此一來,永久磁鐵3就會對於被固定在建築物上的導電構件1進行相對性的旋轉,因而會在導電構件1產生渦電流。利用這種渦電流與永久磁鐵3所形成的磁場之相互作用,將會產生與螺母41及磁鐵保持構件2的旋轉方向相反方向的阻力(洛倫茲力),以阻礙螺母41及磁鐵保持構件2的旋轉。其結果,螺桿軸42之沿著軸方向的移動也受到阻礙,建築物的振動就被衰減。
[效果]
本實施方式的渦電流式阻尼器10,是在磁鐵保持構件2的外周面設置有凸部21、22。而且凸部21、22與其對向部也就是滑動材91、92之間的間隙g1、g2是小於導電構件1的內周面與永久磁鐵3之間的間隙G。因此,在渦電流式阻尼器10作動中,基於某些原因而導致磁鐵保持構件2及永久磁鐵3移動靠近於導電構件1時,磁鐵保持構件2的凸部21、22將會早於永久磁鐵3更優先地與導電構件1側的對向部進行接觸。藉此,可以防止永久磁鐵3與導電構件1發生接觸。又,因為不會發生永久磁鐵3與導電構件1接觸的情事,因此可以將永久磁鐵3與導電構件1之間的間隙G予以縮小。其結果,可以提高渦電流式阻尼器10的阻力。
在本實施方式中,是在導電構件1的內周面中之與凸部21、22相對向的部分,設置了滑動材91、92。藉此,可以減少凸部21、22與導電構件1之間的摩擦阻力。因此,在渦電流式阻尼器10的作動中,當凸部21、22接觸到導電構件1時,可以抑制因為這種接觸而導致磁鐵保持構件2的旋轉受到阻礙之情事。此外,可以減少凸部21、22的磨損、以及導電構件1的內周面中之與凸部21、22相對向的部分的磨損。因此,可以抑制隨著渦電流式阻尼器10的使用期間而導致凸部21、22的位置處的間隙g1、g2變大之情事。亦即,可以將間隙g1、g2一直維持在小間隙的狀態,因而得以長期間都能夠防止永久磁鐵3與導電構件1的接觸。
在本實施方式中,係在磁鐵保持構件2之軸方向上的兩端部分別配置了凸部21、22。因此,在渦電流式阻尼器10的作動中,當保持著永久磁鐵3之磁鐵保持構件2移動靠近於導電構件1時,磁鐵保持構件2的外周面是利用複數個凸部21、22來與導電構件1側的對向部進行接觸。因此,可以將導電構件1的內周面與磁鐵保持構件2的外周面之間的荷重予以分散到複數個凸部21、22,可以減輕各個凸部21、22與導電構件1的接觸面壓力。
在本實施方式中,凸部21是被配置在:磁鐵保持構件2之軸方向上的兩個端部中之較諸遠離螺母41的端部更為接近鄰接螺母41的端部的位置。亦即,凸部21是配置在螺母41的近旁。因此,在渦電流式阻尼器10的使用時,即使因為旋轉中的螺母41搖擺而導致磁鐵保持構件2與螺母41一起往導電構件1側移動時,凸部21會率先與導電構件1側的對向部接觸,而可以限制磁鐵保持構件2的移動。因此,可以更有效果地防止永久磁鐵3與導電構件1的接觸。
在本實施方式中,是在磁鐵保持構件2的外周面設置了凸部21、22。另一方面,在導電構件1的內周面,並未設置有:超過永久磁鐵3之徑向外側的表面往磁鐵保持構件2側突出的部分。這種情況下,可以讓渦電流式阻尼器10的分解作業更容易進行。
<第2實施方式>
圖4是第2實施方式之渦電流式阻尼器10A的縱剖面圖,是渦電流式阻尼器10A的局部放大圖。如圖4所示,本實施方式的渦電流式阻尼器10A,是在於:磁鐵保持構件2的外周面上僅在螺母41的近旁設置凸部21的這一點,與第1實施方式的渦電流式阻尼器10有所不同。
本實施方式的渦電流式阻尼器10A,也可以達到與第1實施方式之渦電流式阻尼器10同樣的效果。亦即,在渦電流式阻尼器10A作動中,磁鐵保持構件2及永久磁鐵3移動靠近導電構件1時,可使得磁鐵保持構件2的凸部21早於永久磁鐵3更優先地與導電構件1側的對向部進行接觸。藉此,可以防止永久磁鐵3與導電構件1發生接觸,而且可以將永久磁鐵3與導電構件1之間的間隙G予以縮小。此外,因為凸部21是被設置在螺母41的近旁,特別是在起因於螺母41的搖擺而導致磁鐵保持構件2及永久磁鐵3往導電構件1靠近時,可以很有效果地防止永久磁鐵3與導電構件1的接觸。
