TW202233214A - 使用小韋榮氏球菌細菌誘導免疫效應 - Google Patents

使用小韋榮氏球菌細菌誘導免疫效應 Download PDF

Info

Publication number
TW202233214A
TW202233214A TW110141334A TW110141334A TW202233214A TW 202233214 A TW202233214 A TW 202233214A TW 110141334 A TW110141334 A TW 110141334A TW 110141334 A TW110141334 A TW 110141334A TW 202233214 A TW202233214 A TW 202233214A
Authority
TW
Taiwan
Prior art keywords
veillonella
days
total cells
strain
minor
Prior art date
Application number
TW110141334A
Other languages
English (en)
Inventor
克里斯蒂 巴特
馬克 柏德默
泰勒 A 柯麥克
安德烈 義塔諾
霍莉 波尼奇特拉
克里緹卡 拉曼尼
Original Assignee
美商艾弗洛生物科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商艾弗洛生物科技股份有限公司 filed Critical 美商艾弗洛生物科技股份有限公司
Publication of TW202233214A publication Critical patent/TW202233214A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4891Coated capsules; Multilayered drug free capsule shells

Abstract

本文提供了與可用作治療劑的小韋榮氏球菌細菌相關的方法和組成物,該等方法和組成物例如用於誘導一或多種所揭露的免疫效應。

Description

使用小韋榮氏球菌細菌誘導免疫效應
在某些方面,本文提供了包含小韋榮氏球菌( Veillonella parvula)的、可用於誘導免疫效應(例如,免疫細胞的抗炎細胞介素表現之增加和/或免疫細胞的促炎細胞介素表現之減少)的細菌組成物(例如,藥物組成物),和使用此類細菌組成物的方法(例如,用於誘導免疫效應(例如,免疫細胞的抗炎細胞介素表現之增加或免疫細胞的促炎細胞介素表現之減少))。
在某些方面,本文提供了在受試者(例如,人類受試者)中誘導免疫效應之方法,該方法包括向該受試者投與(例如,口服投與)一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)。
在某些方面,本文提供了一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)用於製備用於在受試者(例如,人類受試者)中誘導免疫效應的藥物之用途。
在某些方面,本文提供了包含小韋榮氏球菌菌株的細菌之細菌組成物,用於在受試者(例如,人類受試者)中誘導免疫效應。
在某些方面,本文提供了包含小韋榮氏球菌菌株的細菌之細菌組成物用於製備用於在受試者(例如,人類受試者)中誘導免疫效應的藥物之用途。
在一些實施方式中,該細菌組成物包含完整小韋榮氏球菌細菌。在一些實施方式中,小韋榮氏球菌細菌經γ照射。
在一些實施方式中,該免疫效應包括免疫細胞的抗炎細胞介素表現之增加。在一些實施方式中,該抗炎細胞介素係IL-10和/或IL-27。在一些實施方式中,該抗炎細胞介素係IL-10。
在一些實施方式中,該免疫效應包括免疫細胞的促炎細胞介素表現之減少。在一些實施方式中,該促炎細胞介素係IL-1β、IL-6、TNF-α、IL-5、IL-4、IL-13、IL-17和/或IL-8。在一些實施方式中,該促炎細胞介素係IL-5、IL-4、IL-13、和/或IL-17。
在一些實施方式中,該免疫效應包括免疫細胞的促炎細胞介素之mRNA轉錄物水平之降低。在一些實施方式中,mRNA轉錄物水平係 IL-1β IL-6 TNF-α IL-5 IL-4 IL-13 IL-17A和/或 IL-8轉錄物水平。在一些實施方式中,mRNA轉錄物水平係 IL-5 IL-4 IL-13和/或 IL-17A轉錄物水平。在一些實施方式中,mRNA轉錄物水平係 Il17f和/或 Defb3轉錄物水平。
在一些實施方式中,其中誘導免疫效應之免疫細胞包括周邊血單核細胞(PBMC)、樹突細胞和/或巨噬細胞。
在某些方面,本文提供了在受試者(例如,人類受試者)中消退炎症響應之方法,該方法包括向該受試者投與(例如,口服投與)一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)。
在某些方面,本文提供了一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)用於製備用於在受試者(例如,人類受試者)中消退炎症響應的藥物之用途。
在某些方面,本文提供了包含小韋榮氏球菌菌株的細菌之細菌組成物,用於在受試者(例如,人類受試者)中消退炎症響應。
在某些方面,本文提供了包含小韋榮氏球菌菌株的細菌之細菌組成物用於製備用於在受試者(例如,人類受試者)中消退炎症響應的藥物之用途。
在一些實施方式中,炎症響應包括Th1和/或Th2響應。
在某些方面,本文提供了包含小韋榮氏球菌的、可用於在人類受試者中誘導免疫響應的細菌組成物(例如,藥物組成物),該方法包括向該受試者投與獲自不同的人類受試者之T細胞(例如,CD4+T細胞)群,其中向該不同的人類受試者投與小韋榮氏球菌。
在某些方面,本文提供了在受試者(例如,人類受試者)中生成消炎CD4+ T細胞之方法,該方法包括向該受試者投與(例如,口服投與)一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)。
在某些方面,本文提供了一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株的細菌之細菌組成物(例如,藥物組成物),用於在受試者(例如,人類受試者)中在生成消炎CD4+ T細胞中使用。
在某些方面,本文提供了一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株的細菌之細菌組成物(例如,藥物組成物)用於在受試者(例如,人類受試者)中生成消炎CD4+ T細胞之用途。
在某些方面,本文提供了例如,如本文所述之包含小韋榮氏球菌的、可用於在受試者(例如,人類受試者)中影響T細胞以介導對炎症的效應(例如,消退炎症)之細菌組成物(例如,藥物組成物)。
在某些方面,本文提供了在受試者(例如,人類受試者)中影響T細胞以介導對炎症的效應(例如,消退炎症)之方法,該方法包括向該受試者投與(例如,口服投與)一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)。
在某些方面,本文提供了一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)用於製備用於在受試者(例如,人類受試者)中影響T細胞以介導對炎症的效應(例如,消退炎症)的藥物之用途。
在某些方面,本文提供了一種包含小韋榮氏球菌菌株的、用於在受試者(例如,人類受試者)中影響T細胞以介導對炎症的效應(例如,消退炎症)之細菌組成物。
在某些方面,本文提供了包含小韋榮氏球菌菌株的細菌之細菌組成物用於製備用於在受試者(例如,人類受試者)中影響T細胞以介導對炎症的效應(例如,消退炎症)的藥物之用途。
在某些方面,本文提供了在受試者(例如,人類受試者)中指導T細胞減少炎性之方法,該方法包括向該受試者投與(例如,口服投與)一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)。
在某些方面,本文提供了一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株的細菌之細菌組成物(例如,藥物組成物),用於在受試者(例如,人類受試者)中指導T細胞減少炎性。
在某些方面,本文提供了一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株的細菌之細菌組成物(例如,藥物組成物)用於製備用於在受試者(例如,人類受試者)中指導T細胞減少炎性的藥物之用途。
在某些方面,本文提供了包含小韋榮氏球菌菌株的細菌之細菌組成物用於製備用於在受試者(例如,人類受試者)中指導T細胞減少炎性的藥物之用途。
在一些實施方式中,該等T細胞在腸系膜淋巴結中受到指導。
在一些實施方式中,該小韋榮氏球菌菌株(一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或細菌組成物(例如,藥物組成物))係口服投與的(例如,並且進入小腸),樹突細胞與該小韋榮氏球菌菌株在小腸中互相作用,該等樹突細胞進入腸系膜淋巴結,並且藉由腸系膜淋巴結運輸的T細胞與該等樹突細胞相遇。
在某些方面,本文提供了在受試者(例如,人類受試者)中影響T細胞運輸至腸系膜淋巴結之方法,該方法包括向該受試者投與(例如,口服投與)一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)。
在某些方面,本文提供了一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株的細菌之細菌組成物(例如,藥物組成物),用於在受試者(例如,人類受試者)中影響T細胞運輸至腸系膜淋巴結。
在某些方面,本文提供了一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株的細菌之細菌組成物(例如,藥物組成物)用於製備用於在受試者(例如,人類受試者)中影響T細胞運輸至腸系膜淋巴結的藥物之用途。
在某些方面,本文提供了包含小韋榮氏球菌菌株的細菌之細菌組成物用於製備用於在受試者(例如,人類受試者)中影響T細胞運輸至腸系膜淋巴結的藥物之用途。
在一些實施方式中,該等T細胞在腸系膜淋巴結中受到影響。
在某些方面,本文提供了例如,如本文所述之包含小韋榮氏球菌的、可用於在受試者(例如,人類受試者)中影響B細胞以介導對炎症的效應(例如,消退炎症)之細菌組成物(例如,藥物組成物)。
在某些方面,本文提供了在受試者(例如,人類受試者)中影響B細胞以介導對炎症的效應(例如,消退炎症)之方法,該方法包括向該受試者投與(例如,口服投與)一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)。
在某些方面,本文提供了一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株的細菌之細菌組成物(例如,藥物組成物),用於在受試者(例如,人類受試者)中影響B細胞以介導對炎症的效應(例如,消退炎症)。
在某些方面,本文提供了一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株的細菌之細菌組成物(例如,藥物組成物)用於製備用於在受試者(例如,人類受試者)中影響B細胞以介導對炎症的效應(例如,消退炎症)的藥物之用途。
在某些方面,本文提供了包含小韋榮氏球菌菌株的細菌之細菌組成物用於製備用於在受試者(例如,人類受試者)中影響B細胞以介導對炎症的效應(例如,消退炎症)的藥物之用途。
在某些方面,本文提供了例如在受試者(例如,人類受試者)中增強IL-10產生(例如,從周邊血單核細胞(PBMC)、樹突細胞或巨噬細胞產生)之方法。
在某些方面,本文提供了在受試者(例如,人類受試者)中增加IL-10產生之方法,該方法包括向該受試者投與(例如,口服投與)一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)。
在某些方面,本文提供了一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)用於製備用於在受試者(例如,人類受試者)中增加IL-10產生的藥物之用途。
在某些方面,本文提供了包含小韋榮氏球菌菌株的細菌之細菌組成物,用於在受試者(例如,人類受試者)中增加IL-10產生。
在某些方面,本文提供了包含小韋榮氏球菌菌株的細菌之細菌組成物用於製備用於在受試者(例如,人類受試者)中增加IL-10產生的藥物之用途。
在某些方面,本文提供了在受試者(例如,人類受試者)中活化TLR2之方法,該方法包括向該受試者投與(例如,口服投與)一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)。
在某些方面,本文提供了在受試者(例如,人類受試者)中活化TLR2之方法,該方法包括向該受試者投與(例如,口服投與)一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)。
在某些方面,本文提供了一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)用於製備用於在受試者(例如,人類受試者)中活化TLR2的藥物之用途。
在某些方面,本文提供了包含小韋榮氏球菌菌株的細菌之細菌組成物,用於在受試者(例如,人類受試者)中活化TLR2。
在某些方面,本文提供了包含小韋榮氏球菌菌株的細菌之細菌組成物用於製備用於在受試者(例如,人類受試者)中活化TLR2的藥物之用途。
在一些實施方式中,該TLR2在該受試者之腸上皮細胞(IEC)中被活化。在一些實施方式中,該TLR2在該受試者之固有層的免疫細胞中被活化。在一些實施方式中,該TLR2之活化導致該受試者之IL-10表現增加。
在某些方面,本文提供了在受試者(例如,人類受試者)中活化TLR1/2和/或TLR2/6異二聚體之方法,該方法包括向該受試者投與(例如,口服投與)一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)。
在某些方面,本文提供了一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)用於製備用於在受試者(例如,人類受試者)中活化TLR1/2和/或TLR2/6異二聚體的藥物之用途。
在某些方面,本文提供了包含小韋榮氏球菌菌株的細菌之細菌組成物,用於在受試者(例如,人類受試者)中活化TLR1/2和/或TLR2/6異二聚體。
在某些方面,本文提供了包含小韋榮氏球菌菌株的細菌之細菌組成物用於製備用於在受試者(例如,人類受試者)中活化TLR1/2和/或TLR2/6異二聚體的藥物之用途。
在某些方面,提供了用於在受試者(例如,人類受試者)中活化TLR2之方法。
在某些方面,提供了用於在受試者(例如,人類受試者)中活化TLR1/2和/或TLR2/6異二聚體之方法。
在某些方面,本文提供了包含小韋榮氏球菌的、可用於提高實例5中提供的基因之表現(例如,在小腸中)之細菌組成物(例如,藥物組成物)。
在某些方面,本文提供了在受試者(例如,人類受試者)中提高實例5中提供的基因之表現(例如,在小腸中)之方法,該方法包括向該受試者投與(例如,口服投與)一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)。
在某些方面,本文提供了一定劑量(例如,治療有效劑量)的小韋榮氏球菌菌株和/或包含小韋榮氏球菌菌株之細菌組成物(例如,藥物組成物)用於製備用於在受試者(例如,人類受試者)中提高實例5中提供的基因之表現(例如,在小腸中)的藥物之用途。
在某些方面,本文提供了包含小韋榮氏球菌菌株的細菌之細菌組成物,用於在受試者(例如,人類受試者)中提高實例5中提供的基因之表現(例如,在小腸中)。
在某些方面,本文提供了包含小韋榮氏球菌菌株的細菌之細菌組成物用於製備用於在受試者(例如,人類受試者)中提高實例5中提供的基因之表現(例如,在小腸中)的藥物之用途。
在一些實施方式中,發現富集了顯示升高的表現之基因的細胞類型係免疫上皮細胞。在一些實施方式中,發現富集了顯示升高的表現之基因的細胞類型係免疫細胞(例如,B細胞;T細胞;和/或骨髓細胞)。在一些實施方式中,顯示升高的表現之基因係 Spink1 Tm4sf5、和/或 Aoc1。在一些實施方式中,顯示升高的表現之基因係表2中提供的基因。在一些實施方式中,顯示升高的表現之基因與淋巴球遷移、腸道歸巢和黏附相關(例如, Ccl25 Ccr10 Ccl22 Ccl24 Itgb7 Itgal 和/或 Itgam)。在一些實施方式中,顯示升高的表現之基因與T細胞譜系成熟和活化相關(例如, Cd69 Icos Il2rg Cd3d Trbc1 Trbc2 Trac Lat Zap70 Lck 和/或 Cd2)。在一些實施方式中,顯示升高的表現之基因與B細胞譜系成熟和活化相關(例如, CD19 CD79a CD79b CD69 Ighd Fcrl1 Blk Ikzf3 Tnfrsf13c Jchain Iglc1 和/或 Iglc2)。在一些實施方式中,顯示升高的表現之基因與免疫調節相關(例如, Foxp3 Lag3 Traf3ip3 Slamf6 Il33 Cd5 Adamdec1 和/或 Nr1i3)。在一些實施方式中,顯示升高的表現之基因與腸上皮細胞穩態(障壁、代謝、吸收)相關(例如, Gpx2 Gstm3 Aqp8 Guca2b Adipoq Dgat1 Dgat2 Slc23a1 和/或 Slc51b)。在一些實施方式中,顯示升高的表現之基因與宿主保護性途徑相關(例如, Zg16 Def5a Reg3a Retnlb Reg3g Cfd Lypd8 和/或 Casp6)。
在一些實施方式中,該小韋榮氏球菌係小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。在一些實施方式中,該小韋榮氏球菌菌株係與小韋榮氏球菌菌株A之核苷酸序列(例如基因組序列、16S序列、CRISPR序列)包含至少至少85%、至少86%、至少87%、至少88%、至少89%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%序列同一性(例如至少99.5%序列同一性、至少99.6%序列同一性、至少99.7%序列同一性、至少99.8%序列同一性、至少99.9%序列同一性)之菌株。
在一些實施方式中,該細菌組成物包含一種細菌菌株,其中該一種細菌菌株係與小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)之核苷酸序列包含至少99.9%序列同一性之菌株。在一些實施方式中,該細菌組成物包含一種細菌菌株,其中該一種細菌菌株係小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物與另外的治療劑組合投與。在一些實施方式中,另外的治療劑係IL-6拮抗劑。在一些實施方式中,另外的治療劑係抗-IL-6拮抗劑抗體。
在一些實施方式中,該細菌組成物包含至少約3 x 10 10個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約3 x 10 10個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約4.5 x 10 10個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約1.5 x 10 11個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約7.5 x 10 11個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約1.5 x 10 12個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約3 x 10 10至 約1.5 x 10 12個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約4.5 x 10 10至 約1.5 x 10 12個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約3 x 10 10至 約1.5 x 10 11個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約4.5 x 10 10至 約1.5 x 10 11個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約1.5 x 10 11至約1.5 x 10 12個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約1.5 x 10 11至約7.5 x 10 11個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約7.5 x 10 11至約1.5 x 10 12個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在某些實施方式中,該細菌組成物(例如藥物組成物)(例如,如每天一次或兩次投與的總劑量之組成物)包含約1 x 10 10個總細胞、約2 x 10 10個總細胞、約3 x 10 10個總細胞、約4 x 10 10個總細胞、約4.5 x 10 10個總細胞、約5 x 10 10個總細胞、約6 x 10 10個總細胞、約7 x 10 10個總細胞、約8 x 10 10個總細胞、約9 x 10 10個總細胞、約1 x 10 11個總細胞、約1.5 x 10 11個總細胞、約2 x 10 11個總細胞、約3 x 10 11個總細胞、約4 x 10 11個總細胞、約5 x 10 11個總細胞、約6 x 10 11個總細胞、約7 x 10 11個總細胞、約7.5 x 10 11個總細胞、約8 x 10 11個總細胞、約9 x 10 11個總細胞、約1 x 10 12個總細胞、約1.5 x 10 12個總細胞、約2 x 10 12個總細胞的小韋榮氏球菌細菌。在某些實施方式中,該細菌組成物(例如,如每天一次或兩次投與的總劑量之組成物)包含至少1 x 10 10個總細胞(例如,至少1 x 10 10個總細胞、至少2 x 10 10個總細胞、至少3 x 10 10個總細胞、至少4 x 10 10個總細胞、至少4.5 x 10 10個總細胞、至少5 x 10 10個總細胞、至少6 x 10 10個總細胞、至少7 x 10 10個總細胞、至少8 x 10 10個總細胞、至少9 x 10 10個總細胞、至少1 x 10 11個總細胞、至少1.5 x 10 11個總細胞、至少2 x 10 11個總細胞、至少3 x 10 11個總細胞、至少4 x 10 11個總細胞、至少5 x 10 11個總細胞、至少6 x 10 11個總細胞、至少7 x 10 11個總細胞、至少7.5 x 10 11個總細胞、至少8 x 10 11個總細胞、至少9 x 10 11個總細胞、至少1 x 10 12個總細胞、至少1.5 x 10 12個總細胞、至少2 x 10 12個總細胞)的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約3 x 10 10個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約4.5 x 10 10個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約1.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約7.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約3 x 10 10至約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌 組成物包含約4.5 x 10 10至約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約3 x 10 10至約1.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約4.5 x 10 10至約1.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約1.5 x 10 11至約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約1.5 x 10 11至約7.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約7.5 x 10 11至約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。在一些實施方式中,小韋榮氏球菌細菌經γ照射。
在某些實施方式中,本文提供了包含小韋榮氏球菌細菌之固體劑型。在一些實施方式中,該固體劑型包含腸溶包衣。在一些實施方式中,該固體劑型係膠囊,例如腸溶膠囊。在一些實施方式中,每個膠囊包含約3 x 10 10個總細胞的小韋榮氏球菌細菌。在一些實施方式中,每個膠囊包含約4.5 x 10 10個總細胞的小韋榮氏球菌細菌。在一些實施方式中,每個膠囊包含約1.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,向受試者投與1、2、3、4、5、6、7、8、9或10個膠囊,例如每天一次或兩次。在一些實施方式中,向受試者投與1個膠囊(例如,包含約3 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與2個膠囊(例如,每個膠囊包含約3 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與4個膠囊(例如,每個膠囊包含約3 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與10個膠囊(例如,每個膠囊包含約3 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與1個膠囊(例如,包含約4.5 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與2個膠囊(例如,每個膠囊包含約4.5 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與4個膠囊(例如,每個膠囊包含約4.5 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與10個膠囊(例如,每個膠囊包含約4.5 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與1個膠囊(例如,包含約1.5 x 10 11個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與2個膠囊(例如,每個膠囊包含約1.5 x 10 11個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與5個膠囊(例如,每個膠囊包含約1.5 x 10 11個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與10個膠囊(例如,每個膠囊包含約1.5 x 10 11個總細胞),例如每天一次或兩次。在一些實施方式中,將膠囊中的小韋榮氏球菌細菌冷凍乾燥(例如,成粉劑形式)。在一些實施方式中,將膠囊中的小韋榮氏球菌細菌冷凍乾燥成粉劑形式,並且該粉劑進一步包含甘露醇、硬脂酸鎂、和/或膠態二氧化矽。在一些實施方式中,將膠囊中的小韋榮氏球菌細菌冷凍乾燥成粉劑形式,並且該粉劑進一步包含蔗糖和/或聚葡萄醣。在一些實施方式中,將膠囊中的小韋榮氏球菌細菌冷凍乾燥成粉劑形式,並且該粉劑進一步包含蔗糖、聚葡萄醣、和/或L-半胱胺酸鹽酸鹽。在一些實施方式中,該膠囊包含賦形劑,並且該等賦形劑包括甘露醇、膠態二氧化矽、硬脂酸鎂、羥丙基甲基纖維素、甲基丙烯酸丙烯酸乙酯共聚物、檸檬酸三乙酯、和/或滑石粉。在一些實施方式中,膠囊之小韋榮氏球菌細菌經γ照射。
在一些實施方式中,該固體劑型包含膠囊。在一些實施方式中,該膠囊係腸溶包衣的膠囊。在一些實施方式中,該膠囊包含約3 x 10 10個總細胞的小韋榮氏球菌細菌(例如,一個膠囊或多個膠囊之總劑量)。在一些實施方式中,該膠囊包含約4.5 x 10 10個總細胞的小韋榮氏球菌細菌(例如,一個膠囊或多個膠囊之總劑量)。在一些實施方式中,該膠囊包含約1.5 x 10 11個總細胞的小韋榮氏球菌細菌(例如,一個膠囊或多個膠囊之總劑量)。在一些實施方式中,將膠囊中的小韋榮氏球菌細菌冷凍乾燥(例如,成粉劑形式)。在一些實施方式中,將膠囊中的小韋榮氏球菌細菌冷凍乾燥成粉劑形式,並且該粉劑進一步包含甘露醇、硬脂酸鎂、和/或膠態二氧化矽。在一些實施方式中,將膠囊中的小韋榮氏球菌細菌冷凍乾燥成粉劑形式,並且該粉劑進一步包含蔗糖和/或聚葡萄醣。在一些實施方式中,將膠囊中的小韋榮氏球菌細菌冷凍乾燥成粉劑形式,並且該粉劑進一步包含蔗糖、聚葡萄醣、和/或L-半胱胺酸鹽酸鹽。在一些實施方式中,該膠囊包含賦形劑,並且該等賦形劑包括甘露醇、膠態二氧化矽、硬脂酸鎂、羥丙基甲基纖維素、甲基丙烯酸丙烯酸乙酯共聚物、檸檬酸三乙酯、和/或滑石粉。在一些實施方式中,膠囊之小韋榮氏球菌細菌經γ照射。
在一些實施方式中,固體劑型包含片劑。在一些實施方式中,該片劑係腸溶包衣片劑。在一些實施方式中,該腸溶包衣的片劑之直徑為5 mm至18 mm。在一些實施方式中,該腸溶包衣的片劑之直徑為5.5 mm。在一些實施方式中,該腸溶包衣的片劑之直徑為18 mm。在一些實施方式中,該片劑包含約3 x 10 10個總細胞的小韋榮氏球菌細菌(例如,一個片劑或多個片劑之總劑量)。在一些實施方式中,該片劑包含約4.5 x 10 10個總細胞的小韋榮氏球菌細菌(例如,一個片劑或多個片劑之總劑量)。在一些實施方式中,該片劑包含約1.5 x 10 11個總細胞的小韋榮氏球菌細菌(例如,一個片劑或多個片劑之總劑量)。在一些實施方式中,將該片劑中的小韋榮氏球菌細菌冷凍乾燥。在一些實施方式中,該片劑之小韋榮氏球菌細菌經γ照射。
在某些實施方式中,本文提供了包含小韋榮氏球菌細菌之固體劑型。在一些實施方式中,該固體劑型係片劑,例如腸溶包衣的片劑。在一些實施方式中,該腸溶包衣包含基於聚甲基丙烯酸酯的共聚物。在一些實施方式中,該腸溶包衣包含甲基丙烯酸丙烯酸乙酯(MAE)共聚物(1 : 1)。在一些實施方式中,該腸溶包衣包含甲基丙烯酸丙烯酸乙酯(MAE)共聚物(1 : 1)(例如Kollicoat MAE 100P)。
在一些實施方式中,每個片劑包含約3 x 10 10個總細胞、4.5 x 10 10個總細胞或約1.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,向受試者投與1、2、3、4、5、6、7、8、9或10個片劑,例如每天一次或兩次。在一些實施方式中,向受試者投與1個片劑(例如,包含約3 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與2個片劑(例如,每個片劑包含約3 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與5個片劑(例如,每個片劑包含約3 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與10個片劑(例如,每個片劑包含約3 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與1個片劑(例如,包含約4.5 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與2個片劑(例如,每個片劑包含約4.5 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與5個片劑(例如,每個片劑包含約4.5 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與10個片劑(例如,每個片劑包含約4.5 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,每個片劑包含約1.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,向受試者投與1、2、3、4、5、6、7、8、9或10個片劑,例如每天一次或兩次。在一些實施方式中,向受試者投與1個片劑(例如,包含約1.5 x 10 11個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與2個片劑(例如,每個片劑包含約1.5 x 10 11個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與5個片劑(例如,每個片劑包含約1.5 x 10 11個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與10個片劑(例如,每個片劑包含約1.5 x 10 11個總細胞),例如每天一次或兩次。在一些實施方式中,將片劑中的小韋榮氏球菌細菌冷凍乾燥(例如,成粉劑形式)。在一些實施方式中,將片劑中的小韋榮氏球菌細菌冷凍乾燥成粉劑形式,並且該粉劑進一步包含甘露醇、硬脂酸鎂、和/或膠態二氧化矽。在一些實施方式中,將片劑中的小韋榮氏球菌細菌冷凍乾燥成粉劑形式,並且該粉劑進一步包含蔗糖和/或聚葡萄醣。在一些實施方式中,將片劑中的小韋榮氏球菌細菌冷凍乾燥成粉劑形式,並且該粉劑進一步包含蔗糖、聚葡萄醣、和/或L-半胱胺酸鹽酸鹽。在一些實施方式中,該片劑之小韋榮氏球菌細菌經γ照射。
在一些實施方式中,該固體劑型包含微型片劑。在一些實施方式中,該微型片劑係腸溶包衣的。在一些實施方式中,該微型片劑之直徑為1 mm至4 mm。在一些實施方式中,該微型片劑(例如,腸溶包衣的微型片劑)係1 mm的微型片劑、1.5 mm的微型片劑、2 mm的微型片劑、3 mm的微型片劑或4 mm的微型片劑。在一些實施方式中,該固體劑型包含微型片劑,該微型片劑包含約3 x 10 10個總細胞的小韋榮氏球菌細菌(例如,多個微型片劑之總劑量)。在一些實施方式中,該固體劑型包含微型片劑,該微型片劑包含約4.5 x 10 10個總細胞的小韋榮氏球菌細菌(例如,多個微型片劑之總劑量)。在一些實施方式中,該固體劑型包含微型片劑,該微型片劑包含約1.5 x 10 11個總細胞的小韋榮氏球菌細菌(例如,多個微型片劑之總劑量)。在一些實施方式中,將該微型片劑中的小韋榮氏球菌細菌冷凍乾燥。在一些實施方式中,微型片劑之小韋榮氏球菌細菌經γ照射。
在一些實施方式中,該微型片劑(例如,腸溶包衣的微型片劑)包含在膠囊中。在一些實施方式中,該膠囊係00號、0號、1號、2號、3號、4號或5號膠囊。在一些實施方式中,該膠囊包含非腸溶包衣(例如,明膠)(例如,用非腸溶包衣進行包衣的)。在一些實施方式中,該膠囊包含非腸溶包衣。在一些實施方式中,該膠囊包含明膠。在一些實施方式中,該膠囊包含HPMC。在一些實施方式中,該包含約3 x 10 10個總細胞的小韋榮氏球菌細菌之微型片劑(例如,腸溶包衣的微型片劑)包含在一或多個膠囊中,其中視需要地,該膠囊包含明膠或HPMC。在一些實施方式中,該包含約4.5 x 10 10個總細胞的小韋榮氏球菌細菌之微型片劑(例如,腸溶包衣的微型片劑)包含在一或多個膠囊中,其中視需要地,該膠囊包含明膠或HPMC。在一些實施方式中,該包含約1.5 x 10 11個總細胞的小韋榮氏球菌細菌之微型片劑(例如,腸溶包衣的微型片劑)包含在一或多個膠囊中,其中視需要地,該膠囊包含明膠或HPMC。在一些實施方式中,微型片劑之小韋榮氏球菌細菌經γ照射。
在一些實施方式中,將包含小韋榮氏球菌細菌之細菌組成物(例如藥物組成物)製備成粉劑(例如,用於重懸或用於以固體劑型(如膠囊)使用)或固體劑型,如片劑、微型片劑、膠囊、丸劑或粉劑;或該等形式之組合(例如,膠囊中包含的微型片劑)。粉劑可以包含冷凍乾燥細菌。在一些實施方式中,該粉劑進一步包含甘露醇、硬脂酸鎂、和/或膠態二氧化矽。在一些實施方式中,該粉劑進一步包含蔗糖和/或聚葡萄醣。在一些實施方式中,該粉劑進一步包含蔗糖、聚葡萄醣、和/或L-半胱胺酸鹽酸鹽。在一些實施方式中,小韋榮氏球菌細菌經γ照射。
在一些實施方式中,該細菌組成物係口服投與。在一些實施方式中,向受試者每天投與一次。在一些實施方式中,以2個或更多個劑量(例如3個或更多個、4個或更多個或5個或更多個劑量)來投與細菌組成物。在一些實施方式中,向受試者投與該兩個或更多個劑量相隔至少1小時、2小時、3小時、4小時、5小時、6小時、7小時、8小時、9小時、10小時、11小時、12小時、13小時、14小時、15小時、16小時、17小時、18小時、1天、2天、3天、4天、5天、6天、7天、8天、9天、10天、11天、12天、13天、14天、15天、16天、17天、18天、19天、20天或21天。
在一些實施方式中,該細菌組成物每天投與一次持續2天、3天、4天、5天、6天、7天、8天、9天、10天、11天、12天、13天、14天、15天、16天、17天、18天、19天、20天、21天、22天、23天、24天、25天、26天、27天、28天、29天、30天、31天、32天、33天、34天、35天、36天、37天、38天、39天、40天、41天、42天、45天、48天、52天、或56天。在一些實施方式中,該細菌組成物每天投與一次持續1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、或16週。在一些實施方式中,該細菌組成物每天投與一次持續8週。在一些實施方式中,該細菌組成物每天投與一次持續至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、或16週。在一些實施方式中,該細菌組成物每天投與一次持續至少8週。
在一些實施方式中,該細菌組成物(例如藥物組成物)包含冷凍乾燥的小韋榮氏球菌細菌。在某些實施方式中,冷凍乾燥的小韋榮氏球菌細菌被配製成固體劑型,如片劑、微型片劑、膠囊、丸劑或粉劑。在一些實施方式中,該冷凍乾燥的小韋榮氏球菌細菌包含在膠囊中。在一些實施方式中,該粉劑進一步包含甘露醇、硬脂酸鎂、和/或膠態二氧化矽。在一些實施方式中,該粉劑進一步包含蔗糖和/或聚葡萄糖。在一些實施方式中,該粉劑進一步包含蔗糖、聚葡萄糖、和/或L-半胱胺酸鹽酸鹽。在一些實施方式中,該粉劑重懸於溶液中。在一些實施方式中,該冷凍乾燥的小韋榮氏球菌細菌重懸於溶液中。
在一些實施方式中,將細菌組成物配製成膠囊或片劑。在一些實施方式中,該細菌配製物(例如,組成物)包含腸溶包衣或微膠囊。在一些實施方式中,該膠囊係腸溶包衣的膠囊。在一些實施方式中,該腸溶包衣允許細菌組成物在小腸上段(例如,十二指腸)中被釋放。
在一些實施方式中,該受試者係哺乳動物。在一些實施方式中,該受試者係人類。在一些實施方式中,該受試者係非人類哺乳動物(例如狗、貓、牛、馬、豬、驢、山羊、駱駝、小鼠、大鼠、天竺鼠、綿羊、駱馬、猴、大猩猩或黑猩猩)。
在一些實施方式中,該受試者(例如,人類受試者)患有免疫炎性障礙。在一些實施方式中,該免疫炎性障礙係關節僵硬、關節炎(例如,牛皮癬性關節炎)、靜脈炎、血管炎和淋巴管炎、膽管炎、膽囊炎、腸炎、小腸結腸炎、胃炎、腸胃炎、炎性腸病、迴腸炎、直腸炎、克隆氏症、潰瘍性結腸炎、腸躁症候群、顯微鏡下結腸炎、淋巴球-漿細胞性腸炎、乳糜瀉、膠原性結腸炎、淋巴球性結腸炎、嗜酸性小腸結腸炎、非確定型結腸炎、假膜性結腸炎(壞死性結腸炎)、缺血性炎性腸病、白塞氏病、肉瘤病、硬皮病、IBD相關性發育不良、發育不良相關性團塊或病變、原發性硬化性膽管炎、宮頸炎、絨毛膜羊膜炎、子宮內膜炎、附睪炎、臍炎、卵巢炎、睪丸炎、輸卵管炎、輸卵管卵巢膿腫、尿道炎、陰道炎、外陰炎、外陰痛、急性播散性普禿、卻格司氏病、慢性疲勞症候群、自主神經機能障礙、腦脊髓炎、僵直性脊柱炎、再生不良性貧血、化膿性汗腺炎、自體免疫性肝炎、自體免疫性卵巢炎、乳糜瀉、1型糖尿病、巨大細胞動脈炎、古德帕斯丘綜合症(good pasture's syndrome)、格雷氏病、格巴二氏綜合症(Guillain-Barre syndrome)、橋本氏病、亨-舍二氏紫斑症(Henoch-Schonlein purpura)、川崎病、紅斑狼瘡、顯微鏡下結腸炎、顯微鏡下多動脈炎、混合性結締組織病、穆-韋二氏綜合症(Muckle-Wells syndrome)、多發性硬化症、重症肌無力、斜視眼陣攣肌陣攣綜合症、視神經炎、奧德氏甲狀腺炎(ord's thyroiditis)、天疱瘡、結節性多動脈炎、多肌痛、類風濕性關節炎、萊特爾氏綜合症(Reiter's syndrome)、舍葛籣氏綜合症(Sjogren's syndrome)、顳動脈炎、韋格納氏肉芽腫病(Wegener's granulomatosis)、溫性自體免疫性溶血性貧血、間質性膀胱炎、萊姆病(Lyme disease)、侷限性硬皮病、牛皮癬、肉瘤病、硬皮病、接觸性過敏、接觸性皮膚炎(包括由於毒葛引起的接觸性皮膚炎)、蕁麻疹、皮膚過敏、呼吸道過敏(花粉病、過敏性鼻炎、屋塵蟎過敏)、闌尾炎、皮膚炎、皮肌炎、心內膜炎、纖維組織炎、牙齦炎、舌炎、化膿性汗腺炎、虹膜炎、喉炎、乳腺炎、心肌炎、腎炎、耳炎、胰臟炎、腮腺炎、心包炎、腹膜炎、咽炎、胸膜炎、肺炎、前列腺炎、腎盂腎炎、口炎、移植排斥、急性胰臟炎、慢性胰臟炎、急性呼吸窘迫綜合症、西紮利氏綜合症(Sexary's syndrome)、先天性腎上腺增生、非化膿性甲狀腺炎、癌症相關的高鈣血症、天疱瘡、大皰性皰疹樣皮膚炎、重度多形性紅斑、剝脫性皮膚炎、脂溢性皮膚炎、季節性或常年性過敏性鼻炎、支氣管氣喘、接觸性皮膚炎、異位性皮膚炎、藥物過敏、過敏性結膜炎、角膜炎、眼帶狀皰疹、虹膜炎及虹膜睫狀體炎、脈絡膜視網膜炎、視神經炎、症狀性肉瘤病、暴發性或散播性肺結核化學療法、成人特發性血小板減少性紫癜病、成人繼發性血小板減少症、後天性(自體免疫性)溶血性貧血、成人白血病及淋巴瘤、兒童急性白血病、局部性腸炎、自體免疫性血管炎、慢性阻塞性肺病、或敗血症。
在一些實施方式中,該受試者患有免疫障礙。在一些實施方式中,該免疫障礙係異位性皮膚炎、牛皮癬、或氣喘。在一些實施方式中,異位性皮膚炎係中度異位性皮膚炎。在一些實施方式中,牛皮癬係中度牛皮癬。在一些實施方式中,氣喘係中度氣喘。
在一些方面,本揭露提供了本文所述之細菌組成物(例如,以本文所述之量),用於誘導免疫效應(例如,免疫細胞的抗炎細胞介素表現之增加或免疫細胞的促炎細胞介素表現之減少)。
在一些方面,本揭露提供了本文所述之細菌組成物(例如,以本文所述之量)用於製備用於誘導免疫效應(例如,免疫細胞的抗炎細胞介素表現之增加或免疫細胞的促炎細胞介素表現之減少)的藥物之用途。
相關申請的交叉引用
本申請要求以下美國臨時申請案號之權益:2020年11月6日提交的63/110,761;2020年11月11日提交的63/112,330;2021年8月27日提交的63/237,818;2021年9月28日提交的63/249,181;以及2021年9月30日提交的63/250,588,將該等申請中的每一個之全部內容藉由引用併入本文。
小韋榮氏球菌菌株A-G.I.係小韋榮氏球菌的單一菌株之藥物製劑,最初係從處於緩解期的IBD患者之新鮮迴腸造口術樣本中分離出來的,其已被γ-照射。
可藉由厭氧發酵、隨後冷凍乾燥、γ照射和封裝在具有腸溶包衣的膠囊中來製造小韋榮氏球菌菌株A-G.I.,該腸溶包衣保護藥物在胃中免受低pH之影響。因為無活性,所以它不會在腸道內移植,口服給藥後也沒有可檢測到的全身暴露。在非臨床研究中,其治療效果係劑量依賴性的。
小韋榮氏球菌菌株A-G.I.屬於一個新的藥理學類別,稱為非活菌藥物產品(non-live bacterial pharmaceutical product)。這是一種定位獨特的口服藥物,可調節小腸軸(SINTAX)以實現全身藥理作用,而不會全身暴露。由於腸腔在拓撲上位於身體外部,因此這實際上係一種具有全身活性的局部藥物。這是因為發現了源自腸道、特別是小腸的全身控制網路而成為可能。
體內臨床前模型顯示小韋榮氏球菌菌株A-G.I.在涵蓋TH1、TH2和TH17炎症之多種途徑的疾病模型中具有有效的抗炎作用。該等模型中的療效與生物治療(包括針對IL-6、IL-17、IL12/23、VLA4的抗體)和小分子藥物(包括托法替尼、芬戈莫德和地塞米松)相當。該等結果表明,小韋榮氏球菌菌株A-G.I.之腸道受限作用將腸黏膜免疫調節與全身免疫聯繫起來,與經過充分驗證的全身性藥物相比,它具有優勢。
該等臨床前研究的結果表明,小韋榮氏球菌菌株A-G.I.有可能使患有多種病狀的患者受益,該等病狀以炎症為潛在驅動因素。臨床前觀察表明,該等效果的實現並沒有廣泛地抑制免疫系統做出防禦響應的能力,這表明它可能適合於在疾病之各個階段安全地用於大量的病人,具有類似安慰劑的安全性和耐受性特性。
使用小韋榮氏球菌菌株A-G.I.的臨床前研究已在一系列人類和小鼠體外測定以及人類疾病的關鍵體內模型中進行實施,該等體內模型包括遲發型過敏(DTH)、咪喹莫特誘發的皮膚炎症、異硫氰酸螢光素(FITC)皮膚過敏、MC903誘發的皮膚炎和實驗性急性腦脊髓炎(EAE)體內模型。它具有劑量依賴性治療效果。來自體內模型的數據支援小韋榮氏球菌菌株A-G.I.在治療Th2介導的(例如,異位性皮膚炎、氣喘)和Th17介導的(例如牛皮癬)免疫炎性疾病中之用途。
