TW202229165A - 共電沉積形成場發射陰極方法 - Google Patents

共電沉積形成場發射陰極方法 Download PDF

Info

Publication number
TW202229165A
TW202229165A TW110135850A TW110135850A TW202229165A TW 202229165 A TW202229165 A TW 202229165A TW 110135850 A TW110135850 A TW 110135850A TW 110135850 A TW110135850 A TW 110135850A TW 202229165 A TW202229165 A TW 202229165A
Authority
TW
Taiwan
Prior art keywords
field emission
salt
introducing
emission material
layer
Prior art date
Application number
TW110135850A
Other languages
English (en)
Inventor
程 錢
Original Assignee
美商Ncx公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Ncx公司 filed Critical 美商Ncx公司
Publication of TW202229165A publication Critical patent/TW202229165A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • C09D5/443Polyepoxides
    • C09D5/4457Polyepoxides containing special additives, e.g. pigments, polymeric particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4473Mixture of polymers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3048Distributed particle emitters
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

一種製造電子場發射陰極的方法,該場發射陰極包含具有與其接合的場發射層的基板,其中場發射層併有經改性之碳奈米管及基礎材料,以改良陰極及實施此等陰極的場發射陰極裝置的場發射特性。

Description

共電沉積形成場發射陰極方法
本申請關於製造場發射陰極裝置的方法,且更具體地說,關於為改良陰極的場發射特性而將經改性之碳奈米管及基礎材料併入場發射基礎材料中的場發射陰極及實施此等陰極的場發射陰極裝置的形成方法。
一般而言,場發射陰極裝置包含陰極基板(通常由金屬或其他導電材料(諸如,合金、導電玻璃、金屬化陶瓷、摻雜矽)構成)、一層被安置於基板上的場發射材料(比如,奈米管、奈米線、石墨烯);及如果必要,被安置於基板與場發射材料之間的附著性材料的附加層。舉例而言,場發射陰極裝置的一些典型應用包含在真空環境、場發射顯示器及X射線管中能操作的電子產品。
碳奈米管可被用於冷場發射陰極的製造中。然而,於電流電泳製程期間,碳奈米管通常情況下分散不佳且/或不穩定,導致陰極表面上的發射體(emitter)不均勻且一批陰極與另一批陰極之間顯著變化。