<第3實施方式>
圖5是第3實施方式之渦電流式阻尼器10B的縱剖面圖,是渦電流式阻尼器10B的局部放大圖。如圖5所示,本實施方式之渦電流式阻尼器10B,是在於:不是在導電構件1這一側設置滑動材91、92,而是設在磁鐵保持構件2的凸部21、22上的這一點,與第1實施方式之渦電流式阻尼器10有所不同。
即使是以本實施方式的方式來配置滑動材91、92的情況下,也是與第1實施方式同樣地,可以降低凸部21、22與導電構件1之間的摩擦阻力。因此,可以抑制因為凸部21、22與導電構件1的接觸而導致磁鐵保持構件2的旋轉受到阻礙之情事。此外,可以減少凸部21、22以及導電構件1的內周面的磨損。
<第4實施方式>
圖6是第4實施方式之渦電流式阻尼器10C的縱剖面圖,是渦電流式阻尼器10C的局部放大圖。如圖6所示,本實施方式之渦電流式阻尼器10C,是在於:將凸部11、12設置在導電構件1的內周面以取代設置在磁鐵保持構件2的外周面的這一點,與第1實施方式之渦電流式阻尼器10有所不同。
在本實施方式中,是在導電構件1的內周面,設置有朝徑向突出的凸部11、12。凸部11、12是較諸導電構件1的內周面中的其他部分更往磁鐵保持構件2側突出的部分。在凸部11、12上,設置了滑動材91、92。但也是可以將滑動材91、92設置在:磁鐵保持構件2的外周面中之與凸部11、12相對向的部分。
凸部11、12都是朝導電構件1及磁鐵保持構件2的外周方向延伸。凸部11、12都是設置在導電構件1的整個外周為佳。凸部11、12都是例如:毫無中斷地設置在導電構件1的整個外周。亦即,凸部11、12都是例如:圓環狀。或者,也可以將凸部11、12分別都是在導電構件1的外周方向上分割成複數個部分。
凸部11、12是與第1實施方式的凸部21、22 (圖3)同樣地,在軸方向上配置於永久磁鐵3的兩側。凸部11、12在導電構件1中,分別被配置在與磁鐵保持構件2之軸方向上的兩端部相對應的位置。其中一方的凸部11,在導電構件1的內周面上,被設置在軸方向上的其中一端側。凸部11是被配置在:磁鐵保持構件2之軸方向上的兩端部之中之靠近於固定了螺母41的這個端部的位置。而另外一方的凸部12,在導電構件1的內周面上,被設置在軸方向上的另一端側。
本實施方式也是與第1實施方式同樣地,係在:導電構件1的內周面上的凸部11、與在渦電流式阻尼器10C之在徑向上和凸部11相對向的部分(對向部)之間,形成了間隙g1。間隙g1是小於導電構件1的內周面與永久磁鐵3之間的間隙G。此外,在導電構件1的內周面上的凸部12、與在渦電流式阻尼器10C之在徑向上和凸部12相對向的部分(對向部)之間,形成了間隙g2。間隙g2是小於導電構件1的內周面與永久磁鐵3之間的間隙G。從縱剖面觀看渦電流式阻尼器10C,間隙g1、g2是取決於:從凸部11、12上的滑動材91、92至凸部11、12的對向部之間的最短距離。在圖6的例子中,間隙g1、g2分別是從滑動材91、92的表面至磁鐵保持構件2的外周面之在徑向上的距離。
本實施方式之渦電流式阻尼器10C,凸部11、12與其對向部之間的間隙g1、g2是小於導電構件1的內周面與永久磁鐵3之間的間隙G,藉此,可以達成與第1實施方式之渦電流式阻尼器10同樣的效果。亦即,因此,在渦電流式阻尼器10C作動中,基於某些原因而導致磁鐵保持構件2及永久磁鐵3移動靠近於導電構件1時,磁鐵保持構件2將會早於永久磁鐵3更優先地與導電構件1的凸部11、12進行接觸。藉此,可以防止永久磁鐵3與導電構件1發生接觸。
在本實施方式中,係在導電構件1的內周面設置了複數個凸部11、12。然而,也可以是如第2實施方式所示般地,例如:在導電構件1的內周面上,僅設置了其中一方的凸部11。
<第5實施方式>
圖7是第5實施方式之渦電流式阻尼器10D的縱剖面圖,是渦電流式阻尼器10D的局部放大圖。本實施方式之渦電流式阻尼器10D,是在於:在導電構件1的內周面及磁鐵保持構件2的外周面之雙方都設置了凸部的這一點,與上述各實施方式的渦電流式阻尼器有所不同。