如基於作用機理所預測的,在該等實驗中使用的每天給藥多達6週的動物中未見潛在的相關不良反應。另外,儘管該等模型中的離體免疫表現型顯示促炎性細胞介素(例如IL-6、IL-13、TNFα、Il-17、TSLP和KC(鼠IL-8))降低,但是小韋榮氏球菌菌株A-G.I.在該等實驗中沒有抑制干擾素γ(IFNγ)的表現,這表明實現了廣譜的抗炎作用而不損害對預防惡性腫瘤和對病原體例如病毒或細菌感染的響應至關重要的免疫監督機制。 定義
「佐劑」或「輔助療法」在廣義上係指影響患者或受試者中的免疫學或生理學響應之藥劑。例如,佐劑可增加抗原隨時間之存在,或幫助吸收抗原呈現細胞抗原,活化巨噬細胞及淋巴球並且支援細胞介素之產生。藉由改變免疫響應,佐劑可允許使用較小劑量的免疫相互作用劑以增加特定劑量的免疫相互作用劑之有效性或安全性。例如,佐劑可預防T細胞耗竭且由此增加特定免疫相互作用劑之有效性或安全性。
「投與」在廣義上係指組成物在受試者中的投與途徑。投與途徑之實例包含口服投與、直腸投與、局部投與、吸入(經鼻)或注射。注射投與包括靜脈內(IV)、肌內(IM)及皮下(SC)投與。本文所述之細菌組成物可以任一形式藉由任一有效途徑來投與,該等途徑包括但不限於:口服、腸胃外、腸內、靜脈內、腹膜內、局部、經皮(例如使用任一標準貼劑)、真皮內、眼部、經鼻(內)、局部、非經口(如氣溶膠、吸入、皮下、肌內、經頰、舌下、(經)直腸、陰道、動脈內及鞘內)、經黏膜(例如舌下、經舌、(經)頰、(經)尿道、陰道(例如經陰道及經陰道周圍)、膀胱內、肺內、十二指腸內、胃內及支氣管內。在較佳的實施方式中,藉由以下形式投與本文所述之細菌組成物:經口、經直腸、經局部、經膀胱內、藉由注射至引流淋巴結中或毗鄰引流淋巴結處、經靜脈內、藉由吸入或氣溶膠或經皮下。在一些較佳的實施方式中,本文所述之細菌組成物係口服投與的。
如本文所用,術語「抗體」可指完整抗體及其抗原結合片段二者。完整抗體係包含由二硫鍵相互連接的至少兩條重(H)鏈及兩條輕(L)鏈的醣蛋白。每條重鏈包含重鏈可變區(在本文中縮寫為V H)及重鏈恒定區。每條輕鏈包含輕鏈可變區(在本文中縮寫為V L)及輕鏈恒定區。V H及V L區可進一步細分成超變區(稱為互補決定區(CDR))及更保守區(稱為框架區(FR)),二者散佈排列。每個V H及V L由三個CDR及四個FR構成,其自胺基-末端至羧基-末端按下列順序排列:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4。重鏈及輕鏈之可變區含有與抗原相互作用的結合結構域。術語「抗體」包含例如單株抗體、多株抗體、嵌合抗體、人源化抗體、人類抗體、多特異性抗體(例如雙特異性抗體)、單鏈抗體及抗原結合抗體片段。
如本文中所使用,術語抗體之「抗原結合片段」及「抗原結合部分」係指抗體中保留結合抗原的能力之一或多個片段。術語抗體之「抗原結合片段」內所涵蓋結合片段之實例包含Fab、Fab'、F(ab') 2、Fv、scFv、二硫化物連接的Fv、Fd、雙抗體、單鏈抗體、NANOBODIES®、經分離CDRH3及其他保留完整抗體之至少一部分可變區之抗體片段。該等抗體片段可使用常規重組和/或酶促技術來獲得且可以與完整抗體相同的方式針對抗原結合進行篩選。
「細胞增強」廣泛地指細胞之流入或細胞在環境中的擴增,該等細胞在投與組成物之前大體上不存在於該環境中且不存在於該組成物本身中。增強環境之細胞包括免疫細胞、基質細胞、細菌及真菌細胞。
「演化支」指親緣關係樹之OTU或成員,它們係親緣關係樹中的統計有效節點之下游。演化支包含親緣關係樹中的一組末端葉,其係不同的單系進化單元且在某種程度上共用序列相似性。「運算分類單元」、「OTU」(或複數「OTUs」)係指親緣關係樹中的末端葉且藉由核酸序列(例如,整個基因組,或特定基因序列,及在物種層面下與此核酸序列共用序列同一性的所有序列)定義。在一些實施方式中,特定基因序列可為16S序列或16S序列之一部分。在其他實施方式中,對兩種實體之整個基因組進行定序並進行比較。在另一個實施方式中,可以基因方式比較所選區域(例如多基因座序列標籤(MLST)、特定基因或基因集)。在16S實施方式中,在整個16S或該16S之一些可變區上共用 ≧ 97%平均核苷酸同一性之OTU被視為相同OTU(參見,例如,Claesson M J, Wang Q, O'Sullivan O, Greene-Diniz R, Cole J R, Ros R P及O'Toole P W. 2010. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions[使用串聯可變16S rRNA基因區解析高度複雜的微生物相組成的兩種下一代定序技術之比較]. Nucleic Acids Res[核酸研究]38: e200. Konstantinidis K T、Ramette A及Tiedje J M. 2006.The bacterial species definition in the genomic era [基因組時代的細菌物種類定義]. Philos Trans R Soc Lond B Biol Sci[倫敦皇家學會B輯:生物科學哲學學報]361: 1929-1940)。在涉及完整基因組、MLST、特定基因或基因組之實施方式中,共用 ≧ 95%平均核苷酸同一性之OTU被視為相同OTU(參見,例如,Achtman M及Wagner M. 2008. Microbial diversity and the genetic nature of microbial species[微生物多樣性和微生物物種之遺傳性質]. Nat. Rev. Microbiol. [微生物自然評論] 6: 431-440. Konstantinidis K T、Ramette A及Tiedje J M. 2006. The bacterial species definition in the genomic era[基因組時代的細菌物種類定義]. Philos Trans R Soc Lond B Biol Sci[倫敦皇家學會B輯:生物科學哲學學報] 361: 1929-1940)。通常藉由比較生物體之間的序列來定義OTU。通常,具有小於95%序列同一性之序列並不視為形成相同OTU之一部分。還可藉由核苷酸標誌或基因、尤其高度保守基因(例如「管家」基因)或其組合之任一組合來表徵OTU。此表徵採用(例如)WGS數據或全基因組序列。
兩種或更多種單株微生物菌株之「組合」包括兩種微生物菌株之物理共存(在相同材料或產品中或在物理連接的產品中),及來自單株微生物菌株之時間共投與或共定位。
術語「降低」或「消耗」意指變化,從而治療後與治療前狀態相比的差異(視情況而定)為至少10%、20%、30%、40%、50%、60%、70%、80%、90%、1/100、1/1000、1/10,000、1/100,000、1/1,000,000或不可檢測。可降低的性質包含免疫細胞、細菌細胞、基質細胞、髓源性抑制細胞、成纖維細胞、代謝物之數量;細胞介素之水平;或另一物理參數(如耳厚度(例如,在DTH動物模型中)或腫瘤的大小(例如,在動物腫瘤模型中))。「減少」係指與不存在細菌組成物時產生的量(例如,mRNA和/或蛋白質)相比減少。
「菌群失調(dysbiosis)」係指腸道或其它身體區域之微生物相或微生物群之狀態,包括,例如,黏膜或皮膚表面(或任何其它微生物群生態位),在該狀態下宿主腸道微生物群生態網路(「微生物群」)之正常的多樣性和/或功能被破壞。菌群失調可能導致疾病狀態,或者僅在某些條件下或僅長期存在時可能是不健康的。菌群失調可能是由於多種因素引起的,包括環境因素、傳染原、宿主基因型、宿主飲食和/或壓力。菌群失調可能導致:一或多個細菌類型(例如,厭氧菌)、物種和/或菌株之普遍度發生變化(例如,增加或減少),宿主微生物群群體組成的多樣性發生變化(例如,增加或減少);導致一或多個有益效應減少或喪失之一或多個共生生物群體之變化(例如,增加或減少);一或多個病原體(例如,病原細菌)群體之過度生長;和/或僅在某些情況下引起疾病的共生生物之存在、和/或過度生長。
如本文中所使用,「工程改造的細菌」係藉由人類為干預已在遺傳上自天然狀態改變的任何細菌及任何這類細菌之繼代。工程改造的細菌包括例如靶向遺傳修飾之產物、隨機誘變篩選之產物及定向演化之產物。
術語「表位」意指可特異性結合至抗體或T細胞受體之蛋白質決定子。表位通常由如胺基酸或糖側鏈等分子之化學活性表面分組組成。某些表位可藉由抗體能夠結合的胺基酸之特定序列來定義。
術語「基因」在廣義上用於指與生物功能有關的任一核酸。術語「基因」適用於特定基因組序列以及由該基因組序列編碼的cDNA或mRNA。
兩種核酸分子之核酸序列間「同一性」可使用已知電腦演算法(諸如「FASTA」程式)使用(例如)如Pearson等人 (1988) Proc. Natl. Acad. Sci. USA [美國國家科學院院刊] 85: 2444中的預設參數測定為同一性百分比(其他套裝程式含GCG套裝程式(Devereux, J. 等人, Nucleic Acids Research [核酸研究] 12 (I): 387 (1984))、BLASTP、BLASTN、FASTA Atschul, S. F. 等人, J Molec Biol [分子生物學雜誌] 215: 403 (1990);Guide to Huge Computers [巨型電腦指南], Martin J. Bishop編輯,Academic Press [學術出版社], San Diego [聖地亞哥], 1994及Carillo等人 (1988) SIAM J Applied Math [工業和應用數學學會應用數學雜誌] 48: 1073)。例如,可使用國家生物技術資訊中心數據庫(National Center for Biotechnology Information database)之BLAST功能來測定同一性。其他可商業或公開獲得的套裝程式含DNAStar 「MegAlign」程式(威斯康辛州麥迪森市(Madison, Wis.))及威斯康辛大學遺傳學電腦集團(University of Wisconsin Genetics Computer Group)(UWG)「Gap」程式(威斯康辛州麥迪森市(Madison, Wis.))。
如本文中所使用,術語「免疫障礙」係指由免疫系統之活動引起的任何疾病、障礙或疾病症狀,包括自體免疫性疾病、炎性疾病及過敏。免疫障礙包括但不限於自體免疫性疾病(例如,狼瘡、硬皮病、溶血性貧血、血管炎、一型糖尿病、格雷氏病(Grave’s disease)、類風濕性關節炎、多發性硬化症、古德帕斯丘綜合症(Goodpasture’s syndrome)、惡性貧血和/或肌病)、炎性疾病(例如,尋常型痤瘡、氣喘、乳糜瀉、慢性前列腺炎、腎小球性腎炎、炎性腸病、盆腔炎性疾病、再灌注損傷、類風濕性關節炎、肉瘤病、移植排斥、血管炎和/或間質性膀胱炎),和/或過敏(例如,食物過敏、藥物過敏和/或環境過敏)。
「免疫療法」係使用受試者之免疫系統以治療疾病(例如,免疫疾病)之治療且包括例如檢查點抑制劑、細胞介素、細胞療法、CAR-T細胞及樹突細胞療法。
術語「增加」意指變化,從而治療後與治療前狀態相比的差異(視情況而定)為至少高10%、20%、30%、40%、50%、60%、70%、80%、90%、2倍、4倍、10倍、100倍、10^3倍、10^4倍、10^5倍、10^6倍和/或10^7倍。可增加的性質包括免疫細胞、細菌細胞、基質細胞、髓源性抑制細胞、成纖維細胞、代謝物之數量;細胞介素之水平;或另一物理參數(如耳厚度(例如,在DTH動物模型中)或腫瘤的大小(例如,在動物腫瘤模型中))。「增加」係指與不存在細菌組成物時產生的量(例如,mRNA和/或蛋白質)相比增加。
「先天免疫促效劑」或「免疫佐劑」係特異性靶向先天免疫受體(包括Toll樣受體(TLR)、NOD受體、RLR、C型凝集素受體、STING-cGAS通路組分、發炎體複合物)之小分子、蛋白質或其他藥劑。例如,LPS為細菌衍生或合成的TLR-4促效劑,且鋁可用作免疫刺激佐劑。免疫佐劑為較廣佐劑或佐劑療法之特定類別。STING促效劑之實例包括(但不限於)2'3'-cGAMP、3'3'-cGAMP、c-di-AMP、c-di-GMP、2'2'-cGAMP及2'3'-cGAM(PS)2(Rp/Sp)(2'3'-cGAMP的雙硫代磷酸酯類似物之Rp、Sp異構物)。TLR促效劑之實例包括(但不限於)TLRl、TLR2、TLR3、TLR4、TLR5、TLR6、TLR7、TLR8、TLR9、TLRlO及TLRI l。NOD促效劑之實例包括(但不限於):N-乙醯基胞壁醯基-L-丙胺醯基-D-異麩醯胺酸(胞壁醯二肽(MDP))、γ-D-麩胺醯基-內消旋-二胺基庚二酸(iE-DAP)及去胞壁醯肽(desmuramylpeptide(DMP))。
術語「分離」或「富集」涵蓋具有以下特徵的微生物、細菌或其他實體或物質:(1) 與在最初產生(不論在自然界中或在實驗環境中)時與其締合的至少一些組分分離,和/或 (2) 人工產生、製備、純化和/或製造。經分離微生物可與至少約10%、約20%、約30%、約40%、約50%、約60%、約70%、約80%、約90%或更多的其最初締合的其他組分分離。在一些實施方式中,經分離微生物係大於約80%、約85%、約90%、約91%、約92%、約93%、約94%、約95%、約96%、約97%、約98%、約99%或大於約99%純的,例如,基本上不含其他組分。術語「純化(purify、purifying及purified)」係指已與在最初產生或生成(例如不論在自然界中或在實驗環境中)時或在其初始產生之後的任一時間期間與其締合的至少一些組分分離的微生物或其他材料。如果在產生時或在產生之後諸如自含有微生物或微生物群體的材料或環境分離,則該微生物或微生物群體可視為經純化,且經純化微生物或微生物群體可含有最高約10%、約20%、約30%、約40%、約50%、約60%、約70%、約80%、約90%或高於約90%的其他材料且仍視為「經分離」。在一些實施方式中,經純化微生物或微生物群體係大於約80%、約85%、約90%、約91%、約92%、約93%、約94%、約95%、約96%、約97%、約98%、約99%或大於約99%純的。在本文所提供微生物組成物的情況下,存在於該組成物中的一或多種微生物類型可與獨立於一或多種產生和/或存在於含有該微生物類型的材料或環境中的其他微生物來純化。通常自殘餘生境產物來純化微生物組成物及其微生物組分。
如本文所用的「代謝物」係指在任何細胞或微生物代謝反應中用作底物或作為產物化合物、組成物、分子、離子、輔助因子、催化劑或營養素產生自任何細胞或微生物代謝反應的任何及所有分子化合物、組成物、分子、離子、輔助因子、催化劑或營養素。
「微生物」係指表徵為細菌、真菌、微觀藻類、原生動物及與該生物體相關的發育階段或生命週期階段(例如,植物、孢子(包括孢子形成、休眠及萌發)、潛伏、生物膜)的任何天然或經改造的生物體。
「微生物群」廣泛地指棲居於受試者或患者之身體部位上或中的微生物。微生物群中的微生物可包括細菌、病毒、真核微生物和/或病毒。微生物群中的個別微生物可為代謝活性、休眠、潛伏或作為孢子存在,可以浮游形式存在或存在於生物膜中,或可以可持續或短暫的方式存在於該微生物群中。該微生物群可為共生或健康狀態微生物群或疾病狀態微生物群。該微生物群對受試者或患者而言可為天然的,或該微生物群之組分可因健康狀態或處理條件(例如,抗生素治療、暴露於不同微生物)之變化而經調整、引入或消耗。在一些方面中,該微生物群出現於黏膜表面。在一些方面中,該微生物群係腸道微生物群。
組織或樣本之「微生物群概況(microbiome profile)」或「微生物群簽名(microbiome signature)」係指微生物群之細菌組成之至少部分表徵。在一些實施方式中,微生物群概況指示是否至少2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100或更多個細菌菌株存在於微生物群中或不存在於微生物群中。在一些實施方式中,微生物群譜指示是否至少2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100或更多個細菌菌株存在於樣本中。在一些實施方式中,微生物群譜指示樣本中檢測的各細菌菌株之相對量或絕對量。
關於細菌的「經修飾的」廣泛地指自野生型形式已經變化的細菌。細菌修飾之實例包括遺傳修飾、基因表現、表現型修飾、配製、化學修飾及劑量或濃度。經改善的性質之實例描述於整個說明書中且包括例如減毒、營養缺陷、歸巢或抗原性。表現型修飾可包括(以實例說明的)細菌於修飾細菌的表現型的培養基中生長以增加或降低毒力。
如本文所用,如果基因在至少一些條件下在工程細菌中的表現水平高於相同物種的野生型細菌在相同條件下的表現水平,則該基因在細菌中「過度表現」。類似地,如果基因在至少一些條件下在工程改造的細菌中的表現水平低於相同物種的野生型細菌在相同條件下的表現水平,則該基因在細菌中「表現不足」。
術語「多核苷酸」及「核酸」可互換使用。它們係指任何長度的核苷酸之聚合形式(去氧核糖核苷酸或核糖核苷酸)或其類似物。多核苷酸可具有任何三維結構,且可實施任何功能。多核苷酸之非限制性實例如下:基因或基因片段之編碼或非編碼區域、定義自連鎖分析的多個基因座(loci)(基因座(locus))、外顯子、內含子、信使RNA(mRNA)、微小RNA(miRNA)、緘黙RNA(siRNA)、轉移RNA、核糖體RNA、核酶、cDNA、重組多核苷酸、分支多核苷酸、質體、載體、任何序列之經分離的DNA、任何序列之經分離的RNA、核酸探針及引子。多核苷酸可包括經修飾核苷酸,例如甲基化核苷酸及核苷酸類似物。如果存在,則可在組裝聚合物之前或之後賦予對核苷酸結構之修飾。多核苷酸可藉由如與標記組分軛合而經進一步修飾。在本文提供的所有核酸序列中,U核苷酸可與T核苷酸互換。
「運算分類單元」及「OTU」係指親緣關係樹中的末端葉且藉由核酸序列(例如整個基因組或特定基因序列及所有與此核酸序列在物種層面共用序列同一性之序列)來定義。在一些實施方式中,特定基因序列可為16S序列或16S序列之一部分。在其他實施方式中,對兩種實體之整個基因組進行定序並進行比較。在另一個實施方式中,可以基因方式比較所選區域(例如多基因座序列標籤(MLST)、特定基因或基因集)。對於16S而言,整個16S或一些16S可變區中共有 ≥ 97%平均核苷酸同一性之OTU可視為相同OTU。參見,例如,Claesson MJ、Wang Q、O’Sullivan O、Greene-Diniz R、Cole JR、Ross RP及O’Toole PW. 2010. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions[使用串聯可變16S rRNA基因區解析高度複雜的微生物相組成的兩種下一代定序技術之比較]. Nucleic Acids Res[核酸研究] 38: e200. Konstantinidis KT, Ramette A及Tiedje JM. 2006. The bacterial species definition in the genomic era [基因組時代的細菌物種類定義]. Philos Trans R Soc Lond B Biol Sci [倫敦皇家學會B輯:生物科學哲學學報] 361: 1929-1940。對於完整基因組、MLST、特定基因(除16S外)或基因集而言,共有 ≥ 95%平均核苷酸同一性之OTU可視為相同OTU。例如參見Achtman M及Wagner M. 2008. Microbial diversity and the genetic nature of microbial species [微生物多樣性和微生物物種之遺傳性質]. Nat. Rev. Microbiol. [微生物自然評論] 6: 431-440. Konstantinidis KT, Ramette A及Tiedje JM. 2006. The bacterial species definition in the genomic era[基因組時代的細菌物種類定義]. Philos Trans R Soc Lond B Biol Sci [倫敦皇家學會B輯:生物科學哲學學報] 361: 1929-1940。通常藉由比較生物體之間的序列來定義OTU。通常,具有小於95%序列同一性之序列並不視為形成相同OTU之一部分。還可藉由核苷酸標誌或基因、尤其高度保守基因(例如「管家」基因)或其組合之任一組合來表徵OTU。本文提供可分配例如屬、物種及系統發育演化支的運算分類單元(OTU)。
如本文所用,物質基本上不含其他組分時係「純的」。術語「純化(purify、purifying及purified)」係指已與在最初產生或生成(例如不論在自然界中或在實驗環境中)時或在其初始產生之後的任一時間期間與其締合的至少一些組分分離的微生物或其他材料。若微生物在產生時或產生後與(如)一或多種其他細菌組分分離,則該微生物可被視為經純化,及經純化的微生物或微生物種群可含有其他材料多達約10%、約20%、約30%、約40%、約50%、約60%、約70%、約80%、約90%或超過約90%且仍被視為「經純化」。在一些實施方式中,經純化的微生物係大於約80%、約85%、約90%、約91%、約92%、約93%、約94%、約95%、約96%、約97%、約98%、約99%或超過約99%純的。細菌組成物及其微生物組分係(例如)純化自殘餘生境產物。
「殘餘生境產物」係指自受試者內或受試者上的微生物相生境衍生的材料。例如,微生物生存於胃腸道之糞便中、皮膚本身上、唾液中、呼吸道的黏液中或泌尿生殖道之分泌物中(即,與微生物群落相關聯的生物物質)。大體上不含殘餘生境產物意指該微生物組成物不再含有與人類或動物受試者上或人類或動物受試者中的微生物環境相關聯的生物物質且是100%不含、99%不含、98%不含、97%不含、96%不含或95%不含與該微生物群落相關聯的任何污染生物物質。殘餘生境產物可包括非生物材料(包括未經消化的食物)或其可包括非所需的微生物。大體上不含殘餘生境產物亦可意指該微生物組成物不含有來自人類或動物的可檢測細胞且意指僅微生物細胞係可檢測的。在一項實施方式中,大體上不含殘餘生境產物亦可意指該微生物組成物不含有可檢測的病毒(包括微生物病毒(例如,噬菌體))、真菌、支原體污染物。在另一實施方式中,相較於微生物細胞,其意指微生物組成物中小於1 x 10-2%、1 x 10-3%、1 x 10-4%、1 x 10-5%、1 x 10-6%、1 x 10-7%、1 x 10-8%的活細胞係人類或動物。達到此純度的方法有很多,該等方法中無任何一者係限制性的。因此,污染物可經由藉由在固體培養基上對單菌落進行多個畫線步驟,直至來自系列性單菌落的複製(諸如但不限於兩個)畫線已顯示僅單一菌落形態來分離所需成分而減少。可替代地,污染物之減少可藉由多輪連續稀釋至單一所需細胞(例如,10-8或10-9的稀釋),例如藉由多個10倍連續稀釋完成。此可藉由顯示多個經分離的菌落具有相似細胞形狀及革蘭氏染色行為進一步證實。用於證實足夠的純度之其他方法包括遺傳分析(例如,PCR、DNA定序)、血清學及抗原分析、酶及代謝分析及使用儀器的方法,諸如使用自污染物區分所需成分的試劑的流動式細胞分析術。
如本文所用,「特異性結合」係指抗體能夠結合至預定抗原或多肽能夠結合至其預定結合配偶體。通常,抗體或多肽以對應於約10 -7M或更小K D的親和力特異性結合至其預定抗原或結合配偶體,且以相對於結合至非特異性及不相關抗原/結合配偶體(例如BSA、酪蛋白)小至少10倍、小至少100倍或小至少1000倍的其親和力之親和力(如藉由K D所表示)結合至預定抗原/結合配偶體。可替代地,特異性結合更廣泛地適用於二組分系統,其中一種組分係蛋白質、脂質或碳水化合物或其組合且與係蛋白質、脂質、碳水化合物或其組合的第二組分以特定方式接合。
術語「受試者」或「患者」係指任何動物。描述為「有需要」的受試者或患者係指需要治療疾病的人。哺乳動物(即哺乳類動物)包括人類、實驗室動物(例如靈長類動物、大鼠、小鼠)、家畜(例如牛、綿羊、山羊、豬)及家庭寵物(例如狗、貓、齧齒類動物)。例如,該受試者可為非人類哺乳動物,包括但不限於:狗、貓、牛、馬、豬、驢、山羊、駱駝、小鼠、大鼠、天竺鼠、綿羊、駱馬、猴、大猩猩或黑猩猩。在一些實施方式中,該受試者係人類受試者。
「菌株」係指具有基因簽名的細菌物種之成員,從而其可與相同細菌物種的密切相關成員區分開來。基因簽名可為不存在至少一種基因之全部或一部分、不存在至少一個調控區(例如啟動子、終止子、核糖開關、核糖體結合位點)之全部或一部分、不存在(「消除」)至少一種天然質體、存在至少一種重組基因、存在至少一種突變基因、存在至少一種外來基因(衍生自另一物種的基因)、存在至少一種突變調控區(例如啟動子、終止子、核糖開關、核糖體結合位點)、存在至少一種非天然質體、存在至少一種抗生素抗性盒或其組合。可藉由PCR擴增且視需要地隨後進行一或多個目的基因組區域或全基因組之DNA定序來鑒別不同菌株之間的基因簽名。如果一種菌株(與相同物種的另一種菌株相比)已獲得或失去抗生素抗性或獲得或失去生物合成能力(例如營養缺陷型菌株),則可藉由選擇或反選擇分別使用抗生素或營養物/代謝物來區分菌株。
如本文所用,術語「治療」受試者疾病或「治療」患有或懷疑患有疾病的受試者係指對受試者實施醫藥治療(例如投與一或多種藥劑),從而降低至少一種疾病症狀或預防其惡化。因此,在一個實施方式中,「治療」尤其是指延遲進展、促進緩解、誘導緩解、增大緩解、加速恢復、增加功效或降低替代治療之抗性,或其組合。
如本文所用,細菌之「類型」可以藉由以下彼此區分開:屬、種、亞種、菌株;或藉由任何其他分類學分類彼此區分開(無論係基於形態學、生理學、基因型、蛋白質表現或本領域已知的其他特徵)。 細菌
在某些方面,本文提供了包含小韋榮氏球菌的、可用於誘導免疫效應(例如,免疫細胞的抗炎細胞介素表現之增加或免疫細胞的促炎細胞介素表現之減少)的細菌組成物(例如,藥物組成物),和例如在受試者中(例如,在人類受試者中)使用此類細菌組成物之方法(例如,用於誘導免疫效應(例如,免疫細胞的抗炎細胞介素表現之增加或免疫細胞的促炎細胞介素表現之減少))。在一些實施方式中,該細菌組成物包含完整小韋榮氏球菌細菌(例如,活細菌、被殺死的細菌、減毒細菌)。在一些實施方式中,小韋榮氏球菌細菌經γ照射。在一些實施方式中,該細菌組成物(例如,藥物組成物)僅包含一種細菌之菌株,例如,小韋榮氏球菌。
根據用於專利程序目的的國際承認的微生物保藏的布達佩斯條約(Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure)之條款,將小韋榮氏球菌菌株A在2019年1月25日保藏於美國典型培養物保藏中心(American Type Culture Collection,ATCC)(美國維吉尼亞州馬納薩斯大學大道10801號,20110-2209(10801 University Boulevard, Manassas, Va. 20110-2209 USA))並且指定ATCC登錄案號PTA-125691。
申請人表示,ATCC係保藏地,如果授予專利,則可永久保藏且公眾可隨時訪問。在授予專利後,將不可撤銷地取消對如此保藏材料之公眾可獲得性的所有限制。該材料可在專利申請未決期間提供給由有資格的專員依據37 CFR 1.14及35 U.S.C. 122所決定的人。在謹慎需要保持存活及無污染的情況下將保藏材料在最新請求提供保藏質體樣本之後維持至少五年的時間段,且在任一情形下在保藏日期之後維持至少三十(30)年的時間段或維持專利之可實施壽命(以較長時間段為準)。申請人確認,如果保藏處因保藏條件而不能在請求時提供樣本,則其有責任更換保藏地。
在一些實施方式中,該小韋榮氏球菌係小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)(也稱為「小韋榮氏球菌菌株A」)。在一些實施方式中,小韋榮氏球菌菌株係與小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)之核苷酸序列(例如基因組序列、16S序列、CRISPR序列)包含至少至少85%、至少86%、至少87%、至少88%、至少89%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%序列同一性(例如至少99.5%序列同一性、至少99.6%序列同一性、至少99.7%序列同一性、至少99.8%序列同一性、至少99.9%序列同一性)之菌株。
也可以根據本領域已知的方法培養小韋榮氏球菌菌株A。例如,小韋榮氏球菌菌株A可以在厭氧條件下在補充有0.05 g/L FeSO4和0.5 g/L L-半胱胺酸鹽酸鹽作為還原劑的PM11 + 5 g/L Na-L-乳酸鹽液體培養基中在37攝氏度下生長。還參見WO 2019/157003。
在一些實施方式中,該細菌組成物包含完整小韋榮氏球菌細菌(例如,活細菌、被殺死的細菌、減毒細菌)。
在一些實施方式中,該細菌組成物包含完整小韋榮氏球菌細菌(例如,經γ照射的小韋榮氏球菌細菌)。
在某些實施方式中,該細菌組成物(例如藥物組成物)(例如,如每天一次或兩次投與的總劑量之組成物)包含約1 x 10 10個總細胞、約2 x 10 10個總細胞、約3 x 10 10個總細胞、約4 x 10 10個總細胞、約4.5 x 10 10個總細胞、約5 x 10 10個總細胞、約6 x 10 10個總細胞、約7 x 10 10個總細胞、約8 x 10 10個總細胞、約9 x 10 10個總細胞、約1 x 10 11個總細胞、約1.5 x 10 11個總細胞、約2 x 10 11個總細胞、約3 x 10 11個總細胞、約4 x 10 11個總細胞、約5 x 10 11個總細胞、約6 x 10 11個總細胞、約7 x 10 11個總細胞、約7.5 x 10 11個總細胞、約8 x 10 11個總細胞、約9 x 10 11個總細胞、約1 x 10 12個總細胞、約1.5 x 10 12個總細胞、約2 x 10 12個總細胞的小韋榮氏球菌細菌。
在某些實施方式中,該細菌組成物(例如藥物組成物)(例如,如每天一次或兩次投與的總劑量之組成物)包含至少1 x 10 10個總細胞(例如,至少1 x 10 10個總細胞、至少2 x 10 10個總細胞、至少3 x 10 10個總細胞、至少4 x 10 10個總細胞、至少4.5 x 10 10個總細胞、至少5 x 10 10個總細胞、至少6 x 10 10個總細胞、至少7 x 10 10個總細胞、至少8 x 10 10個總細胞、至少9 x 10 10個總細胞、至少1 x 10 11個總細胞、至少1.5 x 10 11個總細胞、至少2 x 10 11個總細胞、至少3 x 10 11個總細胞、至少4 x 10 11個總細胞、至少5 x 10 11個總細胞、至少6 x 10 11個總細胞、至少7 x 10 11個總細胞、至少7.5 x 10 11個總細胞、至少8 x 10 11個總細胞、至少9 x 10 11個總細胞、至少1 x 10 12個總細胞、至少1.5 x 10 12個總細胞、至少2 x 10 12個總細胞)的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約3 x 10 10個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約4.5 x 10 10個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約1.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約7.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約3 x 10 10至約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約4.5 x 10 10至約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約3 x 10 10至約1.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約4.5 x 10 10至約1.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約1.5 x 10 11至約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約1.5 x 10 11至約7.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物包含約7.5 x 10 11至約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。
在一些實施方式中,該細菌組成物包含約3 x 10 10個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約4.5 x 10 10個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約1.5 x 10 11個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約7.5 x 10 11個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約1.5 x 10 12個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約3 x 10 10至 約1.5 x 10 12個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約4.5 x 10 10至約1.5 x 10 12個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約3 x 10 10至約1.5 x 10 11個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約4.5 x 10 10至約1.5 x 10 11個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約1.5 x 10 11至約1.5 x 10 12個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約1.5 x 10 11至約7.5 x 10 11個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,該細菌組成物包含約7.5 x 10 11至約1.5 x 10 12個總細胞的小韋榮氏球菌,例如,小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
在一些實施方式中,可以基於總細胞,例如總細胞計數(TCC)(例如,由庫爾特計數器確定)對小韋榮氏球菌細菌進行定量。
在一些實施方式中,該細菌組成物係口服投與。在一些實施方式中,向受試者每天投與一次。在一些實施方式中,以2個或更多個劑量(例如3個或更多個、4個或更多個或5個或更多個劑量)來投與細菌組成物。在一些實施方式中,向受試者投與該兩個或更多個劑量相隔至少1小時、2小時、3小時、4小時、5小時、6小時、7小時、8小時、9小時、10小時、11小時、12小時、13小時、14小時、15小時、16小時、17小時、18小時、1天、2天、3天、4天、5天、6天、7天、8天、9天、10天、11天、12天、13天、14天、15天、16天、17天、18天、19天、20天或21天。
在一些實施方式中,該細菌組成物每天投與一次持續2天、3天、4天、5天、6天、7天、8天、9天、10天、11天、12天、13天、14天、15天、16天、17天、18天、19天、20天、21天、22天、23天、24天、25天、26天、27天、28天、29天、30天、31天、32天、33天、34天、35天、36天、37天、38天、39天、40天、41天、42天、45天、48天、52天、或56天。
在一些實施方式中,該細菌組成物每天投與一次持續1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、或16週。在一些實施方式中,該細菌組成物每天投與一次持續8週。在一些實施方式中,該細菌組成物每天投與一次持續至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、或16週。在一些實施方式中,該細菌組成物每天投與一次持續至少8週。
在一些實施方式中,將細菌組成物配製成膠囊或片劑。在一些實施方式中,該細菌配製物(例如,組成物)包含腸溶包衣或微膠囊。在一些實施方式中,該膠囊係腸溶包衣的膠囊。在一些實施方式中,該腸溶包衣允許細菌組成物在小腸(例如,在小腸上段(例如,在十二指腸))中釋放。
在一些實施方式中,該受試者係哺乳動物。在一些實施方式中,該受試者係人類。在一些實施方式中,該受試者係非人類哺乳動物(例如狗、貓、牛、馬、豬、驢、山羊、駱駝、小鼠、大鼠、天竺鼠、綿羊、駱馬、猴、大猩猩或黑猩猩)。 細菌組成物
在某些實施方式中,本文提供的方法包括使用包含本文提供的小韋榮氏球菌細菌之細菌組成物(例如,藥物組成物)。
在一些實施方式中,該細菌組成物(例如,藥物組成物)包含完整小韋榮氏球菌細菌(例如,活細菌、被殺死的細菌、減毒細菌)。在一些實施方式中,該小韋榮氏球菌細菌係無活性的。在一些實施方式中,該小韋榮氏球菌細菌已經γ照射(例如,根據本文所述之方法)。在一些實施方式中,該小韋榮氏球菌細菌係活的。
在一些實施方式中,該細菌組成物(例如,藥物組成物)僅包含一種細菌之菌株,例如,小韋榮氏球菌。
在一些實施方式中,該細菌組成物(例如藥物組成物)包含一種以上細菌之菌株,例如,小韋榮氏球菌,並且由細菌組成物產生的治療效果係由於存在於組成物中的(例如,治療有效量的)小韋榮氏球菌細菌之存在。
在一些實施方式中,組成物中至少10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%的細菌係小韋榮氏球菌菌株。例如,該組成物中10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%的細菌係小韋榮氏球菌菌株。在一些實施方式中,該細菌組成物中至少99%的細菌係小韋榮氏球菌菌株。在一些實施方式中,組成物中的細菌基本上(例如,約100%)係小韋榮氏球菌菌株。
在一些實施方式中,細菌組成物中約1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%蛋白為小韋榮氏球菌菌株細菌蛋白。
在一些實施方式中,該小韋榮氏球菌係小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。在一些實施方式中,小韋榮氏球菌菌株係與小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)之核苷酸序列(例如基因組序列、16S序列、CRISPR序列)包含至少至少85%、至少86%、至少87%、至少88%、至少89%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%序列同一性(例如至少99.5%序列同一性、至少99.6%序列同一性、至少99.7%序列同一性、至少99.8%序列同一性、至少99.9%序列同一性)之菌株。
在一些實施方式中,該細菌組成物(例如,藥物組成物)包含完整小韋榮氏球菌細菌(例如,活細菌、被殺死的細菌、減毒細菌)。
在一些實施方式中,該細菌組成物(例如,藥物組成物)包含完整小韋榮氏球菌細菌(例如,經γ照射的小韋榮氏球菌細菌)。
在某些實施方式中,該細菌組成物(例如,藥物組成物)(例如,如每天一次或兩次投與的總劑量之組成物)包含約1 x 10 10個總細胞、約2 x 10 10個總細胞、約3 x 10 10個總細胞、約4 x 10 10個總細胞、約4.5 x 10 10個總細胞、約5 x 10 10個總細胞、約6 x 10 10個總細胞、約7 x 10 10個總細胞、約8 x 10 10個總細胞、約9 x 10 10個總細胞、約1 x 10 11個總細胞、約1.5 x 10 11個總細胞、約2 x 10 11個總細胞、約3 x 10 11個總細胞、約4 x 10 11個總細胞、約5 x 10 11個總細胞、約6 x 10 11個總細胞、約7 x 10 11個總細胞、約7.5 x 10 11個總細胞、約8 x 10 11個總細胞、約9 x 10 11個總細胞、約1 x 10 12個總細胞、約1.5 x 10 12個總細胞、約2 x 10 12個總細胞的小韋榮氏球菌細菌。
在某些實施方式中,該細菌組成物(例如藥物組成物)(例如,如每天一次或兩次投與的總劑量之組成物)包含至少1 x 10 10個總細胞(例如,至少1 x 10 10個總細胞、至少2 x 10 10個總細胞、至少3 x 10 10個總細胞、至少4 x 10 10個總細胞、至少4.5 x 10 10個總細胞、至少5 x 10 10個總細胞、至少6 x 10 10個總細胞、至少7 x 10 10個總細胞、至少8 x 10 10個總細胞、至少9 x 10 10個總細胞、至少1 x 10 11個總細胞、至少1.5 x 10 11個總細胞、至少2 x 10 11個總細胞、至少3 x 10 11個總細胞、至少4 x 10 11個總細胞、至少5 x 10 11個總細胞、至少6 x 10 11個總細胞、至少7 x 10 11個總細胞、至少7.5 x 10 11個總細胞、至少8 x 10 11個總細胞、至少9 x 10 11個總細胞、至少1 x 10 12個總細胞、至少1.5 x 10 12個總細胞、至少2 x 10 12個總細胞)的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約3 x 10 10個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約4.5 x 10 10個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約1.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約7.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約3 x 10 10至約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約4.5 x 10 10至約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約3 x 10 10至約1.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約4.5 x 10 10至約1.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約1.5 x 10 11至約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約1.5 x 10 11至約7.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約7.5 x 10 11至約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。
在一些實施方式中,可以基於總細胞,例如總細胞計數(TCC)(例如,由庫爾特計數器確定)對小韋榮氏球菌細菌進行定量。
在一些實施方式中,該細菌組成物(例如,藥物組成物)係口服投與的。在一些實施方式中,向受試者每天投與一次。在一些實施方式中,以2個或更多個劑量(例如3個或更多個、4個或更多個或5個或更多個劑量)來投與細菌組成物。在一些實施方式中,向受試者投與該兩個或更多個劑量相隔至少1小時、2小時、3小時、4小時、5小時、6小時、7小時、8小時、9小時、10小時、11小時、12小時、13小時、14小時、15小時、16小時、17小時、18小時、1天、2天、3天、4天、5天、6天、7天、8天、9天、10天、11天、12天、13天、14天、15天、16天、17天、18天、19天、20天或21天。
在一些實施方式中,該細菌組成物(例如,藥物組成物)每天投與一次持續2天、3天、4天、5天、6天、7天、8天、9天、10天、11天、12天、13天、14天、15天、16天、17天、18天、19天、20天、21天、22天、23天、24天、25天、26天、27天、28天、29天、30天、31天、32天、33天、34天、35天、36天、37天、38天、39天、40天、41天、42天、45天、48天、52天、或56天。
在一些實施方式中,該細菌組成物(例如,藥物組成物)每天投與兩次持續2天、3天、4天、5天、6天、7天、8天、9天、10天、11天、12天、13天、14天、15天、16天、17天、18天、19天、20天、21天、22天、23天、24天、25天、26天、27天、28天、29天、30天、31天、32天、33天、34天、35天、36天、37天、38天、39天、40天、41天、42天、45天、48天、52天、或56天。
在一些實施方式中,該細菌組成物(例如,藥物組成物)每天投與一次持續1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、或16週。在一些實施方式中,該細菌組成物(例如,藥物組成物)每天投與一次持續8週。在一些實施方式中,該細菌組成物每天投與一次持續至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、或16週。在一些實施方式中,該細菌組成物每天投與一次持續至少8週。
