TW202246168A - 稀硫酸製造裝置及稀硫酸製造方法 - Google Patents

稀硫酸製造裝置及稀硫酸製造方法 Download PDF

Info

Publication number
TW202246168A
TW202246168A TW111104921A TW111104921A TW202246168A TW 202246168 A TW202246168 A TW 202246168A TW 111104921 A TW111104921 A TW 111104921A TW 111104921 A TW111104921 A TW 111104921A TW 202246168 A TW202246168 A TW 202246168A
Authority
TW
Taiwan
Prior art keywords
sulfuric acid
mentioned
dilute sulfuric
combustion
gas
Prior art date
Application number
TW111104921A
Other languages
English (en)
Inventor
西出勉
楠田浩雅
水野雄太
渡辺秀平
小山直路
長谷部雄介
日永葵
宮崎仁
岡田英晃
川畑聡志
石田雄一朗
Original Assignee
日商日本管機工業有限公司
日商川崎重工業股份有限公司
日商川崎工程股份有限公司
日商杰富意鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本管機工業有限公司, 日商川崎重工業股份有限公司, 日商川崎工程股份有限公司, 日商杰富意鋼鐵股份有限公司 filed Critical 日商日本管機工業有限公司
Publication of TW202246168A publication Critical patent/TW202246168A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • C01B17/765Multi-stage SO3-conversion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • C01B17/78Preparation by contact processes characterised by the catalyst used
    • C01B17/79Preparation by contact processes characterised by the catalyst used containing vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • C01B17/80Apparatus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/24Sulfates of ammonium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Catalysts (AREA)

Abstract

本發明之課題在於提供一種能夠經濟地製造稀硫酸之稀硫酸製造裝置及稀硫酸製造方法。 本發明係一種稀硫酸製造裝置40,其包含:供給至少含有硫成分、氮成分、及40~80重量%以上之水分之原料之管路42等;生成氧濃度為22~40體積%之含氧氣體之PVSA45d等;藉由含氧氣體使原料燃燒而生成含有硫氧化物(SO x:此處,1≦x<3)與10體積%以上之水分之燃燒氣體的燃燒爐51;使燃燒氣體冷卻之排熱鍋爐52;藉由觸媒使該硫氧化物(SO x)氧化而生成含有三氧化硫(SO 3)之反應氣體之轉化器61;及使反應氣體冷卻而生成稀硫酸之稀硫酸塔71,且其至少於燃燒爐51至稀硫酸塔71中不添加水而僅以原料之水分生成未達90重量%之稀硫酸。