如圖7所示,在導電構件1的內周面,設置了凸部11、12。在磁鐵保持構件2的外周面,設置了凸部21、22。導電構件1的凸部11、12分別是與磁鐵保持構件2的凸部21、22在徑向上互相對向。在磁鐵保持構件2的凸部21、22上,設置了滑動材91、92。但也可以是在導電構件1的凸部11或凸部12上,設置有滑動材91或滑動材92。
形成在導電構件1之內周面的凸部11與磁鐵保持構件2之外周面的凸部21之間的間隙g1,是小於導電構件1的內周面與永久磁鐵3之間的間隙G。又,形成在導電構件1之內周面的凸部12與磁鐵保持構件2之外周面的凸部22之間的間隙g2,是小於導電構件1的內周面與永久磁鐵3之間的間隙G。間隙g1、g2分別是從凸部21、22上的滑動材91、92的表面至凸部11、12的頂面之在徑向上的距離。
本實施方式之渦電流式阻尼器10D,也是導電構件1的凸部11、12與和其相對向之磁鐵保持構件2的凸部21、22之間的間隙g1、g2是小於導電構件1的內周面與永久磁鐵3之間的間隙G,藉此,可以達成與第1實施方式之渦電流式阻尼器10同樣的效果。亦即,在渦電流式阻尼器10D的作動中,基於某些原因而導致磁鐵保持構件2及永久磁鐵3移動靠近於導電構件1時,磁鐵保持構件2的凸部21、22將會早於永久磁鐵3更優先地與導電構件1的凸部11、12進行接觸。因此,可以防止永久磁鐵3與導電構件1的接觸。
在本實施方式中,是在導電構件1的內周面設置了複數個凸部11、12,在磁鐵保持構件2的外周面設置了複數個凸部21、22。然而,例如:也可以是在導電構件1的內周面僅設置了其中一方的凸部11。同樣地,例如:也可以是在磁鐵保持構件2的外周面僅設置了其中一方的凸部21。
上述各實施方式之渦電流式阻尼器的結構,特別是關於凸部11、12、21、22及滑動材91、92的構成方式,可以做適當的組合。
以上,是說明了本申請案的實施方式,但是,本申請案並不限定在上述的實施方式,只要是在未脫離其發明要旨的範圍內,都可以做各種的變更。
在上述各實施方式中,從縱剖面來觀看渦電流式阻尼器時,導電構件1之內周面的凸部11、12及磁鐵保持構件2之外周面的凸部21、22是呈矩形狀。然而,凸部11、12、21、22的形狀,並不限定於這種形狀。
如圖8所示般地,從縱剖面觀看渦電流式阻尼器時,磁鐵保持構件2之外周面的凸部21、22的形狀,也可以是例如:形成往導電構件1側凸出的圓弧狀。這種情況下,在渦電流式阻尼器的使用中,即使發生了磁鐵保持構件的凸部21、22與導電構件1接觸的情事,也會因為凸部21、22是與導電構件1構成線狀的接觸,因此其接觸面積很小。所以能夠降低在凸部21、21的位置之導電構件1的內周面與磁鐵保持構件2的外周面之間的摩擦阻力。此外,雖然省略了其圖示,但是,導電構件1之內周面的凸部11、12(圖6及圖7)的形狀,從渦電流式阻尼器的縱剖面觀看,也是可以形成:往磁鐵保持構件2側凸出的圓弧狀。從渦電流式阻尼器的縱剖面觀看,導電構件1的凸部11、12或磁鐵保持構件2的凸部21、22是呈圓弧狀的情況下,間隙g1、g2就是凸部11、12或凸部21、22的頂點與其對向部之在徑向上的距離。在這種情況下,也是如圖8所示般地,可以在導電構件1之內周面中之與凸部21、22相對向的部分,或者在磁鐵保持構件2之外周面中之與凸部11、12相對向的部分,設置滑動材91、92。或者,也可以是在凸部11、12或凸部21、22上,設置滑動材91、92。
上述各實施方式之渦電流式阻尼器,係具備:用來支承徑向的荷重之軸承81、82。然而,如圖9所示般地,在凸部21、22的位置之導電構件1的內周面與磁鐵保持構件2的外周面之間的間隙非常小,磁鐵保持構件2進行旋轉時,在凸部21、22的位置處之導電構件1與磁鐵保持構件2幾乎是全時性地接觸在一起的情況下,如果可以讓滑動材91、92也能夠發揮用來支承徑向的荷重之作為滑動型軸承之功能的話,就可以省略軸承81、82(圖1)。同樣地,在導電構件1的內周面設置了凸部11、12的情況下(圖6及圖7),在凸部11、12的位置之導電構件1的內周面與磁鐵保持構件2的外周面之間的間隙也是非常小,如果能夠使得滑動材91、92發揮用來支承徑向荷重之作為滑動型軸承之功能的話,就可以省略軸承81、82(圖1)。如此一來,可以將渦電流式阻尼器的軸方向予以小型化。