在一些實施方式中,該細菌組成物(例如,藥物組成物)每天投與兩次持續1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、或16週。在一些實施方式中,該細菌組成物(例如,藥物組成物)每天投與兩次持續8週。在一些實施方式中,該細菌組成物每天投與兩次持續至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、或16週。在一些實施方式中,該細菌組成物每天投與兩次持續至少8週。
在一些實施方式中,將細菌組成物(例如,藥物組成物)配製成膠囊或片劑。在一些實施方式中,該細菌配製物(例如,組成物)包含腸溶包衣或微膠囊。在一些實施方式中,該膠囊係腸溶包衣的膠囊。在一些實施方式中,該腸溶包衣允許細菌組成物在小腸(例如,在小腸上段(例如,在十二指腸))中釋放。
在一些實施方式中,該受試者係哺乳動物。在一些實施方式中,該受試者係人類。在一些實施方式中,該受試者係非人類哺乳動物(例如狗、貓、牛、馬、豬、驢、山羊、駱駝、小鼠、大鼠、天竺鼠、綿羊、駱馬、猴、大猩猩或黑猩猩)。
在一些實施方式中,為定量細菌樣本中存在的小韋榮氏球菌細菌之數量,可使用電子顯微術(例如,超薄冷凍切片的EM)以觀測細菌並計數它們的相對數量。可替代地,可使用奈米顆粒跟蹤分析(NTA)、庫爾特計數及動態光散射(DLS)之組合或這類技術之組合。NTA及庫爾特計數器計數顆粒並顯示它們的尺寸。DLS給出顆粒之粒度分佈,而非濃度。細菌通常具有1至2 um的直徑。完整範圍係0.2至20 um。來自庫爾特計數及NTA之組合結果可揭示給定樣本中的細菌數量。庫爾特計數揭示具有0.7至10 um的直徑的顆粒之數量。NTA揭示具有50至1400 nm的直徑的顆粒之數量。就大多數細菌樣本而言,庫爾特計數器單獨可揭示樣本中的細菌數量。
在一些實施方式中,該細菌組成物(例如,藥物組成物)包含腸溶包衣或微膠囊。在某些實施方式中,腸溶包衣或微膠囊改善了至期望胃腸道區域的靶向。例如,在某些實施方式中,細菌組成物(例如,藥物組成物)包括在與特定胃腸道區域有關的pH下溶解的腸溶包衣和/或微膠囊。在一些實施方式中,腸溶包衣和/或微膠囊在約5.5 - 6.2的pH下溶解以釋放於十二指腸中,在約7.2 - 7.5的pH值下溶解以釋放於迴腸中,和/或在約5.6 - 6.2的pH值下溶解以釋放於結腸中。示例性腸溶包衣及微膠囊描述於例如美國專利公開案號2016/0022592中,將其全部內容藉由引用併入本文。
在某些方面,提供了用於投與受試者的細菌組成物(例如,藥物組成物)。在一些實施方式中,將細菌組成物與其他活性和/或惰性材料組合以產生最終產物,該最終產物可呈單一劑量單位或多劑量形式。在一些實施方式中,該細菌組成物與佐劑例如免疫佐劑(例如,STING促效劑、TLR促效劑、NOD促效劑)組合。
在一些實施方式中,該細菌組成物(例如,藥物組成物)包括至少一種碳水化合物。「碳水化合物」係指糖或糖聚合物。術語「糖」、「多醣」、「碳水化合物」及「寡醣」可互換使用。大部分碳水化合物係具有許多羥基的醛或酮,通常在分子之每一碳原子上具有一個羥基。碳水化合物通常具有分子式C nH 2nO n。碳水化合物可為單糖、雙醣、三醣、寡醣或多醣。最基本的碳水化合物係單糖,例如葡萄糖、蔗糖、半乳糖、甘露糖、核糖、阿拉伯糖、木糖及果糖。雙醣係兩個接合的單糖。示例性雙醣包括蔗糖、麥芽糖、纖維雙醣及乳糖。通常,寡醣包括三至六個單糖單元(例如棉子糖、水蘇糖),且多醣包含六個或更多個單糖單元。示例性多醣包含澱粉、糖原及纖維素。碳水化合物可含有經修飾糖單元,例如2’-去氧核糖,其中去除羥基,2’-氟核糖,其中羥基經氟代替;或N-乙醯基葡萄糖胺,其為葡萄糖之含氮形式(例如2’-氟核糖、去氧核糖及己糖)。碳水化合物可以許多不同形式存在,例如構型異構物、環狀形式、非環狀形式、立體異構物、互變異構物、端基差向異構物及異構物。
在一些實施方式中,該細菌組成物(例如,藥物組成物)包括至少一種脂質。如本文所用,「脂質」包括脂肪、油、三酸甘油酯、膽固醇、磷脂質、任何形式的脂肪酸(包括游離脂肪酸)。脂肪、油及脂肪酸可為飽和、不飽和(順式或反式)或部分不飽和(順式或反式)。在一些實施方式中,脂質包括至少一種選自以下的脂肪酸:月桂酸(12:0)、肉豆蔻酸(14:0)、棕櫚酸(16:0)、棕櫚油酸(16:1)、珍珠酸(17:0)、十七碳烯酸(17:1)、硬脂酸(18:0)、油酸(18:1)、亞麻油酸(18:2)、亞麻酸(18:3)、十八碳四烯酸(18:4)、花生酸(20:0)、二十碳烯酸(20:1)、二十碳二烯酸(20:2)、二十碳四烯酸(20:4)、二十碳五烯酸(20:5)(EPA)、二十二烷酸(22:0)、二十二碳烯酸(22:1)、二十二碳五烯酸(22:5)、二十二碳六烯酸(22:6)(DHA)及二十四烷酸(24:0)。在一些實施方式中,該細菌組成物(例如,藥物組成物)包括至少一種經修飾脂質,例如已藉由蒸煮修飾的脂質。
在一些實施方式中,該藥物組成物(例如,藥物組成物)包括至少一種補充礦物質或礦物質源。礦物質之實例包括但不限於:氯化物、鈉、鈣、鐵、鉻、銅、碘、鋅、鎂、錳、鉬、磷、鉀及硒。任一前述礦物質之合適形式包含可溶性礦物質鹽、微溶性礦物質鹽、不溶性礦物質鹽、螯合礦物質、礦物質複合物、非反應性礦物質(例如羰基礦物質及經還原礦物質)及其組合。
在一些實施方式中,該細菌組成物(例如,藥物組成物)包括至少一種補充維生素。至少一種維生素可為脂肪可溶性或水可溶性維生素。合適維生素包括但不限於維生素C、維生素A、維生素E、維生素B12、維生素K、核黃素、菸鹼酸(niacin)、維生素D、維生素B6、葉酸、吡哆醇(pyridoxine)、硫胺素、泛酸及生物素。任一前述物質之合適形式係維生素鹽、維生素衍生物、與維生素具有相同或類似活性的化合物及維生素代謝物。
在一些實施方式中,該細菌組成物(例如,藥物組成物)包括賦形劑。合適賦形劑之非限制性實例包含緩衝劑、防腐劑、穩定劑、黏合劑、壓實劑、潤滑劑、分散增強劑、崩散劑、矯味劑、甜味劑及著色劑。
在一些實施方式中,賦形劑係緩衝劑。合適緩衝劑之非限制性實例包含檸檬酸鈉、碳酸鎂、碳酸氫鎂、碳酸鈣及碳酸氫鈣。
在一些實施方式中,賦形劑包括防腐劑。合適防腐劑之非限制性實例包含抗氧化劑(例如α-生育酚及抗壞血酸鹽)及抗微生物劑(例如對羥基苯甲酸酯、氯丁醇及苯酚)。
在一些實施方式中,該細菌組成物(例如,藥物組成物)包含作為賦形劑的黏合劑。合適的黏合劑之非限制性實例包含澱粉、預膠凝澱粉、明膠、聚乙烯基吡咯啶酮、纖維素、甲基纖維素、羧甲基纖維素鈉、乙基纖維素、聚丙烯醯胺、聚乙烯基㗁唑啶酮、聚乙烯醇、C 12-C 18脂肪酸醇、聚乙二醇、多員醇、糖、寡醣及其組合。
在一些實施方式中,該細菌組成物(例如,藥物組成物)包含作為賦形劑的潤滑劑。合適潤滑劑之非限制性實例包含硬脂酸鎂、硬脂酸鈣、硬脂酸鋅、氫化植物油、sterotex(氫化蓖麻油)、聚氧乙烯單硬脂酸酯、滑石粉、聚乙二醇、苯甲酸鈉、月桂基硫酸鈉、月桂基硫酸鎂及輕質礦物油。
在一些實施方式中,該細菌組成物(例如,藥物組成物)包含作為賦形劑的分散增強劑。合適分散劑之非限制性實例包含澱粉、海藻酸、聚乙烯基吡咯啶酮、瓜爾膠、高嶺土、膨土、經純化木質纖維素、羥乙酸澱粉鈉、同晶型矽酸鹽及微晶纖維素(作為高HLB乳化劑界面活性劑)。
在一些實施方式中,該細菌組成物(例如,藥物組成物)包含作為賦形劑的崩散劑。在一些實施方式中,崩散劑係非泡騰崩散劑。合適非泡騰崩散劑之非限制性實例包含澱粉(例如玉米澱粉、馬鈴薯澱粉、其預膠凝及改性澱粉)、甜味劑、黏土(例如膨土)、微晶纖維素、海藻酸鹽、羥乙酸澱粉鈉、樹膠(例如瓊脂、瓜爾膠、刺槐豆膠、刺梧桐膠、果膠及黃蓍膠)。在一些實施方式中,崩散劑係泡騰崩散劑。合適泡騰崩散劑之非限制性實例包含碳酸氫鈉與檸檬酸之組合,以及碳酸氫鈉與酒石酸之組合。
在一些實施方式中,該細菌組成物係食物產品(例如食物或飲料),例如健康食物或飲料,嬰兒用食物或飲料,用於孕婦、運動員、老年人或其他特定人群之食物或飲料,功能食物,飲料,用於指定健康應用的食物或飲料,膳食補充劑,患者用食物或飲料,或動物飼料。食物及飲料之具體實例包含多種飲料,例如果汁、清涼飲料、茶飲料、飲料製劑、果凍飲料及功能飲料;酒精性飲料,例如啤酒;含有碳水化合物之食物,例如大米食品、麵條、麵包及麵團;膏產品,例如魚火腿、香腸、海鮮膏產品;蒸煮袋產品,例如咖喱、敷有厚澱粉醬之食品及中國燉湯;湯;乳制產品,例如乳液、乳制飲料、冰淇淋、乳酪及酸乳;發酵產品,例如發酵豆瓣醬膏、酸乳、發酵飲料及泡菜;豆產品;多種糖果產品,包含餅乾、曲奇等;冰糖、口香糖、軟糖;冷甜點,包含果膠、焦糖布丁及速凍點心;速熟食物,例如即溶湯料及即溶大豆湯料;可微波食物;等等。另外,實例還包含以粉劑、粒劑、錠劑、膠囊、液體、膏及果膠的形式制得的健康食物及飲料。
在一些實施方式中,該細菌組成物係用於動物(包括人類)的食品。除人類外的動物無特定限制,且該組成物可用於各種牲畜、家禽、寵物、實驗動物,及類似物。動物之具體實例包括豬、牛、馬、綿羊、山羊、雞、野鴨、鴕鳥、家鴨、狗、貓、兔、倉鼠、小鼠、大鼠、猴,及類似物,但該等動物不限於此。 劑型
本文還提供了包含小韋榮氏球菌細菌之劑型,例如,用於在本文提供的方法中使用,例如從而在受試者(例如,人類受試者)中誘發免疫效應。可以將包含小韋榮氏球菌細菌之細菌組成物(例如,藥物組成物)配製成固體劑型,例如用於口服投與。該固體劑型可包含一或多種賦形劑,例如藥學上可接受的賦形劑。該固體劑型的小韋榮氏球菌細菌可為分離的小韋榮氏球菌細菌。視需要地,該固體劑型的小韋榮氏球菌細菌可為冷凍乾燥的細菌。視需要地,該固體劑型的小韋榮氏球菌細菌係活的細菌。視需要地,固體劑型中的小韋榮氏球菌細菌經γ照射。該固體劑型可以包含片劑、微型片劑、膠囊、丸劑或粉劑;或該等形式之組合(例如,膠囊中包含的微型片劑)。
該固體劑型的小韋榮氏球菌細菌可以呈粉劑形式(例如,該粉劑包含冷凍乾燥的小韋榮氏球菌細菌)。在一些實施方式中,該粉劑進一步包含甘露醇、硬脂酸鎂、和/或膠態二氧化矽。在一些實施方式中,該粉劑進一步包含甘露醇、硬脂酸鎂、和膠態二氧化矽。在一些實施方式中,該粉劑進一步包含蔗糖和/或聚葡萄糖。在一些實施方式中,該粉劑進一步包含蔗糖、聚葡萄糖、和/或L-半胱胺酸鹽酸鹽。
在一些實施方式中,該粉劑重懸於溶液中。
在一些實施方式中,該冷凍乾燥的小韋榮氏球菌細菌重懸於溶液中。
在某些實施方式中,本文提供的細菌組成物(例如,藥物組成物)被製備為包含小韋榮氏球菌細菌和藥學上可接受的載體之固體劑型。
在一些實施方式中,該固體劑型包含膠囊。該膠囊可以包含腸溶包衣。該膠囊可為00號、0號、1號、2號、3號、4號或5號膠囊。該膠囊可包含小韋榮氏球菌細菌粉劑(例如冷凍乾燥的小韋榮氏球菌細菌)。在一些實施方式中,該粉劑進一步包含甘露醇、硬脂酸鎂、和/或膠態二氧化矽。在一些實施方式中,該粉劑進一步包含甘露醇、硬脂酸鎂、和膠態二氧化矽。在一些實施方式中,該粉劑進一步包含蔗糖和/或聚葡萄糖。在一些實施方式中,該粉劑進一步包含蔗糖、聚葡萄糖、和/或L-半胱胺酸鹽酸鹽。在一些實施方式中,該膠囊包含賦形劑,並且該等賦形劑包括甘露醇、膠態二氧化矽、硬脂酸鎂、羥丙基甲基纖維素、甲基丙烯酸丙烯酸乙酯共聚物、檸檬酸三乙酯、和/或滑石粉。
在一些實施方式中,本文所述之固體劑型可為,例如片劑或微型片劑。在一些實施方式中,多個小片劑可以在膠囊中(例如,裝入其中)。
在一些實施方式中,固體劑型包含片劑(> 4 mm)(例如5 mm-17 mm)。例如,該片劑係5 mm、5.5 mm、6 mm、7 mm、8 mm、9 mm、10 mm、11 mm、12 mm、13 mm、14 mm、15 mm、16 mm、17 mm或18 mm片劑。如本領域中已知的,該尺寸係指片劑之直徑。如本文所用,該片劑之尺寸係指在應用腸溶包衣之前的片劑之尺寸。
在一些實施方式中,該固體劑型包含微型片劑。該微型片劑之尺寸範圍可為1 mm-4 mm。例如,該微型片劑可為1 mm微型片劑、1.5 mm微型片劑、2 mm微型片劑、3 mm微型片劑或4 mm微型片劑。如本領域中已知的,該尺寸係指微型片劑之直徑。如本文所用,該微型片劑之尺寸係指在應用腸溶包衣之前的微型片劑之尺寸。
該微型片劑可為在膠囊中。該膠囊可為00號、0號、1號、2號、3號、4號或5號膠囊。包含微型片劑之膠囊可以包含單層包衣,例如非腸溶包衣,例如明膠或HPMC。該微型片劑可以放在膠囊內:膠囊內的微型片劑之數量將取決於膠囊之尺寸和微型片劑之尺寸。例如,0號膠囊可容納31-35(平均33)個3 mm的微型片劑。
本文所述之固體劑型(例如片劑或微型片劑或膠囊)可為腸溶包衣的。在一些實施方式中,該腸溶包衣包含基於聚甲基丙烯酸酯的共聚物。在一些實施方式中,該腸溶包衣包含甲基丙烯酸丙烯酸乙酯(MAE)共聚物(1 : 1)。在一些實施方式中,該腸溶包衣包含甲基丙烯酸丙烯酸乙酯(MAE)共聚物(1 : 1)(例如Kollicoat MAE 100P)。
該固體劑型可以包含包衣。該固體劑型可以包含單層包衣,例如腸溶包衣,例如基於Eudragit的包衣,例如EUDRAGIT L30 D-55、檸檬酸三乙酯和滑石粉。該固體劑型可包含兩層包衣。例如,內包衣可以包含例如EUDRAGIT L30 D-55、檸檬酸三乙酯、滑石粉、無水檸檬酸和氫氧化鈉,而外包衣可以包含例如EUDRAGIT L30 D-55、檸檬酸三乙酯和滑石粉。EUDRAGIT係各種基於聚甲基丙烯酸酯的共聚物之商標名稱。它包括基於甲基丙烯酸和甲基丙烯酸/丙烯酸酯或其衍生物的陰離子、陽離子和中性共聚物。Eudragit係玻璃化轉變溫度在9°C至 > 150°C之間的無定形聚合物。Eudragit係不可生物降解、不可吸收和無毒的。陰離子Eudragit L在pH > 6時溶解並用於腸溶包衣,而在pH > 7時可溶解的Eudragit S用於結腸靶向。具有四級銨基團的Eudragit RL和RS係不溶於水但可膨脹/可滲透的聚合物,適用於緩釋膜包衣應用。在pH ≥ 5時不溶的陽離子Eudragit E可防止藥物在唾液中釋放。
固體劑型(例如,膠囊)可以包含HPMC或明膠。
可以將包含小韋榮氏球菌細菌之細菌組成物(例如,藥物組成物)配製成懸浮液,例如用於口服投與或注射。注射投與包括靜脈內(IV)、肌內(IM)及皮下(SC)投與。對於懸浮液,小韋榮氏球菌細菌可以在緩衝液中,例如藥學上可接受的緩衝液,例如鹽水或PBS中。該懸浮液可包含一或多種賦形劑,例如藥學上可接受的賦形劑。該懸浮液可包含,例如蔗糖或葡萄糖。該懸浮液中的小韋榮氏球菌細菌可為分離的小韋榮氏球菌細菌。視需要地,該懸浮液中的小韋榮氏球菌細菌可為冷凍乾燥的細菌。視需要地,該固體劑型的小韋榮氏球菌細菌係活的細菌。視需要地,該懸浮液中的小韋榮氏球菌細菌可以經γ照射。 劑量
對於向人類受試者口服投與,小韋榮氏球菌細菌之劑量可為例如,約3 x 10 10至約 1.5 x 10 12個顆粒、約4.5 x 10 10至約1.5 x 10 12個顆粒、約3 x 10 10至約1.5 x 10 11個顆粒、約4.5 x 10 10至約1.5 x 10 11個顆粒、約1.5 x 10 11至約1.5 x 10 12個顆粒、1.5 x 10 11至約7.5 x 10 11個顆粒、約7.5 x 10 11至約1.5 x 10 12個顆粒。該劑量可為例如,約1 x 10 10個顆粒、約2 x 10 10個顆粒、約3 x 10 10個顆粒、約4 x 10 10個顆粒、約4.5 x 10 10個顆粒、約5 x 10 10個顆粒、約6 x 10 10個顆粒、約7 x 10 10個顆粒、約8 x 10 10個顆粒、約9 x 10 10個顆粒、約1 x 10 11個顆粒、約1.5 x 10 11個顆粒、約2 x 10 11個顆粒、約3 x 10 11個顆粒、約4 x 10 11個顆粒、約5 x 10 11個顆粒、約6 x 10 11個顆粒、約7 x 10 11個顆粒、約7.5 x 10 11個顆粒、約8 x 10 11個顆粒、約9 x 10 11個顆粒、約1 x 10 12個顆粒、約1.5 x 10 12個顆粒、約2 x 10 12個顆粒。該劑量可為例如約3 x 10 10個顆粒。該劑量可為例如約4.5 x 10 10個顆粒。該劑量可為例如約1.5 x 10 11個顆粒。該劑量可為例如約7.5 x 10 11個顆粒。該劑量可為例如約1.5 x 10 12個顆粒。顆粒計數可以,例如藉由NTA確定。
對於向人類受試者口服投與,小韋榮氏球菌細菌之劑量可為例如,約3 x 10 10至 約1.5 x 10 12個總細胞、約4.5 x 10 10至 約1.5 x 10 12個總細胞、約3 x 10 10至 約1.5 x 10 11個總細胞、約4.5 x 10 10至 約1.5 x 10 11個總細胞、約1.5 x 10 11至 約1.5 x 10 12個總細胞、1.5 x 10 11至約7.5 x 10 11個總細胞、約7.5 x 10 11至約1.5 x 10 12個總細胞。該劑量可為例如,約1 x 10 10個總細胞、約2 x 10 10個總細胞、約3 x 10 10個總細胞、約4 x 10 10個總細胞、約4.5 x 10 10個總細胞、約5 x 10 10個總細胞、約6 x 10 10個總細胞、約7 x 10 10個總細胞、約8 x 10 10個總細胞、約9 x 10 10個總細胞、約1 x 10 11個總細胞、約1.5 x 10 11個總細胞、約2 x 10 11個總細胞、約3 x 10 11個總細胞、約4 x 10 11個總細胞、約5 x 10 11個總細胞、約6 x 10 11個總細胞、約7 x 10 11個總細胞、約7.5 x 10 11個總細胞、約8 x 10 11個總細胞、約9 x 10 11個總細胞、約1 x 10 12個總細胞、約1.5 x 10 12個總細胞、約2 x 10 12個總細胞的小韋榮氏球菌細菌
在某些實施方式中,該細菌組成物(例如藥物組成物)(例如,如每天一次或兩次投與的總劑量之組成物)包含約1 x 10 10個總細胞、約2 x 10 10個總細胞、約3 x 10 10個總細胞、約4 x 10 10個總細胞、約4.5 x 10 10個總細胞、約5 x 10 10個總細胞、約6 x 10 10個總細胞、約7 x 10 10個總細胞、約8 x 10 10個總細胞、約9 x 10 10個總細胞、約1 x 10 11個總細胞、約1.5 x 10 11個總細胞、約2 x 10 11個總細胞、約3 x 10 11個總細胞、約4 x 10 11個總細胞、約5 x 10 11個總細胞、約6 x 10 11個總細胞、約7 x 10 11個總細胞、約7.5 x 10 11個總細胞、約8 x 10 11個總細胞、約9 x 10 11個總細胞、約1 x 10 12個總細胞、約1.5 x 10 12個總細胞、約2 x 10 12個總細胞的小韋榮氏球菌細菌。
在某些實施方式中,該細菌組成物(例如藥物組成物)(例如,如每天一次或兩次投與的總劑量之組成物)包含至少1 x 10 10個總細胞(例如,至少1 x 10 10個總細胞、至少2 x 10 10個總細胞、至少3 x 10 10個總細胞、至少4 x 10 10個總細胞、至少4.5 x 10 10個總細胞、至少5 x 10 10個總細胞、至少6 x 10 10個總細胞、至少7 x 10 10個總細胞、至少8 x 10 10個總細胞、至少9 x 10 10個總細胞、至少1 x 10 11個總細胞、至少1.5 x 10 11個總細胞、至少2 x 10 11個總細胞、至少3 x 10 11個總細胞、至少4 x 10 11個總細胞、至少5 x 10 11個總細胞、至少6 x 10 11個總細胞、至少7 x 10 11個總細胞、至少7.5 x 10 11個總細胞、至少8 x 10 11個總細胞、至少9 x 10 11個總細胞、至少1 x 10 12個總細胞、至少1.5 x 10 12個總細胞、至少2 x 10 12個總細胞)的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約3 x 10 10個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約4.5 x 10 10個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約1.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約7.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約3 x 10 10至約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約4.5 x 10 10至約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約3 x 10 10至約1.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約4.5 x 10 10至約1.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約1.5 x 10 11至約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約1.5 x 10 11至約7.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物(例如,藥物組成物)包含約7.5 x 10 11至約1.5 x 10 12個總細胞的小韋榮氏球菌細菌。
在一些實施方式中,可以基於總細胞,例如總細胞計數(TCC)(例如,由庫爾特計數器確定)對小韋榮氏球菌細菌進行定量。
在某些實施方式中,本文提供了包含小韋榮氏球菌細菌之固體劑型。在一些實施方式中,該固體劑型包含腸溶包衣。在一些實施方式中,該固體劑型係膠囊,例如腸溶膠囊。在一些實施方式中,每個膠囊包含約3 x 10 10個總細胞的小韋榮氏球菌細菌。在一些實施方式中,每個膠囊包含約4.5 x 10 10個總細胞的小韋榮氏球菌細菌。在一些實施方式中,每個膠囊包含約1.5 x 10 11個總細胞的小韋榮氏球菌細菌。在一些實施方式中,向受試者投與1、2、3、4、5、6、7、8、9或10個膠囊,例如每天一次或兩次。在一些實施方式中,向受試者投與1個膠囊(例如,包含約3 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與2個膠囊(例如,每個膠囊包含約3 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與4個膠囊(例如,每個膠囊包含約3 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與10個膠囊(例如,每個膠囊包含約3 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與1個膠囊(例如,包含約4.5 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與2個膠囊(例如,每個膠囊包含約4.5 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與4個膠囊(例如,每個膠囊包含約4.5 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與10個膠囊(例如,每個膠囊包含約4.5 x 10 10個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與1個膠囊(例如,包含約1.5 x 10 11個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與2個膠囊(例如,每個膠囊包含約1.5 x 10 11個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與5個膠囊(例如,每個膠囊包含約1.5 x 10 11個總細胞),例如每天一次或兩次。在一些實施方式中,向受試者投與10個膠囊(例如,每個膠囊包含約1.5 x 10 11個總細胞),例如每天一次或兩次。在一些實施方式中,將膠囊中的小韋榮氏球菌細菌冷凍乾燥(例如,成粉劑形式)。在一些實施方式中,將膠囊中的小韋榮氏球菌細菌冷凍乾燥成粉劑形式,並且該粉劑進一步包含甘露醇、硬脂酸鎂、和/或膠態二氧化矽。在一些實施方式中,膠囊之小韋榮氏球菌細菌經γ照射。
在一些實施方式中,該固體劑型包含膠囊。在一些實施方式中,該膠囊係腸溶包衣的膠囊。在一些實施方式中,該膠囊包含約3 x 10 10個總細胞的小韋榮氏球菌細菌(例如,一個膠囊或多個膠囊之總劑量)。在一些實施方式中,該膠囊包含約4.5 x 10 10個總細胞的小韋榮氏球菌細菌(例如,一個膠囊或多個膠囊之總劑量)。在一些實施方式中,該膠囊包含約1.5 x 10 11個總細胞的小韋榮氏球菌細菌(例如,一個膠囊或多個膠囊之總劑量)。在一些實施方式中,將膠囊中的小韋榮氏球菌細菌冷凍乾燥(例如,成粉劑形式)。在一些實施方式中,將膠囊中的小韋榮氏球菌細菌冷凍乾燥成粉劑形式,並且該粉劑進一步包含甘露醇、硬脂酸鎂、和/或膠態二氧化矽。在一些實施方式中,膠囊之小韋榮氏球菌細菌經γ照射。
在一些實施方式中,固體劑型包含片劑。在一些實施方式中,該片劑係腸溶包衣片劑。在一些實施方式中,該腸溶包衣的片劑之直徑為5 mm至18 mm。在一些實施方式中,該片劑包含約3 x 10 10個總細胞的小韋榮氏球菌細菌(例如,一個片劑或多個片劑之總劑量)。在一些實施方式中,該片劑包含約4.5 x 10 10個總細胞的小韋榮氏球菌細菌(例如,一個片劑或多個片劑之總劑量)。在一些實施方式中,該片劑包含約1.5 x 10 11個總細胞的小韋榮氏球菌細菌(例如,一個片劑或多個片劑之總劑量)。在一些實施方式中,將該片劑中的小韋榮氏球菌細菌冷凍乾燥。在一些實施方式中,該片劑之小韋榮氏球菌細菌經γ照射。
在一些實施方式中,該固體劑型包含微型片劑。在一些實施方式中,該微型片劑係腸溶包衣的。在一些實施方式中,該微型片劑之直徑為1 mm至4 mm。在一些實施方式中,該微型片劑(例如,腸溶包衣的微型片劑)係1 mm的微型片劑、1.5 mm的微型片劑、2 mm的微型片劑、3 mm的微型片劑或4 mm的微型片劑。在一些實施方式中,該固體劑型包含微型片劑,該微型片劑包含約3 x 10 10個總細胞的小韋榮氏球菌細菌(例如,多個微型片劑之總劑量)。在一些實施方式中,該固體劑型包含微型片劑,該微型片劑包含約4.5 x 10 10個總細胞的小韋榮氏球菌細菌(例如,多個微型片劑之總劑量)。在一些實施方式中,該固體劑型包含微型片劑,該微型片劑包含約1.5 x 10 11個總細胞的小韋榮氏球菌細菌(例如,多個微型片劑之總劑量)。在一些實施方式中,將該微型片劑中的小韋榮氏球菌細菌冷凍乾燥。在一些實施方式中,該微型片劑中的小韋榮氏球菌細菌經γ照射。
在一些實施方式中,該微型片劑(例如,腸溶包衣的微型片劑)包含在膠囊中。在一些實施方式中,該膠囊係00號、0號、1號、2號、3號、4號或5號膠囊。在一些實施方式中,該膠囊包含非腸溶包衣(例如,明膠)(例如,用非腸溶包衣進行包衣的)。在一些實施方式中,該膠囊包含非腸溶包衣。在一些實施方式中,該膠囊包含明膠。在一些實施方式中,該膠囊包含HPMC。在一些實施方式中,該包含約3 x 10 10個總細胞的小韋榮氏球菌細菌之微型片劑(例如,腸溶包衣的微型片劑)包含在一或多個膠囊中,其中視需要地,該膠囊包含明膠或HPMC。在一些實施方式中,該包含約4.5 x 10 10個總細胞的小韋榮氏球菌細菌之微型片劑(例如,腸溶包衣的微型片劑)包含在一或多個膠囊中,其中視需要地,該膠囊包含明膠或HPMC。在一些實施方式中,該包含約1.5 x 10 11個總細胞的小韋榮氏球菌細菌之微型片劑(例如,腸溶包衣的微型片劑)包含在一或多個膠囊中,其中視需要地,該膠囊包含明膠或HPMC。在一些實施方式中,微型片劑之小韋榮氏球菌細菌經γ照射。
在一些實施方式中,該微型片劑(例如,腸溶包衣的微型片劑)包含在膠囊中。在一些實施方式中,該膠囊係00號、0號、1號、2號、3號、4號或5號膠囊。在一些實施方式中,該膠囊包含非腸溶包衣(例如,明膠)(例如,用非腸溶包衣進行包衣的)。在一些實施方式中,該膠囊包含非腸溶包衣。在一些實施方式中,該膠囊包含明膠或HPMC。在一些實施方式中,該包含約3 x 10 10個總細胞的小韋榮氏球菌細菌之微型片劑(例如,腸溶包衣的微型片劑)包含在一或多個膠囊中,其中視需要地,該膠囊包含明膠或HPMC。在一些實施方式中,該包含約4.5 x 10 10個總細胞的小韋榮氏球菌細菌之微型片劑(例如,腸溶包衣的微型片劑)包含在一或多個膠囊中,其中視需要地,該膠囊包含明膠或HPMC。在一些實施方式中,該包含約1.5 x 10 11個總細胞的小韋榮氏球菌細菌之微型片劑(例如,腸溶包衣的微型片劑)包含在一或多個膠囊中,其中視需要地,該膠囊包含明膠或HPMC。
在一些實施方式中,將包含小韋榮氏球菌細菌之細菌組成物(例如藥物組成物)製備成粉劑(例如,用於重懸或用於以固體劑型(如膠囊)使用)或固體劑型,如片劑、微型片劑、膠囊、丸劑或粉劑;或該等形式之組合(例如,膠囊中包含的微型片劑)。粉劑可以包含冷凍乾燥細菌。在一些實施方式中,該粉劑進一步包含甘露醇、硬脂酸鎂、和/或膠態二氧化矽。在一些實施方式中,該粉劑進一步包含蔗糖和/或聚葡萄糖。在一些實施方式中,該粉劑進一步包含蔗糖、聚葡萄糖、和/或L-半胱胺酸鹽酸鹽。在一些實施方式中,小韋榮氏球菌細菌經γ照射。 γ-照射
粉劑(例如小韋榮氏球菌細菌之粉劑)可以在環境溫度下以17.5 kGy輻射單位進行γ照射。
冷凍生物質(例如小韋榮氏球菌細菌之冷凍生物質)可以在乾冰存在下以25 kGy輻射單位進行γ照射。 治療劑
在某些方面,本文提供的方法包括向受試者投與本文描述的細菌組成物,其單獨投與或與另外的治療劑組合投與。在一些實施方式中,另外的治療劑係免疫抑制劑或類固醇。在一些實施方式中,另外的治療劑係IL-6拮抗劑。在一些實施方式中,另外的治療劑係抗-IL-6拮抗劑抗體。
在一些實施方式中,在投與治療劑之前(例如之前至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23或24小時或之前至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30天)向受試者投與小韋榮氏球菌細菌。在一些實施方式中,在投與治療劑之後(例如之後至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23或24小時或之後至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30天)向受試者投與小韋榮氏球菌細菌。在一些實施方式中,向受試者同時或幾乎同時(例如投與在彼此一小時內進行)投與小韋榮氏球菌細菌及治療劑。在一些實施方式中,在向受試者投與小韋榮氏球菌細菌之前(例如之前至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23或24小時或之前至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30天)向受試者投與抗生素。
在一些實施方式中,在向受試者投與小韋榮氏球菌細菌之後(例如之後至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23或24小時或之後至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30天)向受試者投與抗生素。在一些實施方式中,向受試者同時或幾乎同時(例如投與在彼此一小時內進行)投與小韋榮氏球菌細菌及抗生素。
在一些方面,可基於殺細菌或細菌抑制性質來選擇抗生素。殺細菌抗生素包含破壞細胞壁(例如β-內醯胺)、細胞膜(例如達托黴素(daptomycin))或細菌DNA(例如氟喹啉酮(fluoroquinolone))之作用機制。細菌抑制劑抑制細菌複製且包含磺醯胺、四環素(tetracycline)及巨環內酯並藉由抑制蛋白質合成來發揮作用。另外,儘管一些藥物可在某些生物體中具有殺細菌性且在其他生物體中具有細菌抑制性,但知曉靶生物體使得熟悉該項技術者可選擇具有適當性質的抗生素。在某些治療條件中,細菌抑制抗生素抑制殺細菌抗生素之活性。因此,在某些實施方式中,並不組合殺細菌抗生素及細菌抑制抗生素。
抗生素包括但不限於胺基糖苷安沙黴素、(ansamycin)、碳頭孢烯(carbacephem)、碳青黴烯(carbapenem)、頭孢菌素(cephalosporin)、糖肽、林可醯胺(lincosamide)、脂肽、巨環內酯、單環β-內醯胺類(monobactam)、硝基呋喃、㗁唑啶酮、青黴素(penicillin)、多肽抗生素、喹啉酮(quinolone)、氟喹啉酮、磺醯胺、四環素及抗分枝桿菌化合物及其組合。
胺基糖苷包括但不限於阿米卡星(Amikacin)、建它黴素(Gentamicin)、康黴素(Kanamycin)、新黴素(Neomycin)、奈替米星(Netilmicin)、妥布黴素(Tobramycin)、巴龍黴素(Paromomycin)及奇黴素(Spectinomycin)。胺基糖苷可有效抵抗例如革蘭氏陰性細菌(例如大腸桿菌、克留氏菌屬(Klebsiella)、綠膿桿菌(Pseudomonas aeruginosa)及土倫病法蘭西斯桿菌(Francisella tularensis))且抵抗某些好氧細菌,但對於專性/兼性厭氧菌具有較小有效性。據信,胺基糖苷結合至細菌30S或50S核糖體亞基,由此抑制細菌蛋白合成。
安沙黴素包括但不限於格爾德黴素(Geldanamycin)、除莠黴素(Herbimycin)、雷福黴素(Rifamycin)及曲張鏈菌素(Streptovaricin)。據信,格爾德黴素及除莠黴素抑制或改變熱休克蛋白90之功能。
碳頭孢烯包括但不限於氯碳頭孢(Loracarbef)。據信,碳頭孢烯抑制細菌細胞壁合成。
碳青黴烯包括但不限於厄他培南(Ertapenem)、多尼培南(Doripenem)、亞胺培南(Imipenem)/西司他丁(Cilastatin)及美羅培南(Meropenem)。碳青黴烯作為寬譜抗生素對革蘭氏陽性細菌及革蘭氏陰性細菌均具有殺細菌性。據信,碳青黴烯抑制細菌細胞壁合成。
頭孢菌素包括但不限於頭孢卓西(Cefadroxil)、頭孢若林(Cefazolin)、頭孢噻吩(Cefalotin)、頭孢金素(Cefalothin)、頭孢胺苄(Cefalexin)、頭孢可若(Cefaclor)、頭孢孟多(Cefamandole)、頭孢西丁(Cefoxitin)、頭孢丙烯(Cefprozil)、頭孢呋辛(Cefuroxime)、希復欣敏(Cefixime)、頭孢地尼(Cefdinir)、頭孢托侖(Cefditoren)、頭孢匹拉(Cefoperazone)、頭孢噻肟(Cefotaxime)、頭孢泊肟(Cefpodoxime)、頭孢他啶(Ceftazidime)、頭孢布烯(Ceftibuten)、頭孢唑肟(Ceftizoxime)、頭孢克松(Ceftriaxone)、頭孢吡肟(Cefepime)、頭孢他洛林酯(Ceftaroline fosamil)及頭孢比普(Ceftobiprole)。所選頭孢菌素可效抵抗(例如)革蘭氏陰性細菌及革蘭氏陽性細菌(包含假單胞菌( Pseudomonas)),某些頭孢菌素可有效抵抗抗二甲苯青黴素金黃色葡萄球菌( Staphylococcus aureus)(MRSA)。據信,頭孢菌素藉由破壞細菌細胞壁之肽聚糖層之合成來抑制細菌細胞壁合成。
糖肽包括但不限於替考拉寧(Teicoplanin)、萬古黴素(Vancomycin)及特拉萬星(Telavancin)。糖肽可有效抵抗(例如)好氧及厭氧革蘭氏陽性細菌(包含MRSA及困難梭狀芽孢桿菌( Clostridium difficile))。據信,糖肽藉由破壞細菌細胞壁之肽聚糖層之合成來抑制細菌細胞壁合成。
林可醯胺包括但不限於克林達黴素(Clindamycin)及林可黴素(Lincomycin)。林可醯胺可有效抵抗(例如)厭氧細菌以及葡萄球菌(Staphylococcus)及鏈球菌(Streptococcus)。據信,林可醯胺結合至細菌50S核糖體亞基,由此抑制細菌蛋白合成。
脂肽包括但不限於達托黴素。脂肽可有效抵抗例如革蘭氏陽性細菌。據信,脂肽結合至細菌膜並引起快速去極化。
巨環內酯包括但不限於亞藥索黴素(Azithromycin)、克拉黴素(Clarithromycin)、地紅黴素(Dirithromycin)、紅黴素(Erythromycin)、羅紅黴素(Roxithromycin)、醋竹桃黴素(Troleandomycin)、泰利黴素(Telithromycin)及螺旋黴素(Spiramycin)。巨環內酯可有效抵抗例如鏈球菌屬及支原體屬(Mycoplasma)。據信,巨環內酯結合至細菌或50S核糖體亞基,由此抑制細菌蛋白合成。
單環β-內醯胺類包括但不限於胺曲南(Aztreonam)。單環β-內醯胺類可有效抵抗例如革蘭氏陰性細菌。據信,單環β-內醯胺類藉由破壞細菌細胞壁的肽聚糖層的合成來抑制細菌細胞壁合成。
硝基呋喃包括但不限於呋喃唑酮(Furazolidone)及呋喃妥因(Nitrofurantoin)。
㗁唑啶酮包括但不限於利奈唑胺(Linezolid)、潑斯唑來(Posizolid)、雷得唑來(Radezolid)及特地唑胺(Torezolid)。據信,㗁唑啶酮係蛋白質合成抑制劑。
青黴素包括但不限於阿莫西林(Amoxicillin)、安比西林(Ampicillin)、阿洛西林(Azlocillin)、羧苄青黴素(Carbenicillin)、氯噻青黴素(Cloxacillin)、二氯噻青黴素(Dicloxacillin)、氟氯西林(Flucloxacillin)、美洛西林(Mezlocillin)、二甲苯青黴素、萘夫西林(Nafcillin)、苯唑西林(Oxacillin)、青黴素G、青黴素V、哌拉西林(Piperacillin)、替莫西林(Temocillin)及替凱西林(Ticarcillin)。青黴素可有效抵抗例如革蘭氏陽性細菌、兼性厭氧菌(例如鏈球菌屬、包柔氏螺旋體屬(Borrelia)及密螺旋體屬(Treponema))。據信,青黴素藉由破壞細菌細胞壁之肽聚糖層之合成來抑制細菌細胞壁合成。
青黴素組合包括但不限於阿莫西林/克拉維酸鹽(clavulanate)、安比西林/舒巴坦(sulbactam)、哌拉西林/三唑巴坦(tazobactam)及替凱西林/克拉維酸鹽。
多肽抗生素包括但不限於桿菌肽(Bacitracin)、黏菌素(Colistin)及多黏菌素(Polymyxin)B及E。多肽抗生素可有效抵抗例如革蘭氏陰性細菌。據信,某些多肽抗生素抑制涉及細菌細胞壁之肽聚糖層之合成的焦磷酸異戊二烯基酯,而其他多肽抗生素藉由置換細菌相對離子來去穩定細菌外膜。
喹啉酮及氟喹啉酮包括但不限於環丙沙星(Ciprofloxacin)、依諾沙星(Enoxacin)、加替沙星(Gatifloxacin)、吉米沙星(Gemifloxacin)、左氧氟沙星(Levofloxacin)、洛美沙星(Lomefloxacin)、莫西沙星(Moxifloxacin)、㖠啶酮酸(Nalidixic acid)、諾氟沙星(Norfloxacin)、氧氟沙星(Ofloxacin)、曲伐沙星(Trovafloxacin)、格帕沙星(Grepafloxacin)、司帕沙星(Sparfloxacin)及替馬沙星(Temafloxacin)。喹啉酮/氟喹啉酮可有效抵抗(例如)鏈球菌及奈瑟菌( Neisseria)。據信,喹啉酮/氟喹啉酮抑制細菌DNA旋轉酶或拓撲異構酶IV,由此抑制DNA複製及轉錄。
磺醯胺包括但不限於磺胺米隆(Mafenide)、磺胺醋醯(Sulfacetamide)、磺胺嘧啶(Sulfadiazine)、磺胺嘧啶銀、磺胺地索辛(Sulfadimethoxine)、磺胺甲噻二唑(Sulfamethizole)、磺胺甲㗁唑(Sulfamethoxazole)、磺胺亞胺基(Sulfanilimide)、柳氮磺胺吡啶(Sulfasalazine)、磺胺異㗁唑(Sulfisoxazole)、甲氧苄啶-磺胺甲㗁唑(Trimethoprim-Sulfamethoxazole)(複方磺胺甲㗁唑(Co-trimoxazole))及磺醯胺基柯衣汀(Sulfonamidochrysoidine)。據信,磺醯胺藉由競爭性抑制二氫蝶酸合成酶來抑制葉酸合成,由此抑制核酸合成。
四環素類包括但不限於地美環素(Demeclocycline)、強力黴素(Doxycycline)、米諾環素(Minocycline)、土黴素(Oxytetracycline)及四環素。四環素可有效抵抗例如革蘭氏陰性細菌。據信,四環素結合至細菌30S核糖體亞基,由此抑制細菌蛋白合成。
抗分枝桿菌化合物包括但不限於氯法齊明(Clofazimine)、胺苯碸(Dapsone)、卷麯黴素(Capreomycin)、環絲胺酸(Cycloserine)、乙胺丁醇(Ethambutol)、乙硫異菸醯胺(Ethionamide)、異菸鹼酸肼(Isoniazid)、吡𠯤醯胺(Pyrazinamide)、利福平(Rifampicin)、利福布汀(Rifabutin)、利福噴丁(Rifapentine)及鏈黴素(Streptomycin)。
合適的抗生素還包含胂凡納明(arsphenamine)、氯黴素(chloramphenicol)、磷黴素(fosfomycin)、夫西地酸(fusidic acid)、甲硝唑(metronidazole)、莫匹羅星(mupirocin)、平板黴素(platensimycin)、奎奴普汀(quinupristin)/達福普汀(dalfopristin)、替吉環素(tigecycline)、替硝唑(tinidazole)、甲氧苄啶-阿莫西林(trimethoprim amoxicillin)/克拉維酸鹽、安比西林/舒巴坦、安福黴素-利托菌素(amphomycin ristocetin)、亞藥索黴素、桿菌肽、卜福林(buforin)II、卡波黴素(carbomycin)、殺菌肽(cecropin)Pl、克拉黴素、紅黴素、呋喃唑酮、夫西地酸、夫西地鈉、短桿菌素(gramicidin)、亞胺培南、吲哚菌素(indolicidin)、交沙黴素(josamycin)、馬蓋納尼(magainan)II、甲硝唑(metronidazole)、硝基咪唑、米卡黴素(mikamycin)、變鏈素(mutacin)B-Ny266、變鏈素B-JHl 140、變鏈素J-T8、乳鏈球菌素(nisin)、乳鏈球菌素A、新生黴素(novobiocin)、竹桃黴素(oleandomycin)、奧斯立星(ostreogrycin)、哌拉西林/三唑巴坦、普那黴素(pristinamycin)、雷莫拉寧(ramoplanin)、牛蛙皮膚抗菌肽(ranalexin)、羅伊氏素(reuterin)、利福昔明(rifaximin)、薔薇黴素(rosamicin)、羅沙米星(rosaramicin)、奇黴素、螺旋黴素、葡萄黴素(staphylomycin)、鏈黴殺陽素(streptogramin)、鏈黴殺陽素A、協同菌素(synergistin)、牛磺羅定(taurolidine)、替考拉寧、泰利黴素、替凱西林/克拉維酸(clavulanic acid)、三乙醯基竹桃黴素(triacetyloleandomycin)、泰洛星(tylosin)、短桿菌酪肽(tyrocidin)、短桿菌素(tyrothricin)、萬古黴素、維馬黴素(vemamycin)及維吉黴素(virginiamycin)。