Description

稀硫酸製造裝置及稀硫酸製造方法
本發明係關於一種稀硫酸製造裝置及稀硫酸製造方法。
硫酸(H 2SO 4)係強力之酸,被大量製造而用於各種領域中。硫酸大致分為硫酸濃度標識為90重量%以上之工業用濃硫酸、及標識為未達90重量%之工業用稀硫酸,其等性質分別不同。其中稀硫酸雖為強酸性,但與濃硫酸不同,不具有氧化作用或脫水作用,另一方面對金屬材料等表現出較強腐蝕性。稀硫酸用於工業用品或醫藥、農藥、試劑等各種用途中。
於硫酸之製造中,需要含有硫之原料。作為原料,使用來自製造製鐵等所使用之焦炭之過程中產生之氣體(焦爐煤氣(Coke Oven Gas):以下稱為「COG」)之脫硫廢液及再生硫、或自銅精煉步驟中排出之含SO x氣體等。
以往,作為硫酸之製造方法,例如已知專利文獻1之方法。於該文獻中,記載有:(a)燃燒含碳燃料而供給用以由含硫材料形成二氧化硫之熱,且供給選自純氧及含有30體積%以上之氧氣之混合氣體的富氧氣體(以下稱為含氧氣體)而支持該燃料之燃燒;(b)形成含有由二氧化硫與燃料之燃燒所產生之氣體之混合氣體;及(c)使混合氣體乾燥,該混合氣體於乾燥後含有30體積%以上之二氧化碳與超過16體積%之二氧化硫;等。
又,雖無與稀硫酸之製造相關之記載,但於專利文獻2中揭示有一種脫硫廢液之濕式處理系統。該系統中包括:將脫硫廢液與燃料氣體及空氣一同供給至燃燒裝置中,於1050~1100℃燃燒而生成含SO 2處理氣體之步驟;藉由熱交換使該處理氣體冷卻之步驟;使經冷卻之處理氣體通過脫硝反應器後供給至反應裝置中,從SO 2轉化至SO 3之步驟;使含SO 3處理氣體通過冷凝器及酸霧捕集器而生成硫酸之步驟;以及於排氣處理裝置中利用氨水對來自酸霧捕集器之排氣中殘留之SO 2進行處理而回收硫酸銨之步驟。向燃燒裝置中供給空氣。
同樣地,雖無與稀硫酸之製造相關之記載,但於專利文獻3中,記載有一種以使硫燃燒所得之氣體為原料之接觸式硫酸製造法,其係組裝富氧裝置而向硫燃燒爐及/或轉化器供給富氧空氣。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利第2519691號(請求項1等) [專利文獻2]中國專利CN110282606A [專利文獻3]日本特開平1-160809號
[發明所欲解決之課題]
由於專利文獻1之方法中包括使混合氣體乾燥之步驟,因此其目的在於製造硫酸濃度較高之濃硫酸而並非稀硫酸。通常,稀硫酸之製造採用:製造濃硫酸後利用水進行稀釋之方法、或可調整硫酸冷凝溫度(沸點)之附帶特殊溫度調整機之硫酸製造裝置。於利用前者之方法中,為了調整水分濃度,需要使高溫燃燒氣體暫時減溫除濕至未達100℃之除濕塔或利用藉由濃硫酸之脫水作用之乾燥塔等設備。又,繼此種除濕塔或乾燥塔之後,需要用以再次加熱至400~450℃之機器(熱交換器等)、配管、旋轉機等設備。另一方面,於利用後者之方法中,需要可調整硫酸冷凝溫度(沸點)之非常昂貴之特殊溫度調整機。因此,於此種方法中存在稀硫酸之製造耗費成本之問題。
又,藉由專利文獻2中所記載之系統而製造之硫酸為濃度93重量%之高濃度硫酸,未製造濃度90重量%以下之稀硫酸。於本文獻中雖記載有於燃燒手段之後段且反應手段之前段向洗淨塔補充水,但由於洗淨塔之出口溫度為飽和水蒸氣溫度程度,幾乎不產生水蒸氣,故燃燒氣體中之含水量不會增加。因此,即使向洗淨塔補給水亦無法製造稀硫酸。進而,於專利文獻2之系統中,向燃燒裝置供給空氣,於燃燒裝置之後端,淨化裝置與脫硝反應器成為必需之構成。
於專利文獻3中,關於生成稀硫酸之方面並無記載。又,富氧裝置係用於藉由提高O 2相對於SO 2之相對濃度來提高從SO 2至SO 3之平衡轉化率,並無與氮氧化物(NO x)相關之記載。
本發明之目的在於提供一種能夠經濟地製造稀硫酸之稀硫酸製造裝置及稀硫酸製造方法。 [解決課題之技術手段]
本發明者等人發現,藉由使用除含有硫成分與氮成分之外亦含有較多水分者作為原料,並利用氧濃度較高之含氧氣體使原料燃燒,能夠製造稀硫酸,從而完成本發明。
本發明係一種稀硫酸製造裝置,其特徵在於包含:供給至少含有硫成分、氮成分、及40~80重量%以上之水分之原料的原料供給手段;生成氧濃度為22~40體積%之含氧氣體之含氧氣體生成手段;藉由上述含氧氣體使上述原料燃燒而生成含有硫氧化物(SO x:此處,1≦x<3)與10體積%以上之水分之燃燒氣體的燃燒手段;使上述燃燒氣體冷卻之冷卻手段;藉由觸媒使上述硫氧化物(SO x)氧化而生成含有三氧化硫(SO 3)之反應氣體之反應手段;及使上述反應氣體冷卻而生成稀硫酸之稀硫酸生成手段,且其至少於上述燃燒手段至上述稀硫酸生成手段中不添加水而僅以上述原料之水分生成未達90重量%之稀硫酸。
於本發明中,藉由使用除含有硫成分與氮成分之外亦含有較多水分者作為原料,並利用氧濃度較高之含氧氣體使原料燃燒,而於含有一定量以上之水分之狀態製造硫酸。因此,所製造之硫酸為稀硫酸,無需如以往般設置除濕設備或乾燥設備來製造硫酸。因此,與以往相比可減少稀硫酸之製造所耗費之成本。
又,於本發明中,能夠於燃燒手段至稀硫酸生成手段中不添加水而僅利用原料之水分生成未達90重量%之稀硫酸。本發明中由於不需要給水裝置等特別裝置,因此可減少稀硫酸之製造成本。
進而,於本發明中,藉由氧濃度為22~40體積%之含氧氣體使原料燃燒。此處,一般若提高原料之燃燒時之氧濃度或燃燒溫度,則容易生成氮氧化物(NO x)。然而,於本發明中,藉由使用氧濃度為22~40體積%之含氧氣體,可使生成之排氣之量自身減少(參照後述之存在PVSA45d之情形時之排氣量10951 Nm 3/h與不存在PVSA45d之情形時之排氣量13207 Nm 3/h)。其結果,燃燒氣體中所含之氮氧化物之量不會增加,反而與使用空氣(氧濃度21體積%)之情形相比燃燒氣體中所含之NO x之量變少(參照後述圖4)。
於此情形時,藉由使用上述含氧氣體生成手段中生成之氧濃度為22~40體積%之上述含氧氣體使上述原料燃燒,從而使上述燃燒手段中生成之上述燃燒氣體之氮氧化物之量小於假定使用氧濃度21體積%之空氣於同一條件使上述原料燃燒時生成之燃燒氣體之氮氧化物之量。
藉由如上所述使用含氧氣體使原料燃燒,與通常之使用空氣使原料燃燒之情形相比,能夠減少生成之燃燒氣體所含之氮氧化物之量。
較佳為至少於上述燃燒手段與上述反應手段之間不具有用以脫硝之設備。
於此情形時,上述燃燒手段較佳為於900~1100℃使上述原料燃燒。
與以往之硫酸製造設備相比,本發明中氧濃度較高,因此可進一步減少維持燃燒所需要之助燃劑(COG等),可減少燃燒成本。又,一般若提高氧濃度或提高燃燒溫度,則容易生成氮氧化物(NO x)等大氣污染物質,但於本發明中,即使於高氧濃度使原料或助燃劑燃燒,生成之氮氧化物之量亦不會增加,因此能夠降低環境負荷。因此,無需用以去除氮氧化物之設備或者只需少量即可,故而亦能減少稀硫酸之製造成本。
於此情形時,上述燃燒手段較佳為於1050℃以下使上述原料燃燒。
藉由如上所述於燃燒手段中使燃燒溫度為1050℃以下,能夠降低燃燒氣體中之NO x濃度(如後述圖15所示,係由於伴隨著溫度上升NO x濃度亦上升),藉此可使下游處無需用以脫硝之特別設備。
進而,於上述燃燒手段中,自上述含氧氣體生成手段導入之上述含氧氣體之氧濃度為22~30體積%之範圍內,上述燃燒手段中生成之上述燃燒氣體中之氧濃度為2.0~7.0體積%之範圍內。
於燃燒手段中,藉由於上述條件導入含氧氣體減少燃燒排氣量,並且控制燃燒排氣中之氧濃度,能夠將SO 3轉化率維持在與空氣(未富氧)燃燒之情形同等之值。因此,亦能夠使燃燒手段中生成之燃燒氣體中之如下所示之SO 3轉化率成為例如1.0~3.0%之範圍內般之低值。 SO 3轉化率=(SO 3/SO x)×100 (此處,SO 3係上述燃燒氣體中所含之SO 3之體積濃度,SO x係上述燃燒氣體中所含之SO x之體積濃度)。 藉此,能夠不對燃燒爐下游之排熱鍋爐中之酸露點造成影響而與供給空氣(未富氧)之情形同等地進行處理。
進而,較佳為進而具備去除上述稀硫酸生成手段中之未反應之二氧化硫的氣體去除手段。
如上所述,為了去除未反應之二氧化硫,可不將二氧化硫釋放至環境中而進行除害。
於此情形時,上述氣體去除手段較佳為使上述未反應之二氧化硫與氨反應而生成亞硫酸銨((NH 4) 2SO 3:亞硫銨),藉由氧化製成硫酸銨((NH 4) 2SO 4:硫銨)而進行回收。
如上所述,可使未反應之二氧化硫與氨反應而生成亞硫酸銨,之後進行氧化,製成硫酸銨進行回收。
於此情形時,上述氨存在利用氨水吸收二氧化硫之情形與利用脫硫廢液中所含之氨吸收二氧化硫之情形,較佳為使後者之脫硫廢液與上述未反應之二氧化硫反應後,作為上述原料再循環。
藉由如上所述使用脫硫廢液作為氨源,將與二氧化硫反應後之脫硫廢液作為原料再循環,能夠有效利用脫硫廢液。
進而又較佳為上述燃燒手段採用內部具備一部分有開口之格子狀磚之燃燒爐。
由於磚在加熱時具有保熱效果,因此可使未反應原料後燃燒。又,除減少對下游機器之輻射之外,格子狀磚由於具有適度之開口,因此其可作為整流效果使原料或含氧氣體、燃燒氣體之流動變良好。因此,能夠有效率地進行藉由燃燒手段之原料之燃燒。
又,於藉由觸媒使上述硫氧化物(SO x)氧化而生成含有三氧化硫(SO 3)之反應氣體之反應手段中,上述觸媒較佳為五氧化二釩(V 2O 5),且兼具脫硝功能。
藉由如上所述使反應手段之觸媒為五氧化二釩(V 2O 5)且兼具脫硝功能,能夠使硫氧化物之氧化與氮成分之分解同時進行。
於此情形時,當需要進一步高之脫硝率時,上述反應手段較佳為進而具備:除上述觸媒之外亦含有氧化鈦(TiO 2)作為輔觸媒之脫硝觸媒。
於轉化硫氧化物時,於原料中之因燃燒而產生之氮成分(例如未分解NH 3、NO、NO 2等NO x)濃度較高而需要高脫硝率之情形時,不含輔觸媒之五氧化二釩較氮成分之分解優先地進行硫氧化物之轉化。因此,藉由設置如上所述之含有輔觸媒之脫硝觸媒,可使氮成分之分解之反應優先於硫氧化物之轉化,從而使氮成分之分解進行。
上述反應手段較佳為具備設置成複數階段之上述觸媒,使因下述放熱反應而升溫之轉化後氣體與從外部引入之大氣直接混合,下降至適合後段之觸媒反應之溫度,藉此不依靠熱交換器而使上述轉化後氣體之溫度下降;上述放熱反應係藉由複數階段中前段之上述觸媒進行之上述硫氧化物之上述氧化所引起者。
藉由如上所述於複數階段之觸媒之前段使轉化後氣體冷卻,能夠於後段降低溫度。因此,除能夠防止由於後段中溫度提高而導致之反應率降低之外,藉由從外部直接引入空氣,除具有冷卻效果外,亦具有藉由提高轉化所需要之氧氣之分壓而促進反應之效果。 又,藉由於反應手段(轉化器)而非最上游設備之燃燒手段(燃燒爐)引入大氣補充氧氣,能夠將上游設備之燃燒爐或鍋爐之通氣容量抑制得更小,對燃燒爐・鍋爐之尺寸縮小及燃燒爐助燃劑之減少有效。進而,藉由上述構成,亦兼而冷卻轉化器中之轉化後氣體,因此能夠省略用以冷卻之熱交換器。
又,上述反應手段亦可將藉由熱交換器間接地使上述轉化後氣體冷卻之間接冷卻手段及上述藉由與大氣直接混合之冷卻併用。
藉由如上所述除直接混合從外部引入之大氣之冷卻之外亦進行利用間接冷卻手段之冷卻,能夠有效率地使觸媒之後段中之氣體溫度下降至適合觸媒反應之溫度,且能夠藉由減少大氣之混合量而抑制氣體量之增加。
上述燃燒手段較佳為對未達5000 kJ/kg之原料供給上述含氧氣體進行燃燒,對5000 kJ/kg以上之原料供給空氣進行燃燒。 或者,上述燃燒手段亦可對未達5000 kJ/kg之原料供給上述含氧氣體進行燃燒,且於上述未達5000 kJ/kg之原料較少之情形時,對5000 kJ/kg以上之原料及助燃劑(COG等)亦供給含氧氣體進行燃燒。