上述各實施方式之渦電流式阻尼器,是在磁鐵保持構件2的外周面上,設置了沿著外周方向排列之一排的永久磁鐵3。然而,也可以是在磁鐵保持構件2的外周面上,設置複數排的永久磁鐵3。這種情況下,也可以將設在導電構件1的內周面及/或磁鐵保持構件2的外周面上的凸部,配置在各排的永久磁鐵3之間。
在上述第1~第3實施方式及第5實施方式中,是在磁鐵保持構件2的外周面,設置有一個凸部21或兩個凸部21、22。在上述第4實施方式及第5實施方式中,是在導電構件1的內周面,設置有一個凸部11或兩個凸部11、22。然而,設置在導電構件1的內周面及磁鐵保持構件2的外周面之其中一方或雙方上的凸部的個數,並未特別地限定。例如:也可以是在磁鐵保持構件2的外周面設置有三個以上的凸部。同樣地,也可以是在導電構件1的內周面設置有三個以上的凸部。
在上述各實施方式及其變形例之渦電流式阻尼器(圖1、及圖3~圖9)中,是顯示出:將凸部11、12或凸部21、22與導電構件1或磁鐵保持構件2一體地形成之例子,但是,並未限定於此。凸部也可以是與導電構件1或磁鐵保持構件2不同個體的構件。凸部是與導電構件1或磁鐵保持構件2不同個體的構件之情況下,可以利用例如:螺栓等的零件,將凸部安裝到導電構件1或磁鐵保持構件2上。此外,也可以利用摩擦係數小於導電構件1及磁鐵保持構件2之摩擦係數的材料來構成凸部,而讓凸部本身可以發揮作為滑動材的功能。
在上述各實施方式中,永久磁鐵3的各個磁極(N極及S極)是朝向磁鐵保持構件2的徑向排列。然而,也可以將永久磁鐵3的各個磁極(N極及S極)朝向磁鐵保持構件2之外周方向排列。這種情況下,係在外周方向上相鄰的永久磁鐵3之間,配置磁極片為宜,磁鐵保持構件2是以非磁性材來構成為宜。
10,10A,10B,10C,10D:渦電流式阻尼器
1:導電構件
11,12:凸部
2:磁鐵保持構件
21,22:凸部
3:永久磁鐵
4:滾珠螺桿
41:螺母
42:螺桿軸
91,92:滑動材
g1,g2:間隙
G:間隙
[圖1]是第1實施方式之渦電流式阻尼器的縱剖面圖。
[圖2]是第1實施方式之渦電流式阻尼器的橫剖面圖。
[圖3]是圖1所示的渦電流式阻尼器之縱剖面的局部放大圖。
[圖4]是第2實施方式之渦電流式阻尼器的縱剖面圖,是該渦電流式阻尼器的局部放大圖。
[圖5]是第3實施方式之渦電流式阻尼器的縱剖面圖,是該渦電流式阻尼器的局部放大圖。
[圖6]是第4實施方式之渦電流式阻尼器的縱剖面圖,是該渦電流式阻尼器的局部放大圖。
[圖7]是第5實施方式之渦電流式阻尼器的縱剖面圖,是該渦電流式阻尼器的局部放大圖。
[圖8]是各實施方式的別種變形例之渦電流式阻尼器的縱剖面圖,是該渦電流式阻尼器的局部放大圖。
[圖9]是各實施方式的別種變形例之渦電流式阻尼器的縱剖面圖,是該渦電流式阻尼器的局部放大圖。
10:渦電流式阻尼器
1:導電構件
2:磁鐵保持構件
21,22:凸部
3:永久磁鐵
41:螺母
91,92:滑動材
g1,g2:間隙
G:間隙
Claims (6)
- 一種渦電流式阻尼器,係具備: 筒狀的導電構件、 被配置在前述導電構件的內側,能夠以中心軸為中心進行旋轉之筒狀的磁鐵保持構件、 排列在前述磁鐵保持構件的外周方向上,受到前述磁鐵保持構件之外周面所保持,並且隔著間隙與前述導電構件的內周面相對向之複數個永久磁鐵、以及 摩擦係數小於前述導電構件的前述內周面及前述磁鐵保持構件的前述外周面的摩擦係數之滑動材, 並且在前述導電構件的前述內周面及前述磁鐵保持構件的前述外周面之其中一方或雙方,設有朝向前述導電構件或前述磁鐵保持構件的徑向突出且沿著前述外周方向延伸的凸部, 從沿著前述中心軸的剖面觀看前述渦電流式阻尼器時,是在前述凸部與在前述徑向上和前述凸部相對向的對向部之間,形成有間隙,前述凸部與前述對向部的間隙,是小於前述導電構件的前述內周面與前述永久磁鐵的間隙, 前述滑動材是被設置在:前述凸部、或者前述導電構件的前述內周面或前述磁鐵保持構件的前述外周面中之與前述凸部相對向的部分。