在一些實施方式中,另外的治療劑為免疫抑制劑、DMARD、疼痛控制藥物、類固醇、非類固醇消炎藥(NSAID)或細胞介素拮抗劑及其組合。代表性藥劑包括但不限於環孢素、類視黃醇、皮質類固醇、丙酸衍生物、乙酸衍生物、烯醇酸衍生物、芬那酸衍生物、Cox-2抑制劑、魯美昔布(lumiracoxib)、伊布洛芬(ibuprophen)、水楊酸膽鹼鎂(cholin magnesium salicylate)、非諾洛芬(fenoprofen)、雙水楊酯(salsalate)、二氟苯水楊酸(difunisal)、托美汀(tolmetin)、酮洛芬(ketoprofen)、氟比洛芬(flurbiprofen)、奧沙普秦(oxaprozin)、吲哚美辛(indomethacin)、舒林酸(sulindac)、依託度酸(etodolac)、酮咯酸(ketorolac)、萘丁美酮(nabumetone)、萘普生(naproxen)、伐地考昔(valdecoxib)、依託考昔(etoricoxib)、MK0966;羅非昔布(rofecoxib)、乙醯胺酚(acetominophen)、塞來昔布(Celecoxib)、雙氯芬酸(Diclofenac)、曲馬多(tramadol)、吡羅昔康(piroxicam)、美洛昔康(meloxicam)、替諾昔康(tenoxicam)、屈昔康(droxicam)、氯諾昔康(lornoxicam)、伊索昔康(isoxicam)、甲芬那酸(mefanamic acid)、甲氯芬那酸(meclofenamic acid)、氟芬那酸(flufenamic acid)、托芬那酸(tolfenamic)、伐地考昔(valdecoxib)、帕瑞昔布(parecoxib)、依託度酸(etodolac)、吲哚美辛(indomethacin)、阿司匹靈(aspirin)、伊布洛芬(ibuprophen)、非羅考昔(firocoxib)、胺甲喋呤(methotrexate(MTX))、抗瘧疾藥物(例如,羥基氯喹(hydroxychloroquine)及氯喹(chloroquine))、柳氮磺胺吡啶(sulfasalazine)、來氟米特(Leflunomide)、硫唑嘌呤(azathioprine)、環孢素(cyclosporin)、金鹽(gold salt)、米諾環素(minocycline)、環磷醯胺(cyclophosphamide)、D-青黴胺(D-penicillamine)、米諾環素(minocycline)、金諾芬(auranofin)、他克莫司(tacrolimus)、硫代苯酸金鈉(myocrisin)、苯丁酸氮芥(chlorambucil)、TNF α拮抗劑(例如,TNF α拮抗劑或TNF α受體拮抗劑),例如,阿達木單抗(Humira®)、依那西普(Enbrel®)、英夫利昔單抗(Remicade®;TA-650)、聚乙二醇賽妥珠單抗(Cimzia®;CDP870)、戈利木單抗(Simpom®;CNTO 148)、阿那白滯素(Kineret®)、利妥昔單抗(Rituxan®;MabThera®)、阿巴西普(Orencia®)、托珠單抗(RoActemra /Actemra®)、整合素拮抗劑(TYSABRI®(那他珠單抗))、IL-1拮抗劑(ACZ885(Ilaris))、阿那白滯素(Kineret®))、CD4拮抗劑、IL-23拮抗劑、IL-20拮抗劑、IL-6拮抗劑、BLyS拮抗劑(例如,阿塞西普、Benlysta®/ LymphoStat-B®(貝利木單抗))、p38抑制劑、CD20拮抗劑(奧瑞珠單抗(Ocrelizumab)、奧法木單抗(Arzerra®))、干擾素γ拮抗劑(芳妥珠單抗(Fontolizumab))、強體松龍(prednisolone)、普賴蘇(Prednisone)、地塞米松(dexamethasone)、皮質醇(Cortisol)、皮質酮(cortisone)、氫化皮質酮(hydrocortisone)、甲基強體松龍(methylprednisolone)、貝皮質醇(betamethasone)、曲安奈德(triamcinolone)、倍氯米松(beclometasome)、氟氫皮質酮(fludrocortisone)、去氧皮質酮(deoxycorticosterone)、醛固酮(aldosterone)、強力黴素(Doxycycline)、萬古黴素(vancomycin)、吡格列酮(pioglitazone)、SBI-087、SCIO-469、Cura-100、Oncoxin + Viusid、TwHF、甲氧沙林(Methoxsalen)、維生素D-麥角鈣化醇(Vitamin D - ergocalciferol)、米那普侖(Milnacipran)、紫杉醇(Paclitaxel)、羅西格塔松(rosig tazone)、他克莫司(Tacrolimus)(Prograf®)、RADOOl、拉帕蒙(rapamune)、雷帕黴素(rapamycin)、福斯馬替尼(fostamatinib)、芬太尼(Fentanyl)、XOMA 052、福斯馬替尼二鈉(Fostamatinib disodium)、羅格列酮(rosightazone)、薑黃素(Curcumin)(Longvida™)、瑞舒伐他汀(Rosuvastatin)、馬拉韋羅(Maraviroc)、雷米普利(ramipnl)、米那普侖(Milnacipran)、考前列酮(Cobiprostone)、生長激素(somatropin)、tgAAC94基因治療媒介物、MK0359、GW856553、埃索美拉唑(esomeprazole)、依維莫司(everolimus)、曲妥珠單抗(trastuzumab)、JAKl及JAK2抑制劑、泛JAK抑制劑,例如,四環吡啶酮6(P6)、325、PF-956980、狄諾塞麥(denosumab)、IL-6拮抗劑、CD20拮抗劑、CTLA4拮抗劑、IL-8拮抗劑、IL-21拮抗劑、IL-22拮抗劑、整合素拮抗劑(Tysarbri®(那他珠單抗))、VGEF拮抗劑、CXCL拮抗劑、MMP拮抗劑、防禦素拮抗劑、IL-1拮抗劑(包括IL-1 β拮抗劑),及IL-23拮抗劑(例如,受體誘捕物、拮抗性抗體等)。
在一些實施方式中,另外的治療劑係口服PDE4抑制劑(例如阿普斯特)。在一些實施方式中,另外的治療劑係阿普斯特、依那西普、英夫利昔單抗、阿達木單抗、優特克單抗、或蘇金單抗。
在一些實施方式中,該藥劑係免疫抑制劑。免疫抑制劑之實例包括(但不限於)皮質類固醇、美沙拉𠯤(mesalazine)、美沙拉明(mesalamine)、柳氮磺胺吡啶(sulfasalazine)、柳氮磺胺吡啶衍生物、免疫抑制藥物、環孢素A、巰基嘌呤、硫唑嘌呤(azathiopurine)、普賴蘇、胺甲喋呤、抗組織胺藥、糖皮質素、腎上腺素、茶鹼、色甘酸鈉、抗白三烯、用於鼻炎的抗膽鹼能藥物、TLR拮抗劑、發炎體抑制劑、抗膽鹼能解充血劑、肥大細胞穩定劑、單株抗IgE抗體、疫苗(例如,用於其中使過敏原之量逐漸增加的接種疫苗之疫苗)、細胞介素抑制劑(諸如抗IL-6抗體)、TNF抑制劑(諸如英夫利昔單抗、阿達木單抗、聚乙二醇賽妥珠單抗、戈利木單抗或依那西普及其組合)。
在一些實施方式中,另外的治療劑係環孢素。
在一些實施方式中,另外的治療劑係強體松。
在一些實施方式中,另外的治療劑係阿普斯特。
在一些實施方式中,另外的治療劑係依那西普、英夫利昔單抗、阿達木單抗、優特克單抗、或蘇金單抗。
在一些實施方式中,另外的治療劑係吸入皮質類固醇。
在一些實施方式中,該另外的治療劑係全身性皮質類固醇。
在一些實施方式中,該另外的治療劑係靶向IL-4、IL4R或IL-5的單株抗體。 投與
在一些實施方式中,該細菌組成物係口服投與。在一些實施方式中,向該受試者每天投與一次。在一些實施方式中,向該受試者每天投與兩次。在一些實施方式中,以2個或更多個劑量(例如3個或更多個、4個或更多個或5個或更多個劑量)來投與細菌組成物。在一些實施方式中,向受試者投與該兩個或更多個劑量相隔至少1小時、2小時、3小時、4小時、5小時、6小時、7小時、8小時、9小時、10小時、11小時、12小時、13小時、14小時、15小時、16小時、17小時、18小時、1天、2天、3天、4天、5天、6天、7天、8天、9天、10天、11天、12天、13天、14天、15天、16天、17天、18天、19天、20天或21天。
在一些實施方式中,該細菌組成物每天投與一次持續2天、3天、4天、5天、6天、7天、8天、9天、10天、11天、12天、13天、14天、15天、16天、17天、18天、19天、20天、21天、22天、23天、24天、25天、26天、27天、28天、29天、30天、31天、32天、33天、34天、35天、36天、37天、38天、39天、40天、41天、42天、45天、48天、52天、或56天。
在一些實施方式中,該細菌組成物(例如,藥物組成物)每天投與兩次持續2天、3天、4天、5天、6天、7天、8天、9天、10天、11天、12天、13天、14天、15天、16天、17天、18天、19天、20天、21天、22天、23天、24天、25天、26天、27天、28天、29天、30天、31天、32天、33天、34天、35天、36天、37天、38天、39天、40天、41天、42天、45天、48天、52天、或56天。
在一些實施方式中,該細菌組成物(例如,藥物組成物)每天投與一次持續1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、或16週。在一些實施方式中,該細菌組成物(例如,藥物組成物)每天投與一次持續8週。在一些實施方式中,該細菌組成物每天投與一次持續至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、或16週。在一些實施方式中,該細菌組成物每天投與一次持續至少8週。
在一些實施方式中,該細菌組成物(例如,藥物組成物)每天投與兩次持續1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、或16週。在一些實施方式中,該細菌組成物(例如,藥物組成物)每天投與兩次持續8週。在一些實施方式中,該細菌組成物每天投與兩次持續至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、或16週。在一些實施方式中,該細菌組成物每天投與兩次持續至少8週。
在一些實施方式中,將細菌組成物配製成膠囊或片劑。在一些實施方式中,該細菌配製物包含腸溶包衣或微膠囊。在一些實施方式中,該膠囊係腸溶包衣的膠囊。
在一些實施方式中,該受試者係哺乳動物。在一些實施方式中,該受試者係人類。在一些實施方式中,該受試者係非人類哺乳動物(例如狗、貓、牛、馬、豬、驢、山羊、駱駝、小鼠、大鼠、天竺鼠、綿羊、駱馬、猴、大猩猩或黑猩猩)。
在本文提供的方法之一些實施方式中,該細菌組成物與另外的治療劑之投與結合投與。在一些實施方式中,該細菌組成物包含與另外的治療劑共配製的小韋榮氏球菌細菌。在一些實施方式中,該細菌組成物與另外的治療劑共投與。在一些實施方式中,在投與細菌組成物之前(例如之前約1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50或55分鐘,之前約1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22或23小時,或之前約1、2、3、4、5、6、7、8、9、10、11、12、13或14天)向受試者投與另外的治療劑。在一些實施方式中,在投與細菌組成物之後(例如之後約1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50或55分鐘,之後約1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22或23小時,或之後約1、2、3、4、5、6、7、8、9、10、11、12、13或14天)向受試者投與另外的治療劑。在一些實施方式中,使用相同遞送模式以遞送細菌組成物及另外的治療劑兩者。在一些實施方式中,使用不同遞送模式以投與細菌組成物及另外的治療劑。例如,在一些實施方式中,該細菌組成物口服投與,而另外的治療劑經由注射投與(例如,靜脈內、和/或肌內注射)。
在某些實施方式中,本文所述之細菌組成物、劑型和套組(kit)可以與任何其他常規治療聯合投與。該等治療可在需要和/或指示時施加且可發生於投與本文所述之細菌組成物、劑型及套組之前、同時或之後。
劑量方案可為各種方法及量中的任一者,且可藉由熟悉該項技術者根據已知臨床因素來確定。如醫學技術中已知,任一患者的劑量可取決於許多因素,包含受試者物種、大小、體表面積、年齡、性別、免疫活性及總體健康狀況、有待投與的特定微生物、持續時間及投與途徑、疾病種類及階段及其他化合物(例如同時投與的藥物)。除上述因素外,該等水平可受微生物感染性及微生物性質影響,如可由熟悉該項技術者所測定。在本發明之方法中,微生物之適當最小劑量水平可為足夠使微生物存活、生長及複製的水平。可根據劑型、投與途徑、靶疾病之程度或階段等來適當地設定或調節本文所述細菌組成物之劑量。例如,藥劑之一般有效劑量範圍可為0.01 mg/kg體重/天至1000 mg/kg體重/天、0.1 mg/kg體重/天至1000 mg/kg體重/天、0.5 mg/kg體重/天至500 mg/kg體重/天、1 mg/kg體重/天至100 mg/kg體重/天或5 mg/kg體重/天至50 mg/kg體重/天。有效劑量可為0.01、0.05、0.1、0.5、1、2、3、5、10、20、30、40、50、60、70、80、90、100、200、500或1000 mg/kg體重/天或更高,但劑量並不限於此。
在一些實施方式中,投與給受試者的劑量足以誘導免疫效應(例如,免疫細胞的抗炎細胞介素表現之增加或免疫細胞的促炎細胞介素表現之減少)。熟悉該項技術者將認識到,劑量將取決於多種因素,包含所採用特定化合物之強度以及受試者之年齡、物種、病症及體重。還根據以下因素來確定劑量大小:投與途徑、時機及頻率以及可伴隨投與特定化合物的任何不良副作用之存在、性質及程度及期望的生理學效果。
可藉由熟悉該項技術者已知的常規範圍探測技術來確定合適的劑量及劑量方案。通常,以較小劑量開始治療,該劑量小於化合物之最佳劑量。然後,以小增量增加劑量直至達到該狀況下的最佳效果為止。有效劑量及治療方案可藉由常規及常規方式來確定,例如,其中在實驗室動物中以低劑量開始且然後增加劑量,同時監測效果,且還系統地改變劑量方案。通常使用動物研究來測定每公斤重量的生物活性藥劑之最大可耐受劑量(「MTD」)。熟悉該項技術者通常在其他物種(包含人類)中外推劑量以達到功效,同時避免毒性。
根據上文,在治療應用(例如,用於治療和/或預防)中,與影響所選劑量的其他因素相比,用於本發明之活性劑的劑量尤其取決於以下因素有所變化:活性劑、年齡、體重及接受患者的臨床狀況及投與療法的臨床醫師或行醫者之經歷及判斷。
分開投與可包括任何數量的兩次或更多次投與,包括二、三、四、五或六次投與。熟悉該項技術者可容易地根據本領域中已知的用於監測治療方法之方法及本文提供的其他監測方法確定進行投與的次數或進行一或多次另外的投與之期望。因此,本文提供的方法包括向受試者提供細菌組成物之一或多次投與之方法,其中投與次數可藉由監測受試者確定,且基於監測之結果,判定是否需提供一或多次另外投與。可基於各種監測結果決定是否需提供一或多次另外投與。
投與間的時間段可為各個時間段中的任一者。投與間的時間段可隨各種因素中的任一者而變化,包括監測步驟(如關於投與數量所描述)、受試者建立免疫響應的時間段和/或受試者自正常組織清除細菌的時間段。在一個實例中,時間段可隨受試者建立免疫響應的時間段而變化;例如,時間段可大於受試者建立免疫響應的時間段,例如大於約一週、大於約十天、大於約兩週或大於約一個月;在另一個實例中,時間段可小於受試者建立免疫響應的時間段,例如小於約一週、小於約十天、小於約兩週或小於約一個月。在另一個實例中,時間段可隨受試者自正常組織清除細菌的時間段而變化;例如,時間段可大於受試者自正常組織清除細菌的時間段,例如大於約一天、大於約兩天、大於約三天、大於約五天或大於約一週。
在一些實施方式中,另外的治療劑與本文描述的細菌組成物的組合之遞送減少另外的治療劑之不良反應和/或改善另外的治療劑之功效。
本文描述的另外的治療劑之有效劑量係針對特定患者、組成物及投與模式有效達成所需治療響應且對患者的毒性最小的治療劑之量。可使用本文所述之方法來鑒別有效劑量水平且將取決於多種藥物動力學因素,包含所投與特定組成物之活性、投與途徑、投與時間、所採用特定化合物之排泄速率、治療持續時間、與所採用特定組成物組合使用的其他藥物、化合物和/或材料、所治療患者之年齡、性別、體重、病症、總體健康狀況及先前醫學史以及醫學技術中熟知的類似因素。一般而言,另外的療法之有效劑量將是治療劑之量,其為有效產生治療效應之最低劑量。通常這樣的有效劑量將取決於上文所述之該等因素。
額外治療之毒性係受試者在治療期間及治療之後經受的不利效應之水平。與另外的治療毒性相關的不良事件包括但不限於:腹痛、酸消化不良、酸回流、過敏反應、禿髮、全身性過敏性反應、貧血、焦慮、食欲不振、關節痛、乏力、運動失調、氮質血症、失去平衡、骨痛、出血、血凝塊、低血壓、血壓升高、呼吸困難、支氣管炎、淤血、白血球計數降低、紅血球計數降低、血小板計數降低、心臟毒性、膀胱炎、出血性膀胱炎、心律不整、心瓣膜疾病、心肌病、冠狀動脈疾病、白內障、中樞神經毒性、認知障礙、錯亂、結膜炎、便秘、咳嗽、痙攣、膀胱炎、深層靜脈栓塞、脫水、抑鬱、腹瀉、眩暈、口腔乾燥、皮膚乾燥、消化不良、呼吸困難(dyspnea)、水腫、電解質不平衡、食道炎、疲乏、生育力喪失、發燒、胃腸積氣、面紅、胃逆流、胃食道逆流病、生殖器疼痛、粒細胞減少症、男子女乳症、青光眼、脫髮、手足綜合症、頭痛、聽覺損失、心臟衰竭、心悸、胃灼熱、血腫、出血性膀胱炎、肝毒性、高澱粉酶血症、高鈣血症、高氯血症、高糖血症、高鉀血症、高脂血症、高鎂血症、高鈉血症、高磷酸鹽血症、色素過多、高三酸甘油酯血症、高尿酸血症、低白蛋白血症、低鈣血症、低氯血症、低血糖症、低鉀血症、低鎂血症、低鈉血症、低磷酸鹽血症、陽萎、感染、注射部位反應、失眠、缺鐵、瘙癢、關節痛、腎衰竭、白血球減少症、肝功能障礙、記憶喪失、停經、口瘡、黏膜炎、肌肉痛、肌痛、骨髓抑制、心肌炎、嗜中性白血球減少性發熱、噁心、腎毒性、嗜中性白血球減少症、流鼻血、麻木、耳毒性、疼痛、手足綜合症(palmar-plantar erythrodysesthesia)、全部血球減少症、心包炎、周邊神經病變、咽炎、畏光、光敏感、肺炎(pneumonia)、局限性肺炎(pneumonitis)、蛋白尿、肺血栓、肺性纖維化、肺毒性、皮疹、心跳加快、直腸出血、坐立不安、鼻炎、癲癇、呼吸短促、鼻竇炎、血小板減少症、耳鳴、泌尿道感染、陰道出血、陰道乾燥、眩暈、水滯留(water retention)、無力、體重減輕、體重增加及口腔乾燥症(xerostomia)。一般而言,如果經由療法所達到的受試者益處勝過受試者因療法所經歷的不良事件,則毒性係可接受的。 免疫效應
在一些實施方式中,本文描述的方法和組成物涉及誘導受試者中的免疫效應(例如,免疫細胞的抗炎細胞介素表現之增加或免疫細胞的促炎細胞介素表現之減少;提高實例5中提供的基因之表現;和/或提高表2中提供的基因之表現)。
在一些實施方式中,該免疫效應包括免疫細胞的抗炎細胞介素表現之增加。在一些實施方式中,該抗炎細胞介素係IL-10或IL-27。在一些實施方式中,該抗炎細胞介素係IL-10。在一些實施方式中,該免疫效應包括免疫細胞的促炎細胞介素表現之減少。在一些實施方式中,該促炎細胞介素係IL-1β、IL-6、和TNF-α、IL-5、IL-4、IL-13、IL-17、或IL-8。「TNF-α」在本文中也可稱為「TNF」。在一些實施方式中,該促炎細胞介素係IL-5、IL-4、IL-13、或IL-17。在一些實施方式中,該免疫細胞係周邊血單核細胞(PBMC)、樹突細胞或巨噬細胞。
在一些實施方式中,該免疫效應包括提高實例5中提供的基因之表現(例如,在小腸中)。在一些實施方式中,發現富集了顯示升高的表現之基因的細胞類型係免疫上皮細胞。在一些實施方式中,發現富集了顯示升高的表現之基因的細胞類型係免疫細胞(例如,B細胞;T細胞;和/或骨髓細胞)。在一些實施方式中,顯示升高的表現之基因係 Spink1 Tm4sf5、和/或 Aoc1。在一些實施方式中,顯示升高的表現之基因係表2中提供的基因。在一些實施方式中,顯示升高的表現之基因與淋巴球遷移、腸道歸巢和黏附相關(例如, Ccl25 Ccr10 Ccl22 Ccl24 Itgb7 Itgal 和/或 Itgam)。在一些實施方式中,顯示升高的表現之基因與T細胞譜系成熟和活化相關(例如, Cd69 Icos Il2rg Cd3d Trbc1 Trbc2 Trac Lat Zap70 Lck 和/或 Cd2)。在一些實施方式中,顯示升高的表現之基因與B細胞譜系成熟和活化相關(例如, CD19 CD79a CD79b CD69 Ighd Fcrl1 Blk Ikzf3 Tnfrsf13c Jchain Iglc1 和/或 Iglc2)。在一些實施方式中,顯示升高的表現之基因與免疫調節相關(例如, Foxp3 Lag3 Traf3ip3 Slamf6 Il33 Cd5 Adamdec1 和/或 Nr1i3)。在一些實施方式中,顯示升高的表現之基因與腸上皮細胞穩態(障壁、代謝、吸收)相關(例如, Gpx2 Gstm3 Aqp8 Guca2b Adipoq Dgat1 Dgat2 Slc23a1 和/或 Slc51b)。在一些實施方式中,顯示升高的表現之基因與宿主保護性途徑相關(例如, Zg16 Def5a Reg3a Retnlb Reg3g Cfd Lypd8 和/或 Casp6)。
在一些實施方式中,該受試者患有免疫障礙。在一些實施方式中,該免疫障礙係異位性皮膚炎、牛皮癬、或氣喘。在一些實施方式中,異位性皮膚炎係中度異位性皮膚炎。在一些實施方式中,牛皮癬係中度牛皮癬。在一些實施方式中,氣喘係中度氣喘。
在一些實施方式中,該受試者患有疾病或障礙。在一些實施方式中,該疾病或障礙係炎性腸病(例如,克隆氏症或潰瘍性結腸炎)。在一些實施方式中,該疾病或障礙係牛皮癬(例如,中度牛皮癬)。在一些實施方式中,該疾病或障礙係異位性皮膚炎(例如,中度異位性皮膚炎)。在一些實施方式中,該疾病或障礙係氣喘(例如,輕度氣喘)。
本文描述的方法可用於誘導有需要的任何受試者中的免疫效應(例如,免疫細胞的抗炎細胞介素表現之增加或免疫細胞的促炎細胞介素表現之減少;提高實例5中提供的基因之表現;和/或提高表2中提供的基因之表現)。如本文所用,「有需要的受試者」包括患有與病理學免疫響應(牛皮癬(例如,中度牛皮癬)或異位性皮膚炎(例如,中度異位性皮膚炎)或氣喘(例如,輕度氣喘))相關的疾病或障礙之任何受試者,及具有增加獲得此疾病或障礙的可能性之任何受試者。
例如,本文描述的組成物可以用作細菌組成物,例如用於誘導受試者中的免疫效應(例如,免疫細胞的抗炎細胞介素表現之增加或免疫細胞的促炎細胞介素表現之減少;提高實例5中提供的基因之表現;和/或提高表2中提供的基因之表現)。在一些實施方式中,該受試者患有自體免疫性疾病,如慢性炎性腸病、全身性紅斑狼瘡、牛皮癬、穆-韋二氏綜合症、類風濕性關節炎、多發性硬化症或橋本氏病(Hashimoto's disease);過敏性疾病,如食物過敏、花粉病或氣喘;傳染性疾病,如困難梭狀芽孢桿菌感染;炎性疾病,如TNF介導的炎性疾病(例如,胃腸道炎性疾病,如結腸袋炎(pouchitis);心血管炎性病症,如動脈粥樣硬化;或炎性肺病,如慢性阻塞性肺疾病)之藥物組成物;用作用於抑制器官移植中的排斥或其中可能發生組織排斥的其他情況之細菌組成物;用作用於改善免疫功能的補充物、食物或飲料;或用作用於抑制免疫細胞的增殖或功能之試劑。
在一些實施方式中,該受試者患有炎症。在某些實施方式中,身體的任何組織及器官之炎症,包括肌肉骨骼炎症、血管炎症、神經炎症、消化系統炎症、眼部炎症、生殖系統炎症及其他炎症,如下文討論。
肌肉骨骼系統之免疫障礙包括但不限於那些影響骨骼關節(包括手、手腕、肘部、肩部、下巴、脊柱、頸部、臀部、膝蓋、踝部及足部的關節)的病症,及影響將肌肉連接至骨頭的組織(如肌腱)的病症。可用本文所述之方法及組成物治療的這類免疫障礙之實例包括但不限於關節炎(包括,例如,骨關節炎、類風濕性關節炎、牛皮癬性關節炎、僵直性脊柱炎、急性及慢性感染性關節炎、與痛風和假痛風相關的關節炎及幼年特發性關節炎)、肌腱炎、滑膜炎、腱鞘炎、滑囊炎、纖維組織炎(纖維肌痛)、上髁炎、肌炎及骨炎(包括,例如,佩吉特氏病(Paget's disease)、恥骨炎及囊性纖維性骨炎)。
眼部免疫障礙係指影響眼睛的任何結構(包括眼瞼)之免疫障礙。可用本文所述之方法及組成物治療的眼部免疫障礙之實例包括但不限於瞼緣炎、眼瞼皮膚松垂症、結膜炎、淚腺炎、角膜炎、乾燥性角膜結膜炎(乾眼症)、鞏膜炎、倒睫及眼色素層炎。
可用本文所述之方法及組成物治療的神經系統免疫障礙之實例包括但不限於腦炎、格巴二氏綜合症(Guillain-Barre syndrome)、腦膜炎、神經性肌強直、發作性睡病、多發性硬化症、脊髓炎及精神分裂症。可用本文所述之方法及組成物治療的脈管系統或淋巴系統炎症之實例包括但不限於關節僵硬、關節炎、靜脈炎、血管炎及淋巴管炎。
可用本文所述之方法及組成物治療的消化系統免疫障礙之實例包括但不限於膽管炎、膽囊炎、腸炎、小腸結腸炎、胃炎、胃腸炎、炎性腸病、迴腸炎及直腸炎。炎性腸病包括(例如)一組相關病症之某些本領域公認的形式。已知炎性腸病之幾種主要形式,這類障礙中最常見的為克隆氏症(區域性腸病,例如,非活性及活性形式)及潰瘍性結腸炎(例如,非活性及活性形式)。另外,炎性腸病涵蓋腸躁症候群、顯微鏡下結腸炎、淋巴球性-漿細胞性腸炎、乳糜瀉、膠原性結腸炎、淋巴球性結腸炎及嗜酸性小腸結腸炎。IBD之其他不常見形式包括非確定型結腸炎、假膜性結腸炎(壞死性結腸炎)、缺血性炎性腸病、白塞氏病、肉瘤病、硬皮病、IBD相關性發育不良、與發育不良相關性團塊或病變及原發性硬化性膽管炎。
可用本文所述之方法及組成物治療的生殖系統免疫障礙之實例包括但不限於子宮頸炎、絨毛膜羊膜炎、子宮內膜炎、附睪炎、臍炎、卵巢炎、睪丸炎、輸卵管炎、輸卵管卵巢膿腫、尿道炎、陰道炎、外陰炎及外陰痛。
在一些實施方式中,該受試者患有具有炎症成分的自體免疫病狀。此類病症包括但不限於急性散播性普禿、白塞氏病、卻格司氏病、慢性疲勞症候群、自主神經障礙、腦脊髓炎、強直性脊椎炎、再生不良性貧血、化膿性汗腺炎、自體免疫性肝炎、自體免疫性卵巢炎、乳糜瀉、克隆氏症、1型糖尿病、巨大細胞動脈炎、古德帕斯丘綜合症、格雷氏病、格巴二氏綜合症、橋本氏病、亨-舍二氏紫斑症、川崎病、紅斑狼瘡、顯微境下結腸炎、顯微境下多動脈炎、混合性結締組織病、穆-韋二氏綜合症、多發性硬化症、重症肌無力、斜視眼陣攣肌陣攣綜合症、視神經炎、奧德氏甲狀腺炎、天疱瘡、結節性多動脈炎、多肌痛、類風濕性關節炎、萊特爾氏綜合症、舍葛籣氏綜合症、顳動脈炎、韋格納氏肉芽腫病、溫性自體免疫性溶血性貧血、間質性膀胱炎、萊姆病、侷限性硬皮病、牛皮癬、肉瘤病、硬皮病、潰瘍性結腸炎及白斑症。
在一些實施方式中,該受試者患有具有炎症成分的T細胞介導的過敏疾病。此類病狀包括但不限於接觸性過敏、接觸性皮膚炎(包括由於毒葛引起的接觸性皮膚炎)、蕁麻疹、皮膚過敏、呼吸道過敏(花粉病、過敏性鼻炎、屋塵蟎過敏)及麩質敏感性腸病(乳糜瀉)。
受試者可能患有的其他免疫障礙包括例如闌尾炎、皮膚炎、皮肌炎、心內膜炎、纖維組織炎、牙齦炎、舌炎、肝炎、化膿性汗腺炎、虹膜炎、喉炎、乳腺炎、心肌炎、腎炎、耳炎、胰臟炎、腮腺炎、心包炎、腹膜炎、咽炎、胸膜炎、肺炎、前列腺炎、腎盂腎炎及口炎、移植排斥(涉及器官,如腎臟、肝臟、心臟、肺、胰臟(例如胰島細胞)、骨髓、角膜、小腸、皮膚同種異體移植物、皮膚同種移植物及心瓣膜異種移植物;血清病及移植物抗宿主疾病)、急性胰臟炎、慢性胰臟炎、急性呼吸窘迫綜合症、西紮利氏綜合症、先天性腎上腺增生、非化膿性甲狀腺炎、癌症相關的高鈣血症、天疱瘡、大皰性皰疹樣皮膚炎、重度多形性紅斑、剝脫性皮膚炎、脂溢性皮膚炎、季節性或常年性過敏性鼻炎、支氣管氣喘、接觸性皮膚炎、異位性皮膚炎、藥物過敏、過敏性結膜炎、角膜炎、眼帶狀皰疹、虹膜炎及虹膜睫狀體炎、脈絡膜視網膜炎、視神經炎、症狀性肉瘤病、暴發性或散播性肺結核化學療法、成人特發性血小板減少性紫癜病、成人繼發性血小板減少症、後天性(自體免疫性)溶血性貧血、成人白血病及淋巴瘤、兒童急性白血病、局部性腸炎、自體免疫性血管炎、多發性硬化症、慢性阻塞性肺病、實體器官移植排斥、敗血症。較佳的治療包括以下的治療:移植排斥、類風濕性關節炎、牛皮癬性關節炎、多發性硬化症、1型糖尿病、氣喘、炎性腸病、全身性紅斑狼瘡、牛皮癬、慢性阻塞性肺病及伴隨傳染病症的炎症(例如,敗血症)。
在一些方面,揭露了用於誘導免疫效應(例如,免疫細胞的抗炎細胞介素表現之增加或免疫細胞的促炎細胞介素表現之減少;提高實例5中提供的基因之表現;和/或提高表2中提供的基因之表現)的細菌組成物。在一些方面,本文描述了包含小韋榮氏球菌之細菌組成物,其中該小韋榮氏球菌係與小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)之核苷酸序列包含至少85%序列同一性的菌株,該細菌組成物用於誘導免疫效應(例如,免疫細胞的抗炎細胞介素表現之增加或免疫細胞的促炎細胞介素表現之減少;提高實例5中提供的基因之表現;和/或提高表2中提供的基因之表現)。
在一些方面,揭露了細菌組成物用於製備用於誘導免疫效應(例如,免疫細胞的抗炎細胞介素表現之增加或免疫細胞的促炎細胞介素表現之減少;提高實例5中提供的基因之表現;和/或提高表2中提供的基因之表現)的藥物之用途。在一些方面,本文描述了細菌組成物用於製備用於誘導免疫效應(例如,免疫細胞的抗炎細胞介素表現之增加或免疫細胞的促炎細胞介素表現之減少;提高實例5中提供的基因之表現;和/或提高表2中提供的基因之表現)的藥物之用途,其中該細菌組成物包含小韋榮氏球菌,其中該小韋榮氏球菌係與小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)之核苷酸序列包含至少85%序列同一性之菌株。 菌群失調
近年來,越來越清楚的是,腸道微生物群(也稱為「腸道微生物相」)可藉由微生物對宿主的免疫細胞和其它細胞的活性以及影響(局部和/或遠端)對個體健康產生顯著影響(Walker, W.A., Dysbiosis[菌群失調]. The Microbiota in Gastrointestinal Pathophysiology[胃腸道病理生理學中的微生物相.] 第二十五章. 2017;Weiss和Thierry, Mechanisms and consequences of intestinal dysbiosis[腸道菌群失調之機制和後果]. Cellular and Molecular Life Sciences[細胞與分子生命科學]. (2017) 74 (16): 2959-2977. Zurich Open Repository and Archive [蘇黎世開放存儲庫和文件案館], doi.org/10.1007/s00018-017-2509-x))。
健康的宿主腸道微生物群穩態有時被稱為「生態平衡」或「正常微生物」,而宿主微生物群的組成和/或其多樣性之有害變化可能導致微生物群之不健康失衡,或「菌群失調」(Hooks和O’Malley. Dysbiosis and its discontents[菌群失調及其不滿]. American Society for Microbiology[美國微生物學會]. 2017年10月. 第8卷. 第5期. mBio 8: e01492-17. https://doi.org/10.1128/mBio.01492-17)。當微生物群穩態喪失或減弱時,可能會發生菌群失調以及相關的局部或遠端宿主發炎或免疫效應,從而導致:對病原體的敏感性增加;宿主細菌代謝活性改變;誘導宿主促炎活性和/或降低宿主抗炎活性。此類效應部分地由宿主免疫細胞(例如,T細胞、樹突細胞、肥大細胞、NK細胞、腸上皮淋巴球(IEC)、巨噬細胞和吞噬細胞)和細胞介素,以及由此類細胞和其他宿主細胞釋放的其他物質之間的相互作用介導。
菌群失調可能發生在胃腸道內(「胃腸道菌群失調」或「腸道菌群失調」),或者可能發生在胃腸道內腔外(「遠端菌群失調」)。胃腸菌群失調通常與腸上皮障壁完整性降低、緊密連接完整性降低和腸通透性增加有關。Citi, S. Intestinal Barriers protect against disease [腸障壁可預防疾病], Science [科學] 359: 1098-99 (2018);Srinivasan等人, TEER measurement techniques for in vitro barrier model systems[用於體外障壁模型系統的TEER測量技術]. J. Lab. Autom [實驗室自動化雜誌]. 20: 107-126 (2015)。胃腸道菌群失調可以在胃腸道內外產生生理和免疫效應。
菌群失調之存在已與多種疾病和病症相關,包括:感染、癌症、自體免疫障礙(例如全身性紅斑狼瘡(SLE))或炎性障礙(例如功能性胃腸道疾病,例如炎性腸病(IBD)、潰瘍性結腸炎和克隆氏症)、神經炎性疾病(例如多發性硬化症)、移植障礙(例如移植物抗宿主病)、脂肪肝疾病、I型糖尿病、類風濕性關節炎、休格倫氏症、乳糜瀉、囊性纖維化,慢性阻塞性肺病(COPD)以及其他與免疫功能障礙相關的疾病和病症。Lynch等人, The Human Microbiome in Health and Disease [健康與疾病中的人類微生物群], N. Engl. J. Med. 375: 2369-79 (2016),Carding等人, Dysbiosis of the gut microbiota in disease [疾病中腸道微生物相之菌群失調]. Microb. Ecol. Health Dis [微生物生態與健康疾病]. (2015); 26: 10: 3402/mehd.v26.2619;Levy等人, Dysbiosis and the Immune System [菌群失調和免疫系統], Nature Reviews Immunology [自然評論免疫學] 17: 219 (2017年4月)。
本文揭露的示例性細菌組成物可以藉由修飾存在於菌群失調部位的免疫活性來治療菌群失調及其影響。如本文描述的,此類組成物可藉由對宿主免疫細胞的作用(導致例如抗炎細胞介素之分泌增加和/或促炎細胞介素之分泌減少,從而減輕受試接受者之炎症)或藉由代謝產物生產的變化提高實例5中提供的基因之表現和/或提高表2中提供的基因之表現來修飾菌群失調。
本文揭露的可用於治療與菌群失調相關的障礙之示例性細菌組成物包含一或多種類型的免疫調節細菌(例如抗炎細菌)。此類組成物能夠影響接受者宿主在胃腸道中的免疫功能,和/或在受試者胃腸道外的遠端部位產生系統性作用。
本文揭露的可用於治療與菌群失調相關的障礙之示例性細菌組成物包含單一細菌物種(例如,單一菌株)的免疫調節細菌(例如,抗炎細菌)之群體。此類組成物能夠影響接受者宿主在胃腸道中的免疫功能,和/或在受試者胃腸道外的遠端部位產生系統性作用。
在一個實施方式中,將包含經分離的免疫調節細菌(例如抗炎細菌細胞)之群體之細菌組成物以有效治療哺乳動物接受者之菌群失調和其一或多種影響之量投與(例如口服)給該接受者。該菌群失調可為胃腸道菌群失調或遠端菌群失調。
在另一個實施方式中,本發明之細菌組成物可以治療胃腸道菌群失調及其對宿主免疫細胞的一或多種影響,導致抗炎細胞介素之分泌增加和/或促炎細胞介素之分泌減少,從而減輕受試接受者之炎症。
在另一個實施方式中,細菌組成物可以藉由以下來治療胃腸道菌群失調及其一或多種影響:經由細胞和細胞介素調節來調節接受者的免疫響應,以藉由增加腸上皮障壁之完整性來降低腸道通透性。
在另一個實施方式中,細菌組成物可以藉由以下來治療遠端菌群失調及其一或多種影響:經由調節宿主免疫細胞來調節菌群失調部位的接受者免疫響應。
其他示例性細菌組成物可用於治療與菌群失調相關的障礙,該等組成物包含一或多種類型的細菌,該等細菌能夠改變接受者中的宿主免疫細胞亞群(例如T細胞、免疫淋巴樣細胞、樹突細胞、NK細胞和其他免疫細胞之亞群)相對比例或其功能。
其他示例性藥物組成物可用於治療與菌群失調相關的障礙,該等組成物包含免疫調節細菌(例如,單一菌株)之群體,其能夠改變接受者中免疫細胞亞群(例如T細胞亞群、免疫淋巴樣細胞、NK細胞和其他免疫細胞)之相對比例或其功能。
在一個實施方式中,本發明提供了藉由以下來治療胃腸道菌群失調及其一或多種影響之方法:向有需要的受試者口服投與細菌組成物,該細菌組成物改變存在於菌群失調部位的微生物群群體。細菌組成物可以包含一或多種類型的免疫調節細菌或者單一細菌物種(例如,單一菌株)的免疫調節細菌之群體。
在一個實施方式中,本發明提供了藉由以下來治療遠端菌群失調及其一或多種影響之方法:向有需要的受試者口服投與細菌組成物,該細菌組成物改變受試者之胃腸道外的免疫響應。細菌組成物可以包含一或多種類型的免疫調節細菌或者單一細菌物種(例如,單一菌株)的免疫調節細菌之群體。
在示例性實施方式中,可用於治療與菌群失調相關的障礙之細菌組成物刺激宿主免疫細胞分泌一或多種抗炎細胞介素。抗炎細胞介素包括但不限於IL-10、IL-13、IL-9、IL-4、IL-5、TGFβ及其組合。在其他示例性實施方式中,可用於治療與菌群失調相關的障礙之細菌組成物減少(例如抑制)宿主免疫細胞分泌一或多種促炎細胞介素。促炎細胞介素包括但不限於IFNγ、IL-12p70、IL-1α、IL-6、IL-8、MCP1、MIP1α、MIP1β、TNFα及其組合。其他示例性細胞介素係本領域已知的並且在本文中描述。
在示例性實施方式中,可用於治療與菌群失調相關的障礙之細菌組成物提高實例5中提供的基因之表現(例如,在小腸中)。在一些實施方式中,發現富集了顯示升高的表現之基因的細胞類型係免疫上皮細胞。在一些實施方式中,發現富集了顯示升高的表現之基因的細胞類型係免疫細胞(例如,B細胞;T細胞;和/或骨髓細胞)。在一些實施方式中,顯示升高的表現之基因係 Spink1 Tm4sf5、和/或 Aoc1。在一些實施方式中,顯示升高的表現之基因係表2中提供的基因。在一些實施方式中,顯示升高的表現之基因與淋巴球遷移、腸道歸巢和黏附相關(例如, Ccl25 Ccr10 Ccl22 Ccl24 Itgb7 Itgal 和/或 Itgam)。在一些實施方式中,顯示升高的表現之基因與T細胞譜系成熟和活化相關(例如, Cd69 Icos Il2rg Cd3d Trbc1 Trbc2 Trac Lat Zap70 Lck 和/或 Cd2)。在一些實施方式中,顯示升高的表現之基因與B細胞譜系成熟和活化相關(例如, CD19 CD79a CD79b CD69 Ighd Fcrl1 Blk Ikzf3 Tnfrsf13c Jchain Iglc1 和/或 Iglc2)。在一些實施方式中,顯示升高的表現之基因與免疫調節相關(例如, Foxp3 Lag3 Traf3ip3 Slamf6 Il33 Cd5 Adamdec1 和/或 Nr1i3)。在一些實施方式中,顯示升高的表現之基因與腸上皮細胞穩態(障壁、代謝、吸收)相關(例如, Gpx2 Gstm3 Aqp8 Guca2b Adipoq Dgat1 Dgat2 Slc23a1 和/或 Slc51b)。在一些實施方式中,顯示升高的表現之基因與宿主保護性途徑相關(例如, Zg16 Def5a Reg3a Retnlb Reg3g Cfd Lypd8 和/或 Casp6)。
在另一方面,本發明提供了在有需要的受試者中治療或預防與菌群失調相關的障礙之方法,該方法包括向受試者投與(例如口服投與)益生菌食品或醫療食品形式的治療性組成物,該治療性組成物包含的細菌之數量足以改變菌群失調部位的微生物群,從而治療與菌群失調有關的障礙。
在另一個實施方式中,益生菌食品或醫療食品形式的本發明之治療性組成物可用於預防或延遲處於發展為菌群失調風險的受試者中菌群失調之發作。 其他方面
進一步提供了可應用於本文所述之本發明之任何方面之許多實施方式。例如,在一些實施方式中,該小韋榮氏球菌係與小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)之核苷酸序列包含至少99.9%序列同一性之菌株。在一些實施方式中,該小韋榮氏球菌係小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。在一些實施方式中,該細菌組成物係口服投與。在一些實施方式中,將細菌組成物配製成膠囊或片劑。在一些實施方式中,該膠囊係腸溶包衣的膠囊。在一些實施方式中,該細菌組成物包含約3 x 10 10個總細胞的小韋榮氏球菌。在一些實施方式中,該細菌組成物包含約1.5 x 10 11個總細胞的小韋榮氏球菌。在一些實施方式中,該細菌組成物包含約7.5 x 10 11個總細胞的小韋榮氏球菌。在一些實施方式中,該細菌組成物包含約1.5 x 10 12個總細胞的小韋榮氏球菌。在一些實施方式中,該細菌組成物包含約3 x 10 10至約1.5 x 10 12個總細胞的小韋榮氏球菌。在一些實施方式中,該細菌組成物每天投與至少一次。在一些實施方式中,該細菌組成物每天投與一次。在一些實施方式中,該細菌組成物每天投與一次持續至少連續15天。在一些實施方式中,該細菌組成物每天投與一次持續至少連續28天。在一些實施方式中,該細菌組成物每天投與一次持續至少連續56天。在一些實施方式中,牛皮癬係中度牛皮癬。在一些實施方式中,異位性皮膚炎係中度異位性皮膚炎。在一些實施方式中,氣喘係輕度氣喘。 實例 實例 1 :粉劑製備樣本方案實現所希望的細菌培養水平後,離心培養,棄去上清液,使沈澱物盡可能乾燥。將沈澱重懸於所希望的冷凍保護劑溶液中,以製成配製的細胞糊。冷凍保護劑可以包含例如麥芽糊精、抗壞血酸鈉、麩胺酸鈉和/或氯化鈣。冷凍保護劑可以包含例如蔗糖、聚葡萄糖和/或L-半胱胺酸鹽酸鹽。將配製的細胞糊載入到不銹鋼託盤上並載入到冷凍乾燥機中,例如,用定義的循環參數以自動模式運行。將冷凍乾燥的產品送入銑床中,並收集所得的粉末。 將粉末在乾燥器中在2-8攝氏度(例如4攝氏度)下存儲(例如,在真空密封袋中)。 實例 2 γ- 照射:樣本方案:粉劑可以在環境溫度下以17.5 kGy輻射單位進行γ照射。冷凍生物質可以在乾冰存在下以25 kGy輻射單位進行γ照射。 實例 3 小韋榮氏球菌菌株 A 之臨床前研究
小韋榮氏球菌菌株A-G.I.(經γ照射)係小韋榮氏球菌(小韋榮氏球菌菌株A)的單一菌株之藥物製劑,最初係從處於緩解期的IBD患者之新鮮迴腸造口術樣本中分離出來的,其已被γ-照射(G.I.)。因此,最終的藥物產品在給藥時係無活性的。它尚未被遺傳修飾。因為無活性,所以它不會在腸道內移植,口服給藥後也沒有可檢測到的全身暴露。在多個臨床前模型中它具有劑量依賴性治療效果。小韋榮氏球菌菌株A已保藏,ATCC登錄案號為PTA-125691。
韋榮氏球菌屬菌株發現於人體的多個生態位(niche),包括口腔、肺、胃腸道和陰道,係健康人體微生物相之正常組成部分。儘管有一些韋榮氏球菌屬物種可以作為伺機性病原體的零星報導,但最近的數據表明韋榮氏球菌屬可能發揮保護作用並有助於兒童早期免疫系統之發育。嬰兒流行病學研究證明,韋榮氏球菌屬之存在與氣喘和細支氣管炎呈負相關。
在人類和小鼠細胞測定中進行的小韋榮氏球菌菌株A-G.I.之體外研究支持其在治療免疫炎性疾病(包括異位性皮膚炎、牛皮癬和氣喘)中的用途。小韋榮氏球菌菌株A-G.I.增加人類免疫細胞(例如,介白素(IL)-10)之抗炎細胞介素分泌,同時誘導促炎細胞介素(例如,TNFγ和IFNγ)之最低限度的產生。
向小鼠口服投與小韋榮氏球菌菌株A-G.I.產生了顯著的對遲發型過敏(DTH)、咪喹莫特誘導的皮膚炎症、異硫氰酸螢光素(FITC)皮膚過敏、MC903誘導的皮膚炎和實驗性急性腦脊髓炎(EAE)體內模型的治療效果。效果和劑量之一致性顯示,小韋榮氏球菌菌株A-G.I.協調消退TH1、TH2和TH17途徑的全身性炎症。這表明在多種病症和群體中的臨床益處之潛力。在該等實驗中使用的每天給藥持續長達6週的動物中未見潛在的相關不良反應。該等模型中的離體免疫表現型顯示促炎細胞介素(例如IL-6、IL-4、IL-13、TNF、IL-17和KC(鼠IL-8))減少。該等離體實驗中,小韋榮氏球菌菌株A-G.I.並不抑制循環細胞產生干擾素γ(IFNγ)之表現,這表明不破壞對預防惡性腫瘤和病原體響應至關重要的免疫監視機制的情況下,實現了廣譜的抗炎作用。在GI道內外均已觀察到對免疫參數之影響,這表明腸道中的宿主-微生物相互作用可影響周邊組織之免疫響應。 配製物
小韋榮氏球菌菌株A-G.I.藥物產品(DP)配製物係如下的冷凍乾燥粉末之共混物:小韋榮氏球菌(DS)和賦形劑(甘露醇、膠體二氧化矽、硬脂酸鎂、羥丙基甲基纖維素、聚(甲基丙烯酸, 丙烯酸乙酯,1 : 1)、檸檬酸三乙酯和滑石粉)。製造了兩種活性藥物產品強度(strength)與匹配的安慰劑,以支持臨床研究。
將小韋榮氏球菌菌株A-G.I.成品製成腸溶包衣的膠囊,旨在保護小韋榮氏球菌菌株A-G.I.免受胃pH降解,且旨在於pH ≥ 5.5(這大約是小腸中的pH)時釋放。 臨床前驅藥理學
小韋榮氏球菌菌株A-G.I.或親本菌株小韋榮氏球菌菌株A之體外研究已在一系列人類和小鼠試驗中進行,並且已使用5個關鍵的體內模型來支援其在免疫炎性疾病治療中的用途。
表1中提供了該等研究之總結。 [表1]:關鍵臨床前研究之表格總結
研究類型 / 名稱 模型 測試的微生物、劑量和投與途徑 描述 結果
體外測定 人巨噬細胞 小韋榮氏球菌菌株A-親本菌株,經γ照射的9 x 10 4細菌細胞/孔 人巨噬細胞測定評估微生物暴露後促炎和抗炎細胞介素之產生。將微生物與純化的巨噬細胞共培養過夜。使用Luminex技術(IL-12p70,TNF,CXCL10和IL-10)評估細胞介素產生 在 > 80種測試的厭氧菌株中,小韋榮氏球菌菌株A-G.I.係IL-10、p40、CXCL10或TNF之最強誘導劑。
體外測定 從人血中分離的人PBMC、巨噬細胞和樹突細胞。 小韋榮氏球菌菌株A-親本菌株*,經γ照射的 劑量範圍1 x 10 4至5 x 10 6細菌細胞/孔 將從全血中分離的人PBMC、DC和巨噬細胞與從10 4- 5 x 10 6總細胞計數(TCC)的劑量範圍的經γ照射的小韋榮氏球菌菌株A進行培養,以產生IL-10誘導的EC50值。 小韋榮氏球菌菌株A-G.I.在體外的各種原代人免疫細胞測定中以劑量依賴性方式誘導IL-10產生。
體外測定 發炎的人巨噬細胞 小韋榮氏球菌菌株A親本菌株 3 x 10 5個細菌 細胞/孔 用GM-CSF將CD14+細胞分化為成熟的APC表現型,持續7天。用LPS + IFNγ的混合物使細胞偏向炎症表現型,隨後與微生物共培養。在APC-微生物共培養24小時後,收集細胞上清液,並使用Luminex技術測量促炎和抗炎細胞介素(包括IL-10、IL-27、TNF和IL-12)。 小韋榮氏球菌菌株A誘導炎性APC以產生抗炎細胞介素IL-10和IL-27,但它不會增強促炎細胞介素TNF或IL-12p40之產生。
體外測定    人DC-CD8+ T細胞 小韋榮氏球菌菌株A親本菌株 經γ照射的 1 x 10 5細菌細胞/孔 將來自3個健康供體的原代人DC在體外分化7天。為了評估小韋榮氏球菌菌株A-G.I.之免疫調節特性,將DC用微生物體外預調理24小時。微生物調理24小時後,從DC培養物和自體人CD8+ T細胞中去除普雷沃菌屬菌株B 50329(NRRL登錄案號B 50329),並添加CEF I類肽池。在用CEF肽刺激24小時後,收集DC-T細胞上清液並使用Luminex技術測量促炎和抗炎細胞介素(包括IFNγ、TNF、IL-10和IL-27)。 抗炎細胞介素IL-27(未調理的DC-T細胞培養物中不存在)連同IL-10係由小韋榮氏球菌菌株A-G.I.誘導的,而響應於CEF的IFNγ不受影響(既不增強也不降低)。
體內DTH    遲發型過敏 測試小韋榮氏球菌菌株A-G.I.,劑量範圍(1.5 x 10 8至1.5 x 10 10),藉由口服強飼 測量耳中KLH特異性炎症之機制炎症模型 小韋榮氏球菌菌株A-G.I.證明了與炎症之劑量響應關係,發現最小有效劑量在1.5 x 10 8與1.5 x 10 9TCC之間