於原料未達5000 kJ/kg之情形時,由於燃燒變得不穩定,因此藉由供給氧濃度較高之含氧氣體進行燃燒,能夠使燃燒穩定。於5000 kJ/kg以上之原料之情形時,由於藉由空氣而容易地燃燒,因此可供給空氣,亦可供給含氧氣體。即,可根據原料之供給比率,將含氧氣體供給至所有原料或一部分原料。 藉由如上所述將含氧氣體分配給各原料,能夠有效率地進行原料之燃燒。
又,上述稀硫酸生成手段較佳為藉由上下控制循環硫酸水溶液之溫度而調整稀硫酸之濃度。
由於稀硫酸生成手段中,藉由上下控制循環硫酸水溶液之溫度,能夠調整生成之稀硫酸之濃度,因此例如於脫硫廢液中之水分為50重量%時,藉由使稀硫酸之溫度上升至80℃左右,能夠生成70重量%左右之具有作為交易商品之價值之稀硫酸。
又,較佳為進而具備將上述稀硫酸生成手段中生成之稀硫酸之濃度濃縮至70~80重量%之硫酸濃縮手段。
藉由如上所述將上述稀硫酸生成手段中生成之稀硫酸之濃度濃縮至70~80重量%,能夠生成具有作為交易商品之價值之70%以上之稀硫酸,並且生成對含有碳鋼之製品線具有耐蝕性之70%以上(較佳為75%左右)之稀硫酸。
又,上述稀硫酸生成手段較佳為使用生成之硫酸水溶液之一部分對上述反應氣體進行直接接觸冷卻,且不具有用以間接冷卻上述反應氣體之設備。
藉由如上所述於稀硫酸生成手段中利用生成之硫酸水溶液之一部分使反應氣體直接冷卻,從而於本稀硫酸生成手段中能夠無需用以間接冷卻之特別裝置。
又,上述冷卻手段較佳為具有鍋爐之排熱鍋爐,該排熱鍋爐具備: 向上述鍋爐內供給水之給水手段;及 藉由上述燃燒氣體使上述水蒸發而產生蒸氣,利用熱交換使上述燃燒氣體冷卻之熱交換手段。
於此情形時,較佳為進而具備用以針對上述鍋爐之出口溫度之變動,使上述出口溫度為一定之包含鍋爐旁路(boiler bypass)與調節閥之出口溫度調整手段。
藉由如上所述將冷卻手段設為排熱鍋爐,使鍋爐出口之溫度為一定,能夠防止由原料之變動或鍋爐水管之污垢導致鍋爐之出口溫度變動,將溫度一定之反應性氣體供給至反應手段。
又,較佳為於上述稀硫酸生成手段中,藉由調整原料之含水量,從而於上述燃燒手段至上述稀硫酸生成手段中不添加水而調整上述稀硫酸生成手段中生成之稀硫酸之濃度。
藉由如上所述調節原料之含水量,可不添加水而調整稀硫酸之濃度。
本發明係一種稀硫酸製造方法,其特徵在於包括:供給至少含有硫成分、氮成分、及40~80重量%以上之水分之原料的原料供給步驟;生成氧濃度為22~40體積%之含氧氣體之含氧氣體生成步驟;藉由上述含氧氣體使上述原料燃燒而生成含有硫氧化物(SO x:此處,1≦x<3)與10體積%以上之水分之燃燒氣體的燃燒步驟;使上述燃燒氣體冷卻之冷卻步驟;藉由觸媒使上述硫氧化物(SO x)氧化而生成含有三氧化硫(SO 3)之反應氣體之反應步驟;及使上述反應氣體冷卻而生成稀硫酸之稀硫酸生成步驟,且其至少於上述燃燒步驟至上述稀硫酸生成步驟中不添加水而僅以上述原料之水分生成未達90重量%之稀硫酸。
於本發明中,藉由使用除含有硫成分與氮成分之外亦含有較多水分者作為原料,並利用氧濃度較高之含氧氣體使原料燃燒,而於含有一定量以上之水分之狀態製造硫酸。因此,製造之硫酸為稀硫酸,無需如以往般設置除濕設備或乾燥設備來製造硫酸。因此,與以往相比可減少稀硫酸之製造所耗費之成本。又,於本發明中,可於原料供給手段至稀硫酸生成手段中,不添加水而僅利用原料之水分生成未達90重量%之稀硫酸。藉此,不需要給水裝置等特別裝置,可減少稀硫酸之製造成本。 又,本發明中由於係藉由氧濃度為22~40體積%之含氧氣體使原料燃燒,因此與使用空氣之情形相比能減少燃燒氣體中所含之NO x之量。藉由使用此種高氧濃度之含氧氣體,能夠使生成之排氣之量自身亦減少。
於此情形時,藉由使用上述含氧氣體生成步驟中生成之氧濃度為22~40體積%之上述含氧氣體使上述原料燃燒,從而使上述燃燒步驟中生成之上述燃燒氣體之氮氧化物之量小於假定使用氧濃度21體積%之空氣於同一條件使上述原料燃燒時生成之燃燒氣體之氮氧化物之量。
藉由如上所述使用含氧氣體使原料燃燒,與通常之使用空氣使原料燃燒之情形相比,能夠減少生成之燃燒氣體所含之氮氧化物之量。
較佳為至少於上述燃燒步驟與上述反應步驟之間不具有用以脫硝之設備。
於此情形時,上述燃燒步驟較佳為於900~1100℃使上述原料燃燒。
本發明中由於氧濃度較高,因此可進一步減少維持燃燒所需要之原料或助燃劑(COG等),可減少燃燒成本。又,一般若提高氧濃度或提高燃燒溫度,則容易生成氮氧化物(NO x)等大氣污染物質,但於本發明中,即使於高氧濃度使原料燃燒,生成之氮氧化物之量亦變少,因此可降低環境負荷。因此,無需用以去除氮氧化物之設備或者只需少量即可,故而亦可減少稀硫酸之製造成本。
如上所述,上述燃燒步驟較佳為於1050℃以下之溫度使上述原料燃燒。
藉由如上所述於燃燒步驟中使燃燒溫度低為1050℃以下,能夠降低燃燒氣體中之NO x濃度,藉此可使下游處無需用以脫硝之特別設備。
進而,上述燃燒步驟中,自上述含氧氣體生成步驟導入之上述含氧氣體之氧濃度為22~30體積%之範圍內,上述燃燒步驟中生成之上述燃燒氣體中之氧濃度為2.0~7.0體積%之範圍內。
於燃燒步驟中,藉由於上述條件導入含氧氣體使燃燒排氣量減少,並且控制燃燒排氣中之氧濃度,能夠將SO 3轉化率維持在與未富氧之情形同等之值。因此,亦能夠使燃燒步驟中生成之燃燒氣體中之SO 3轉化率成為例如1.0~3.0%之範圍內般之低值。 藉此,能夠不對燃燒爐下游之排熱鍋爐中之酸露點造成影響而與空氣(未富氧)燃燒之情形同等地進行處理。
進而,較佳為進而具備去除上述稀硫酸生成步驟中之未反應之二氧化硫之氣體去除步驟。
如上所述,為了去除未反應之二氧化硫,能夠不將二氧化硫釋放至環境中而進行除害。
於此情形時,上述氣體去除步驟較佳為使上述未反應之二氧化硫與氨反應而生成亞硫酸銨((NH 4) 2SO 3:亞硫銨),藉由氧化製成硫酸銨((NH 4) 2SO 4:硫銨)進行回收。
如上所述,能夠使未反應之二氧化硫與氨反應而生成亞硫酸銨,之後進行氧化,製成硫酸銨進行回收。
於此情形時,上述氨存在利用氨水吸收二氧化硫之情形與利用脫硫廢液中所含之氨吸收二氧化硫之情形,較佳為使後者之脫硫廢液與上述未反應之二氧化硫反應後,作為上述原料再循環。
藉由如上所述使用脫硫廢液作為氨源,將與二氧化硫反應後之脫硫廢液作為原料再循環,能夠有效利用脫硫廢液。
進而又較佳為上述燃燒步驟採用內部具備一部分有開口之格子狀磚之燃燒爐。
如上所述,由於磚在加熱時具有保熱效果,因此能夠使未反應原料後燃燒。又,除減少對下游機器之輻射之外,格子狀磚由於具有適度之開口,因此其能夠作為整流效果使原料或含氧氣體、燃燒氣體之流動變良好。因此,能夠有效率地進行藉由燃燒手段之原料之燃燒。
又,上述反應步驟中,上述觸媒較佳為五氧化二釩(V 2O 5)且兼具脫硝功能。
藉由如上所述使反應步驟之觸媒為五氧化二釩(V 2O 5)且兼具脫硝功能,能夠使硫氧化物之氧化與氮成分之分解同時進行。
於此情形時,當需要進一步高之脫硝率時,上述反應步驟較佳為進而具備:除上述觸媒之外亦含有氧化鈦(TiO 2)作為輔觸媒之脫硝觸媒。
於轉化硫氧化物時,於原料中之因燃燒而產生之氮成分(例如未分解NH 3、NO、NO 2等NO x)濃度相對較高之情形時,不含輔觸媒之五氧化二釩較氮成分之分解優先地進行硫氧化物之轉化。因此,藉由設置如上所述之含有輔觸媒之脫硝觸媒,能夠使氮成分之分解之反應優先於硫氧化物之轉化,從而使氮成分之分解進行。
上述反應步驟較佳為具備設置成複數階段之上述觸媒,使因下述放熱反應而升溫之轉化後氣體與從外部引入之大氣直接混合,下降至適合後段之觸媒反應之溫度,藉此不依靠熱交換器而使上述轉化後氣體之溫度下降,上述放熱反應係藉由複數階段中前段之上述觸媒進行之上述硫氧化物之上述氧化所引起者。
藉由如上所述利用複數階段之觸媒之前段使轉化後氣體冷卻,能夠於後段降低溫度。因此,能夠防止由於後段提高溫度而導致之反應速度降低。又,藉由從外部直接引入空氣,除冷卻效果外,亦能夠供給轉化所需之氧氣之不足量。又,藉由利用反應步驟(轉化器)而非最上游設備之燃燒步驟(燃燒爐)補充氧氣,能夠將上游設備之燃燒爐或鍋爐之通氣容量抑制得更小,對燃燒爐・鍋爐之尺寸縮小及助燃劑之減少有效。進而,藉由上述構成,亦能夠省略轉化器之熱交換器。
又,上述反應步驟亦能夠將藉由熱交換器間接地使上述轉化後氣體冷卻之間接冷卻步驟及上述藉由與大氣直接混合之冷卻併用。
藉由如上所述除直接混合從外部引入之大氣之冷卻以外亦進行利用間接冷卻步驟之冷卻,能夠有效率地使觸媒之後段中之氣體溫度降低至適合觸媒反應之溫度,且能夠藉由減少大氣之混合量而抑制氣體量之增加。
上述燃燒步驟較佳為對未達5000 kJ/kg之原料供給上述含氧氣體進行燃燒,對5000 kJ/kg以上之原料供給空氣進行燃燒。 或者,上述燃燒步驟亦能夠對未達5000 kJ/kg之原料供給上述含氧氣體進行燃燒,且於上述未達5000 kJ/kg之原料較少之情形時,對5000 kJ/kg以上之原料及助燃劑(COG等)亦供給含氧氣體進行燃燒。
於原料未達5000 kJ/kg之情形時,由於燃燒變得不穩定,因此藉由供給氧濃度較高之含氧氣體進行燃燒,能夠使燃燒穩定。於5000 kJ/kg以上之原料之情形時,由於藉由空氣而容易地燃燒,因此可供給空氣,亦可供給含氧氣體。即,可根據原料之供給比率,將含氧氣體供給至所有原料或一部分原料。 藉由如上所述將含氧氣體分配給各原料,能夠有效率地進行原料之燃燒。
又,上述稀硫酸生成步驟較佳為藉由上下控制循環硫酸水溶液之溫度而調整稀硫酸之濃度。
由於稀硫酸生成步驟中,藉由上下控制循環硫酸水溶液之溫度,能夠調整生成之稀硫酸之濃度,因此例如於脫硫廢液中之水分為50重量%時,藉由使稀硫酸之溫度上升至80℃左右,能夠生成70重量%左右之具有作為交易商品之價值之稀硫酸。
又,較佳為進而具備將上述稀硫酸生成步驟中生成之稀硫酸之濃度濃縮至70~80重量%之硫酸濃縮步驟。
藉由如上所述將上述稀硫酸生成步驟中生成之稀硫酸之濃度濃縮至70~80重量%,能夠生成具有作為交易商品之價值之70%以上之稀硫酸,並且生成對含有碳鋼之製品線具有耐蝕性之70%以上(較佳為75%左右)之稀硫酸。
又,上述稀硫酸生成步驟較佳為使用生成之硫酸水溶液對上述反應氣體進行直接接觸冷卻,且不具有用以間接冷卻上述反應氣體之設備。
藉由如上所述於稀硫酸生成步驟中利用生成之硫酸水溶液之一部分使反應氣體直接冷卻,從而於本稀硫酸生成步驟中能夠無需用以間接冷卻之特別裝置。
又,上述冷卻步驟較佳為使用具有鍋爐之排熱鍋爐,該排熱鍋爐具備: 向上述鍋爐內供給水之給水步驟;及 藉由上述燃燒氣體使上述水蒸發而產生蒸氣,利用熱交換使上述燃燒氣體冷卻之熱交換步驟。
於此情形時,較佳為進而具備用以針對上述鍋爐之出口溫度之變動使上述出口溫度為一定之包含鍋爐旁路與調節閥之出口溫度調整步驟。
藉由如上所述將冷卻步驟設為使用排熱鍋爐者,使鍋爐出口之溫度為一定,能夠防止由原料之變動或鍋爐水管之污垢導致鍋爐之出口溫度變動,將溫度一定之反應性氣體供給至反應步驟。
又,較佳為於上述稀硫酸生成步驟中,藉由調整原料之含水量,從而於上述燃燒步驟至上述稀硫酸生成步驟中不添加水而調整上述稀硫酸生成步驟中生成之稀硫酸之濃度。
藉由如上所述調節原料之含水量,能夠不添加水而調整稀硫酸之濃度。 [發明之效果]
根據本發明,能夠提供一種能夠經濟地製造稀硫酸之稀硫酸製造裝置及稀硫酸製造方法。
以下,針對本發明之實施形態,對其構成進行說明。本發明可在不變更其主旨之範圍內進行適當變更而實施。