- 如請求項1所述之渦電流式阻尼器,其中,前述凸部與前述對向部的間隙,是前述導電構件的前述內周面與前述永久磁鐵的間隙之70%以下。
- 如請求項1或請求項2所述之渦電流式阻尼器,其中,還具備: 包含有被固定在前述磁鐵保持構件之軸方向上的其中一端部的螺母、和貫穿在前述螺母的螺桿軸之滾珠螺桿, 前述凸部,在前述軸方向上,是被配置在:較諸於前述磁鐵保持構件的另外一端部更靠近前述其中一端部的位置。
- 如請求項1或請求項2所述之渦電流式阻尼器,其中,是在前述磁鐵保持構件之軸方向上的兩端部、或者在前述導電構件中之與該兩端部相對應的位置,分別配置有前述凸部。
- 如請求項1或請求項2所述之渦電流式阻尼器,其中,前述凸部是被設置在:前述磁鐵保持構件的前述外周面。
- 如請求項1或請求項2所述之渦電流式阻尼器,其中,從沿著前述中心軸的剖面觀看前述渦電流式阻尼器時,前述凸部是呈圓弧狀。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-089304 | 2021-05-27 | ||
JP2021089304 | 2021-05-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202300796A true TW202300796A (zh) | 2023-01-01 |
TWI809798B TWI809798B (zh) | 2023-07-21 |
Family
ID=84229785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111112540A TWI809798B (zh) | 2021-05-27 | 2022-03-31 | 渦電流式阻尼器 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7205675B1 (zh) |
KR (1) | KR20230145605A (zh) |
CN (1) | CN117222825A (zh) |
TW (1) | TWI809798B (zh) |
WO (1) | WO2022249696A1 (zh) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201042181A (en) * | 2009-05-20 | 2010-12-01 | Nat Univ Chung Cheng | Eddy current-actuated balancing device for rotating machine |
JP2011196507A (ja) * | 2010-03-23 | 2011-10-06 | Toyota Motor Corp | ショックアブソーバ |
JP6905594B2 (ja) * | 2017-08-29 | 2021-07-21 | 日本製鉄株式会社 | 渦電流式ダンパ |
US20200400211A1 (en) * | 2017-09-13 | 2020-12-24 | Nippon Steel Corporation | Eddy current damper |
JP7185393B2 (ja) * | 2017-10-24 | 2022-12-07 | 日本製鉄株式会社 | 渦電流式ダンパ |
JP6926996B2 (ja) | 2017-11-30 | 2021-08-25 | 日本製鉄株式会社 | 渦電流式ダンパ |
JP7094756B2 (ja) * | 2018-04-05 | 2022-07-04 | 株式会社免制震ディバイス | マスダンパ |