由此,存在對改良碳奈米管於場發射基礎材料中的分佈來獲得高密度的發射體以高度均勻性分佈於其表面上的場發射體陰極,從而改良陰極的場發射特性(諸如,發射電流、開啟電壓及發射壽命)的製程的需要。
上述及其他需要藉由本揭露的態樣滿足,本揭露的態樣包含而不限於下面的範例性實施方式,且在一個特別態樣中,一種形成場發射陰極的方法,其中該方法包含:藉由使複數個碳奈米管及聚(3,4-伸乙基二氧基噻吩)-聚(苯乙烯磺酸)( poly(3,4-ethylendioxythiophene)-poly(styrene sulfonic acid))溶液以特定比例在水中混合來形成基材混合物,使該基材混合物暴露於強超音波分散方法中,將至少一個基礎粒子、至少一個金屬鹽、至少一個充電子、或其組合引入基材混合物中來形成場發射材料混合物(亦即,經改性之基材混合物),以及使該場發射材料混合物暴露於和緩超音波分散方法中來形成場發射材料的穩定懸浮液,以形成場發射材料;經由共電沉積製程使一層場發射材料的穩定懸浮液沉積於基板的至少一部分上;在大氣壓下或真空下,在約20⁰C至約150⁰C的溫度下,乾燥該層及該基板;在真空下,在約300⁰C至約1000⁰C的溫度下使該層及該基板退火;以及活化該層場發射材料,以獲得場發射陰極。
另一個範例性態樣提供一種形成場發射材料前驅物的方法,其中該方法包含:將複數個碳奈米管及聚(3,4-伸乙基二氧基噻吩)-聚(苯乙烯磺酸)溶液以特定比例引入液體介質中;經由強超音波分散方法,使複數個碳奈米管與聚(3,4-伸乙基二氧基噻吩)-聚(苯乙烯磺酸)溶液混合,以形成基材混合物;將至少一個基礎粒子、至少一個金屬鹽、至少一個充電子、或其組合引入基材混合物中;以及使包括至少一個基礎粒子、至少一個金屬鹽、及至少一個充電子的經改性之基材混合物暴露於和緩超音波分散方法中,以形成場發射材料的穩定懸浮液。
另一個範例性態樣提供一種形成場發射陰極之另一方法,其中該方法包含:經由共電沉積製程使一層場發射材料沉積於基板的至少一部分上;在大氣壓下或真空下,在約20⁰C至約150⁰C的溫度下,乾燥該層及該基板;在真空下,在約300⁰C至約1000⁰C的溫度下使該層及該基板退火;以及活化該層場發射材料,以獲得場發射陰極。
又另一個範例性態樣提供一種場發射陰極裝置,其中依據前述態樣中任一者製造陰極,以獲得陰極裝置。該陰極在陰極的表面上具有經改良之場發射體密度及均勻性,從而得到具經改良之場發射特性(諸如,高發射電流、低開啟電壓及較長發射壽命)的陰極裝置。 由此,本揭露包含而不限於下面的範例性實施方式:
範例性實施方式 1 一種形成電子場發射陰極的方法,包括:形成場發射材料,其包括使複數個碳奈米管與聚(3,4-伸乙基二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)溶液以特定比例在水中混合來形成基材混合物;使基材混合物暴露於功率大於1W/cm 2及頻率為約20-50 kHz的超音波分散製程中;將至少一個基礎粒子、至少一個金屬鹽、至少一個充電子、或其組合引入基材混合物中以形成場發射材料前驅物;以及使場發射材料前驅物暴露於功率小於1W/cm 2及頻率高於50 kHz的超音波分散製程中以形成場發射材料前驅物的穩定懸浮液;經由共電沉積製程使一層該場發射材料前驅物沉積於基板的至少一部分上;在大氣壓下或真空下,在約20⁰C至約150⁰C的溫度下,乾燥該層及該基板;在真空下,在約300⁰C至約1000⁰C的溫度下使該層及該基板退火;以及活化該層場發射材料,以獲得場發射陰極。
範例性實施方式 2 任何前述範例性實施方式的方法或其組合,其中使複數個碳奈米管與PEDOT:PSS溶液混合包括使複數個碳奈米管與PEDOT:PSS溶液混合,使得碳奈米管與PEDOT:PSS溶液的特定比例在10:1至1:10的範圍內。