體內DTH 遲發型過敏 小韋榮氏球菌菌株A-G.I.,口服 測試的劑量1.5 x 10 10與2.7 x 10 9 測量耳中KLH特異性炎症引起的TH1響應之機制炎症模型 小韋榮氏球菌菌株A-G.I.冷凍乾燥粉末,30天給藥研究,體重測量、血清肝酶、血液化學和器官重量沒有變化。
體內FITC CHS FITC CHS 模型 小韋榮氏球菌菌株A-G.I.,口服 測試劑量為1.5 x 10 10 使用局部FITC的鼠TH2介導的過敏性皮膚過敏模型。 小韋榮氏球菌菌株A-G.I.減少FITC模型中的皮膚炎症,與耳部IL-4表現之減少相稱;來自多項研究的彙編的數據。
體內MC903 MC903異位性炎症皮膚模型 小韋榮氏球菌菌株A-G.I.,口服 測試劑量為1.5 x 10 10 使用局部維生素D同系物MC903之鼠TH2介導的皮膚炎症模型。 小韋榮氏球菌菌株A-G.I.減少耳部炎症,同時減少耳部中的IL-4以及耳引流淋巴結中的IL-5、IL-13和IFNg。離體刺激後脾臟中的IFNg沒有減少。
體內IMQ    IMQ皮膚炎症模型 小韋榮氏球菌菌株A-G.I.,口服 測試劑量為1.5 x 10 10 使用局部咪喹莫特之鼠TH17介導的皮膚炎症模型。 小韋榮氏球菌菌株A-G.I.抑制皮膚炎症和IL-17A表現。
體內EAE 實驗性自體免疫性腦脊髓炎模型 小韋榮氏球菌菌株A-G.I.,口服 測試劑量為1.5 x 10 10 中樞神經系統炎症之鼠TH17/TH1介導的模型。EAE係人類炎性脫髓鞘疾病多發性硬化症常用的實驗模型。藉由用PLP91- 110進行皮下免疫誘導疾病 小韋榮氏球菌菌株A-G.I.藉由調節全身免疫響應來降低EAE之疾病嚴重程度。組織病理學還證明了浸潤到脊髓中的免疫細胞之減少。
體內生物分佈    螢光標記的小韋榮氏球菌菌株A-G.I.單次口服給藥(10 9、10 8和10 7),由Licor成像系統經24小時在時間點成像。 小韋榮氏球菌菌株A-G.I.,口服,10 9、10 8和10 7 該研究確定了在大約2 x 10 9個標記的小韋榮氏球菌菌株A-G.I.細胞之劑量後,小韋榮氏球菌菌株A-G.I.穿過小腸、結腸和糞便的通過動力學。此外,藉由對諸如腸系膜淋巴結(MLN)、肝臟、腎臟、肺、心臟和脾臟等器官成像檢查腸傳播。 小韋榮氏球菌菌株A-G.I.之口服投與導致在胃腸道中的短暫升高,但經24小時從胃腸道中消失。此外,在任何器官中都未檢測到高於螢光染料對照之水平的小韋榮氏球菌菌株A-G.I.。證明小韋榮氏球菌菌株A-G.I.保留在腸道中,並且在口服投與後不會繼續存在超過24小時。
APC = 抗原呈現細胞;CD = 分化簇;CEF = 巨細胞病毒、EB病毒和流感病毒;CHS = 接觸性過敏;DC = 樹突細胞;DTH = 遲發型過敏;EAE = 實驗性急性腦脊髓炎;FITC = 異硫氰酸螢光素;GI = 胃腸;GM-CSF = 粒細胞-巨噬細胞群落刺激因子;IFNγ = 干擾素γ;IL = 白血球介素;KLH = 鑰孔血藍蛋白;LPS = 脂多醣;MLN = 腸系膜淋巴結;PLP = 蛋白脂質蛋白;TH17 = 輔助性T細胞17(T-helper 17);TNF = 腫瘤壞死因子
*小韋榮氏球菌菌株A係原始親本菌株之識別字,小韋榮氏球菌菌株A-G.I.係由其派生出來的。小韋榮氏球菌菌株A已保藏,ATCC登錄案號為PTA-125691。 確定小韋榮氏球菌菌株 A-G.I. 或親本菌株小韋榮氏球菌菌株 A 對原代人免疫細胞的抗炎和促炎潛力之體外試驗
因為口服投與的小韋榮氏球菌菌株A-G.I.係腸道受限的,當它通過胃腸道時,它與有限數量的免疫細胞類型相互作用。最有可能直接接觸小韋榮氏球菌菌株A-G.I.的免疫細胞位於腸上皮細胞層下方的固有層中,以及位於髓系(包括樹突細胞和巨噬細胞)中。進行了一系列體外研究以檢查小韋榮氏球菌屬菌株A-G.I.或親本細菌小韋榮氏球菌菌株A對來自健康志願者周邊血的人免疫細胞相互作用之影響。研究了人樹突細胞暴露於小韋榮氏球菌菌株A- G.I.對其活化CD8+ T細胞的能力可能產生之影響,該細胞係促炎細胞介素IFNγ之主要生產者。 小韋榮氏球菌菌株 A 對來自多個人類供體的純化的原代巨噬細胞之影響
小韋榮氏球菌菌株A持續誘導來自多個人類供體的純化的原代巨噬細胞中的高水平IL-10。
對原代人巨噬細胞進行了體外測定,以評估超過 > 70種獨特的人類共生細菌菌株(包括小韋榮氏球菌菌株A)之促炎和抗炎特性。所有菌株都經γ照射。藉由Ficoll-Paque梯度離心結合磁性細胞分離,從6名健康人類供體的周邊血單核細胞(PBMC)中純化新鮮的原代人CD11b+免疫細胞。純化的人細胞分別與單一細菌菌株共培養。使用貝克曼庫爾特機器人(Beckman Coulter robotic)在96孔型式中以1的感染複數(MOI)共培養專性厭氧微生物與哺乳動物細胞。在哺乳動物細胞-微生物共培養24小時後,收集細胞上清液,並使用Luminex技術測量促炎和抗炎細胞介素產生(包括IL-12p70、TNF、CXCL10 (IP-10) 和IL-10)。數據顯示,在評估的 > 70種獨特的共生菌株中,韋榮氏球菌屬中的那些(包括小韋榮氏球菌菌株A)係抗炎細胞介素IL-10之最強誘導劑。此外,與其他共生厭氧菌株相比,小韋榮氏球菌菌株A不會誘導高水平的促炎細胞介素CXCL10、IL-12p70或TNF。基於該等數據,親本菌株小韋榮氏球菌菌株A之細胞介素刺激譜係有吸引力的,與由同一細胞產生的促炎細胞介素相比,抗炎IL-10之刺激譜更高。 小韋榮氏球菌菌株 A 對誘導來自人類供體的純化的原代周邊血單核細胞、樹突細胞和巨噬細胞的 IL-10 之劑量響應
γ照射的小韋榮氏球菌菌株A以劑量依賴的方式刺激來自六個個體供體的純化的人周邊血單核細胞(PBMC)和樹突細胞產生抗炎細胞介素IL-10。
如上所述,將從全血中分離的人PBMC、DC和巨噬細胞與從10 4- 5 x 10 6總細胞計數(TCC)的劑量範圍的經γ照射的小韋榮氏球菌菌株A進行培養。24小時後,收集上清液並藉由Luminex測量IL-10。在增加TCC和來自PBMC和樹突細胞的IL-10產生之間觀察到劑量響應關係(分別見圖1A和1B)。顯示於圖1C中。該等結果證明了經γ照射的小韋榮氏球菌菌株A對免疫細胞的藥理活性,並建立了如下EC50:對於PBMC為5.2 log TCC,對於DC為4.8 log TCC,對於巨噬細胞為4.9 log TCC。 小韋榮氏球菌菌株 A 對促炎人巨噬細胞之影響
經γ照射的小韋榮氏球菌菌株A不會誘導來自促炎性巨噬細胞的炎性細胞介素TNF之誘導。
巨噬細胞係人主要細胞類型之一,以響應於微生物產品暴露而產生並分泌促炎細胞介素TNF。為了確定暴露於經γ照射的小韋榮氏球菌菌株A是否能從已經發炎的巨噬細胞誘導促炎細胞介素,用原代人骨髓細胞進行了偏向促炎表現型的體外測定。簡而言之,藉由Ficoll-Paque梯度離心結合磁性細胞分離,從3名健康供體中純化原代人CD14+ PBMC。用粒細胞-巨噬細胞群落刺激因子(GM-CSF)將CD14+細胞分化為成熟的APC表現型,持續7天。用脂多醣(LPS)+ IFNγ之混合物使細胞偏向炎症表現型,隨後與88種單獨的厭氧微生物菌株共培養。使用貝克曼庫爾特機器人在96孔型式中以1的MOI共培養專性厭氧微生物與哺乳動物細胞。在APC-微生物共培養24小時後,收集細胞上清液,並使用Luminex技術測量促炎細胞介素TNF。結果如圖2所示。數據證明,經γ照射的小韋榮氏球菌菌株A不會增強促炎細胞介素TNF之產生。所檢查的其他常見的共生菌株包括普雷沃菌屬、副擬桿菌屬( Parabacteroides)和布勞特氏菌屬( Blautia)中的那些。 小韋榮氏球菌菌株 A 調理的樹突細胞( DC )對 CD8 T 細胞之影響
小韋榮氏球菌菌株A調理後樹突細胞在體外刺激促炎T細胞響應。
用原發性人DC和自體CD8+ T細胞進行體外測定,以測量經γ照射的小韋榮氏球菌菌株A調節抗原(Ag)特異性CD8+ T細胞響應之能力。將來自3個健康供體的原代人DC在體外分化7天。將DC用經γ照射的小韋榮氏球菌菌株A在體外預調理24小時。使用貝克曼庫爾特機器人在96孔型式中以1的MOI共培養專性厭氧微生物與哺乳動物細胞。微生物調理24小時後,從DC培養物和自體人CD8+ T細胞中去除小韋榮氏球菌菌株A,並添加CEF I類肽池。CEF肽池由來自巨細胞病毒、EB病毒和流感病毒的肽構成,大多數人類群體都曾暴露於該等病原體。在測定之前表徵人供體,並基於對肽庫的響應進行選擇。在用CEF肽刺激24小時後,收集DC-CD8+ T細胞上清液並使用Luminex技術測量促炎和抗炎細胞介素(包括IFNγ、TNF、IL-10和IL-27)。所有三種DC-CD8+ T細胞共培養物響應於CEF肽產生IFNγ(圖3B)。當人DC用經γ照射的小韋榮氏球菌菌株A進行預調理時,響應於CEF的IFNγ不受影響(既不增強也不降低)。未調理的DC-T細胞培養物中不存在的抗炎細胞介素IL-10係由小韋榮氏球菌菌株A誘導的(圖3A)。該等數據表明,雖然經γ照射的小韋榮氏球菌菌株A不影響人類T細胞Ag特異性促炎細胞介素之產生,但它具有誘導抗炎響應之能力。 體內鼠疾病模型
已使用五種免疫炎性疾病模型來生成具有治療過敏性和異位性炎症以及其他免疫炎性疾病的潛力之小韋榮氏球菌菌株A-G.I.之療效和安全性資訊。 •     遲發型過敏(DTH)模型係一種皮膚炎症機制模型,可測量耳中的抗原特異性炎症 •     異硫氰酸螢光素(FITC)誘導的接觸性皮膚炎模型由TH2途徑介導,並表現出異位性皮膚炎之許多特徵 •     MC903-誘導的皮膚炎係另一種由TH2途徑以及在異位性皮膚炎中致病的臨床相關細胞介素途徑介導的模型。 •     TH17介導的皮膚炎症之咪喹莫特(IMQ)誘導的模型,這係一種基於免疫機制的牛皮癬模型。 •     實驗性自體免疫性腦脊髓炎(EAE)係CD4 +T細胞介導的自體免疫性疾病,其特徵係中樞神經系統(CNS)中血管周的CD4 +T細胞和單核細胞炎症以及隨後的軸突軌跡(axonal track)之原發性脫髓鞘,導致進行性後肢麻痹。
除了炎症模型外,還使用螢光標記的小韋榮氏球菌菌株A-G.I.對幼稚小鼠進行了生物分佈研究,以建立藉由胃腸道(GT)的動力學,並確認口服投與後小韋榮氏球菌菌株A-G.I.暴露僅限於GT。 遲發型過敏( DTH
在人類中,Mantoux測試用作經典的細胞介導免疫測試,以證明以前暴露於病原體中過,並由皮內注射抗原誘導。該響應代表皮膚T細胞介導的記憶回憶免疫響應,並且在人類中通常用於確定對結核病之免疫力。在鼠類和人類DTH響應中驅動皮膚炎症響應的免疫機制係相同的,因此DTH小鼠模型被認為係預測人類T細胞介導響應的生理相關模型。
方法:藉由皮下注射用完全弗氏佐劑(CFA)乳化的鑰孔血藍蛋白(KLH)來免疫小鼠。致敏後8天,之前致敏的小鼠藉由皮內耳部注射KLH或緩衝液對照進行激發。在激發後24小時評估DTH響應,這代表該模型中的疾病峰值。從致敏之日到研究結束,藉由口服強飼法每天對小鼠給藥媒介物、不同劑量的重構的小韋榮氏球菌菌株A-G.I.或陽性對照,持續10天。
結果:KLH DTH 1:在這項研究中,從致敏之日到研究結束,藉由口服強飼法每天對小鼠給藥媒介物、地塞米松、不同劑量的重構的小韋榮氏球菌菌株A-G.I.,持續9天。跨3個對數探討了3個劑量範圍(1.5 x 10 8、1.5 x 10 9和1.5 x 10 10總細胞計數)的小韋榮氏球菌菌株A-G.I.。
觀察到總細胞與耳部炎症減少之間的淺劑量響應關係(圖4)。雖然最高劑量(1.5 x 10 10總細胞)具有最高的最大功效(E max),但與媒介物相比,所有測試的劑量都顯著減少了耳腫脹。根據這項研究和其他劑量響應研究,確定最小有效劑量介於1.5 x 10 8和1.5 x 10 9TCC之間。 KLH DTH 2 :小韋榮氏球菌菌株 A-G.I. 30 DTH 中耐受良好
用KLH進行了為期30天的鼠DTH研究,以測試小韋榮氏球菌菌株A-G.I.在較長的給藥期內的抗炎特性。在第0天用50 µL在CFA中的KLH乳劑對小鼠進行皮下免疫,然後在第7天讓小鼠接受KLH加強免疫。在第15天和第29天,用10 µg KLH使小鼠在耳部接受兩次皮內抗原激發。在第16天和第30天,每次耳激發後,使用卡尺在24處測量耳腫脹厚度相對於基線之變化。研究包括三個治療組:媒介物、小韋榮氏球菌菌株A-G.I. 10 mg(1.5 x 10 10TCC)和小韋榮氏球菌菌株A-G.I. 1.78 mg(2.7 x 10 9TCC)。從第1天到第30天,週一到週五給小鼠口服給藥。一組年齡匹配的未接受免疫、激發或治療的幼稚小鼠也被納入研究以進行比較。每天記錄健康觀察和體重。在研究終止時,收集各種組織並保存在福馬林中,包括脾臟、結腸、小腸、腸系膜淋巴結、頸部淋巴結、肝臟和腎臟。記錄脾臟和肝臟之器官重量。收集血清以測量丙胺酸轉胺酶(ALT)、天冬胺酸轉胺酶(AST)、鹼性磷酸酶(ALP)、γ-麩胺醯轉化酶(GGT)、總膽紅素、膽固醇和白蛋白。
耳厚度卡尺測量顯示用小韋榮氏球菌菌株A-G.I.治療在第15天第一次激發和第29天第二次激發後24小時顯著減少耳腫脹(圖5)。
在第30天研究終止時,觀察到用小韋榮氏球菌菌株A-G.I.處理長達30天的小鼠之脾臟重量與用媒介物處理的小鼠相比沒有差異。用小韋榮氏球菌菌株A-G.I.處理的小鼠之肝臟重量與用媒介物處理的小鼠相比略高,但與幼稚小鼠相比沒有顯著差異。在整個研究過程中沒有觀察到體重之顯著變化。在第3天測量到一定的體重變化,這可能是由於研究開始時壓力響應之變化。此後體重恢復正常。長達30天的每日健康觀察未顯示給藥小韋榮氏球菌菌株A-G.I.的動物之健康狀況有任何異常。
在第30天研究終止時,從動物採集血液並獲得血清。對血清進行肝臟化學評估以測量肝酶和其他指示毒性和肝損傷之因子。該測定包括ALP、ALT、AST、GGT、膽紅素(Tbil)和膽固醇(Chol)。結果表明,所有分析物均在預期的正常範圍內,並且在用小韋榮氏球菌菌株A-G.I.與媒介物處理的動物中未觀察到顯著波動。 FITC 皮膚過敏
由於其皮膚敏感特性,FITC被用作接觸性過敏(contact allergy)機制研究中的實驗性半抗原。研究表明,小鼠局部暴露於FITC會導致活化的淋巴結細胞(LNC)選擇性發育,表現優先TH2細胞介素的分泌譜(具有高水平的IL-4和IL-10但低水平的IFNγ)。
方法:第1天和第2天用FITC對小鼠進行背部致敏。從第1天到第6天,每天給小鼠強飼小韋榮氏球菌菌株A-G.I.(每劑1.5 x 10 10TCC)、媒介物或地塞米松。然後在第6天用FITC在耳部對它們進行激發,並在24小時後測量耳厚度。藉由ELISA測量耳組織中TH2細胞介素IL-4之水平。
結果:FITC致敏誘導強烈的耳腫脹。用地塞米松和小韋榮氏球菌菌株A-G.I處理與媒介物處理組相比,顯著抑制耳腫脹。地塞米松和小韋榮氏球菌菌株A-G.I.抑制耳組織中IL-4之水平(圖6)。該等結果表明,小韋榮氏球菌菌株A-G.I.可以抑制由TH2途徑介導的炎症並支持TH2介導的異位性疾病中的發展。 MC903 異位性皮膚炎模型
MC903皮膚炎模型係異位性皮膚炎(AD)樣疾病之一種得到確認的小鼠模型。該模型囊括了AD之許多中心特徵(包括紅斑(發紅)、鱗屑、血嗜酸性球增多、血清IgE升高、瘙癢行為(瘙癢症))和AD之組織病理學特徵(包括棘層肥厚(表皮增厚)、角化過度(角質層增厚)、海綿體增生(表皮水腫),以及真皮淋巴球和嗜酸性球混合浸潤)。局部應用維生素D3類似物MC903誘導皮膚形態變化和炎症,類似於在AD患者急性病變中觀察到的免疫擾動(immune perturbation)。
方法:每天用在20 uL的100% EtOH中的2 nmol的MC903(卡泊三醇;圖克裡斯生物科學公司)對小鼠耳部進行致敏,持續14天。從第1天到第6天,每天給小鼠強飼10 mg的小韋榮氏球菌菌株A-G.I.。(每劑1.5 x 10 10TCC)、媒介物或托法替尼(20 mg/kg)。小鼠也每天用地塞米松治療(1 mg/kg,腹膜內)。在第1天進行第一次耳部致敏之前使用數位卡尺(Fowler)進行基線耳部測量。在第14天,測量耳厚度。耳厚度之Δ變化量表示為第14天的耳厚度減去在基線的耳厚度。在研究結束時,由耳引流cLN和脾臟製成單細胞懸液,並使用PMA和離子黴素離體刺激2天。藉由電化學發光測量上清液中的細胞介素。
結果:小韋榮氏球菌菌株A-G.I.處理的小鼠顯示與媒介物處理的小鼠相比,MC903誘導的皮膚炎症相關的耳厚度顯著減少,整個時間過程的曲線下面積計算顯示出與地塞米松和托法替尼相似的效果(圖7)。與耳部炎症之減少相稱,在小韋榮氏球菌菌株A-G.I.和托法替尼處理的小鼠中關鍵TH2細胞介素IL-4也減少了(圖8)。此外,用PMA/離子黴素對淋巴結引流炎症部位(宮頸淋巴結,cLN)的細胞進行離體再刺激顯示TH2細胞介素IL-5和IL-13以及TH1細胞介素IFNγ(在該模型中,在第14天也有所增加)之產生減少(圖9),證明了腸道受限的小韋榮氏球菌菌株A-G.I.之全身作用值得注意的是,小韋榮氏球菌菌株A-G.I.對該等淋巴結細胞介素之效應遠大於托法替尼和地塞米松兩者之效應。此外,來自用小韋榮氏球菌菌株A-G.I.處理的小鼠的脾臟之離體刺激證明循環中的免疫細胞製造IFNγ的能力沒有受到損害,而來自用托法替尼處理的小鼠之脾臟的那些細胞確實顯示出IFNγ受損。該等結果顯示小韋榮氏球菌菌株A-G.I.減少組織中的炎症,但不損害對病毒或病原體之全身反應。 TH17 介導的皮膚炎症之咪喹莫特( IMQ )誘導的模型
咪喹莫特誘導的牛皮癬模型特別適用於臨床,因為它具有許多人類疾病的重要標誌物,包括病變的組織病理學和免疫系統之強烈活化。小鼠臨床相關牛皮癬模型係藉由局部應用5%咪喹莫特(IMQ)乳膏進行。這種咪喹莫特誘導的牛皮癬模擬了人類斑塊型牛皮癬,其中IL-23/IL-17細胞介素軸發揮著關鍵作用。研究參數包括皮膚之生命中臨床評估、耳厚度之測量以及皮膚和免疫器官中細胞介素表現之分析。
方法:連續7天每天用咪喹莫特乳膏在剃光的背部和耳上使小鼠致敏。每天給小鼠強飼10 mg的小韋榮氏球菌菌株A-G.I.(每劑1.5 x 10 10TCC)或媒介物。還用地塞米松(1 mg/kg,腹膜內)處理小鼠或給予抗IL-17抗體或抗IL-12/23p40抗體(200 ug/小鼠,第2、4和6天腹膜內給予)。使用病變牛皮癬嚴重度得分系統評估了背部皮膚之炎症嚴重程度。每天對小鼠進行監測並按以下標準分級:0(無改變),1(輕度紅斑),2(中度至重度紅斑和一些斑塊),3(顯著紅斑和斑塊)和4(非常顯著紅斑和斑塊)。每天使用數位卡尺進行耳部測量,並將得分記錄為耳厚度之變化,計算為:第8天的耳部得分減去第1天的基線耳部得分。在第8天研究終止時,取皮膚樣本進行細胞介素表現和蛋白質分析,並在體外刺激來自脾臟和淋巴結的細胞以誘導細胞介素產生。全身性地塞米松和兩種對嚴重牛皮癬非常有效的生物製劑 - 抗IL-17A和抗IL-23- 被用作比較劑。
結果:小韋榮氏球菌菌株A-G.I.處理的小鼠與媒介物處理的小鼠相比,顯示出與IMQ誘導的皮膚炎症相關的紅斑、鱗屑和增厚的看得見地顯著減少,與抗IL-17處理相當。與耳部炎症之減少相稱,促炎細胞介素IL-17A蛋白減少。參見圖10。 中樞神經系統炎症之 PLP 誘導的復發 / 緩解型實驗性自體免疫性腦脊髓炎( EAE )模型
EAE係一種廣泛使用的脫髓鞘疾病模型,它係藉由使用脊髓抗原蛋白脂質蛋白(PLP)之活化免疫在小鼠中誘導的。PLP係中樞神經系統髓磷脂之主要蛋白質組分。將PLP與百日咳毒素(PT)一起注射到瑞士吉姆蘭伯特(SJL)小鼠中會導致脫髓鞘疾病之緩解和復發,這可以根據以下觀察結果進行得分:得分0 沒有明顯疾病跡象的正常小鼠;得分1跛行尾(limp tail)或後肢無力,但不是兩者都有;得分2跛行尾和後肢無力;得分3後肢部分麻痹,得分4後肢完全麻痹。每天監測小鼠並給出虛弱得分。在該模型中,90%-100%的免疫小鼠在免疫後10-15天發展EAE。第一波EAE持續數天,並且大多數小鼠完全或幾乎完全從第一波中恢復。在可以持續一天到數月的無病期後,大多數小鼠會復發。在治療劑量模型中,小鼠在EAE發作時或從第一波EAE恢復時被納入處理組。以平衡的方式將小鼠分配到各個處理組中,以實現具有相似EAE發作時間和相似第一波疾病嚴重程度的組。
方法:用乳劑組分(含有PLP 139-151和CFA)在小鼠背部的四個部位進行皮下注射。兩個注射部位位於上背部,距頸線尾部約1 cm處。另兩個部位位於下背部,距尾根部頭側約2 cm處。每個部位的注射量為0.05 mL。在乳劑注射2小時內,腹膜內投與套組之百日咳毒素成分。從第0天開始給小鼠口服強飼媒介物或小韋榮氏球菌菌株A-G.I.(每劑1.5 x 10 10TCC)。從第7天開始每天對動物進行監測和得分。所有讀數一直持續到第42天研究終止時。
結果:用小韋榮氏球菌菌株A-G.I.處理的小鼠與媒介物處理的小鼠相比,在最初的急性期以及復發緩解期的疾病得分顯著降低(圖11)。用小韋榮氏球菌菌株A-G.I.處理的小鼠的疾病得分之總體降低可以在整個研究(第7天-第42天)以及僅急性期(第7天-第20天)的曲線下面積的計算中看到(圖12)。 臨床前研究總結:
總之,體外和體內數據支援選擇小韋榮氏球菌菌株A-G.I.作為小韋榮氏球菌的獨特菌株,它: •     誘導抗炎細胞介素之產生,並且不會從人類免疫細胞(包括PBMC、巨噬細胞、樹突細胞或T細胞)中誘導顯著水平的促炎細胞介素 •     在TH2驅動的異位性/過敏性炎症之兩種不同模型中抑制皮膚炎症和效應細胞介素(IL-4、IL-5和IL-13)之產生。 •     此外還抑制TH1和TH17介導的皮膚炎症 •     抑制TH17介導的中樞神經系統炎症,每天一次給藥持續42天後耐受良好。 •     口服給藥後仍腸道受限
鑒於小韋榮氏球菌菌株A-G.I.在TH2和TH17驅動的模型中對皮膚炎症之臨床前影響,人類異位性炎性疾病(如異位性皮膚炎和氣喘)以及牛皮癬可能對小韋榮氏球菌菌株A-G.I.的治療有響應。已在體外進行了等效的安全藥理學測試,表明沒有提示致病生物體之趨化因子特徵。 動物之藥物動力學和產物代謝
設計了一項生物分佈研究,以確定在口服處理後小韋榮氏球菌菌株A-G.I.細菌在小鼠體內存在的位置。該研究評估了使用螢光標記的小韋榮氏球菌菌株A-G.I.單次口服給藥後小韋榮氏球菌菌株A-G.I.分佈,將小韋榮氏球菌菌株A-G.I.藉由口服強飼法投與於幼稚小鼠,然後在強飼後的不同時間點使用Licor成像系統進行成像。在高、中和低劑量(分別為10 9、10 8和10 7)後測定小韋榮氏球菌菌株A-G.I.通過胃、小腸和結腸的動力學。此外,藉由在強飼後10分鐘、1小時、6小時、12小時和24小時測量腸系膜淋巴結、脾臟、肝臟、心臟、腎臟和肺中的螢光水平來檢查自腸道的傳播。在相同的時間點投與和測量游離染料對照以建立背景螢光之基線。
小韋榮氏球菌菌株A-G.I.之口服投與導致在胃腸道中的短暫升高。小韋榮氏球菌菌株A-G.I.在處理後長達12小時僅在腸和糞便中檢測到,表明單次劑量後,經γ照射的非活細菌無法在腸道移植。重要的是,小韋榮氏球菌菌株A-G.I.在胃腸道外在任何時間點都沒有檢測到高於游離染料對照所確定的背景螢光。該等數據證明,口服給藥後小韋榮氏球菌菌株A-G.I.腸腔受限,全身性暴露不可檢測。
總結
小韋榮氏球菌菌株A-G.I.係韋榮氏球菌屬(小韋榮氏球菌)之單一菌株,正在研究其對一系列免疫炎性疾病(包括異位性皮膚炎以及潛在的牛皮癬和氣喘)之潛在益處。小韋榮氏球菌菌株A-G.I.已在免疫炎性疾病之體外和體內模型中證明了特定的藥理活性,因此正在開發為醫藥產品。
臨床前研究表明,小韋榮氏球菌菌株A-G.I.增加抗炎細胞介素之分泌並誘導促炎細胞介素之最小產生,從而總體上減少免疫活化和炎症。在DTH、FITC、MC903和EAE體內模型中也看到了積極作用之證據,表明在廣泛的臨床情況下具有積極臨床益處之潛力。 實例 4 :小韋榮氏球菌之無活性、 非移植形式需要淋巴球歸巢至腸道相關淋巴組織以調節全身炎症小腸衍生細菌菌株小韋榮氏球菌在體外誘導IL-10並在體內消退炎症
這項研究的中心前提係,從人腸組織中分離出的單一細菌菌株可以開發為具有明確藥理活性的治療劑。為了證明這一點,從處於緩解期的IBD患者之新鮮迴腸造口樣本中分離出小韋榮氏球菌( V. parvula)菌株。小韋榮氏球菌係一種革蘭氏陰性、專性厭氧菌,屬於Negativicutes綱,係在口腔、胃腸道和泌尿生殖道中發現的天然共生菌。藉由γ照射活的微生物開發了一種無活性形式的小韋榮氏球菌(命名為小韋榮氏球菌菌株A)。在本實例中,所有對小韋榮氏球菌菌株A的提及均指該菌株之這種經γ照射形式。該菌株已保藏,ATCC登錄案號為PTA-125691。
從6名健康人類供體之周邊血單核細胞(PBMC)中純化新鮮的原代人CD11b +免疫細胞。純化的人細胞與單一細菌專性厭氧菌菌株以1的感染複數(MOI)共培養。在哺乳動物細胞-微生物共培養24小時後,收集細胞上清液,並測量促炎和抗炎細胞介素產生。數據顯示,在評估的 > 70種獨特的共生菌株中,與幾種密切相關的物種相比,所有供體響應於小韋榮氏球菌菌株A的刺激誘導了顯著水平的IL-10(圖13A)。與其他共生厭氧菌株相比,小韋榮氏球菌菌株A不誘導高水平的促炎細胞介素IP-10或TNFα(圖13B和13C)。此外,將從全血中分離的人PBMC、DC和巨噬細胞與從10 4- 5 x 10 6總細胞計數(TCC)的劑量範圍的小韋榮氏球菌菌株A培養24小時,並在上清液中測量IL-10。在增加TCC和來自PBMC、DC和巨噬細胞的IL-10產生之間觀察到劑量依賴性響應。與來自不同屬的無關微生物(如屍毒梭菌)相比,該等結果證明了小韋榮氏球菌菌株A對免疫細胞之藥理活性,並建立了如下EC50:對於PBMC為5.2 log TCC,對於DC為4.8 log TCC,對於巨噬細胞為4.9 log TCC(圖13D)。
為了確定小韋榮氏球菌菌株A作為體內治療劑之功效,在DTH小鼠模型中對其進行了測試。藉由皮下注射用完全弗氏佐劑(CFA)乳化的鑰孔血藍蛋白(KLH)來致敏小鼠。致敏後8天,小鼠藉由皮內耳部注射KLH進行激發。在激發後24小時評估DTH響應,這代表該模型中的疾病峰值。每天給小鼠口服給藥,持續8天。小韋榮氏球菌菌株A係與其他密切相關的韋榮氏球菌屬物種相比在降低耳部炎症方面最有效的菌株(圖13E)並顯示出劑量依賴性功效(圖13F)。藉由在DTH期間阻斷IL-10傳訊途徑來評估小韋榮氏球菌菌株A之抗炎作用。與抗IL-10R抗體之共同投與損害了小韋榮氏球菌菌株A在消退耳部炎症中的效應,這表明小韋榮氏球菌菌株A部分地藉由IL-10途徑發揮其抗炎活性(圖13G)。
總之,無活性形式的小韋榮氏球菌菌株A展示了作為抗炎治療劑之有效性。 口服投與的小韋榮氏球菌菌株A係腸道受限的,可迅速通過腸道而不會改變腸道微生物菌群
小韋榮氏球菌菌株A係一種口服遞送的腸道限制劑,藉由SINTAX發揮其藥理作用。設計了一項研究,以確定經口處理後小鼠中小韋榮氏球菌菌株A之生物分佈,並跟蹤其通過胃腸道(GI)的轉運。小韋榮氏球菌菌株A之口服投與導致在胃腸道中的短暫升高。小韋榮氏球菌菌株A口服投與後1小時內出現小腸完全暴露。單次劑量(TCC - 1E + 9)後,小韋榮氏球菌菌株A在處理後長達12小時僅在腸和糞便中檢測到(圖14A)。投與後10分鐘出現小腸暴露,1小時內完全暴露。到6小時,小韋榮氏球菌菌株A摻入糞便顆粒中,到24小時,胃腸道中的訊息減弱,表明微生物已完全排泄,沒有可檢測到的存在。在任何時間點均未觀察到全身性暴露,> 99%的總訊息保留在胃腸道中。重要的是,小韋榮氏球菌菌株A在胃腸道外在任何時間點都沒有檢測到高於游離染料對照所確定的背景螢光(圖14B)。由於小韋榮氏球菌菌株A係無活性的,因此在胃腸道中缺乏持久性表明它不需要移植以實現其藥理活性。在確定小韋榮氏球菌菌株A對體內微生物群影響之實驗中,證實在給藥後的多個時間點微生物群組成沒有明顯變化。
總之,該等數據證明,口服給藥後小韋榮氏球菌菌株A腸腔受限,全身性暴露不可檢測,並且不會改變微生物群。 小韋榮氏球菌菌株A抑制咪喹莫特驅動的牛皮癬模型中的皮膚炎症
在T細胞介導的模型(如DTH)中的功效表明了小韋榮氏球菌菌株A之抗炎作用。因此,在具有強T細胞組成的疾病模型中測試了小韋榮氏球菌菌株A之功效。本研究選擇了咪喹莫特誘導的牛皮癬模型,其中Th17細胞相關的IL-23/IL-17細胞介素軸起關鍵作用。該模型囊括了人類疾病之多個方面,包括與人類牛皮癬相似的臨床和組織學特徵,例如表皮增厚、鱗屑和紅斑,以及T細胞、嗜中性球和樹突細胞的浸潤(van der Fits等人, 2009)。BALB/c小鼠在耳部連續7天每天用20 mg 5%咪喹莫特乳膏致敏,並且每天口服給藥小韋榮氏球菌菌株A(TCC - 7.8E + 11)。小韋榮氏球菌菌株A處理的小鼠在疾病進展過程中表現出顯著降低的耳部炎症(圖15A)。在研究終止時,與媒介物相比,耳組織中的轉錄物水平揭示在用小韋榮氏菌小韋榮氏球菌菌株A處理後 Il17a Il17f Defb3水平降低(圖15B)。 小韋榮氏球菌菌株A改善復發-緩解型多發性硬化症小鼠模型中的炎症
小韋榮氏球菌菌株A在緩解第二種Th17驅動的疾病中的作用還藉由評估其在復發緩解型多發性硬化症的鼠實驗性自體免疫性腦脊髓炎(EAE)模型中的作用進行了研究。EAE係一種廣泛使用的脫髓鞘疾病模型,它係藉由用脊髓抗原(蛋白脂質蛋白(PLP),中樞神經系統髓磷脂之主要蛋白質組分)進行免疫誘導的。將PLP與百日咳毒素一起注射到小鼠體內會導致脫髓鞘疾病之緩解和復發。根據標準的EAE得分標準,每天對小鼠進行疾病發作和進展得分,以反映運動缺陷之程度。小鼠在第9天開始出現運動障礙,並在第15天達到臨床疾病得分峰值。在第1天開始給藥的預防性處理方案中,與媒介物處理的動物相比,小韋榮氏球菌菌株A在疾病過程中的臨床得分顯著降低。小韋榮氏球菌菌株A之處理效果在疾病的復發期最為明顯,表明疾病急性期後恢復增加。到第42天研究結束時,與對照相比,小韋榮氏球菌菌株A處理的小鼠具有總體較低的累積EAE得分(圖16A)。還確定了小韋榮氏球菌菌株A對體內細胞響應之影響。分析來自接受了小韋榮氏球菌菌株A處理、陽性對照藥物芬戈莫德和媒介物處理組的小鼠頸部和腰椎區的脊髓組織切片之炎症細胞浸潤。與媒介物處理的動物相比,用小韋榮氏球菌菌株A預防性處理的小鼠顯示出顯著降低的脊髓中炎症細胞浸潤之頻率(圖16B)。
接下來,小韋榮氏球菌菌株A在治療性給藥方案中進行了測試,其中在第10天達到急性期疾病高峰後開始給藥。與媒介物相比,在研究終止時觀察到顯著降低的累積疾病得分(圖16C)。雖然淋巴球浸潤與預防性給藥所見的不同(圖16D),但小韋榮氏球菌菌株A處理的小鼠之脊髓脫髓鞘顯著減少。值得注意的是,小韋榮氏球菌菌株A在保護脫髓鞘方面優於人類等同劑量的芬戈莫德(圖16E)。這表明,雖然小韋榮氏球菌菌株A在治療模型中不阻斷細胞遷移到中樞神經系統,但中樞神經系統中的免疫細胞浸潤不能引起嚴重的炎症。
總的來說,該等數據證明了小韋榮氏球菌菌株A在兩種不同的IL-23/IL-17A軸驅動的炎症模型中減少病理之功效。 小韋榮氏球菌菌株A減少FITC驅動的接觸性過敏中的炎症
由於在Th17驅動的牛皮癬和神經炎症中觀察到了小韋榮氏球菌菌株A之炎症消退活性,因此探索了小韋榮氏球菌菌株A在Th2途徑驅動的疾病中的功效。異位性皮膚炎(AD)係一種慢性炎性皮膚病,由強Th2免疫響應驅動。它被認為係一種主要由T細胞驅動的疾病,在AD發病機制中細胞介素IL-4、IL-5、IL-13、警報素IL-33(Hardman和Ogg, 2016; Ziegler, 2012)和IL-31(一種與瘙癢相關的細胞介素)(Sonkoly等人, 2006)起關鍵作用。使用半抗原異硫氰酸螢光素(FITC)來驅動皮膚炎症(Boehme等人, 2009; Takeshita等人, 2004),小韋榮氏球菌菌株A在接觸性過敏的鼠模型中進行了測試。在該模型中,在第1天和第2天用0.5% FITC局部致敏BALB/c小鼠耳朵,並且6天後用0.5% FITC激發它們。小鼠每天口服給藥媒介物或小韋榮氏球菌菌株A(TCC - 2.16E + 12)。在第7天耳激發後24 h測量耳部炎症。該模型與人AD具有相似性,具有強CD4 +T輔助細胞成分,並且與該疾病相關的病理學囊括了急性AD病變之特徵。FITC致敏誘導強烈的耳腫脹。與媒介物處理組相比,用小韋榮氏球菌菌株A口服處理顯著抑制耳腫脹(圖17A)。研究了小韋榮氏球菌菌株A是否影響驅動炎症的細胞介素之產生。用PMA/離子黴素對來自腸引流腸系膜淋巴結(mLN)的細胞進行離體再刺激顯示Th2細胞介素如IL-4、IL-5、IL-13、IL-31和IL-33之產生減少。此外,對來自頸部淋巴結(cLN)(炎症部位引流淋巴結)的細胞之離體再刺激導致IL-5和IL-13之產生減少,並且在小韋榮氏球菌菌株A處理的動物中由耳組織製成的勻漿具有降低的IL-4,證明了腸道受限的小韋榮氏球菌菌株A之全身作用(圖17B)。該等發現證實,小韋榮氏球菌菌株A藉由調節促炎Th2細胞介素之水平在炎症中具有免疫消退效應。 小韋榮氏球菌菌株A處理導致體內局部和全身促炎細胞介素減少
鑒於小韋榮氏球菌菌株A在腸道中局部發揮其作用以抑制全身炎症,研究了小韋榮氏球菌菌株A對炎症環境中的下游效應物如細胞介素和趨化因子之影響。如前所述,每天給藥持續9天,在KLH DTH模型中測試了小韋榮氏球菌菌株A之壓制片劑配製物。與接受安慰劑配製物的組相比,小韋榮氏球菌菌株A顯示出減輕耳部炎症之功效(圖18A)。離體分析耳激發後24小時取自小鼠的脾臟和mLN細胞之再刺激顯示,促炎細胞介素(包括Th1細胞介素IFNγ、TNFα、IL-12p70、IL-6,和Th17細胞介素GMCSF和IL-17A)之產生顯著減少。這表明用小韋榮氏球菌菌株A處理對mLN中的細胞以及以脾細胞為代表的外周細胞具有抗炎作用。(圖17B)。在用小韋榮氏球菌菌株A處理的小鼠中,用KLH離體再刺激以模擬來自cLN的細胞之抗原刺激顯示了與用媒介物處理的對照組相比類似趨勢的促炎細胞介素(TNFα、IL-6、IL-12p70、GMCSF、IL-17A和IFNγ)減少(圖18B)。 小韋榮氏球菌菌株A驅動的抗炎作用需要將免疫細胞從腸道運輸到外周以消退炎症
為了更好地瞭解小韋榮氏球菌菌株A對SINTAX之免疫調節作用,採用系統方法來剖析該過程中的步驟。第一步係小韋榮氏球菌菌株A與小腸細胞(包括上皮細胞和樹突細胞)之間的相互作用。幾種模式識別受體位於細胞表面,其中TLR代表了一個主要類別(Price等人, 2018)。用不同劑量的小韋榮氏球菌菌株A刺激穩定轉染了人TLR1/2/6、TLR2/6和TLR1/6以及NF-κB誘導報告基因的HEK-293細胞,主要檢測到TLR2/6,幾乎沒有檢測到TLR1/6(圖19A)。如前所述,在探索KLH DTH模型中體內TLR2傳訊之作用時,與給藥小韋榮氏球菌菌株A與同種型抗體相比,同時給藥小韋榮氏球菌菌株A和TLR2阻斷抗體導致控制耳部炎症之功效降低(圖19B)。
在用KLH-DTH誘導的、TLR4基因缺陷的C3HEJ小鼠中(Akeson等人, 2006),用小韋榮氏球菌菌株A處理有效降低耳部炎症(圖19C)。這表明小韋榮氏球菌菌株A之識別依賴於藉由TLR2受體級聯的傳訊並且不依賴於TLR4傳訊。
在第二步中,T細胞穿過mLN,遇到可能與小韋榮氏球菌菌株A相互作用的腸道寄居DC。這導致效應T細胞之活化,然後進入全身循環並遷移到周邊組織。與組織中細胞特異性配位基之時空表現相一致,淋巴球上的特異性黏附分子和趨化因子受體之表現負責淋巴球遷移。LPAM-1和CD62L在T和B細胞上表現,並作為腸道歸巢受體介導淋巴球遷移到mLN中。⍺4β7整合素和CD62L之阻斷可防止淋巴球進入mLN和派亞氏淋巴叢(Peyer’s patch)(Dutt等人, 2005)。小韋榮氏球菌菌株A之功效被觀察到取決於CD62L和LPAM-1之接合以驅動淋巴球歸巢到腸道。同時阻斷這兩種受體阻止了淋巴球歸巢至腸道並導致與接受了小韋榮氏球菌菌株A和同種型抗體的對照組相比,小韋榮氏球菌菌株A處理的功效之喪失(圖19D)。
總之,該等數據部分說明了小韋榮氏球菌菌株A藉由SINTAX發揮作用以驅動炎症消退的全身功效之作用機制。 從小韋榮氏球菌菌株A處理的供體中過繼轉移CD4+ T細胞導致體內炎症消退
基於本文提供的數據(該等數據證實了小韋榮氏球菌菌株A在炎症消退中的作用),研究了CD4+ T細胞在這種情況下的具體作用。使用過繼細胞轉移模型,將來自小韋榮氏球菌菌株A處理的KLH免疫供體小鼠之CD4 +T細胞轉移到未給藥小韋榮氏球菌菌株A的KLH免疫受體小鼠中。過繼轉移後4天,受體小鼠用KLH在耳內皮內激發以引起局部炎症。與接受了來自媒介物處理的小鼠的CD4 +T細胞之受體相比,接受了來自小韋榮氏球菌菌株A處理的供體的CD4 +T細胞之受體小鼠之耳部炎症顯著減少(圖20)。該等數據表明,用小韋榮氏球菌菌株A治療可能會賦予隨後轉移的CD4 +T細胞抗炎功能,並且表明該等細胞足以在受體小鼠中驅動抗炎響應。
本實例描述了小韋榮氏球菌菌株A之開發,這係一種用於治療炎性疾病的、口服投與的、腸道受限的小韋榮氏球菌菌株。動物模型和人類疾病趨向於被任意定義為途徑特定術語Th1、Th2、Th17、先天或適應性。然而,炎症的誘導通常不是途徑特異性的。雖然現有的治療干預確實表明疾病發病機制中存在一些途徑偏差,例如類風濕性關節炎中的TNF抑制劑或牛皮癬中的IL17抑制劑,但本文提供的數據表明,口服投與小韋榮氏球菌菌株A在Th1、Th2和Th17炎症的小鼠模型中有效。這表明從小腸黏膜輻射的功能連接可以誘導廣泛炎症機制的系統性消退,從而恢復免疫穩態。
本文描述的系統分析鑒定了依賴於菌株的免疫調節作用。在廣泛的屬中篩選了數百種單獨的細菌菌株,以瞭解它們對人巨噬細胞的細胞介素分泌模式之影響。每種菌株都有單獨的表現型,對巨噬細胞響應有不同的影響。在這裡,深入展示了小韋榮氏球菌單菌株(小韋榮氏球菌菌株A)之特異性免疫調節活性。測試的各種其他韋榮氏球菌屬物種並沒有在相同程度上改變全身免疫響應。
對於小韋榮氏球菌菌株A的藥理活性來說,不需要其腸移植。觀察到在給藥和用小韋榮氏球菌菌株A處理的數小時內快速穿過胃腸道,並且沒有引起微生物群之變化。小韋榮氏球菌菌株A之作用機制依賴於與宿主腸細胞的直接相互作用,部分藉由TLR-2介導。這強化了微生物活力不是必需的中心前提,因為這種經γ照射的微生物能夠藉由與SINTAX的結構相互作用而發揮其藥理活性。這不同於活細菌療法改變結腸微生物相的生態之報導(Atarashi等人, 2013)。雖然以前的研究使用歸結法(reductionist approach)來鑒定細菌物種對無菌動物之免疫效應(Geva-Zatorsky等人, 2017),但本文描述的所有實驗均為在具有完整腸道微生物群的特定無病原體動物中進行的,以代表在腸道微生物環境中的複雜關係。在此微生物背景上疊加了小韋榮氏球菌菌株A之劑量依賴性效應。
在遲發型過敏模型中,小韋榮氏球菌菌株A之功效對IL-10的依賴性係SINTAX介導的作用與基於抑制促炎介體的既定療法之間差異的線索。迄今為止,作為抗炎療法全身投與IL-10尚未成功,儘管長期以來人們一直認為它係炎症消退的關鍵介體。IL-10在小韋榮氏球菌菌株A的活性中發揮的作用之藥理學證明示出了可替代性方式以利用其抗炎作用。它進一步證實了這樣一個事實,即響應於特定免疫調節細菌菌株,局部腸道效應可以調節遠端部位的免疫反應,這與之前的報導一致(Mangalam等人, 2017)。這種方法揭示了本文揭露的平臺之多功能性,以將微生物開發為具有免疫調節相關疾病特異性途徑的能力之藥物。
這項工作有兩個主要結論。首先係與結腸菌群不同的小腸黏膜係全身炎症之中央控制器,它在一定距離內響應於穿過腸道的物質操縱產生的訊息。該等效果似乎代表了炎症之廣泛消退(藉由多種途徑重新建立了正常的穩態炎症狀態)。
第二係它為數百萬患者所遭受的常見炎性疾病提供了治療方法。藉由經由SINTAX起作用的非吸收性口服劑消退炎症具有創造一類新型的安全且有效的藥物之潛力,該等藥物能以合理的成本生產用於治療全球數百萬患者的炎性疾病。該等結果支持目前正在進行的一系列關於小韋榮氏球菌菌株A的臨床研究。 材料和方法
小鼠。 雌性BALB/c和C57BL/6小鼠(6-8週齡)從泰康利農場(Taconic Farms)購買。將動物以無特定病原體的條件圈養在生態動物園中(每個籠子5隻小鼠),並且所有實驗均在機構動物護理和使用委員會(IACUC)批准的方案和指南下進行。用於EAE實驗的雌性SJL小鼠(8-10週齡)購自傑克遜實驗室(Jackson Labs),EAE實驗在虎克實驗室(Hooke Laboratories)(Lawrence,麻塞諸塞州)在IACUC批准的方案下進行。在實驗開始之前,讓小鼠適應生態動物園1-2週。提供PicoLab Rodent Diet 20,並藉由吸管瓶提供高壓滅菌水,隨意飲用並每天檢查。
微生物菌株。 獲得了韋榮氏球菌屬物種之三種個體菌株用於該研究。藉由單菌落分離法純化所有菌株。藉由16S rDNA序列比對和全基因組定序確認菌株身份。小韋榮氏球菌(小韋榮氏球菌菌株A)和當別町韋榮氏球菌係從兩名處於緩解期的IBD患者之迴腸袋樣本和結腸鏡檢查前樣本中分離出來的。從健康志願者之新鮮齦下樣本中分離出非典型韋榮氏球菌。
微生物生物質生長條件。 所有菌株均在內部開發的半組合大豆蛋白腖-酵母提取物培養基中生長,培養基中補充有Na-L-乳酸鹽作為主要碳源、礦物質元素和L-半胱胺酸鹽酸鹽作為還原劑。在收穫前,所有微生物培養物都在37°C的厭氧條件下培養16-24小時。將細菌生物質藉由在10°C下於7000 g離心20 min進行濃縮,重懸於厭氧甘油或酵母提取物-蔗糖溶液中,並在厭氧條件下以1.2-1.5 ml體積分配到1.8 ml冷凍小瓶中。將冷凍小瓶立即冷凍在液態N2中,並在-80°C下儲存。
小韋榮氏球菌菌株A以不同形式製備 - 粉劑和冷凍生物質,並藉由TCC法進行表徵。細菌總細胞計數(TCC)由庫爾特計數器Multisizer 4e計數。在粉劑中,TCC從4.0e + 11至2.2e + 12個細胞/g不等。在生物質中,TCC從2.8e + 10至8.5e + 10個細胞/ml不等。藉由16S rDNA定序鑒定細菌生物質。粉劑係按照內部開發的發酵和冷凍乾燥方案生產的,並儲存在乾燥器內的密封麥拉袋(sealed mylar bag)中,溫度為4°C。
將小韋榮氏球菌菌株A等分試樣在美國施潔國際有限責任公司(Sterigenics U.S.,LLC)進行25 kGy γ照射處理。小韋榮氏球菌菌株A等分試樣在γ照射前後藉由TCC和VCC法進行了表徵。總細胞數沒有變化,但處理後沒有活細胞。
給藥小韋榮氏球菌菌株 A 和體內對照。 對於每項體內研究,將小韋榮氏球菌菌株A等分試樣分配到帶蓋的塑膠試管中,並在4°C下儲存。對不同模型的小鼠口服給予小韋榮氏球菌菌株A(4.0E + 11至2.2E + 12個細胞/g PO-特異性TCC在圖例中注明)或媒介物對照(厭氧蔗糖,PO)處理一段時間,如圖例中描述的。除非另有說明,否則將地塞米松(1 mg/kg,i.p.,西格瑪公司(Sigma))用作陽性對照。對於EAE研究,每天給藥芬戈莫德(1 mg/kg,PO,圖克裡斯生物科學公司(Tocris Bioscience))。
為了阻斷IL-10R,以2 mg/mL給小鼠腹膜內注射100 µL的抗IL-10R(Bio X Cell公司;殖株1B1.3A;目錄號BE0050)或大鼠IgG1同位素對照(Bio X Cell公司;殖株HRPN;目錄號BE0088)。在第0、3和6天對小鼠進行處理。
為了阻斷TLR2,以2 mg/mL給小鼠腹膜內注射100 µL的抗TLR2(英傑公司(Invivogen);殖株T2A;目錄號mab2-mtlr2)或小鼠IgG1同位素對照(Bio X Cell公司;殖株MOPC-21;目錄號BE0083)。在第0、3和6天對小鼠進行處理。
為了抑制淋巴球之腸道歸巢,給小鼠腹膜內注射100 µL的抗CD62L(Bio X Cell公司;殖株Mel-14;目錄號BE0021)和抗LPAM-1(Bio X Cell公司;殖株DATK32;目錄號BE0034),各自以5 mg/mL的濃度製備並按1 : 1混合;或大鼠IgG2a同位素對照(Bio X Cell公司;殖株2A3;目錄號BE0089),以5 mg/mL。在第1、3、5和7天對小鼠進行處理。
遲發型過敏小鼠模型。 用50 μl的完全弗氏佐劑(CFA)中的鑰孔血藍蛋白(KLH)乳劑在背部的四個部位免疫小鼠。8天後,在耳內用KLH(10 μg/10 μl)皮內激發受體小鼠。耳激發後24小時使用數位卡尺記錄耳部測量值。耳厚度之變化表示為第7天的耳厚度減去在基線的耳厚度。
對於過繼轉移DTH,從C57BL/6小鼠的脾臟和所有淋巴結中分離細胞並進行單細胞重懸。使用EasySep小鼠CD4+分離套組(幹細胞技術公司(StemCell Technologies),目錄號19852)分離CD4 +T細胞。將重懸於200 μl的PBS中的1.5-2 x 10 7個細胞注射到受體小鼠中。過繼轉移細胞後4天,在耳內用KLH(20 μg/20 μl)皮內激發受體小鼠。耳激發後24小時記錄耳部測量值。
咪喹莫特誘導的牛皮癬樣皮膚炎症方案。 連續7天每天在耳部用20 mg咪喹莫特乳膏(艾特樂(Aldara);美國明尼蘇達州聖保羅市3M藥物公司)局部致敏小鼠。每天使用數位卡尺進行耳部測量,並將得分記錄為耳厚度之變化,其計算為:咪喹莫特致敏前,每天的耳部得分減去第1天的基線耳部得分。
實驗性自體免疫性腦脊髓炎 在雌性SJL小鼠(8-10週齡)四個部位皮下注射CFA乳劑中的髓磷脂蛋白脂質蛋白(PLP) 139-151(0.05 mL/注射部位;約0.5 mg PLP PLP 139-151/mL;虎克實驗室(Hooke Laboratories);EK-2120)。免疫後,藉由在免疫2小時內腹膜內注射百日咳毒素(6 μg/mL;0.1 mL/小鼠)來完成EAE誘導。將小鼠隨機分配到組內並在42天期間內監測EAE臨床得分。對治療或先前的測量不知情的情況下,對疾病進展進行得分。使用標準的EAE標準對疾病嚴重程度進行得分:0(正常);1(失去尾音);2(後肢無力);3(後肢麻痹);4(後肢麻痹和前肢麻痹或無力);5(發病/死亡)。每天觀察小鼠之臨床症狀。如果小鼠持續2天的得分為4,則對他們實施安樂死,而對該研究中該等動物的其餘動物之得分為5的進行記錄。