WO2020116344A1 (ja) * | 2018-12-06 | 2020-06-11 | 日本製鉄株式会社 | 渦電流式ダンパ |
CN209725052U (zh) * | 2018-12-28 | 2019-12-03 | 安邸建筑环境工程咨询(上海)有限公司 | 一种电涡流阻尼器 |
-
2022
- 2022-03-24 CN CN202280029784.3A patent/CN117222825A/zh active Pending
- 2022-03-24 JP JP2022551003A patent/JP7205675B1/ja active Active
- 2022-03-24 WO PCT/JP2022/013859 patent/WO2022249696A1/ja active Application Filing
- 2022-03-24 KR KR1020237032259A patent/KR20230145605A/ko unknown
- 2022-03-31 TW TW111112540A patent/TWI809798B/zh active
Also Published As
Publication number | Publication date |
---|---|
JP7205675B1 (ja) | 2023-01-17 |
WO2022249696A1 (ja) | 2022-12-01 |
KR20230145605A (ko) | 2023-10-17 |
CN117222825A (zh) | 2023-12-12 |
TWI809798B (zh) | 2023-07-21 |
JPWO2022249696A1 (zh) | 2022-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11255407B2 (en) | Eddy current damper | |
JP2005188735A (ja) | 磁気軸受システム | |
JP5613649B2 (ja) | クロスローラー軸受 | |
US20200400211A1 (en) | Eddy current damper | |
TWI809798B (zh) | 渦電流式阻尼器 | |
US20210363771A1 (en) | Eddy current damper | |
JP4735453B2 (ja) | 転がり軸受装置 | |
JP2019100438A (ja) | 渦電流式ダンパ | |
JP7185393B2 (ja) | 渦電流式ダンパ | |
JP2019173933A (ja) | マスダンパ | |
JPS6146683B2 (zh) | ||
JP2004340361A (ja) | 磁気浮上軸受 | |
JP2022189107A (ja) | 渦電流式ダンパ | |
JP2017057941A (ja) | 転がり軸受 | |
JPH11341734A (ja) | ディスク形モータ | |
JP6897523B2 (ja) | 渦電流式ダンパ | |
JP6126641B2 (ja) | 磁性流体シール付き軸受 | |
JP6897525B2 (ja) | 渦電流式ダンパ | |
JP2002266854A (ja) | モータ | |
JP6680715B2 (ja) | 磁性流体シール付き軸受 | |
JP2007056978A (ja) | 磁性流体軸受 | |
KR101254147B1 (ko) | 자기 베어링을 구비한 터보차져 | |
JP2020085029A (ja) | 転がり軸受 | |
JPH0293119A (ja) | 磁気軸受装置 | |
JP2019078331A (ja) | 渦電流式ダンパ |