範例性實施方式 3 任何前述範例性實施方式的方法或其組合,其中引入至少一個基礎粒子包括引入至少一個玻璃粒子。
範例性實施方式 4 任何前述範例性實施方式的方法或其組合,其中引入至少一個玻璃粒子包括引入具有約100 nm至約3微米之間的直徑的至少一個玻璃粒子。
範例性實施方式 5 任何前述範例性實施方式的方法或其組合,其中引入至少一個基礎粒子包括引入至少一個基礎粒子,使得該至少一個基礎粒子以場發射材料前驅物的總液體介質的至多10 wt%分散至基材混合物中。
範例性實施方式 6 任何前述範例性實施方式的方法或其組合,其中引入至少一個基礎粒子包括引入從銀鹽、銅鹽、鉑鹽、鉍鹽、鎢鹽、銻鹽、金鹽、或其組合成分的群組選出的至少一個金屬鹽。
範例性實施方式 7 任何前述範例性實施方式的方法或其組合,其中引入至少一個基礎粒子包括引入至少一個金屬鹽,使得該至少一個金屬鹽以場發射材料前驅物的總液體介質的至多10 wt%分散至基材混合物中。
範例性實施方式 8 任何前述範例性實施方式的方法或其組合,其中引入該至少一個基礎粒子包括引入從鋰鹽、鈉鹽、鈣鹽、鎂鹽、鋁鹽、鋅鹽、鐵鹽、鈷鹽、鎳鹽、銨鹽、或其組合成分的群組選出的至少一個充電子。
範例性實施方式 9 任何前述範例性實施方式的方法或其組合,其中引入至少一個基礎粒子包括引入至少一個充電子,使得該至少一個充電子以場發射材料前驅物的總液體介質的至多1 wt%分散至基材混合物中。
範例性實施方式 10 任何前述範例性實施方式的方法或其組合,其中沉積該層場發射材料前驅物包括將該層場發射材料前驅物沉積於包括金屬、合金、玻璃、或陶瓷的基板的該至少一部分上。
範例性實施方式 11 任何前述範例性實施方式的方法或其組合,其中活化該層場發射材料包括:將附著性帶(adhesive tape)塗敷於該層場發射材料的表面上;以及自該層場發射材料除去附著性帶。
範例性實施方式 12 任何前述範例性實施方式的方法或其組合,其中活化該層場發射材料包括:將可固化附著劑塗敷於該層場發射材料的表面上;使附著劑暴露於熱源或紫外光中,以固化附著劑且形成一層附著劑膜;以及自該層場發射材料除去該層附著劑膜。
範例性實施方式 13 一種形成場發射材料前驅物的方法,包括:將複數個碳奈米管引入液體介質中;以與複數個碳奈米管的特定比例,將PEDOT:PSS溶液引入液體介質中;經由功率大於1W/cm 2及頻率為約20-50 kHz的超音波分散製程,使複數個碳奈米管與PEDOT:PSS溶液混合,以形成基材混合物;將至少一個基礎粒子、至少一個金屬鹽、至少一個充電子、或其組合引入基材混合物中;以及使包括至少一個基礎粒子、至少一個金屬鹽、及至少一個充電子的基材混合物暴露於功率小於1W/cm 2及頻率高於50 kHz的超音波分散製程中,以形成場發射材料前驅物的穩定懸浮液。
範例性實施方式 14 任何前述範例性實施方式的方法或其組合,其中將PEDOT:PSS溶液引入液體介質中包括以碳奈米管與PEDOT:PSS溶液的特定比例在10:1至1:10的範圍內,將PEDOT:PSS溶液引入水中。
範例性實施方式 15 任何前述範例性實施方式的方法或其組合,包括經由共電沉積製程,將場發射材料前驅物沉積於基板上。
範例性實施方式 16 任何前述範例性實施方式的方法或其組合,其中引入至少一個基礎粒子包括引入至少一個玻璃粒子。
範例性實施方式 17 任何前述範例性實施方式的方法或其組合,其中引入至少一個基礎粒子包括引入至少一個基礎粒子,使得至少一個基礎粒子以場發射材料前驅物的總液體介質的至多10 wt%分散至基材混合物中。
範例性實施方式 18 任何前述範例性實施方式的方法或其組合,其中引入至少一個基礎粒子包括引入從銀鹽、銅鹽、鉑鹽、鉍鹽、鎢鹽、銻鹽、金鹽、或其組合成分的群組選出的至少一個金屬鹽。