1.稀硫酸製造裝置及稀硫酸製造方法 以下,參照圖1~圖3,對本發明之一實施形態之稀硫酸製造裝置及稀硫酸製造方法進行說明。圖1係表示稀硫酸製造裝置40之上游側步驟之示意圖,圖1係表示向原料(此處為脫硫廢液・熔融硫)供給含氧氣體之情形的示意圖。於純化COG用時存在供給含氧氣體之情形與供給空氣之情形。 圖2係表示稀硫酸製造裝置40之下游側步驟之示意圖。再者,所謂本發明之「稀硫酸」意指硫酸濃度未達90重量%未達之硫酸水溶液,含有JIS K1321所規定之「薄硫酸」(硫酸成分60~80重量%)或「純化稀硫酸」(硫酸成分27~50重量%)。
如圖1所示,本實施形態之稀硫酸製造裝置40包含供給原料之手段。本實施形態之原料由熔融硫、脫硫廢液、及作為助燃劑之純化COG所構成。原料供給手段係將該等原料供給至燃燒爐51之手段。本實施形態之稀硫酸製造裝置40具備供給作為原料之熔融硫之管路41a。熔融硫係將從製油所等處回收之硫變為熔融狀態而獲得者。管路41a與泵41b連接,藉此原料被移送至管路41c而供給至燃燒爐51內。
又,稀硫酸製造裝置40具備供給作為原料之脫硫廢液之管路42。脫硫廢液係來自為了去除從焦炭爐設備等中排出之排氣(粗COG)中之煤塵或有機物及硫化合物等而設置之脫硫設備中的廢液。一般於脫硫廢液中含有游離硫、游離NH 3、NH 4SCN、(NH 4) 2S 2O 3、H 2O等成分。其中水(H 2O)雖無特別規定但大多為整個脫硫廢液之50重量%以上。管路42與燃燒爐51連通,脫硫廢液亦作為原料而供給至燃燒爐51內。
進而,稀硫酸製造裝置40具備供給作為助燃劑之純化COG之管路43。純化COG係於製造用於製鐵之焦炭之過程中所產生之氣體。一般於純化COG中含有H 2、N 2、O 2、CO、CO 2、CH 4、C 2H 6、及微量之硫化合物等成分。管路43亦與燃燒爐51連通,純化COG亦作為助燃劑而供給至燃燒爐51內。
管路41a、泵41b、管路41c、管路42、及管路43相當於本發明之原料及助燃劑供給手段,藉由該等手段而實現可燃物原料供給步驟。藉由該等而供給至燃燒爐51之原料(熔融硫、脫硫廢液)之中脫硫廢液除硫單質以外亦含有(NH 4) 2S 2O 3等硫成分(10~40重量%)、NH 3等氮成分(5~25重量%)、及水分(40~80重量%)。於如本實施形態般原料存在複數種(例如於本實施形態中為熔融硫、脫硫廢液2種)之情形時,水分之含量被定義為將各原料及助燃劑中之水分混合之量。
管路41c與管路42上連接有供給作為噴霧介質之壓縮空氣之管路44a。於管路44a中設置有蒸氣加熱器44b,經加熱之空氣供給至管路41c中,進行提高該等原料之燃燒效率之微噴霧化。又,於稀硫酸製造裝置40中,設置有供給空氣之管路45a。從管路45a供給之空氣經由送風機45b移送至管路45c中。
於圖1中,在管路45c中設置有氧氣產生裝置(PVSA45d:真空型變壓式吸附法),從該PVSA45d供給高濃度氧氣。PVSA45d係使用沸石等吸附劑,對空氣中之氮氣在加壓下進行吸附去除,從而有效率地獲得高純度氧氣之裝置。PVSA45d可產生純度90體積%以上之氧氣。該氧氣與管路45a之空氣混合,作為氧濃度較高之空氣供給至燃燒爐51內。作為氧氣產生裝置45d,亦可使用PSA方式(變壓式吸附法)。又,作為其代替,亦可從現有之氧氣配管分支而供給氧氣。此處,將管路45e用於對脫硫廢液提供含氧氣體,將管路45f用於對熔融硫提供含氧氣體。
管路45a、送風機45b、PVSA45d、管路45c、管路45e、管路45f相當於本發明之含氧氣體生成手段,藉由該等手段而實現含氧氣體生成步驟。管路45c亦存在使用空氣而非含氧氣體之情形,由虛線所表示。藉此,供給至燃燒爐51之含氧氣體調整至22~40體積%、較佳為調整至22~30體積%、更佳為調整至25~30體積%之氧濃度。
燃燒爐51(燃燒手段)進行藉由含氧氣體使原料燃燒而生成含有硫氧化物(SO x)與10體積%以上之水分之燃燒氣體的燃燒步驟。圖3係表示燃燒爐51之內部構造之示意圖。如該圖所示,於燃燒爐51之上游設置有供給原料與含氧氣體之供給口51a,於內部使原料燃燒而從下游之排出口51b排出燃燒氣體。於本實施形態中,從圖之上段之供給口51a供給熔融硫,從中段之供給口51a供給脫硫廢液,從下段之供給口51a供給純化COG。再者,除如本實施形態般按每種原料之種類從不同供給口供給原料之態樣以外,亦可於預先將原料之一部分或全部混合之狀態向燃燒爐51供給原料。
於燃燒爐51之原料供給側存在水分蒸發區域,此處主要進行熔融硫及純化COG之燃燒與脫硫廢液中之水分蒸發。其下游為可燃物燃燒區域,使脫硫廢液中之可燃物燃燒。該等之間成為邊界部。於可燃物燃燒區域與排出口51b之間設置有格子狀磚51c。格子狀磚51c係將立方體之耐熱磚排列成格子狀並且使一部分成為開口狀態者。格子狀磚51c之開口率較佳為設為50%左右。格子狀磚51c通常設置複數階段。
燃燒爐51更佳為導入之含氧氣體之氧濃度為22~40體積%,較佳為22~30體積%之範圍內,於燃燒爐51中生成之燃燒氣體中之氧濃度為2.0~7.0體積%之範圍內,於燃燒爐51中生成之燃燒氣體中之SO 3轉化率為1.0~3.0%之範圍內。SO 3轉化率由下述之式所表示。 SO 3轉化率=(SO 3/SO x)×100 (此處,SO 3為上述燃燒氣體中所含之SO 3之體積濃度,SO x為上述燃燒氣體中所含之SO x之體積濃度)。
藉由設置配置於可燃物燃燒區域之下游之格子狀磚51c,除減少對下游機器之輻射以外亦能夠發揮以下功能。格子狀磚51c具有物理地促進空氣與可燃物之再混合,促進藉由磚之保有熱之再燃燒之功能,以便即使在假設可燃物燃燒區域中之空氣與可燃物之混合狀態產生缺陷之情形時,可燃物亦不會產生於未燃燒狀態之吹起現象。為此,較佳為設置複數階段之格子狀磚51c。又,複數階段之格子狀磚51c之各段開口部相互錯位排列。藉此,氣體中之灰塵於磚表面附著沈積而掉落,因此較佳為於最下部配置不設置開口部而使掉落灰塵累積之複數階段之格子狀磚51c。
圖6係對燃燒爐51供給含氧氣體之手段之實施形態例之示意圖。如此圖所記載,供燃燒之原料之中,於硫之供給口51a之燃燒器具備從管路45f供給含氧氣體之手段,於脫硫廢液之供給口51a之燃燒器具備從管路45e供給含氧氣體之手段。於向燃燒爐51供給純化COG之路徑中,如圖之(b)所示,於純化COG之供給口51a之燃燒器具備從管路45c供給含氧氣體之手段。由於通常脫硫廢液之放熱量低至未達5000 kJ/kg,因此不易燃燒,但藉由將含有22~40體積%之氧氣之含氧氣體供給至該燃燒器而促進燃燒。另一方面,對於熔融硫之類之放熱量較高之原料亦可僅供給空氣。同樣地,對於純化COG亦可僅供給空氣。較佳為兩者各自獨立地進行燃燒控制。
作為藉由燃燒爐51使原料燃燒之燃燒溫度,較佳為900~1100℃之範圍內。燃燒溫度之上限較佳為1050℃以下。就減少燃燒氣體中之NO x量之目的而言,較佳為燃燒溫度較低,例如設為1025℃以下,進而較佳為設為100℃以下。其原因在於,如後述圖15所示,若燃燒溫度變高,則NO x濃度上升。
於燃燒爐51中,由於藉由22~40體積%之含氧氣體使原料燃燒,因此相較於通常使用空氣(氧濃度21體積%)於同一條件使原料燃燒之情形,能夠減少生成之燃燒氣體中所含之NO x之量。例如,在將藉由氧濃度22~40體積%之含氧氣體使原料燃燒時燃燒氣體中所含之NO x量設為NO x rich ,將使用氧濃度21體積%之空氣於同一條件使同一原料燃燒時之燃燒氣體中所含之NO x量設為NO x air 時,能夠使由下述式所示之NO x減少率為50~95%。 NO x減少率:NO x rich /NO x air ×100(%) NO x減少率有隨著氧濃度提高而減少之趨勢,於氧濃度為25體積%之情形時可設為約80%,於氧濃度為30體積%之情形時可設為約60%。
藉由燃燒爐51而生成之燃燒氣體被移送至排熱鍋爐52(Waste Heat Boiler:WHB)(冷卻手段)。排熱鍋爐(1)52係進行將經化學調整之水供給至鍋爐內,藉由燃燒氣體使其蒸發而產生蒸氣,並且藉由熱交換冷卻燃燒氣體之冷卻步驟。藉此,燃燒氣體之溫度冷卻至380~460℃,較佳為冷卻至420℃左右。
排熱鍋爐(1)52具備鍋爐,於該鍋爐內使燃燒氣體冷卻。排熱鍋爐(1)52具備對上述鍋爐內供給水之給水手段(給水步驟);及藉由燃燒氣體使來自該給水手段之水蒸發而產生蒸氣,藉由熱交換使燃燒氣體冷卻之熱交換手段(熱交換步驟)。進而,本實施形態之排熱鍋爐(1)52具備將鍋爐之中轉化器61之出口溫度調整至藉由轉化器61生成反應氣體所需之溫度的出口溫度調整手段(出口溫度調整步驟);及用以針對鍋爐之出口溫度之變動使出口溫度為一定之包含鍋爐旁路與調節閥的定溫化手段(定溫化步驟)。出口溫度調整手段具備鍋爐之旁路管道與旁路氣體量調整閥,藉由調整高溫之旁路氣體量並與鍋爐出口之低溫氣體混合而獲得特定溫度之燃燒氣體。再者,排熱鍋爐(1)52亦可設置回收熱交換手段中產生之蒸氣作為給水手段之水而進行再利用之再循環手段(再循環步驟)。
藉由排熱鍋爐(1)52而冷卻之燃燒氣體被導入至轉化器61(反應手段)中。藉由排熱鍋爐(1)52而冷卻之燃燒氣體含有微量之氮成分(例如未分解NH 3、或NO、NO 2等NO x)。轉化器61係進行藉由設置為複數階段(圖中為三段)之觸媒使燃燒氣體中之二氧化硫(SO 2)與氧氣反應而氧化,生成含有三氧化硫(SO 3)之反應氣體的反應(反應步驟)。更詳細而言,轉化器61係利用下述方法而以高效率使二氧化硫轉換為三氧化硫(SO 3):使藉由利用複數階段中前段之觸媒進行之硫氧化物(SO x)與氧氣之氧化(放熱反應)而升溫之轉化後氣體與從外部引入之大氣直接混合,下降至適合後段之觸媒反應之溫度。
圖5係表示轉化器61之內部構造之示意圖,圖之(a)為側視圖,(b)為(a)之A-A'剖視圖,(c)為(b)之虛線圓內之放大圖。如該圖所示,轉化器61具備吸入大氣之空氣之主空氣管61a、從主空氣管61a於器內分支之支空氣管61b、及從支空氣管61b向器內送入空氣之空氣口61d。
作為觸媒,可使用用於硫酸之製造之公知者,例如可列舉五氧化二釩(V 2O 5)等。五氧化二釩具有脫硝功能,使NH 3與NO x反應而分解為氮氣(N 2)與水(H 2O)。因此,可藉由本觸媒同時進行三氧化硫之生成與氮成分(NH 3及NO x)之分解。此時,亦可注入NH 3用以脫硝。由於在轉化器61之第一段中二氧化硫(SO 2)之60~80%進行氧化反應,因此反應後之氣體溫度成為500~600℃、較佳為540℃左右。於轉化器61之第二段及第三段中使剩餘之二氧化硫(SO 2)進行氧化反應變成三氧化硫(SO 3),將其任一段之入口溫度較佳為均設為410~440℃,使前段出口氣體與大氣直接混合而進行溫度調節。
再者,亦可於轉化器61之第一段之上游側(來自排熱鍋爐(1)52之燃燒氣體之流入側)配置脫硝觸媒,作為脫硝觸媒,可使用使五氧化二釩與輔觸媒混合所得者。作為輔觸媒,可列舉氧化鈦(TiO 2)等、或該等之混合物。於硫氧化物之轉化時,藉由設置如上所述之含有輔觸媒之脫硝觸媒,氮成分之分解之反應優先於硫氧化物之轉化地進行而使氮成分分解。然後,能夠於脫硝觸媒之後段,藉由不含輔觸媒之五氧化二釩,在不易受到氮成分之影響之狀態有效率地進行硫氧化物之轉化。
又,轉化器61亦可將藉由熱交換間接地使轉化後氣體冷卻之間接冷卻手段(未圖示)與直接冷卻併用。所謂「間接冷卻」,與上述將從外部引入之大氣與轉化後氣體混合而直接地使轉化後氣體冷卻不同,例如意指使第一段下游之轉化後氣體不與冷媒直接接觸而冷卻。間接冷卻手段係實施進行間接冷卻之步驟(間接冷卻步驟)之裝置。作為間接冷卻手段,就防止傳熱面之酸露點之觀點而言,較佳為於低溫側使用蒸氣之熱交換器或鍋爐等。