終點組織收集和組織學 在研究結束時實施安樂死後,向EAE小鼠灌注5-10 mL PBS,並從顱骨的底部至髖骨的起點提取脊柱。然後將脊柱滴固定在10%中性緩衝福馬林中,並水平放置48小時。固定後,在室溫下在溫和的甲酸脫鈣溶液(Immunocal-Statlab,飛世爾科技公司(Fischer Scientific),#141432)中處理脊柱過夜(12-24小時)。然後將脊柱修剪成4 mm厚的頸、胸和腰椎節段,並使用Sakura Tissue Tek VIP 5藉由分級酒精脫水進行處理,在二甲苯中清除,並且最後用石蠟浸潤。處理後,將脊柱節段包埋在石蠟塊中。然後將石蠟塊在帶電的載玻片上以4 μm進行切片,風乾過夜,並根據標準自動化H & E方案(Tissue-Tek Prisma)用蘇木素和伊紅進行染色,然後蓋上玻片(Tissue-Tek Glass)。然後使用NanoZoomer 2.0 HT(濱松公司(Hamamatsu))以20X的放大倍率對製備的組織切片進行成像。
載玻片也用使用Ventana Discovery XT(Roche/Ventana, Tucson AZ)自動化平臺進行的抗MBP免疫組織化學進行染色。將載玻片脫蠟並再水化。內源性生物素阻斷線上進行4 min,然後在以1 : 1000稀釋的抗MBP一抗(Abcam. Ab40390 (1 µg/ml) LotGR3264120-1)中孵育32 min。將以1 : 1000稀釋的、生物素化的GtxRb二抗(Invitrogen 65-6140 LotTD268284)孵育32分鐘。使用標準DABMAP套組(Roche/Ventana 760-124)線上進行基於HRP的檢測,然後使用蘇木素複染劑。然後藉由在二甲苯中澄清的分級醇對載玻片進行脫水並蓋上蓋玻片。在Nanaozoomer 2.0 HT(Hamamatsu)上以20倍放大率掃描染色載玻片,並由病理學家分析圖像。
脊柱之組織學分析。 對於每個脊柱,製備並分析一張抗MBP染色載玻片和一張H & E染色載玻片。每張載玻片都包含一個切片,其中包含來自腰椎、胸椎和頸脊髓的樣本(3個樣本)。組織學分析對各組設盲進行,包括炎症病灶計數、凋亡細胞計數和脫髓鞘得分。所有分析均由對實驗組和所有臨床讀數被設盲的病理學家進行。 炎症病灶計數 - 脊髓 -在每個H & E染色切片中計數約20個細胞的炎症病灶。當炎症浸潤由超過20個細胞組成時,估計20個細胞中存在的病灶數。 脫髓鞘面積估計 - 脊髓- 脫髓鞘得分代表每個切片之脫髓鞘面積估計值,如下所示: 0 - 無脫髓鞘(脫髓鞘面積小於5%) 1 - 5%至20%脫髓鞘面積 2 - 20%至40%脫髓鞘面積 3 - 40%至60%脫髓鞘面積 4 - 60%至80%脫髓鞘面積 5 - 80%至100%脫髓鞘面積 對於抗MBP染色的載玻片,脫髓鞘面積之大小係根據髓磷脂較不強烈的棕色染色來估計的。
FITC 誘導的過敏性炎症 將雌性BALB/c小鼠之背部進行剃毛,並在第1和2天將400 μl的0.5% FITC溶液(溶解於丙酮 : 鄰苯二甲酸二丁酯,1 : 1,v/v)塗在剃毛的皮膚上。在第6天,進行基線耳部測量,然後用20 μl 0.5% FITC激發小鼠右耳。在第7天,在FITC激發後24小時使用數位卡尺(Fowler)測量耳厚度。耳厚度之變化表示為第7天的耳厚度減去在基線的耳厚度。
離體再刺激測定。 在各種研究之最終時間點收穫耳引流頸部淋巴結(CLN)、腸引流腸系膜淋巴結(MLN)和脾臟,並將其收集到0.5 ml的冷的完全RPMI(10% FBS、1x Glutamax、1 mM丙酮酸鈉、100 mM HEPES、1x非必需胺基酸、1x β-巰基乙醇、1x抗生素-抗黴菌劑)中(所有試劑均來自吉畢科公司(Gibco))。製備單細胞懸浮液(用ACK裂解緩衝液RBC裂解脾臟)並鋪板200,000個細胞/孔。用LPS(200 ng/ml,英傑公司)或PMA(電子生物科學公司(eBioscience))離體刺激細胞48小時,或用KLH(50 μg/ml,西格瑪公司)或OVA(50 μg/ml)在37°C和5% CO 2下離體刺激細胞72小時。在刺激結束時收集上清液,並使用Meso Scale Discovery(MSD)套組將其用於細胞介素水平之多重ELISA。將耳組織在含有Halt蛋白酶(賽默科技公司(Thermo Scientific))的250 μl T-PER緩衝液(賽默科技公司)中解離,並用BCA套組(賽默科技公司)對蛋白質進行定量。使用MSD套組,將100 μg蛋白質用於測量細胞介素水平。
小韋榮氏球菌菌株 A 螢光標記螢光標記。 除非另有說明,否則樣本一直保存在冰中。為了去除賦形劑,將200 mg的小韋榮氏球菌菌株A藥物物質(粉末製劑)重懸浮,並使用無菌標記緩衝液(2x PBS緩衝液pH 8.3)藉由反復離心/重懸(4 min,9000 x g,4°C)進行充分洗滌。使用標記緩衝液,最終微生物細胞沈澱重懸於1 mL最終體積中。藉由添加50 µM最終濃度的IRDye800-NHS酯(LICOR Biosciences)(來自溶解在DMSO中的10 mM染料原液)開始螢光標記反應。使反應在22°C下繼續進行1.5小時,同時輕輕攪拌,然後在4°C下孵育過夜。藉由在無菌PBS緩衝液中重複離心/重懸的步驟去除未反應的染料,直到在上清液中檢測不到螢光。將螢光標記的微生物細胞重懸於無菌PBS緩衝液中,並使用庫爾特計數器儀器(貝克曼(Beckman))對細胞濃度進行定量。共價附著於微生物細胞的IRDye800®之莫耳濃度藉由UV-Vis吸光度並使用染料莫耳消光係數240.000 M -1cm -1在PBS緩衝液(LICOR Biosciences)中在778 nm處進行量化。使用未標記的細菌細胞之懸浮液以減去任何光散射貢獻。
生物分佈研究。 實驗前一週,將Balb/C雌性小鼠置於不含葉綠素之特定低螢光飲食(AIN-93G,Bio-Serv)下。將小鼠隨機分組,每組3隻動物,口服給予100 µl PBS緩衝液,其中包含總共1 x 10 9個共價標記有IRDye800的小韋榮氏球菌菌株A細胞,以及等莫耳染料量的IRDye680RD-羧酸鹽(LICOR Biosciences)作為無染料對照。在每個實驗重複中的每個時間點,使用CO 2和頸脫位法處死小鼠,然後小心去除完整的胃腸道(GIT)、腸系膜淋巴結(MLN)、肝臟、脾臟、心臟和肺。使用全動物螢光成像儀(Pearl®,LI-COR Biosciences)將該等在託盤中成像。使用800 nm發射通道(小韋榮氏球菌菌株A)、700 nm發射通道(無染料對照)和標準白色落射照明通道(整個組織)對組織進行成像。成像後,記錄各個器官之重量。螢光圖像用於量化小韋榮氏球菌菌株A訊息在GIT以及不同器官中的分佈。手動勾勒組織輪廓,並使用圖像分析軟體(Image Studio®,LICOR Biosciences)量化螢光訊息。來自不同器官的螢光訊息除以記錄的組織重量,以使數據歸一化。數據點對應於平均值 ± 標準差值。
HEK-TLR 測定。 表現人TLR1、TLR2和TLR6組合之HEK293-SEAP報告細胞(英傑公司)以20,000個細胞/孔的最終濃度接種在96孔板中,並在適當的選擇培養基中培養。48小時後,清洗出選擇培養基並用完整培養基替換,並以每孔指定濃度添加小韋榮氏球菌菌株A。細胞在小韋榮氏球菌菌株A存在下培養24小時。收集上清液並與HEK-Blue試劑(英傑公司)孵育1小時,然後針對SEAP產生讀取OD 630 nm處的吸光度,以確定對TLR2異源二聚體的刺激。
體外測定。 為了進行體外測定,在厭氧箱(Coy實驗室產品(Coy Lab Products),美國)內將解凍的細菌生物質在RPMI脫氣培養基中連續稀釋至達到約2E + 6個細菌細胞/ml。在定製的Coy厭氧箱(Coy實驗室產品,美國)內手動或藉由使用自動液體處理機Biomek 4000(貝克曼庫爾特公司),每96孔將100,000個細菌細胞添加到200,000個純化的人免疫細胞中。將共培養物在微氧條件下(1% O 2,5% CO 2,用N 2平衡)孵育24小時。孵育後,收集細胞上清液並使用Luminex或MSD技術來測量促炎和抗炎細胞介素之產生。
PBMC 測定。 從6個不同的人類供體中新鮮分離的PBMC以100,000 PBMC/孔以100 μl培養,並在37°C下孵育過夜。第二天,取出75 µl的上清液並更換為新鮮的無抗生素培養基。在厭氧條件下添加微生物,並用1%的氧氣吹掃。將板在厭氧箱中在37°C +5% CO 2下孵育24小時。24小時後,將板離心並收集上清液以使用MSD測定法測定細胞介素水平。
人巨噬細胞測定。 使用來自6個不同人類供體的新鮮分離的PBMC來分離CD11b+巨噬細胞。將PBMC在10 ml MACS緩衝液中洗滌,離心並以每80 μl 10 7個總細胞的濃度重懸。添加抗CD11b+珠粒(20 μl/10 7個細胞),並將細胞懸浮液在4°C下孵育15分鐘。孵育後,將細胞洗滌並重懸於MACS緩衝液中,並按照製造商之方案(美天旎公司(Miltenyi))使用磁分離法分離CD11b+細胞。將分離的細胞在100 μl中以100,000個CD11b+細胞/孔進一步培養,並在37°C下孵育過夜。第二天,將孔中的內容物混合以使非貼壁細胞懸浮,取出75 μl的上清液並更換為新鮮的無抗生素培養基。在厭氧條件下添加微生物,並用1% O 2吹掃。將板在厭氧箱中在37°C +5% CO 2下孵育24小時。24小時後,將板離心並收集上清液以使用MSD測定法測定細胞介素水平。
人樹突細胞測定。 使用來自6個不同人類供體之新鮮分離的PBMC來分離血液樹突細胞。將PBMC在10 ml MACS緩衝液中洗滌,離心並以每300 μl 10 8個總細胞的濃度重懸。添加FcR阻斷試劑和非DC耗竭混合物(每10 8個細胞100 μl),並將細胞懸浮液在4°C下孵育15分鐘。孵育後,洗滌細胞並重懸於MACS緩衝液中,並藉由磁性LD柱進行耗竭分離。非DC細胞保留在磁性柱中,而未標記的細胞(DC)被收集為流過物。洗滌未標記的細胞(DC)並用DC富集混合物(每10 8個細胞100 μL)標記,並將細胞懸浮液在4°C下孵育15分鐘。孵育後,洗滌細胞並重懸於MACS緩衝液中,並藉由磁性MS柱進行陽性選擇。將陽性分離的細胞在100 μl中以30,000個樹突細胞/孔進一步培養,並在37°C下孵育過夜。第二天,取出75 μl的上清液並更換為新鮮的無抗生素培養基。在厭氧條件下添加微生物,並用1% O 2吹掃。將板在厭氧箱中在37°C +5% CO 2下孵育24小時。24小時後,將板離心並收集上清液以使用MSD測定法測定細胞介素水平。
統計分析。 數據表示為平均值 ± 標準差。與蔗糖處理的對照組相比,使用單因素方差分析比較各組之間的統計學顯著性。對於EAE數據的統計分析,每個讀數使用以下測試:EAE發生率,卡方檢驗;EAE發作的平均天數,雙尾學生t檢驗;EAE發作日之中值,Wilcoxon氏生存檢驗;平均臨床得分,雙尾學生t檢驗;平均最終臨床得分,Wilcoxon氏非參數檢驗;平均最大得分(MMS),Wilcoxon氏非參數檢驗;平均體重增加/減少,雙尾學生t檢驗;終末體重增加/減少,雙尾學生t檢驗;EAE復發率,卡方檢驗;復發的MMS,Wilcoxon氏非參數檢驗;復發期的MMS,Wilcoxon氏非參數檢驗。顯著性指定為p < 0.05,所有統計學檢驗均使用Prism 8(GraphPad軟體,美國加利福尼亞州聖地亞哥)進行。 實例 4 以及材料和方法的參考文獻
Akeson, E.C., Donahue, L.R., Beamer, W.G., Shultz, K.L., Ackert-Bicknell, C., Rosen, C.J., Corrigan, J., and Davisson, M.T. (2006). Chromosomal inversion discovered in C3H/HeJ mice. Genomics 87, 311-313.
Arrieta, M.C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., et al. (2015). Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7, 307ra152.
Atarashi, K., Tanoue, T., Oshima, K., Suda, W., Nagano, Y., Nishikawa, H., Fukuda, S., Saito, T., Narushima, S., Hase, K., et al. (2013). Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232-236.
Boehme, S.A., Franz-Bacon, K., Chen, E.P., Sasik, R., Sprague, L.J., Ly, T.W., Hardiman, G., and Bacon, K.B. (2009). A small molecule CRTH2 antagonist inhibits FITC-induced allergic cutaneous inflammation. Int Immunol 21, 81-93.
Chen, J., Wright, K., Davis, J.M., Jeraldo, P., Marietta, E.V., Murray, J., Nelson, H., Matteson, E.L., and Taneja, V. (2016). An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med 8, 43.
Dutt, S., Ermann, J., Tseng, D., Liu, Y.P., George, T.I., Fathman, C.G., and Strober, S. (2005). L-selectin and beta7 integrin on donor CD4 T cells are required for the early migration to host mesenteric lymph nodes and acute colitis of graft-versus-host disease. Blood 106, 4009-4015.
Geva-Zatorsky, N., Sefik, E., Kua, L., Pasman, L., Tan, T.G., Ortiz-Lopez, A., Yanortsang, T.B., Yang, L., Jupp, R., Mathis, D., et al. (2017). Mining the Human Gut Microbiota for Immunomodulatory Organisms. Cell 168, 928-943 e911.
Hardman, C., and Ogg, G. (2016). Interleukin-33, friend and foe in type-2 immune responses. Curr Opin Immunol 42, 16-24.
Hasegawa, K., Linnemann, R.W., Mansbach, J.M., Ajami, N.J., Espinola, J.A., Petrosino, J.F., Piedra, P.A., Stevenson, M.D., Sullivan, A.F., Thompson, A.D., et al. (2016). The Fecal Microbiota Profile and Bronchiolitis in Infants. Pediatrics 138.
Honda, K., and Littman, D.R. (2016). The microbiota in adaptive immune homeostasis and disease. Nature 535, 75-84.
Kollmann, T.R., Levy, O., Montgomery, R.R., and Goriely, S. (2012). Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly. Immunity 37, 771-783.
Levy, M., Kolodziejczyk, A.A., Thaiss, C.A., and Elinav, E. (2017). Dysbiosis and the immune system. Nat Rev Immunol 17, 219-232.
Mangalam, A., Shahi, S.K., Luckey, D., Karau, M., Marietta, E., Luo, N., Choung, R.S., Ju, J., Sompallae, R., Gibson-Corley, K., et al. (2017). Human Gut-Derived Commensal Bacteria Suppress CNS Inflammatory and Demyelinating Disease. Cell Rep 20, 1269-1277.
Marietta, E.V., Murray, J.A., Luckey, D.H., Jeraldo, P.R., Lamba, A., Patel, R., Luthra, H.S., Mangalam, A., and Taneja, V. (2016). Suppression of Inflammatory Arthritis by Human Gut-Derived Prevotella histicola in Humanized Mice. Arthritis Rheumatol 68, 2878-2888.
Mowat, A.M. (2003). Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3, 331-341.
Price, A.E., Shamardani, K., Lugo, K.A., Deguine, J., Roberts, A.W., Lee, B.L., and Barton, G.M. (2018). A Map of Toll-like Receptor Expression in the Intestinal Epithelium Reveals Distinct Spatial, Cell Type-Specific, and Temporal Patterns. Immunity 49, 560-575 e566.
Scheiman, J., Luber, J.M., Chavkin, T.A., MacDonald, T., Tung, A., Pham, L.D., Wibowo, M.C., Wurth, R.C., Punthambaker, S., Tierney, B.T., et al. (2019). Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med 25, 1104-1109.
Sefik, E., Geva-Zatorsky, N., Oh, S., Konnikova, L., Zemmour, D., McGuire, A.M., Burzyn, D., Ortiz-Lopez, A., Lobera, M., Yang, J., et al. (2015). MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells. Science 349, 993-997.
Sivan, A., Corrales, L., Hubert, N., Williams, J.B., Aquino-Michaels, K., Earley, Z.M., Benyamin, F.W., Lei, Y.M., Jabri, B., Alegre, M.L., et al. (2015). Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084-1089.
Sonkoly, E., Muller, A., Lauerma, A.I., Pivarcsi, A., Soto, H., Kemeny, L., Alenius, H., Dieu-Nosjean, M.C., Meller, S., Rieker, J., et al. (2006). IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol 117, 411-417.
Takeshita, K., Yamasaki, T., Akira, S., Gantner, F., and Bacon, K.B. (2004). Essential role of MHC II-independent CD4+ T cells, IL-4 and STAT6 in contact hypersensitivity induced by fluorescein isothiocyanate in the mouse. Int Immunol 16, 685-695.
van der Fits, L., Mourits, S., Voerman, J.S., Kant, M., Boon, L., Laman, J.D., Cornelissen, F., Mus, A.M., Florencia, E., Prens, E.P., et al. (2009). Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182, 5836-5845.
Whibley, N., Tucci, A., and Powrie, F. (2019). Regulatory T cell adaptation in the intestine and skin. Nat Immunol 20, 386-396.
Ziegler, S.F. (2012). Thymic stromal lymphopoietin and allergic disease. J Allergy Clin Immunol 130, 845-852. 實例 5 :小韋榮氏球菌菌株 A 作用於小腸細胞以消退周邊炎症
十二指腸組織之轉錄分析顯示,小韋榮氏球菌菌株A-G.I.上調了消退炎症的淋巴球途徑中的基因以及與腸穩態相關的基因。
口服投與小韋榮氏球菌菌株A-G.I.在蛋白脂質蛋白(PLP)誘導的復發緩解型實驗性自體免疫性腦脊髓炎(EAE)SJL小鼠模型中進行了測試。藉由在第0天注射在完全弗氏佐劑(CFA)中乳化的PLP 139-151在SJL小鼠中誘導EAE。為了測試預防性處理,從第0-42天,小鼠每天口服給藥10 mg的小韋榮氏球菌菌株A-G.I.或媒介物。為了測試治療性處理,從疾病第二天開始小鼠接受了小韋榮氏球菌菌株A-G.I.或媒介物。從第9-42天每天評估臨床得分,並進行平均最大得分(MMS)和復發率之統計分析。進行組織學分析以評估脊髓中的炎症和脫髓鞘。藉由RNA定序和基因集合富集分析(GSEA)評估小腸組織。小韋榮氏球菌菌株A已保藏,ATCC登錄案號為PTA-125691。
用Illumina 2x150技術對第42天的十二指腸組織(來自治療性處理小鼠)之RNA進行定序,目標深度為2000萬個配對末端讀數,並用STAR和RSEM進行處理。數據歸一化使用M值之修剪平均值(TMM),採用了基因表現經驗分析之函數進行方差估計的廣義線性模型。調整P值以控制多重測試(Benjamini和Hochberg方法)中的錯誤發現率(FDR)。差異基因表現被定義為 ≥ 1.5的倍數變化和FDR-adj. p ≤ 0.05。對藉由KEGG、基因本體、EnrichR和MSigDB可用的數據集進行了富集和過表現(over-representation)分析。
發現富含小韋榮氏球菌菌株A與媒介物之基因表現升高的細胞類型:
腸上皮細胞(IEC): Ihh Zg16 Defa5 Gpx2 Reg3a Slc13a2 Retnlb Smim22 Fabp1 Mep1a Mogat2 Guca2b Spink1 Tm4sf5 Acsl5 Reg3g Mptx1 Adipoq Aoc1 Cfd Adamdec1 Nr1i3 Rbp2 Fabp2 Tmem82 Dgat1 Fahd1 Pla2g12b Dgat2 Gstm3 Ccl25 Enpp7 Slc39a5 Anpep Casp6 Khk Lypd8 Aqp8 Slc23a1 Smlr1 Slc51b Cfb
免疫細胞: B細胞: Eaf2 Cd19 Tnfrsf13b Tnfrsf17 Stap1 Cd79a Ighd Cd79b Mbl2 Map4k1 Fcrl1 Blk Ikzf3 Coro1a Tnfrsf13c Vpreb3 Hvcn1 Pou2af1 Klhl6 Tnfrsf9 Fcrla Dok3 Mzb1 Derl3 Irf4 Ccr10 Itgb7 Jchain Iglc1 Iglc2 Abcb9 Zbp1 B細胞和T細胞: Cd69 Gpr174 Ptprcap Cd52 Il2rg Ltb Traf3ip3 Slamf6 Myo1g Gmfg S1pr4 Il16 Ikzf1 Arhgap25 T細胞: Gimap4 Cd2 Icos Trbc1 Prf1 Cd3d Cd6 Gimap7 Cd5 Trac Zap70 Lat Trbc2 Lck Skap1 Septin1 Foxp3 Lag3 Tnfrsf18 Izumo1r 骨髓細胞: Clec10a Ncf2 Ptafr S100a8 Hk3 Itgam Csf2rb Tyrobp Spi1 Aif1 Lst1 Lrrc25 Traf1 Pdcd1lg2 Rab30 Ryr1 Gpr132 Lgals3 Ccl22 Samsn1 Ccl24 Slc7a7 Il33 Srgn Gp1bb Cyp2u1 Tmem71 B細胞、T細胞和骨髓細胞: Cytip Cd48 Itgal Cd53 Parvg Dok2 Bin2 Sash3
表2中提供了在免疫細胞遷移到腸道、免疫調節和腸穩態中小韋榮氏球菌菌株A-G.I.具有已知功能的上調的基因。 [表2]:小韋榮氏球菌菌株A-G.I.與媒介物的基因集合富集分析總結
小腸細胞類型 生物過程 菌株 A 與媒介物的上調的基因(倍數變化 ≥ 1.5,BH調整p ≤ 0.05)
免疫系統細胞 淋巴球遷移、腸道歸巢和黏附 Ccl25 Ccr10 Ccl22 Ccl24 Itgb7 Itgal Itgam
T細胞譜系成熟和活化 Cd69 Icos Il2rg Cd3d Trbc1 Trbc2 Trac Lat Zap70 Lck Cd2
B細胞譜系成熟和活化 CD19 CD79a CD79b CD69 Ighd Fcrl1 Blk Ikzf3 Tnfrsf13c Jchain Iglc1 Iglc2
免疫調節 Foxp3 Lag3 Traf3ip3 Slamf6 Il33 Cd5 Adamdec1 Nr1i3
腸上皮之細胞 腸上皮細胞穩態(障壁、代謝、吸收) Gpx2 Gstm3 Aqp8 Guca2b Adipoq Dgat1 Dgat2 Slc23a1 Slc51b
宿主保護途徑 Zg16 Def5a Reg3a Retnlb Reg3g Cfd Lypd8 Casp6
實例 6 :韋榮氏球菌屬菌株 A-G.I. 之口服給藥在非炎症條件下不會抑制免疫系統
在KLH DTH響應之前或之後口服給藥:在第-9或-5天,「韋榮氏球菌屬菌株A-G.I. 8天預免疫」和「韋榮氏球菌屬菌株A-G.I. 4天預免疫」分別係指分別給小鼠組口服給藥4天或8天 韋榮氏球菌屬菌株A-G.I.。在第0天,用完全弗氏佐劑乳化的KLH來免疫所有組。第5天,「媒介物」、「地塞米松」和「韋榮氏球菌屬菌株A-G.I.免疫後」小鼠組用完全弗氏佐劑乳化的KLH免疫,並給藥蔗糖媒介物、地塞米松(1 mg/kg)或韋榮氏球菌屬菌株A-G.I. 4天。在第8天,使用卡尺測量基線耳厚度,然後藉由皮內耳部注射KLH來激發所有小鼠。24小時後,評估耳厚度之變化並與基線測量值比較。韋榮氏球菌屬菌株A-G.I.粉末在蔗糖中以10 mg/劑量給藥。韋榮氏球菌屬菌株A係指小韋榮氏球菌菌株A,已保藏,ATCC登錄案號為PTA-125691。韋榮氏球菌屬菌株A-G.I.係指菌株之γ照射形式。結果示於圖21中。
結論:使用韋榮氏球菌屬菌株A-G.I.對KLH DTH模型預給藥4或8天顯示沒有效果。這表明韋榮氏球菌屬菌株A-G.I.在炎症不存在下不會抑制免疫系統,而係消退異常的炎症響應。
實例 7 :誘發炎症和隨後給藥韋榮氏球菌屬菌株 A-G.I. 足以在隨後的 DTH 響應中誘導炎症消退
炎症誘導後給藥足以在隨後的KLH DTH激發中誘導炎症消退。
在第-5天,藉由皮下注射用完全或不完全弗氏佐劑(分別為CFA或IFA)乳化的PBS對「IFA-CFA」和「CFA-IFA」小鼠進行免疫(參見Petrovsky N. & Aguilar JC., 2004. Vaccine adjuvants: Current state and future trends. Immunol Cell Biol. [疫苗佐劑:當前狀態和未來趨勢. 免疫細胞生物學] 82 (5): 488-96)。在第5天,給小鼠口服給藥PBS或韋榮氏球菌屬菌株A-G.I.持續4天。在第8天,使用卡尺測量基線耳厚度,然後藉由皮內耳部注射KLH來激發小鼠。24小時後,評估耳厚度之變化並與基線測量值比較。韋榮氏球菌屬菌株A-G.I.粉末在蔗糖中以10 mg/劑量給藥。韋榮氏球菌屬菌株A係指小韋榮氏球菌菌株A,已保藏,ATCC登錄案號為PTA-125691。韋榮氏球菌屬菌株A-G.I.係指菌株之γ照射形式。結果示於圖22中。
結論:CFA(包含TLR促效劑和熱殺滅的結核分枝桿菌)和IFA(包含TLR促效劑)已顯示分別驅動Th1和Th2免疫響應。此外,IFA免疫誘導炎症響應(不存在任何抗原)。該等數據表明,在KLH-CFA免疫和耳激發之前向IFA-或CFA-發炎的小鼠給藥韋榮氏球菌屬菌株A-G.I.減少KLH特異性炎症響應。
實例 8 :從給藥了韋榮氏球菌屬菌株 A-G.I. KLH-CFA 免疫小鼠轉移 CD4+ T 細胞進入未經處理的 KLH-CFA 免疫小鼠可以減少耳激發後的炎症。
來自KLH-CFA免疫和韋榮氏球菌屬菌株A-G.I.給藥的小鼠之 CD4+ T細胞可以賦予免疫消解功能。
在第0天,用完全弗氏佐劑乳化的KLH來免疫供體小鼠。在第5天,給小鼠口服給藥蔗糖媒介物或韋榮氏球菌屬菌株A-G.I.持續4天,並且用完全弗氏佐劑乳化的KLH免疫第二組受體小鼠。在第9天,從各組中分離肱、腋窩和腹股溝淋巴結和脾臟,彙集,並藉由磁珠負選擇富集CD4+ T細胞。然後計數富集的細胞,用PBS(300 x g,10 min,4°C)洗滌,並以1 x 10 8個細胞/mL重懸於PBS中。富集後,然後將1 x 10 7個CD4+ T細胞藉由腹膜內轉移到受體小鼠中。在第12天,使用卡尺測量基線耳厚度,然後藉由皮內耳部注射KLH來激發小鼠。24小時後,評估耳厚度之變化並與基線測量值比較。韋榮氏球菌屬菌株A-G.I.粉末在蔗糖中以10 mg/劑量給藥。韋榮氏球菌屬菌株A係指小韋榮氏球菌菌株A,已保藏,ATCC登錄案號為PTA-125691。韋榮氏球菌屬菌株A-G.I.係指菌株之γ照射形式。結果示於圖23中。
結論:在KLH-DTH模型中,從用KLH-CFA免疫並給藥了韋榮氏球菌屬菌株A-G.I.的小鼠轉移CD4+ T細胞足以減輕未給藥韋榮氏球菌屬菌株A-G.I.的受體小鼠中的炎症。
實例 9 DTH 模型中韋榮氏球菌屬菌株 A-G.I. 給藥期間或給藥後 B 細胞耗竭抑制免疫消解之功效
在給藥韋榮氏球菌屬菌株A-G.I.的DTH模型中B細胞之耗竭:在第0天,用完全弗氏佐劑乳化的KLH來免疫小鼠。還在第0、3、6和9天藉由腹膜內注射用100 μL 2 mg/mL的抗CD20抗體或同種型對照處理小鼠。在第5天,口服蔗糖媒介物、口服韋榮氏球菌屬菌株A-G.I.或腹膜內(1 mg/kg)給藥地塞米松處理小鼠4天。在第11天,使用卡尺測量基線耳厚度,然後藉由皮內耳部注射KLH來激發小鼠。24小時後,評估耳厚度之變化並與基線測量值比較。韋榮氏球菌屬菌株A-G.I.粉末在蔗糖中以10 mg/劑量給藥。韋榮氏球菌屬菌株A係指小韋榮氏球菌菌株A,已保藏,ATCC登錄案號為PTA-125691。韋榮氏球菌屬菌株A-G.I.係指菌株之γ照射形式。
給藥韋榮氏球菌屬菌株A-G.I.後DTH模型中B細胞之耗竭:在第0天,用完全弗氏佐劑乳化的KLH來免疫小鼠。在第5天,口服媒介物蔗糖、口服韋榮氏球菌屬菌株A-G.I.或腹膜內(1 mg/kg)給藥地塞米松處理小鼠4天。然後在第9天和第11天藉由腹膜內注射用100 μL 2 mg/mL的抗CD20抗體或同種型對照抗體處理小鼠。在第11天,使用卡尺測量基線耳厚度,然後藉由皮內耳部注射KLH來激發小鼠。24小時後,評估耳厚度之變化並與基線測量值比較。韋榮氏球菌屬菌株A-G.I.粉末在蔗糖中以10 mg/劑量給藥。結果示於圖24中。
結論:B細胞耗竭抑制韋榮氏球菌屬菌株A-G.I.在減少KLH-DTH響應的炎症方面之功效。在整個研究期間或給藥後B細胞耗竭會抑制療效。這表明B細胞對於口腔微生物介導的炎症消退至關重要。
實例 10 :韋榮氏球菌屬菌株 A-G.I. 和抗 IL-6 之組合增加 KLH-DTH 模型中的炎症消退
用韋榮氏球菌屬菌株A-G.I.和抗IL-6處理KLH-DTH模型:在第0天,用完全弗氏佐劑乳化的KLH來免疫小鼠。在第0、3和6天,還藉由腹膜內注射用100 μL抗IL-6抗體(1或0.25 mg/mL)或同種型對照(2 mg/mL)處理小鼠。在第5天,口服媒介物蔗糖、口服韋榮氏球菌屬菌株A-G.I.或腹膜內(1 mg/kg)給藥地塞米松處理小鼠4天。在第8天,使用卡尺測量基線耳厚度,然後藉由皮內耳部注射KLH來激發小鼠。24小時後,評估耳厚度之變化並與基線測量值比較。韋榮氏球菌屬菌株A-G.I.粉末在蔗糖中以10 mg/劑量給藥。韋榮氏球菌屬菌株A係指小韋榮氏球菌菌株A,已保藏,ATCC登錄案號為PTA-125691。韋榮氏球菌屬菌株A-G.I.係指菌株之γ照射形式。結果示於圖25中。
結論:與單一療法相比,用韋榮氏球菌屬菌株A-G.I.和抗IL-6(1 mg/mL)兩者治療都能減少耳腫脹。這表明韋榮氏球菌屬菌株A-G.I.和抗IL-6兩者之組合在KLH DTH模型中提供了加和性的炎症減少。 藉由引用併入
本文中提及的每個出版物和專利之全部內容藉由引用併入本文。如果出現衝突,則以本說明書(包含本文的任何定義)為準。 等同適用
熟悉該項技術者僅使用常規實驗將認識到或能確定本文所述本發明之實施方式之許多等效形式。此類等同形式旨在為下列申請專利範圍所涵蓋。
[ 1A-1C]顯示了小韋榮氏球菌菌株A誘導人免疫細胞產生IL-10。 1A顯示了PBMC中的IL-10產生。 1B顯示了樹突細胞中的IL-10產生。 1C顯示了巨噬細胞中的IL-10產生。
[ 2]顯示了促炎性巨噬細胞對TNF產生的刺激。在促炎性巨噬細胞測定中,在細胞-微生物共培養24小時後,來自小韋榮氏球菌菌株A-G.I.刺激的3個個體供體之平均TNF(pg/ml)。誤差線表示平均值之標準差(S.D.)。
[ 3A-3B]顯示小韋榮氏球菌菌株A對人樹突細胞 : T細胞體外共培養系統中細胞介素表現之影響。3種人DC-CD8 T細胞共培養物中抗原特異性IL-10( 3A)和IFNγ( 3B)產生(有或沒有用經γ照射的小韋榮氏球菌菌株A預調理DC)。在添加CEF肽池後24小時,以pg/mL報告細胞介素。對照處理的誤差線表示重複孔之SD。
[ 4]顯示了小鼠KLH遲發型過敏模型。顯示的是24小時耳厚度變化測量值。誤差線表示標準差。統計顯著性係針對媒介物由單因素方差分析測量的。****表示p < 0.0001。
[ 5]顯示了第15天和第29天激發後耳部炎症之減少。
[ 6]顯示了皮膚過敏之小鼠FITC模型。4個單獨實驗的彙編的結果。誤差線表示標準差。統計顯著性係針對媒介物由單因素方差分析測量的。*表示p < 0.05,***表示p < 0.001,****表示p < 0.0001。
[ 7]顯示了小韋榮氏球菌菌株A-G.I.(經γ照射)減少MC903異位性皮膚炎樣皮膚炎症,其功效與全身性地塞米松和托法替尼相似。每天測量耳部炎症。計算從第1-14天的時間過程中耳腫脹測量的總曲線下面積(AUC)。誤差線表示標準誤差。統計顯著性係針對媒介物由單因素方差分析測量的。****表示p < 0.0001。
[ 8]顯示了用小韋榮氏球菌菌株A-G.I.處理導致耳中蛋白質和mRNA水平之降低。處理的小鼠耳中的IL-4蛋白質和mRNA測量。誤差線表示標準差。統計顯著性係針對媒介物由單因素方差分析測量的。*表示p < 0.05,**表示p < 0.01。
[ 9]顯示了小韋榮氏球菌菌株A-G.I.處理減少了淋巴結引流炎症部位中TH2和TH1細胞介素之產生。使用PMA和離子黴素對頸部淋巴結(cLN)和脾臟進行離體再刺激。誤差線表示標準差。統計顯著性係針對媒介物由單因素方差分析測量的。*表示p < 0.05,***表示p < 0.001,****表示p < 0.0001。
[ 10]顯示了小韋榮氏球菌菌株A-G.I.處理減少了耳部炎症和IL-17A之組織表現兩者。來自5個單獨研究的彙編數據。在第8天測量耳部炎症。誤差線表示標準誤差。統計顯著性係針對媒介物由單因素方差分析測量的。****表示p < 0.0001。
[ 11]顯示了EAE模型中的疾病得分。每日給藥小韋榮氏球菌菌株A-G.I.或媒介物42天後的臨床虛弱得分。誤差線表示標準誤差。
[ 12]顯示了總研究和急性期的曲線下面積(AUC)。總研究和急性期的曲線下面積。誤差線表示標準差(S.D.)****表示p < 0.0001,由非配對t檢驗確定。
[ 13A-13G]顯示了小韋榮氏球菌菌株A在體外誘導細胞介素產生並在體內消退炎症。圖13A顯示了IL-10細胞介素水平,其係藉由對來源於用不同厭氧細菌菌株刺激24小時並用1%氧氣吹掃的人巨噬細胞的上清液進行中尺度發現(MSD)測定來確定的。顯示的數據代表來自6個獨立人類供體的匯總數據。圖13B顯示了CXCL10/IP-10水平,其係藉由對來源於用不同厭氧細菌菌株刺激24小時並用1%氧氣吹掃的上清液進行MSD測定來確定的。顯示的數據代表來自6個獨立人類供體之匯總數據。圖13C顯示了TNFα水平,其係藉由對來源於用不同厭氧細菌菌株刺激24小時並用1%氧氣吹掃的上清液進行MSD測定來確定的。圖13D顯示了用小韋榮氏球菌菌株A細菌菌株刺激24小時並用1% O 2吹掃的人PBMC、樹突細胞和巨噬細胞。收集上清液以藉由MSD測試細胞介素水平。顯示的數據代表來自6個獨立人類供體DTH對KLH的響應之匯總數據。將C57BL/6小鼠在第0天用KLH和CFA經皮下進行免疫,並在9天後用KLH在耳內經皮內進行激發。從免疫後當天直至耳激發每天用媒介物或小韋榮氏球菌菌株A(TCC-2.84E + 10)對小鼠口服給藥。在第9天測量耳部炎症。圖13E顯示了給藥小韋榮氏球菌菌株A(TCC -7.8E + 11)和其他非複製型韋榮氏菌屬菌株(TCC-3.8E + 11- 1.03E + 12)的組的耳厚度之變化(n = 5隻小鼠/組)。圖13F顯示了小韋榮氏球菌菌株A(TCC 2.16E + 12)之劑量依賴性效應。圖13G顯示了小韋榮氏球菌菌株A藉由IL-10R途徑起作用以減少耳部炎症。如所示,在第2、4和6天用IL-10R阻斷抗體處理各組中的小鼠(小韋榮氏球菌菌株A TCC 2.16E + 12)。來自n = 2個實驗的代表性圖,其中每個實驗中有5隻小鼠/組。所有數據均顯示平均值 ± SEM。**p < 0.01,****p < 0.0001,ns:不顯著,如由非配對學生t檢驗確定。DTH - 遲發型過敏,KLH - 鑰孔血藍蛋白,CFA- 完全弗氏佐劑,TCC- 總細胞計數,s.c.- 皮下,i.p.- 腹膜內,i.d.- 皮內。
[ 14A-14B]顯示了小韋榮氏球菌菌株A係腸道受限的並且在24小時內通過胃腸(GI)道。圖14A係顯示隨著時間的推移指示胃腸道中小韋榮氏球菌菌株A之存在的訊息減小的圖。圖14B包括檢測到的、指示在各種組織中小韋榮氏球菌菌株A之存在的訊息的圖。
[ 15A-15B]顯示了小韋榮氏球菌菌株A減輕了咪喹莫特誘導的牛皮癬中的皮膚炎症。圖15A顯示了7天過程中的耳部炎症和曲線下面積。圖15B顯示了藉由qPCR測量的 Il17a、 Il17fDefb3的mRNA轉錄物水平。數據代表2個實驗的,其中n = 5/組。所有數據均顯示平均值 ± SEM。*p < 0.05,***p < 0.0005,****p < 0.0001,ns:不顯著,由非配對學生t檢驗確定。
[ 16A-16E]顯示了小韋榮氏球菌菌株A在治療復發緩解型MS模型中的神經炎症時表現出功效。藉由在第0天第0小時用在CFA中的PLP 139-151進行免疫並在第0天第2小時投與PTX在SJL小鼠中誘導EAE。圖16A顯示了用媒介物、小韋榮氏球菌菌株A(TCC- 8.46E + 10)和芬戈莫德(1 mg/kg)口服預防給藥41天後小鼠之累積EAE得分。在實驗過程中每天評估臨床得分。****p ≤ 0.00005,帶有韋爾奇校正(Welch’s correction)的非配對t檢驗來計算EAE得分的累積AUC之p值。圖16B顯示了用小韋榮氏球菌菌株A、媒介物或芬戈莫德處理的小鼠脊髓腦炎症水平。圖16C顯示了用媒介物、小韋榮氏球菌菌株A(TCC- 8.46E + 10)和芬戈莫德(1 mg/kg)口服治療給藥第10天至第41天後小鼠之累積EAE得分。在實驗過程中每天評估臨床得分。****p ≤ 0.00005,帶有韋爾奇校正(Welch’s correction)的非配對t檢驗來計算EAE得分的累積AUC之p值。圖16D係顯示在脊髓細胞中觀察到的炎症病灶的圖。圖16E係顯示用小韋榮氏球菌株A、媒介物或芬戈莫德處理的小鼠脊髓脫髓鞘的圖。圖16E之數據代表n = 15隻小鼠/組。*p ≤ 0.05,由非配對學生t檢驗確定。PLP-蛋白脂質蛋白,EAE-實驗性自體免疫性腦脊髓炎,PTX-百日咳毒素,CFA-完全弗氏佐劑。
[ 17A-17B]顯示了小韋榮氏球菌菌株A在Th2細胞驅動的異位性皮膚炎模型中消退炎症。圖17A顯示了FITC驅動的異位性皮膚炎(AD)中耳厚度之變化。圖17B顯示了藉由多重ELISA測量的、來自已經用PMA再刺激了48小時的腸系膜淋巴結和頸部淋巴結細胞之上清液和勻漿中的細胞介素水平。數據代表3個獨立實驗(n = 5隻小鼠/組)。*p < 0.05,***p < 0.0005,****p < 0.0001,ns:不顯著,由非配對學生t檢驗確定。
[ 18A-18B]顯示了小韋榮氏球菌菌株A在體內遲發型過敏T細胞驅動的疾病模型中消退炎症。圖18A顯示了耳厚度之變化(n = 10隻小鼠/組)。圖18B包括的圖顯示了在用PMA再刺激48小時後來自腸系膜淋巴結和脾的總細胞和用KLH再刺激72小時後來自耳引流淋巴結的總細胞之上清液中的細胞介素水平,如藉由多重ELISA測量的。數據代表2個實驗的,其中n = 10/組。所有數據均顯示平均值 ± SEM。*p < 0.05,**p < 0.001,***p < 0.0005,****p < 0.0001,ns:不顯著,由非配對學生t檢驗確定
[ 19A-19D]顯示了小韋榮氏球菌菌株係TLR2依賴性和TLR4依賴性的。圖19A顯示了小韋榮氏球菌菌株A刺激人TLR1/2和TLR2/6異二聚體,觀察到對TLR2/6異二聚體具有更大效力。如前所述誘導KLH-DTH。從第5天到第8天,小鼠口服給藥媒介物或小韋榮氏球菌菌株A(TCC- 2.16E + 12)。在第9天測量耳部炎症。在圖19B中,如所示在第2、4和6天用抗TLR2阻斷抗體處理小鼠,並測量耳厚度之變化。在圖19C中,給藥小韋榮氏球菌菌株A(TCC- 7.8E + 10)的C3HEJ(TLR4缺陷型)和C3HEN(野生型)小鼠中耳厚度之變化(n = 5隻小鼠/組)所有研究都具有 n = 5隻小鼠/組。來自 n = 1-2個實驗的代表性圖。所有數據均顯示平均值 ± SEM。**p < 0.01,****p < 0.0001,ns:不顯著,如由常見單因素方差分析確定。圖19D顯示了小韋榮氏球菌菌株A需要將腸道免疫細胞運送到外周以產生功效。所有研究都具有 n = 5隻小鼠/組。來自 n = 1-2個實驗的代表性圖。所有數據均顯示平均值 ± SEM。**p < 0.01,****p < 0.0001,ns:不顯著,如由常見單因素方差分析確定。
[ 20]顯示了過繼轉移的小韋榮氏球菌菌株A處理的CD4 T細胞介導DTH之功效。來自n = 2個實驗的代表性圖,其中每個實驗中有5隻小鼠/組;****p < 0.0001,如由常見單因素方差分析確定。
[ 21]係顯示在免疫前或免疫後給藥後,KLH耳激發後24小時耳厚度之變化的圖。
[ 22]係顯示用KLH-CFA免疫和KLH耳激發前用PBS-CFA或PBS-IFA免疫後,給藥媒介物(PBS)或韋榮氏球菌屬菌株A-G.I.後,KLH耳激發後24小時耳厚度變化的圖。
[ 23]係顯示從媒介物或韋榮氏球菌屬菌株A-G.I.處理的小鼠向未經處理的KLH-CFA免疫受體過繼轉移CD4+T細胞後,KLH耳激發後24小時耳厚度變化的圖。
[ 24]係顯示用媒介物或韋榮氏球菌屬菌株A-G.I.和在指定的時間點B細胞耗竭處理後,KLH耳激發後24小時耳厚度變化的圖。
[ 25]係顯示用媒介物或韋榮氏球菌屬菌株A-G.I.組合抗IL-6處理後,KLH耳激發後24小時耳厚度變化的圖。