範例性實施方式 19 任何前述範例性實施方式的方法或其組合,其中引入至少一個基礎粒子包括引入至少一個金屬鹽,使得至少一個金屬鹽以場發射前驅物材料的總液體介質的至多10 wt%分散至基材混合物中。
範例性實施方式 20 任何前述範例性實施方式的方法或其組合,其中引入該至少一個基礎粒子包括引入從鋰鹽、鈉鹽、鈣鹽、鎂鹽、鋁鹽、鋅鹽、鐵鹽、鈷鹽、鎳鹽、銨鹽、或其組合成分的群組選出的至少一個充電子。
範例性實施方式 21 任何前述範例性實施方式的方法或其組合,其中引入至少一個基礎粒子包括引入至少一個充電子,使得至少一個充電子以場發射前驅物材料的總液體介質的至多1 wt%分散至基材混合物中。
範例性實施方式 22 一種形成場發射陰極的方法,包括:經由一共電沉積製程,使任一前述範例性實施方式的方法或其組合的一層場發射材料沉積於基板的至少一部分上;在大氣壓下或真空下,在約20⁰C至約150⁰C的溫度下,乾燥該層及該基板;在真空下,在約300⁰C至約1000⁰C的溫度下使該層及該基板退火;以及活化該層場發射材料,以獲得場發射陰極。
範例性實施方式 23 一種場發射陰極裝置,包括依據任一前述範例性實施方式的方法或其組合製造的陰極。
藉由與附圖一起閱讀以下詳細描述,本揭露的此等及其他特徵、態樣及優點顯而易見,下面將簡單描述附圖。本揭露包含此揭露中闡釋的二、三、四或更複數特徵或元件的任一組合,而與此等特徵或元件是否明確地被組合或是否詳述於本文中的特定實施方式的描述中無關。預期此揭露被全盤地閱讀,使得應當根據預期(即,可組合)看待本揭露的任何態樣及實施方式中的任何可分離特徵或元件,除非本揭露的上下文另外清楚地指示。
應當明白,提供本文中的發明內容僅出於概略說明一些範例性態樣從而對本揭露提供基本理解的目的。就其本身而言,應當明白,上面描述的範例性態樣僅是實例,且不應當認為以任何方式使本揭露的範圍或精神變窄。應當明白,除了本文中概略說明的態樣,本揭露的範圍涵蓋許多可能的態樣,下面將進一步描述其中一些態樣。此外,根據以下結合附圖進行的詳細描述,本文中揭露的其他態樣或此等態樣的優點變得顯而易見,作為實例,附圖說明所描述的態樣的原理。
現在將在下文中參考附圖更全面描述本揭露,附圖中顯示本揭露的一些態樣,而非全部態樣。的確,本揭露可以許多不同的形式被具體實施,而且不應當被認為限於本文闡釋的態樣;相反,提供此等態樣是為了此揭露滿足適用的法律要求。在各處,相似的參考編號指相似的元件。
圖1說明包含基板102及被安置於基板102上的一層場發射材料104及如果必要,被安置於基板102與場發射材料104之間的附著性材料的附加層(未顯示)的場發射陰極100的一個實例。基板102可由導電材料(諸如,金屬材料(諸如,固體金屬或合金(比如,不銹鋼、摻雜矽))、導電玻璃(比如,銦錫氧化物(ITO)鍍膜玻璃或在表面上具有導電塗層的其他熔融玻璃);或導電陶瓷(比如,金屬化陶瓷,諸如,氧化鋁、氧化鈹、及氮化鋁))製成。場發射材料104包含被安置於基礎材料內的複數個經改性之碳奈米管。該層場發射材料104是經由場發射材料藉由舉例而言共電沉積處理技術沉積於基板102上而形成的。
圖2說明包含經改性之碳奈米管的場發射前驅物的形成方法200。於該方法的一個態樣中,提供(步驟210)的諸如水的液體介質,複數個碳奈米管與聚(3,4-伸乙基二氧基噻吩)-聚(苯乙烯磺酸)(poly(3,4-ethylendioxythiophene)-poly(styrene sulfonic acid),PEDOT:PSS)溶液以特定比例被引入(步驟220)該液體介質中。於一些態樣中,碳奈米管與PEDOT:PSS溶液的特定比例在10:1至1:10的範圍內。