藉由轉化器61而生成之反應氣體係移送至排熱鍋爐(2)62而冷卻。排熱鍋爐(2)62可使用與上述排熱鍋爐(1)52相同之裝置。於排熱鍋爐(2)62中,反應氣體被冷卻至避開250℃左右之硫酸露點之溫度280~300℃左右。再者,就有效利用能量之觀點而言推薦設置該排熱鍋爐(2)62,但其於本發明中並非必需之裝置,能夠任意地設置。
其次,如圖2所示,藉由排熱鍋爐(2)62而冷卻之反應氣體被移送至進行稀硫酸生成步驟之稀硫酸塔71(稀硫酸生成手段)之塔底部。稀硫酸塔71係將反應氣體中之H 2O與SO 3吸收至循環硫酸水溶液(稀硫酸)而生成製品之稀硫酸之裝置,亦稱為吸收塔。於稀硫酸塔71之塔內填充有填充物,從塔上部向填充物噴霧硫酸水溶液,在反應氣體通過填充物間時藉由與硫酸水溶液接觸而使H 2O與SO 3吸收至硫酸水溶液。
吸收了SO 3之硫酸水溶液被移送至槽73(稀硫酸生成手段),藉由接熱交換器74(稀硫酸生成手段),利用來自未圖示之冷卻塔之冷卻水冷卻後,作為最終製品貯存於槽75中。於槽75內,硫酸水溶液之溫度下降至50~60℃左右。
又,作為最終製品貯存於槽75中之硫酸水溶液之硫酸濃度根據含有硫酸成分、氮成分及40~80重量%以上之水分之原料,多成為50~70重量%之範圍。於本實施形態中,為了使作為最終製品之稀硫酸具有作為交易商品之價值,亦可使硫酸濃度提高至70重量%以上。本實施形態之熱交換器74(溫度控制手段)可上下控制來自稀硫酸塔71之循環硫酸水溶液之溫度。並且,於提高最終製品之硫酸濃度時,緩和藉由熱交換器74之冷卻程度,使從稀硫酸塔7之塔上部噴霧之硫酸水溶液之溫度從50~60℃左右上升至80~100℃左右,較佳為上升至80℃左右。藉此,能夠使稀硫酸塔71之出口氣體中之同伴含水量增加,使貯存於槽75中之硫酸水溶液之硫酸濃度提高至70重量%以上。又,必然地,於槽75內,硫酸水溶液之溫度上升至80~100℃。
另一方面,由於藉由熱交換器74使循環硫酸水溶液之溫度上升,因而腐蝕成為問題。硫酸水溶液若溫度上升,則腐蝕性增加。因此,若使循環硫酸水溶液之溫度上升,則於稀硫酸塔71、熱交換器74、槽73、槽75、及配管等與硫酸水溶液接觸之部位,需要對於硫酸之耐腐蝕性較高之昂貴材料(例如鉛、赫史特合金B2、及鐵氟龍(註冊商標)內襯等)。因此,導致設備成本較高。
因此,於本實施形態中,亦可設置用以濃縮貯存於槽75中之硫酸水溶液之硫酸濃縮裝置(硫酸濃縮手段)。於硫酸濃縮裝置中,能夠使硫酸水溶液中所含之硫酸濃縮而提高濃度(硫酸濃縮步驟)。作為硫酸濃縮裝置,可列舉藉由加熱等使硫酸水溶液中所含之水分蒸發而濃縮之裝置。藉由如上所述具備硫酸濃縮裝置,能夠使於槽75中為50~70重量%之低濃度之硫酸水溶液於硫酸濃縮裝置中變為70重量%以上之高濃度硫酸水溶液。藉此,只要不提高於稀硫酸塔71或熱交換器74等中循環之硫酸水溶液之溫度而於槽75中獲得50~70重量%之硫酸水溶液,則於之後之硫酸濃縮裝置中能夠獲得硫酸濃度為70重量%以上之具有市場性之硫酸水溶液。因此,稀硫酸塔71、熱交換器74等設備不使用對於硫酸之耐腐蝕性較高且昂貴之材料,或者即使使用亦僅為小規模(容量)即可,故具有能夠謀求設備之低成本化之優點。
又,碳鋼雖用於各種製品線中,但由於其對於硫酸之腐蝕較弱,因此存在與高濃度且高溫之硫酸接觸時會立刻腐蝕之問題。圖19係表示硫酸對於碳鋼(SS400材)之腐蝕性之圖。橫軸表示硫酸濃度(重量%)、縱軸表示腐蝕速度。根據此圖,於硫酸濃度70~80重量%附近,碳鋼之腐蝕減輕,可知藉由降低溫度,腐蝕速度大幅降低。即,藉由利用上述任一方法使濃度為70~80重量%之製品硫酸之溫度降低,從而能夠應用碳鋼。
從稀硫酸塔71之塔頂部排出含有硫酸霧或未反應之SO 2等之氣體。該排出氣體藉由濕式電氣集塵機76或除霧器回收硫酸霧而移送至槽73中,製成硫酸水溶液而再利用,其餘被移送至進行氣體去除步驟之除害塔81a(氣體去除手段)中。
來自濕式電氣集塵機76或除霧器之排出氣體被移送至除害塔81a之塔底部,與同樣地從塔底部導入之氨水接觸。排出氣體中未反應之SO 2與氨反應而生成亞硫酸銨((NH 4) 2SO 3:亞硫銨)。含有亞硫酸銨之廢液大部分藉由泵82而被循環返送至除害塔81a,一部分係藉由來自鼓風機83之氧化用氣體,經由管內混合器等而進行空氣氧化,經由氣液分離器84而製成硫酸銨((NH 4) 2SO 4:硫銨)移送至槽85中。來自除害塔81a之氣體與同伴霧係藉由利用泵86之除害塔81b之循環液而洗淨,從除害塔81b中排出氣體。於除害後之排出氣體中不含SO 2,僅有N 2、O 2、CO 2及規定值內NO x
再者,亦可將脫硫廢液用作用於未反應之二氧化硫(SO 2)氣體處理(排煙脫硫)之吸收中和劑,使脫硫廢液中所含之氨與二氧化硫反應。於此情形時,藉由將SO 2吸收後之脫硫廢液從管路89中去除並返送至管路42(圖之「回送脫硫廢液」),能夠將脫硫廢液作為原料再循環。藉此,能夠有效地利用脫硫廢液。
排出氣體係藉由鼓風機87而被抽吸/升壓,經由煙筒88而排出至大氣中。鼓風機87具有使本稀硫酸製造裝置40之各個裝置均為負壓之功能。藉此,防止溫度較高且有害之氣體流出至大氣。又,於轉化器61中亦兼具不具備特別設備而引入大氣中之空氣之功能。如上所述,進行稀硫酸製造與排氣處理。
於本實施形態之稀硫酸製造裝置或稀硫酸製造方法中,能夠至少於燃燒手段(燃燒爐51)至稀硫酸塔71(稀硫酸生成手段)中,不於生成之燃燒氣體或反應氣體、硫酸水溶液中添加水(包含水蒸氣)而僅以原料中所含之水分生成濃度未達90重量%之稀硫酸。因此,無需為了進行稀硫酸之製造所必需之給水設備,可減少稀硫酸製造之成本。
2.模擬 (1)稀硫酸製造裝置整體之模擬 關於圖1、圖2之稀硫酸製造裝置40,基於表1所示之設定值,使用電解質模擬器「OLI Flowsheet: ESP」(OLI systems公司)、通用製程模擬器PRO/II TM(AVEVA公司)、及計算軟體,進行模擬。
關於圖中之各裝置,物料平衡用之設定值係使用下表之值。 [表1]
氣溫    20
脫硫廢液 溫度 70
流量 kg/h 2,000
熔融硫 溫度 140
流量 kg/h 585
純化COG 溫度 30
流量 Nm 3/h 40.0
空氣比    - 1.30
氧氣 濃度 % 90
流量 Nm 3/h 276
爐出口 排氣溫度 997
WHB1 排氣溫度 410
轉化器 轉化率 % 95
WHB2 排氣溫度 280
稀硫酸塔 排氣溫度 50
稀硫酸 濃度 wt% 67.4
除害塔 排氣溫度 40
氨水濃度 wt% 25
硫銨濃度 wt% 30
關於原料之脫硫廢液與COG,成分之設定值係使用下表之值。 [表2]
脫硫廢液之成分
   Wt.%
游離S 3.2
游離NH 3 0.4
NH 4SCN 28
(NH 4) 2S 2O 3 7.9
(NH 4) 2SO 4 10.3
H 2O 50.2
總計 100
[表3]
純化COG之成分
   Vol.%
H 2 52.7
N 2 8.3
O 2 0.5
CO 8.6
CO 2 3.1
CH 4 24.3
C 2H 6 2.4
總計 100
將上述之模擬之結果示於下表中。表之「項目」列表示圖1、圖2中之菱形所圈住之數值,其下之列表示該項目之位置之溫度或成分等結果。
根據此結果,可知最終之稀硫酸之濃度成為67.4重量%(項目22)。又,對不存在PVSA45d且導入至燃燒爐51中之空氣之氧濃度與大氣相同之稀硫酸製造裝置40亦進行同樣之模擬。其結果,從燃燒爐51排出之燃燒排氣(項目6)與排出至煙筒88之排氣(項目31)於存在PVSA45d之情形時分別為7829 Nm 3/h(下表)與10951 Nm 3/h(下表)。另一方面,上述項目於不存在PVSA45d之情形時分別為10365 Nm 3/h與13207 Nm 3/h。據此可知,藉由如本發明般利用PVSA45d使含氧氣體之氧濃度提高至25體積%,能夠將排氣量削減約25%。其結果,例如於轉化器61之情形時,由於觸媒之必需量係在每單位時間內氣體與觸媒層接觸之時間之倒數即空間速度SV(單位1/hr)幾乎一定之條件下算出,因此能夠藉由減少25%氣體量而減少25%必需觸媒量。 [表4]
項目    1 2 3 4 5 6 12 15
溫度 140 70 0 20 20 997 410 428
流量(液體)
總S kg/h 585 418 0 0 0 0 0 0
H 2O kg/h 0 1,004 0 0 0 0 0 0
H 2SO 4 kg/h 0 0 0 0 0 0 0 0
NH 3 kg/h 0 0 0 0 0 0 0 0
(NH 4) 2SO 4 kg/h 0 0 0 0 0 0 0 0
總計 kg/h 585 2,000 0 0 0 0 0 0
流量(蒸氣)
SO 2 Nm 3/h 0 0 0 0 0 682 682 33
SO 3 Nm 3/h 0 0 0 0 0 20 20 669
O 2 Nm 3/h 0 0 0 231 1,191 325 325 1,014
H 2O Nm 3/h 0 0 0 0 73 1,947 1,947 2,025
總計 Nm 3/h 327 1,708 0 1,098 4,838 7,829 7,829 12,409
[表5]
項目    16 18 19 22 28 31 36
溫度 280 50 48 50 20 40 52
流量(液體)
總S kg/h 0 0 0 956 0 0 0
H 2O kg/h 0 0 0 1,418 150 0 453
H 2SO 4 kg/h 0 0 0 2,927 0 0 0
NH 3 kg/h 0 0 0 0 50 0 0
(NH 4) 2SO 4 kg/h 0 0 0 0 0 0 194
總計 kg/h 0 0 0 4,345 200 0 647
流量(蒸氣)
SO 2 Nm 3/h 33 33 33 0 0 0 0
SO 3 Nm 3/h 669 7 0 0 0 0 0
O 2 Nm 3/h 1,014 1,014 1,138 0 0 1,173 0
H 2O Nm 3/h 2,025 111 114 0 0 399 0
總計 Nm 3/h 12,409 9,832 10,419 3 0 10,951 0
(2)燃燒爐51之模擬 關於圖3之燃燒爐51,使用化學反應模擬軟體「CHEMKIN」(ANSYS公司),進行模擬。條件如下所述。 <計算條件> ・液體之物質全部替換為氣體。 ・關於含有S之化學物種,替換為作為非活性物質之N 2。 ・燃燒爐內設為活塞流。 ・不考慮伴隨燃燒之放熱。 ・以有PVSA與無PVSA之案例實施解析。
燃燒爐51入口之成分設定為下表之值。 [表6]
液體 S kmol/h 18.8
游離NH 3 kmol/h 5.9
NH 4SCN kmol/h 10.5
(NH 4) 2S 2O 3 kmol/h 2.7
H 2O kmol/h 138.9
蒸氣 SO 2 kmol/h 0.0
SO 3 kmol/h 0.0
H 2 kmol/h 0.2
N 2 kmol/h 186.6
O 2 kmol/h 72.4
CH 4 kmol/h 0.1
CO 2 kmol/h 0.0
H 2O kmol/h 3.7
NH 3 kmol/h 0.0
關於上述成分,模擬之輸入值設定為以下數值。 [表7]
H 2 kmol/h 0.2
N 2 kmol/h 208.0
O 2 kmol/h 72.4
CH 4 kmol/h 0.1