Claims (35)

  1. 一種誘導人類受試者的免疫效應之方法,該方法包括向該人類受試者口服投與一定劑量的細菌組成物,該細菌組成物包含約3 x 10 10至約1.5 x 10 12個總細胞的小韋榮氏球菌菌株,其中該小韋榮氏球菌菌株係包含與小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)之核苷酸序列(例如,基因組序列、16S序列、CRISPR序列)至少95%序列同一性之菌株。
  2. 一種治療菌群失調之方法,該方法包括向該人類受試者口服投與劑量為約3 x 10 10至約1.5 x 10 12個總細胞的小韋榮氏球菌菌株,其中該小韋榮氏球菌菌株係包含與小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)之核苷酸序列(例如,基因組序列、16S序列、CRISPR序列)至少95%序列同一性之菌株。
  3. 如請求項1或2所述之方法,其中該小韋榮氏球菌係小韋榮氏球菌菌株A(ATCC保藏案號PTA-125691)。
  4. 如請求項1-3中任一項所述之方法,其中該小韋榮氏球菌被配製成一或多種膠囊或片劑或微型片劑。
  5. 如請求項1-4中任一項所述之方法,其中該膠囊或片劑或微型片劑係腸溶包衣的。
  6. 如請求項1-5中任一項所述之方法,其中該細菌組成物包含約3 x 10 10個總細胞的小韋榮氏球菌。
  7. 如請求項1-6中任一項所述之方法,其中該細菌組成物包含約4.5 x 10 10個總細胞的小韋榮氏球菌。
  8. 如請求項1-6中任一項所述之方法,其中該細菌組成物包含約1.5 x 10 11個總細胞的小韋榮氏球菌。
  9. 如請求項1-6中任一項所述之方法,其中該細菌組成物包含約7.5 x 10 11個總細胞的小韋榮氏球菌。
  10. 如請求項1-6中任一項所述之方法,其中該細菌組成物包含約1.5 x 10 12個總細胞的小韋榮氏球菌。
  11. 如請求項1-11中任一項所述之方法,其中該細菌組成物每天投與至少一次。
  12. 如請求項1-11中任一項所述之方法,其中該細菌組成物每天投與一次。
  13. 如請求項1-11所述之方法,其中該細菌組成物每天投與兩次。
  14. 如請求項1-13中任一項所述之方法,其中該免疫效應包括免疫細胞的抗炎細胞介素表現之增加。
  15. 如請求項14所述之方法,其中該抗炎細胞介素係IL-10或IL-27。
  16. 如請求項14所述之方法,其中該抗炎細胞介素係IL-10。
  17. 如請求項1-13中任一項所述之方法,其中該免疫效應包括免疫細胞的促炎細胞介素表現之減少。
  18. 如請求項17所述之方法,其中該促炎細胞介素係Th1細胞介素。
  19. 如請求項17所述之方法,其中該促炎細胞介素係Th2細胞介素。
  20. 如請求項17-19中任一項所述之方法,其中該促炎細胞介素係IL-1β、IL-6、TNF-α、IL-5、IL-4、IL-13、IL-17和/或IL-8。
  21. 如請求項20所述之方法,其中該促炎細胞介素係IL-5、IL-4、IL-13、或IL-17.26。如請求項18-25中任一項所述之方法,其中該免疫細胞係周邊血單核細胞(PBMC)、樹突細胞或巨噬細胞。
  22. 如請求項1-13中任一項所述之方法,其中該免疫效應包括提高實例5中提供的基因之表現。
  23. 如請求項22所述之方法,其中基因係 Spink1 Tm4sf5和/或 Aoc1
  24. 如請求項1-13中任一項所述之方法,其中該免疫效應包括提高表2中提供的基因之表現。
  25. 如請求項24所述之方法,其中顯示升高的表現之基因與淋巴球遷移、腸道歸巢和黏附相關(例如, Ccl25 Ccr10 Ccl22 Ccl24 Itgb7 Itgal 和/或 Itgam)。
  26. 如請求項24所述之方法,其中顯示升高的表現之基因與T細胞譜系成熟和活化相關(例如, Cd69 Icos Il2rg Cd3d Trbc1 Trbc2 Trac Lat Zap70 Lck 和/或 Cd2)。
  27. 如請求項24所述之方法,其中顯示升高的表現之基因與B細胞譜系成熟和活化相關(例如, CD19 CD79a CD79b CD69 Ighd Fcrl1 Blk Ikzf3 Tnfrsf13c Jchain Iglc1 和/或 Iglc2)。T
  28. 如請求項24所述之方法,其中顯示升高的表現之基因與免疫調節相關(例如, Foxp3 Lag3 Traf3ip3 Slamf6 Il33 Cd5 Adamdec1 和/或 Nr1i3)。
  29. 如請求項24所述之方法,其中顯示升高的表現之基因與腸上皮細胞穩態(障壁、代謝、吸收)相關(例如, Gpx2 Gstm3 Aqp8 Guca2b Adipoq Dgat1 Dgat2 Slc23a1 和/或 Slc51b)。
  30. 如請求項24所述之方法,其中顯示升高的表現之基因與宿主保護性途徑相關(例如, Zg16 Def5a Reg3a Retnlb Reg3g Cfd Lypd8 和/或 Casp6)。
  31. 如請求項1-30中任一項所述之方法,其中該受試者患有免疫障礙。
  32. 如請求項31所述之方法,其中該免疫障礙係異位性皮膚炎、牛皮癬、或氣喘。
  33. 如請求項1-32中任一項所述之方法,其中該小韋榮氏球菌係無活性的。
  34. 如請求項1-32中任一項所述之方法,其中該小韋榮氏球菌經γ照射。
  35. 如請求項1-32中任一項所述之方法,其中該免疫效應包括減少炎症細胞浸潤之頻率。
TW110141334A 2020-11-06 2021-11-05 使用小韋榮氏球菌細菌誘導免疫效應 TW202233214A (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US202063110761P 2020-11-06 2020-11-06
US63/110,761 2020-11-06
US202063112330P 2020-11-11 2020-11-11
US63/112,330 2020-11-11
US202163237818P 2021-08-27 2021-08-27
US63/237,818 2021-08-27
US202163249181P 2021-09-28 2021-09-28
US63/249,181 2021-09-28
US202163250588P 2021-09-30 2021-09-30
US63/250,588 2021-09-30