在步驟230,複數個碳奈米管與PEDOT:PSS溶液經由強超音波分散製程被混合,以形成基材混合物。此混合可以低頻率(20-50 kHz)及高功率(>1W/cm 2)以約1分鐘至約30分鐘範圍內的時間週期被實行。接著,至少一個基礎粒子、至少一個金屬鹽、至少一個充電子(charger)或其組合被引入基材混合物中(步驟240)。經改性之基材混合物(亦即,有至少一個基礎粒子、至少一個金屬鹽、及/或至少一個充電子)被暴露於和緩超音波分散製程中,以形成場發射材料前驅物的穩定懸浮液(步驟250)。和緩超音波分散製程可以高頻率(>50kHz)及低功率(<1W/cm 2)以約30分鐘至約24小時範圍內的時間週期被實行。於各種實施方式中,場發射材料前驅物可包含碳奈米管、PEDOT:PSS、及(複數)基礎粒子;碳奈米管、PEDOT:PSS、及金屬鹽;或碳奈米管、PEDOT:PSS、(複數)基礎粒子、及充電子;或其變化。
成分的特定成分物及量可改變以適合特定應用。舉例而言,基材混合物可藉由一或複數基礎粒子、一或複數金屬鹽、一或複數充電子或其組合的添加來改性。於一些實施方式中,至少一個基礎粒子可由市售的玻璃粒子形成,該玻璃粒子經由行星球磨(planetary ball milling)被加工,以產生具約100 nm至約3微米直徑的玻璃粒子,其中至少一個基礎粒子以場發射材料前驅物的總液體介質的至多10 wt%被分散至基材混合物中。另外,至少一個金屬鹽可從銀鹽、銅鹽、鉑鹽、鉍鹽、鎢鹽、銻鹽、金鹽、或其組合成分的群組選出,其中至少一個金屬鹽以場發射材料前驅物的總液體介質的至多10 wt%被分散至基材混合物中。至少一個充電子可從由鋰鹽、鈉鹽、鈣鹽、鎂鹽、鋁鹽、鋅鹽、鐵鹽、鈷鹽、鎳鹽、銨鹽、或其組合成分的群組選出,其中至少一個充電子以場發射材料前驅物的總液體介質的至多1 wt%被分散至基材混合物中。碳奈米管可藉由化學氣相沉積製程、雷射剝蝕製程、及/或電弧放電方法被生產。
場發射材料前驅物以液體懸浮液的形式一旦被建立,前驅物就可經由共電沉積製程(步驟260)沉積於基板上,以在基板上提供固體形式的場發射複合膜。該膜沉積於基板上後可經受一或複數其他製程,諸如,乾燥、退火及活化製程。基板可由金屬、導電玻璃或金屬化陶瓷製成。基板可經由舉例而言機器人材料搬運系統或藉由使用者手動地被提供至適合的設備。基板經配置以在其上接納一層場發射材料。
圖3說明使用包括經改性之碳奈米管的場發射材料形成場發射陰極的方法300。於該方法的一個態樣中,基板(諸如,上文描述的基板)被提供至經配置以實行沉積製成的設備(步驟310)。該方法進一步包含形成場發射材料(步驟320)。於一些情況中,場發射材料於基板被提供之前建立。一層場發射材料經由共電沉積製程(步驟330)沉積於基板的至少一部分上。經PEDOT:PSS改性之複數個碳奈米管的陽極電泳沉積及基礎材料的陽極電沉積經由共電沉積製程被同時實行。基板可由金屬、合金、導電玻璃、或金屬化陶瓷製成。基板可經由如機器人材料搬運系統或由使用者手動地提供至適合的設備。
然後,基板及沉積於其上的場發射材料前驅物層被暴露於乾燥製程(步驟340)及退火製程(步驟350)中。乾燥製程可在大氣壓下或真空下在約20 ⁰C至約150 ⁰C的溫度下被實行。退火製程可在約300⁰C至約1000⁰C的溫度下在真空下被實行。在步驟360,場發射材料層被活化以獲得場發射陰極。活化可藉由將附著劑(比如,附著性帶或可固化附著性材料)塗敷於場發射材料層的表面上及自場發射材料層上除去附著劑而被實行。