CO 2 kmol/h 0.0
H 2O kmol/h 142.6
NH 3 kmol/h 32.3
總計 kmol/h 455.7
燃燒爐51之計算條件設定為以下之數值。 [表8]
案例 入口流量 [kmol/h] 溫度[℃] 入口H 2質量分率 入口O 2質量分率 入口H 2O 質量分率 入口CH 4質量分率 入口CO 2質量分率 入口NH 3質量分率 入口N 2質量分率
有PVSA 455.7 980 0.000041 0.205 0.228 0.000195 0 0.0489 0.517
無PVSA 780.6 980 0.00166 0.169 0.13371 0.00672 0.00190 0.0276 0.659
將模擬之結果(曲線圖)示於圖4中。將無PVSA之案例之爐出口之NO生成量設為1,與有PVSA之案例進行比較。如此圖之NO所示,可知有PVSA之案例之NO x生成量較少。於無PVSA之案例中,可知於燃燒爐入口側藉由COG氣體(CH 4、H 2、CO)之燃燒而生成了NO x。推測作為有PVSA之NO x生成量較低之原因係於有PVSA之案例中,來自COG氣體之NO x生成受到抑制。 [實施例]
以下,基於實施例對本發明具體地進行說明。但該等不會限制本發明之目的。由於本實施例係以證實本專利之主要部分即藉由含氧氣體之原料之燃燒特性為主要目的而實施者,因此針對本發明之原料供給手段、含氧氣體生成手段、燃燒手段之構成,使用實際之設備進行實驗。再者,於以下實施例中,與本發明之用語之對應關係如下所述。 (本發明之用語:實施例中之用語) ・原料(脫硫廢液):燃燒液 ・COG:COG(亦記載為焦爐煤氣) ・含氧氣體:富氧空氣 ・燃燒氣體:排氣(亦記載為燃燒排氣等) ・燃燒手段:爐(亦記載為圓筒爐、燃燒爐等) ・原料中不使用熔融硫。
1.利用實驗爐之實驗概要 使用圓筒爐,進行燃燒實驗。 (1)系統圖 將本試驗中所使用之設備之系統圖示於圖7中。 (2)原料規格 燃燒液及COG之規格設為如下所示。 [表9]
燃燒液(脫硫廢液)
溫度 常溫
成分(wt.%)   
S 3.2
NH 3 0.4
NH 4SCN 28
(NH 4) 2S 2O 3 7.9
(NH 4) 2SO 4 10.3
H 2O 50.2
總計 100
[表10]
COG
溫度 30℃
成分(乾燥vol.%)   
H 2 52.7
N 2 8.3
O 2 0.5
CO 8.6
CO 2 3.1
CH 4 24.3
C 2H 6 2.4
總計 100
(3)主要機器規格 主要之機器如下所示。 [表11]
No. 機器名
1 燃燒爐
2 燃燒液燃燒器
3 COG燃燒器(預熱用、助燃用輔助燃燒器)
4 燃燒液泵
5 燃燒液槽
(4)關於排氣分析 排氣分析項目如下表所示。 [表12]
測定對象 分析器具・方法
NO x 連續分析
O 2 連續分析
CO 連續分析
NH 3 中和滴定
SO 2 中和滴定
SO 3 中和滴定
(5)實驗概要 各實驗之運轉條件如記載所示。 記載為實施例之實驗係改變含氧氣體中之氧濃度之案例,比較例表示供給空氣之案例。再者,下表之氧濃度表示一次燃燒空氣中之氧濃度,又,排氣溫度錶示目標值。 [表13]
實驗No. 氧濃度 排氣溫度
實驗1-1 21% 900℃
實驗1-2 21% 950℃
實驗1-3 21% 1000℃
實驗2-1 25% 950℃
實驗2-2 25% 1000℃
實驗3-1 30% 900℃
實驗3-2 30% 950℃
1)預熱運轉 於冷啟動中藉由COG單一燃料燃燒運轉而進行預熱。 2)正式實驗 依據上述「(5)實驗概要」,改變運轉條件,實施燃燒實驗。具體而言,在確認已藉由COG單一燃料燃燒使爐內充分預熱後,緩慢供給燃燒液,對實機中計劃之熔融硫供給相應之產生熱量分之COG。設定運轉條件後,藉由自動分析計及氣體採樣/中和滴定分析對排氣組成進行測定。
2.實驗結果 (1)實驗結果一覽 將實驗結果示於表14中。再者,在整個本試驗中,即使原料完全燃燒但排氣之氧濃度亦與計算值不一致,設想存在由爐之老朽化所導致之空氣之漏入,以使排氣之氧濃度測定值與投入氧氣一致之方式,修正燃燒空氣量,整理實驗結果。又,於圖8~圖14中示出爐內溫度分佈。
(2)實驗結果之彙總 實驗結果彙總如下。再者,作為燃燒排氣溫度,採用圖8~圖14之爐溫No.3。 [表14]
(a)實驗結果 未富氧(O 2=21%)
   實驗1-1 實驗1-2 實驗1-3
燃燒溫度 905℃ 947℃ 1010℃
排氣量(濕) 314 Nm 3/h 464 Nm 3/h 417 Nm 3/h
SO 3轉化率(%) 2.3%/2.4% 2.9%/2.5% 1.6%/2.8%
NO x濃度(O 2=12%換算) 0.05 - 0.24
(b)實驗結果 富氧(O 2=25%)
   實驗2-1 實驗2-2
燃燒溫度 949℃ 1002℃
排氣量(濕) 408 Nm 3/h 330 Nm 3/h
SO 3轉化率(%) 2.2%/2.3% -/2.1%
NO x濃度(O 2=12%換算) 0.20 0.24
(c)實驗結果 富氧(O 2=30%)
燃燒溫度 實驗3-1 900℃ 實驗3-2 955℃
排氣量(濕) 342 Nm 3/h 352 Nm 3/h
SO 3轉化率(%) 3.8%/2.9% -
NO x濃度(O 2=12%換算) 0.09 0.18
注:NO x濃度(O 2=12%換算)表示實測值相對於環境法規值之比。
(3)排氣之氨分析之結果 確認了分析值小於滴定法定量下限,氨濃度為1 ppm以下(檢測極限以下)。再者,係於排氣溫度條件為認為於氨燃燒方面最為嚴苛之條件之900℃確認。
3.結果之評價 (1)NO x生成量之評價 排氣中之NO x濃度如上表14(a)、(b)、(c)所示。如圖15所示,排氣溫度越高NO x值越高,但不論何種結果均確認了NO x充分低於環境法規值。
由富氧所引起之NO x量之降低(圖16) ・於1000℃、950℃可見由富氧所引起之NO x量之降低。此結果與模擬一致。 推測此係由於由富氧所引起之COG減少。 ・於900℃,原本之NO x生成量較少,未觀察到由氧濃度所導致之顯著有意義差。
(2)SO 3轉化率之評價 從SO 2至SO 3之轉化通常根據下述氧化反應式(放熱)及化學平衡式來說明。
Figure 02_image001
Kp:化學平衡常數 pX:各成分X之分壓 該等式表現出以下2點。 1)溫度越高,SO 3/SO 2比越小 2)氧濃度越高,SO 3/SO 2比越大
首先,可見排氣溫度越高,SO 3轉化率越低之傾向,此係由上述1式說明。另一方面,與富氧率無關地以排氣之氧濃度整理實驗結果所得者為圖17。根據此圖,排氣之氧濃度越高,SO 3轉化率越高,此係由上述2式說明。 根據實驗結果,認為與燃燒區域中之氧氣分壓相比,燃燒爐後半之區域中之排氣之溫度及氧濃度會對SO 3之轉化率產生影響。即,富氧率不會對SO 3轉化率產生影響,爐出口中之排氣之溫度或氧濃度會對SO 3轉化率產生影響。如此,確認了不僅以燃燒區域之排氣而且以爐出口之排氣來對SO 3轉化率進行評價較適當。 再者,SO 3轉化率係由下述式所表示。 SO 3轉化率=(SO 3/SO x)×100 (此處,SO 3係上述排氣中所含之SO 3之體積濃度,SO x係上述排氣中所含之SO x之體積濃度)。
關於上述化學平衡常數(Kp),已提出了Bodenstein及Pohl之式,使用本式對實驗結果進行評價。關於實驗中所得之各氣體成分之分壓,可知藉由修正上述3式之排氣溫度,使實測值與根據3式所得之值大致一致。於圖18中示出了於氧濃度6%附近之實測值與根據3式之平衡曲線。
(3)氨之評價 未檢測出排氣中之氨,確認了脫硫廢液之完全燃燒且氨濃度低於環境法規值。
4.總結 1)由富氧所引起之燃燒排氣量之減少 ・於實驗中亦確認了由富氧所引起之排氣量之減少效果。 2)由富氧所引起之NO x量之降低 ・確認了於富氧燃燒中,NO x濃度係滿足環境法規值之較低值。 ・於1000℃、950℃,可見由富氧所引起之NO x生成量之降低。此結果與模擬一致。 3)氨濃度 ・確認了於富氧燃燒中,氨濃度係滿足環境法規值之較低值。 4)基於富氧之SO 3轉化率 ・確認了爐出口之排氣中SO 3轉化率不受富氧影響。確認了由排氣中之氧濃度所導致之對SO 3轉化率之影響。 ・藉由調整排氣中之氧濃度,能夠在利用富氧減少排氣流量的同時,使SO 3轉化率與空氣燃燒時同等。
於表15中,示出於排氣溫度950℃之富氧與排氣量(濕)之關係。如本表所示,確認了越提高富氧率越能夠減少排氣量。預測於實體設備中,能夠使排氣流量減少30%左右。 [表15]
由富氧所引起之排氣量之減少效果
   實驗1-2 實驗2-1 實驗3-2
富氧率 O 2=21% O 2=25% O 2=30%
排氣量(濕) 464 Nm 3/h 408 Nm 3/h 352 Nm 3/h
排氣減少率 - -12% -24%
40:稀硫酸製造裝置 41a:管路(原料供給手段) 41b:泵(原料供給手段) 41c:管路(原料供給手段) 42:管路(原料供給手段) 43:管路(原料供給手段) 44a:管路(含氧氣體生成手段) 44b:蒸氣加熱器(含氧氣體生成手段) 45a:管路(含氧氣體生成手段) 45b:送風機(含氧氣體生成手段) 45c:管路(含氧氣體生成手段) 45d:PVSA(含氧氣體生成手段) 45e:管路 51:燃燒爐(燃燒手段) 51a:供給口 51b:排出口 51c:格子狀磚 52:排熱鍋爐(1)(冷卻手段) 61:轉化器(反應手段) 61a:主空氣管 61b:支空氣管 61c:空氣口 62:排熱鍋爐(2) 71:稀硫酸塔(稀硫酸生成手段) 73:槽(稀硫酸生成手段) 74:熱交換器(稀硫酸生成手段) 75:槽 76:濕式電集塵器 81a:除害塔(氣體去除手段) 81b:除害塔(氣體去除手段) 82:泵 83:鼓風機 84:氣液分離器 85:槽 86:泵 87:鼓風機 88:煙筒
[圖1]係表示本發明之稀硫酸製造裝置之上游側步驟之示意圖。 [圖2]係表示本發明之稀硫酸製造裝置之下游側步驟之示意圖。 [圖3]係表示本發明之燃燒手段(燃燒爐)之內部構造之示意圖。 [圖4]係表示燃燒爐51之模擬結果之曲線圖。 [圖5]係表示轉化器61之內部構造之示意圖。 [圖6]係表示本發明之燃燒手段(燃燒爐)之實施形態之內部構造的示意圖。 [圖7]係實施例中所使用之設備之系統圖。 [圖8]係表示實施例之結果之圖。 [圖9]係表示實施例之結果之圖。 [圖10]係表示實施例之結果之圖。 [圖11]係表示實施例之結果之圖。 [圖12]係表示實施例之結果之圖。 [圖13]係表示實施例之結果之圖。 [圖14]係表示實施例之結果之圖。 [圖15]係彙總實施例之結果之曲線圖。 [圖16]係彙總實施例之結果之曲線圖。 [圖17]係彙總實施例之結果之曲線圖。 [圖18]係彙總實施例之結果之曲線圖。 [圖19]係表示碳鋼針對硫酸之腐蝕性之曲線圖。
40:稀硫酸製造裝置
41a:管路(原料供給手段)
41b:泵(原料供給手段)
41c:管路(原料供給手段)
42:管路(原料供給手段)
43:管路(原料供給手段)
44a:管路(含氧氣體生成手段)
44b:蒸氣加熱器(含氧氣體生成手段)
45a:管路(含氧氣體生成手段)
45b:送風機(含氧氣體生成手段)
45c:管路(含氧氣體生成手段)
45d:PVSA(含氧氣體生成手段)
45e:管路
45f:管路
51:燃燒爐(燃燒手段)
52:排熱鍋爐(1)(冷卻手段)
61:轉化器(反應手段)
62:排熱鍋爐(2)