Publications (1)

Publication Number Publication Date
TW202233214A true TW202233214A (zh) 2022-09-01

Family

ID=78806725

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110141334A TW202233214A (zh) 2020-11-06 2021-11-05 使用小韋榮氏球菌細菌誘導免疫效應

Country Status (2)

Country Link
TW (1) TW202233214A (zh)
WO (1) WO2022098961A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014239883B2 (en) 2013-03-14 2019-01-17 Therabiome, Llc Targeted gastrointestinal tract delivery of probiotic organisms and/or therapeutic agents
CN112074283A (zh) 2018-02-06 2020-12-11 伊夫罗生物科学公司 使用韦荣氏球菌属细菌治疗癌症和免疫病症的组合物和方法
CN113727722A (zh) * 2019-02-22 2021-11-30 伊夫罗生物科学公司 细菌膜制剂
TW202140050A (zh) * 2020-01-10 2021-11-01 美商艾弗洛生物科技股份有限公司 使用小韋榮氏球菌進行治療的組成物及方法

Also Published As

Publication number Publication date
WO2022098961A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
JP7402805B2 (ja) ベイロネラ(Veillonella)の細菌を使用して癌及び免疫障害を処置するための組成物及び方法
TW201936203A (zh) 使用布勞特氏(blautia)菌株治療疾病之組合物及方法
TW202045192A (zh) 細菌膜製劑
TW201922270A (zh) 使用免疫調節乳球菌屬 (lactococcus) 細菌菌株治療免疫病症之組合物及方法
TW202114718A (zh) 經加工的微生物胞外囊泡
TW202120109A (zh) 使用普雷沃菌屬治療th2介導的病症之組成物及方法
AU2019217041B2 (en) Compositions and methods for the induction of CD8+ T-cells
TW202135783A (zh) 包含細菌和微生物胞外囊泡之固體劑型
TW202140051A (zh) 具有改善的崩散譜之固體劑型
TW202228653A (zh) 細菌之固體劑型
TW202302127A (zh) 使用棲組織普雷沃菌治療炎症之組成物及方法
JP2023522018A (ja) 改善された崩壊プロファイルを有する固形剤形
TW202227112A (zh) 使用棲組織普雷沃菌治療炎症之組成物及方法
TW202140050A (zh) 使用小韋榮氏球菌進行治療的組成物及方法
TW202237816A (zh) 普雷沃菌屬細胞外囊泡製劑
TW202304415A (zh) 含有細菌的藥物製劑
TW202302125A (zh) 固體劑型
TW202233214A (zh) 使用小韋榮氏球菌細菌誘導免疫效應
TW202227111A (zh) 具有改善的崩散譜之固體劑型
TW202245736A (zh) 用於降低細胞介素表現之組成物及方法
TW202227110A (zh) 用棲組織普雷沃菌調節免疫反應之組成物及方法
WO2023200837A1 (en) Compositions and methods of treating inflammation using prevotella histicola
TW202322787A (zh) 包含細菌和微生物胞外囊泡之固體劑型
WO2023146843A1 (en) Extracellular vesicle compositions and methods of use
TW202304486A (zh) 福涅拉氏菌屬細胞外囊泡製劑