步驟370a及370b說明場發射材料前驅物的形成方法的一個實例。在步驟370a,複數個碳奈米管及PEDOT:PSS溶液以特定比例被混合於諸如水的液體介質中。於一些態樣中,碳奈米管與PEDOT:PSS溶液的特定比例在10:1至1:10的範圍內。成分可經由強超音波分散製程被混合,以形成基材混合物,如上文所描述的。接著,至少一個基礎粒子、至少一個金屬鹽、至少一個充電子或其組合被分散至基材混合物中(步驟370b)。經改性之基材混合物(亦即,包含至少一個基礎粒子、至少一個金屬鹽及/或至少一個充電子)可被暴露於和緩超音波分散製程中,以形成場發射材料前驅物的穩定懸浮液,如上文所描述的。於各種實施方式中,場發射材料前驅物可包含碳奈米管、PEDOT:PSS、及(複數)基礎粒子;碳奈米管、PEDOT:PSS、及金屬鹽;或碳奈米管、PEDOT:PSS、(複數)基礎粒子、及充電子;或其變化。
成分的特定成分物及量可為適合特定應用而改變。舉例而言,至少一個基礎粒子可由市售的玻璃粒子被形成,該玻璃粒子經由行星球磨被加工,以一般而言產生具約100 nm至約3微米直徑的玻璃粒子,其中至少一個基礎粒子以場發射材料前驅物的總液體介質的至多10 wt%被分散至基材混合物中。另外,至少一個金屬鹽可從由銀鹽、銅鹽、鉑鹽、鉍鹽、鎢鹽、銻鹽、金鹽、或其組合成分的群組選出,其中至少一個金屬鹽以場發射材料前驅物的總液體介質的至多10 wt%被分散至基材混合物中。至少一個充電子可從鋰鹽、鈉鹽、鈣鹽、鎂鹽、鋁鹽、鋅鹽、鐵鹽、鈷鹽、鎳鹽、銨鹽、或其組合成分的群組選出,其中至少一個充電子以場發射材料前驅物的總液體介質的至多1 wt%被分散至基材混合物中。碳奈米管可由化學氣相沉積製程、雷射剝蝕製程、及/或電弧放電方法被生產。
前述方法提供奈米複合物結構的碳奈米管/ PEDOT:PSS/基礎層,該奈米複合物結構當被形成於基板的表面上時紋理均勻。真空中乾燥及退火後,場發射陰極被活化。所獲得的陰極具有高發射體密度、高發射電流、低開啟電壓及長使用壽命的特性。一批陰極與另一批陰極的變化被顯著減小,這對於工業化生產及應用至關重要。
得益於前面的描述和有關附圖中呈現的教導的這些揭露的實施方式所屬領域中的通常知識者會想到本文闡述的本發明的許多修改及其他實施方式。因此,應理解,本發明的實施方式並不限於所揭露的具體實施方式,而且修改及其他實施方式旨在被包含於本發明的範圍內。另外,儘管前面的描述及有關圖式在元件及/或功能的某個範例性組合的情境下描述了範例性實施方式,但應明白,可藉由替代實施方式提供元件及/或功能的不同組合,而不脫離本揭露的範圍。於此方面,舉例而言,在本揭露的範圍內,與上面明確描述的那些元件及/或功能的組合不同的元件及/或功能的組合亦被構思。儘管本文中採用特定術語,但這些術語僅以通用描述性意義使用,而沒有限制性目的。
應理解,儘管本文中可使用術語第一、第二等描述各種步驟或計數,但此等步驟或計數不應受此通用術語的限制。這些術語僅用於將一個操作或計數與另一個操作或計數區別。舉例而言,第一計數可被稱為第二計數,且類似地,第二步驟可被稱為第一步驟,而不脫離本揭露的範圍。如本文中使用的,術語“及/或”及“/”符號包含一或複數有關列項的任一或全部組合。
如本文中使用的,單數形式“一(a)”及“一(an)”旨在亦包含複數形式,除非上下文另外清楚地表明。應當進一步理解,術語“包括(comprises)”、“包括(comprising)”、“包含(includes)”及/或“包含(including)”當在本文中使用時說明存在所陳述的特徵、整數、步驟、操作、元件及/或組件,但不排除存在或附加一或複數其他特徵、整數、步驟、操作、元件、組件及/或其群組。因此,本文中使用的術語僅出於描述特定實施方式的目的,而不旨在限制性。
100:場發射陰極 102:基板 104:場發射材料