Claims (44)

  1. 一種稀硫酸製造裝置,其特徵在於包含: 供給至少含有硫成分、氮成分、及40~80重量%以上之水分之原料的原料供給手段; 生成氧濃度為22~40體積%之含氧氣體之含氧氣體生成手段; 藉由上述含氧氣體使上述原料燃燒而生成含有硫氧化物(SO x:此處,1≦x<3)與10體積%以上之水分之燃燒氣體的燃燒手段; 使上述燃燒氣體冷卻之冷卻手段; 藉由觸媒使上述硫氧化物(SO x)氧化而生成含有三氧化硫(SO 3)之反應氣體之反應手段;及 使上述反應氣體冷卻而生成稀硫酸之稀硫酸生成手段,且 其於上述燃燒手段至上述稀硫酸生成手段中不添加水而僅以上述原料之水分生成未達90重量%之稀硫酸。
  2. 如請求項1之稀硫酸製造裝置,其藉由使用上述含氧氣體生成手段中生成之氧濃度為22~40體積%之上述含氧氣體使上述原料燃燒,從而使上述燃燒手段中生成之上述燃燒氣體之氮氧化物之量小於假定使用氧濃度21體積%之空氣於同一條件使上述原料燃燒時生成之燃燒氣體之氮氧化物之量。
  3. 如請求項1之稀硫酸製造裝置,其至少於上述燃燒手段與上述反應手段之間不具有用以脫硝之設備。
  4. 如請求項1之稀硫酸製造裝置,其中,上述燃燒手段係於900~1100℃使上述原料燃燒。
  5. 如請求項4之稀硫酸製造裝置,其中,上述燃燒手段係於1050℃以下使上述原料燃燒。
  6. 如請求項1之稀硫酸製造裝置,其中,上述燃燒手段中, 自上述含氧氣體生成手段導入之上述含氧氣體之氧濃度為22~30體積%之範圍內, 上述燃燒手段中生成之上述燃燒氣體中之氧濃度為2.0~7.0體積%之範圍內。
  7. 如請求項1之稀硫酸製造裝置,其進而具備去除上述稀硫酸生成手段中之未反應之二氧化硫之氣體去除手段。
  8. 如請求項7之稀硫酸製造裝置,其中,上述氣體去除手段係使上述未反應之二氧化硫與氨反應而生成亞硫酸銨((NH 4) 2SO 3:亞硫銨),藉由氧化製成硫酸銨((NH 4) 2SO 4:硫銨)而進行回收。
  9. 如請求項8之稀硫酸製造裝置,其中,上述氨存在利用氨水吸收二氧化硫之情形與利用脫硫廢液中所含之氨吸收二氧化硫之情形,且於使後者之脫硫廢液與上述未反應之二氧化硫反應後,使至少一部分作為上述原料再循環。
  10. 如請求項1之稀硫酸製造裝置,其中,上述燃燒手段為內部具備一部分有開口之格子狀磚之燃燒爐。
  11. 如請求項1之稀硫酸製造裝置,其中,上述反應手段中,上述觸媒為五氧化二釩(V 2O 5),且兼具脫硝功能。
  12. 如請求項11之稀硫酸製造裝置,其中,上述反應手段進而具備:除上述觸媒之外亦含有氧化鈦(TiO 2)作為輔觸媒之脫硝觸媒。
  13. 如請求項1之稀硫酸製造裝置,其中,上述反應手段具備設置成複數階段之上述觸媒,使因下述放熱反應而升溫之轉化後氣體與從外部引入之大氣直接混合,下降至適合後段之觸媒反應之溫度,藉此不依靠熱交換器而使上述轉化後氣體之溫度下降;上述放熱反應係藉由複數階段中前段之上述觸媒進行之上述硫氧化物之上述氧化所引起者。
  14. 如請求項13之稀硫酸製造裝置,其中,上述反應手段係將藉由熱交換器間接地使上述轉化後氣體冷卻之間接冷卻手段及上述藉由與大氣直接混合之冷卻併用。
  15. 如請求項1之稀硫酸製造裝置,其中,上述燃燒手段係對未達5000 kJ/kg之原料供給上述含氧氣體進行燃燒,於供給5000 kJ/kg以上之原料及助燃劑之情形時對該助燃劑供給空氣進行燃燒。
  16. 如請求項1之稀硫酸製造裝置,其中,上述燃燒手段係對未達5000 kJ/kg之原料供給上述含氧氣體進行燃燒,且於上述未達5000 kJ/kg之原料較少之情形時,對5000 kJ/kg以上之原料或助燃劑亦供給含氧氣體進行燃燒。
  17. 如請求項1之稀硫酸製造裝置,其中,上述稀硫酸生成手段藉由上下控制硫酸水溶液之溫度而調整稀硫酸之濃度。
  18. 如請求項1之稀硫酸製造裝置,其進而具備將上述稀硫酸生成手段中生成之稀硫酸之濃度濃縮至70~80重量%之硫酸濃縮手段。
  19. 如請求項1之稀硫酸製造裝置,其中,上述稀硫酸生成手段使用生成之硫酸水溶液對上述反應氣體進行直接接觸冷卻,且不具有用以間接冷卻上述反應氣體之設備。
  20. 如請求項1之稀硫酸製造裝置,其中,上述冷卻手段為具有鍋爐之排熱鍋爐,該排熱鍋爐具備: 向上述鍋爐內供給水之給水手段;及 藉由上述燃燒氣體使上述水蒸發而產生蒸氣,利用熱交換使上述燃燒氣體冷卻之熱交換手段。
  21. 如請求項20之稀硫酸製造裝置,其中,上述排熱鍋爐進而具備用以針對上述鍋爐之出口溫度之變動,使上述出口溫度為一定之包含鍋爐旁路與調節閥之出口溫度調整手段。
  22. 如請求項1之稀硫酸製造裝置,其中,於上述稀硫酸生成手段中,藉由調整原料之含水量,從而於上述燃燒手段至上述稀硫酸生成手段中不添加水而調整上述稀硫酸生成手段中生成之稀硫酸之濃度。
  23. 一種稀硫酸製造方法,其特徵在於包括:供給至少含有硫成分、氮成分、及40~80重量%以上之水分之原料的原料供給步驟; 生成氧濃度為22~40體積%之含氧氣體之含氧氣體生成步驟; 藉由上述含氧氣體使上述原料燃燒而生成含有硫氧化物(SO x:此處,1≦x<3)與10體積%以上之水分之燃燒氣體的燃燒步驟; 使上述燃燒氣體冷卻之冷卻步驟; 藉由觸媒使上述硫氧化物(SO x)氧化而生成含有三氧化硫(SO 3)之反應氣體之反應步驟;及 使上述反應氣體冷卻而生成稀硫酸之稀硫酸生成步驟,且 其至少於上述燃燒步驟至上述稀硫酸生成步驟中不添加水而僅以上述原料之水分生成未達90重量%之稀硫酸。
  24. 如請求項23之稀硫酸製造方法,其藉由使用上述含氧氣體生成步驟中生成之氧濃度為22~40體積%之上述含氧氣體使上述原料燃燒,從而使上述燃燒步驟中生成之上述燃燒氣體之氮氧化物之量小於假定使用氧濃度21體積%之空氣於同一條件使上述原料燃燒時生成之燃燒氣體之氮氧化物之量。
  25. 如請求項23之稀硫酸製造方法,其至少於上述燃燒步驟與上述反應步驟之間不具有用以脫硝之設備。
  26. 如請求項23之稀硫酸製造方法,其中,上述燃燒步驟係於900~1100℃使上述原料燃燒。
  27. 如請求項26之稀硫酸製造方法,其中,上述燃燒步驟係於1050℃以下之溫度使上述原料燃燒。
  28. 如請求項23之稀硫酸製造方法,其中,上述燃燒步驟中, 自上述含氧氣體生成步驟導入之上述含氧氣體之氧濃度為22~30體積%之範圍內, 上述燃燒步驟中生成之上述燃燒氣體中之氧濃度為2.0~7.0體積%之範圍內。
  29. 如請求項23之稀硫酸製造方法,其進而具備去除上述稀硫酸生成步驟中之未反應之二氧化硫之氣體去除步驟。
  30. 如請求項29之稀硫酸製造方法,其中,上述氣體去除步驟係使上述未反應之二氧化硫與氨反應而生成亞硫酸銨((NH 4) 2SO 3:亞硫銨),藉由氧化製成硫酸銨((NH 4) 2SO 4:硫銨)而進行回收。
  31. 如請求項30之稀硫酸製造方法,其中,上述氨存在利用氨水吸收二氧化硫之情形與利用脫硫廢液中所含之氨吸收二氧化硫之情形,且使後者之脫硫廢液與上述未反應之二氧化硫反應後,作為上述原料再循環。
  32. 如請求項23之稀硫酸製造方法,其中,上述燃燒步驟為內部具備一部分有開口之格子狀磚之燃燒爐。
  33. 如請求項23之稀硫酸製造方法,其中,上述反應步驟中,上述觸媒為五氧化二釩(V 2O 5),且兼具脫硝功能。
  34. 如請求項33之稀硫酸製造方法,其中,上述反應步驟進而具備:除上述觸媒之外亦含有氧化鈦(TiO 2)作為輔觸媒之脫硝觸媒。
  35. 如請求項23之稀硫酸製造方法,其中,上述反應步驟具備設置成複數階段之上述觸媒,使因下述放熱反應而升溫之轉化後氣體與從外部引入之大氣直接混合,下降至適合後段之觸媒反應之溫度,藉此不依靠熱交換器而使上述轉化後氣體之溫度下降,上述放熱反應係藉由複數階段中前段之上述觸媒進行之上述硫氧化物之上述氧化所引起者。
  36. 如請求項23之稀硫酸製造方法,其中,上述反應步驟係將藉由熱交換器間接地使上述轉化後氣體冷卻之間接冷卻步驟及上述藉由與大氣直接混合之冷卻併用。
  37. 如請求項23之稀硫酸製造方法,其中,上述燃燒步驟係對未達5000 kJ/kg之原料供給上述含氧氣體進行燃燒,於供給5000 kJ/kg以上之原料及助燃劑之情形時對該助燃劑供給空氣進行燃燒。
  38. 如請求項23之稀硫酸製造方法,其中,上述燃燒步驟係對未達5000 kJ/kg之原料供給上述含氧氣體進行燃燒,且於上述未達5000 kJ/kg之原料較少之情形時,對5000 kJ/kg以上之原料或助燃劑亦供給含氧氣體進行燃燒。
  39. 如請求項23之稀硫酸製造方法,其中,上述稀硫酸生成步驟係藉由上下控制硫酸水溶液之溫度而調整稀硫酸之濃度。
  40. 如請求項23之稀硫酸製造方法,其進而具備將上述稀硫酸生成步驟中生成之稀硫酸之濃度濃縮至70~80重量%之硫酸濃縮步驟。
  41. 如請求項23之稀硫酸製造方法,其中,上述稀硫酸生成步驟係使用生成之硫酸水溶液對上述反應氣體進行直接接觸冷卻,且不具有用以間接冷卻上述反應氣體之設備。
  42. 如請求項23之稀硫酸製造方法,其中,上述冷卻步驟使用具有鍋爐之排熱鍋爐,該排熱鍋爐具備: 向上述鍋爐內供給水之給水步驟;及 藉由上述燃燒氣體使上述水蒸發而產生蒸氣,利用熱交換使上述燃燒氣體冷卻之熱交換步驟。
  43. 如請求項42之稀硫酸製造方法,其中,上述排熱鍋爐進而具備用以針對上述鍋爐之出口溫度之變動,使上述出口溫度為一定之包含鍋爐旁路與調節閥之出口溫度調整步驟。
  44. 如請求項23之稀硫酸製造方法,其中,於上述稀硫酸生成步驟中,藉由調整原料之含水量,從而於上述燃燒步驟至上述稀硫酸生成步驟中不添加水而調整上述稀硫酸生成步驟中生成之稀硫酸之濃度。
TW111104921A 2021-02-10 2022-02-10 稀硫酸製造裝置及稀硫酸製造方法 TW202246168A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
WOPCT/JP2021/004925 2021-02-10
PCT/JP2021/004925 WO2022172354A1 (ja) 2021-02-10 2021-02-10 希硫酸製造装置及び希硫酸製造方法
PCT/JP2022/004391 WO2022172864A1 (ja) 2021-02-10 2022-02-04 希硫酸製造装置及び希硫酸製造方法
WOPCT/JP2022/004391 2022-02-04

Publications (1)

Publication Number Publication Date
TW202246168A true TW202246168A (zh) 2022-12-01

Family

ID=82837548

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111104921A TW202246168A (zh) 2021-02-10 2022-02-10 稀硫酸製造裝置及稀硫酸製造方法

Country Status (6)

Country Link
EP (1) EP4292980A1 (zh)
JP (1) JPWO2022172864A1 (zh)
KR (1) KR20230142786A (zh)
CN (1) CN116917229A (zh)
TW (1) TW202246168A (zh)
WO (2) WO2022172354A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118306952B (zh) * 2024-04-30 2024-09-10 江苏联恒电子新材料科技有限公司 一种高纯硫酸生产设备及生产工艺

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4411781B1 (zh) * 1965-12-22 1969-05-29
JPS51557B2 (zh) * 1971-03-02 1976-01-08
JPS5824364B2 (ja) * 1978-09-26 1983-05-20 日立造船株式会社 硫酸の製造法
JPS5717410A (en) * 1980-07-02 1982-01-29 Hitachi Zosen Corp Feeding method for oxygen in manufacturing process for sulfuric acid
JPS5727135A (en) * 1980-07-25 1982-02-13 Mitsubishi Heavy Ind Ltd Waste gas treating catalyst
GB8524083D0 (en) 1985-09-30 1985-11-06 Boc Group Plc Oxidation method
JPH01160809A (ja) * 1987-12-17 1989-06-23 Mitsubishi Heavy Ind Ltd 硫酸製造方法
JP3846942B2 (ja) * 1996-09-24 2006-11-15 三井造船株式会社 廃硫酸からの硫酸回収方法および硫酸回収装置
JPH1135958A (ja) * 1997-07-18 1999-02-09 Ebara Corp 低品質炭の有価物製造法
MX2013003048A (es) * 2010-09-30 2013-05-30 Haldor Topsoe As Caldera de calor residual.
CN103172087A (zh) * 2011-12-26 2013-06-26 宁波科新化工工程技术有限公司 煤气湿式氧化脱硫硫浆制硫酸或制硫铵的方法
CN109384200A (zh) * 2018-12-27 2019-02-26 中冶焦耐(大连)工程技术有限公司 处理焦炉煤气脱硫产低纯硫磺及副盐废液的工艺及装置
CN110282606B (zh) * 2019-07-05 2024-07-23 科洋环境工程(上海)有限公司 含水硫膏和脱硫废液的湿法处理系统和工艺
JP7316146B2 (ja) * 2019-08-14 2023-07-27 日本管機工業株式会社 希硫酸製造装置及び希硫酸製造方法

Also Published As

Publication number Publication date
EP4292980A1 (en) 2023-12-20
JPWO2022172864A1 (zh) 2022-08-18
KR20230142786A (ko) 2023-10-11
WO2022172354A1 (ja) 2022-08-18
CN116917229A (zh) 2023-10-20
WO2022172864A1 (ja) 2022-08-18

Similar Documents

Publication Publication Date Title
US10933368B2 (en) Gas treatment processes and systems for reducing tail gas emissions
CN102910593B (zh) 酸性气废气处理系统及处理方法
CN103822217B (zh) 一种酸性气预处理工艺
CN102198365B (zh) 一种酸性气的处理方法
US2992065A (en) Process for removing sulfur oxides from gases
CN103626136A (zh) 一种含硫化氢废气湿法制硫酸的方法
CN101289170B (zh) 氧化还原硫回收多用装置
WO2004022205A1 (fr) Procede et dispositif pour eliminer et recuperer du so2 dans des fumees
CN101927982B (zh) 一种等温型直接氧化硫磺回收工艺
CN103303877A (zh) 多气源低浓度so2烟气综合回收制酸工艺流程
EP1644286A2 (en) Process for recovering sulphur from a gas stream containing hydrogen sulphide
CN109052335A (zh) 一种硫磺气体还原废硫酸制液体二氧化硫和硫酸的方法
CN103318847B (zh) 一种含硫化氢废气的高效硫回收方法
CN113509834B (zh) 局部钙循环与纯氧燃烧耦合的水泥生产碳捕集装置及工艺
CN106379868A (zh) 含硫废液焚烧制硫酸的方法
TW202246168A (zh) 稀硫酸製造裝置及稀硫酸製造方法
JP7316146B2 (ja) 希硫酸製造装置及び希硫酸製造方法
CN202864918U (zh) 酸性气废气处理系统
CN209161488U (zh) 一种硫磺气体还原废硫酸制液体二氧化硫和硫酸的系统
CN108178132B (zh) 一种二硫化碳生产中的硫回收方法及设备
RU2221742C2 (ru) Способ получения элементной серы из отходящих газов, содержащих диоксид серы
WO2023234318A1 (ja) 硫酸製造装置及び硫酸製造方法
CN215693078U (zh) 硫化氢酸气处理系统
CN204853511U (zh) 一种基于Claus反应系统的低硫排放的硫回收系统
JPS6012521B2 (ja) 電力発生装置における燃焼廃ガス中の有害ガス除去方法