由此,已以一般術語描述了本揭露,現在將闡釋附圖,附圖未必按比例繪製,且其中: 圖1示意性地說明根據本揭露的一或複數態樣的場發射陰極的實例及與陰極基板接合的場發射材料沉積層的本質; 圖2說明根據本揭露的一或複數態樣的場發射材料前驅物的形成方法的一個實例;以及 圖3說明根據本揭露的一或複數態樣的場發射陰極的形成方法的一個實例。

Claims (23)

  1. 一種形成一場發射陰極的方法,包括: 形成一場發射材料,包括: 使複數個碳奈米管與聚(3,4-伸乙基二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)溶液以一特定比例在水中混合,以形成一基材混合物; 使該基材混合物暴露於一功率大於1W/cm 2及一頻率為約20-50 kHz的一超音波分散製程中; 將至少一個基礎粒子、至少一個金屬鹽、至少一個充電子、或其組合引入該基材混合物中,以形成一場發射材料前驅物;以及 使該場發射材料前驅物暴露於一功率小於1W/cm 2及一頻率高於50 kHz的一超音波分散製程中,以形成該場發射材料前驅物的一穩定懸浮液; 經由一共電沉積製程使該場發射材料前驅物之一層沉積於一基板的至少一部分上; 在大氣壓下或一真空下,在約20⁰C至約150⁰C的一溫度下,乾燥該層及該基板; 在一真空下,在約300⁰C至約1000⁰C的一溫度下使該層及該基板退火;以及 活化該場發射材料的該層,以獲得該場發射陰極。
  2. 如請求項1所述的方法,其中使該複數個碳奈米管與該PEDOT:PSS溶液混合包括使該複數個碳奈米管與該PEDOT:PSS溶液混合,使得碳奈米管與PEDOT:PSS溶液的該特定比例在10:1至1:10的範圍內。
  3. 如請求項1所述的方法,其中引入至少一個基礎粒子包括引入至少一個玻璃粒子。
  4. 如請求項3所述的方法,其中引入至少一個玻璃粒子包括引入具有約100 nm至約3微米之間的一直徑的至少一個玻璃粒子。
  5. 如請求項3所述的方法,其中引入至少一個基礎粒子包括引入至少一個基礎粒子,使得該至少一個基礎粒子以該場發射材料前驅物的總液體介質的至多10 wt%分散至該基材混合物中。
  6. 如請求項1所述的方法,其中引入至少一個基礎粒子包括引入從一銀鹽、一銅鹽、一鉑鹽、一鉍鹽、一鎢鹽、一銻鹽、一金鹽、或其組合成分的群組選出的至少一個金屬鹽。
  7. 如請求項6所述的方法,其中引入至少一個基礎粒子包括引入至少一個金屬鹽,使得該至少一個金屬鹽以該場發射材料前驅物的總液體介質的至多10 wt%分散至該基材混合物中。
  8. 如請求項1所述的方法,其中引入該至少一個基礎粒子包括引入從一鋰鹽、一鈉鹽、一鈣鹽、一鎂鹽、一鋁鹽、一鋅鹽、一鐵鹽、一鈷鹽、一鎳鹽、一銨鹽、或其組合成分的群組選出的至少一個充電子。
  9. 如請求項8所述的方法,其中引入至少一個基礎粒子包括引入至少一個充電子,使得該至少一個充電子以該場發射材料前驅物的總液體介質的至多1 wt%分散至該基材混合物中。
  10. 如請求項1所述的方法,其中沉積該場發射材料前驅物的該層包括將該場發射材料前驅物的該層沉積於包括一金屬、一合金、一玻璃、或一陶瓷的該基板的該至少一部分上。
  11. 如請求項1所述的方法,其中活化該場發射材料的該層包括: 將一附著性帶塗敷於該場發射材料的該層之一表面上;以及 自該場發射材料之該層除去該附著性帶。
  12. 如請求項1所述的方法,其中活化該場發射材料之該層包括: 將一可固化附著劑塗敷於該場發射材料之該層的一表面上; 使該附著劑暴露於一熱源或一紫外光中,以固化該附著劑且形成一附著劑膜之一層;以及 自該場發射材料之該層除去附著劑膜之該層。
  13. 一種形成一場發射材料前驅物的方法,包括: 將複數個碳奈米管引入一液體介質中; 以與該複數個碳奈米管的一特定比例,將一PEDOT:PSS溶液引入該液體介質中; 經由一功率大於1W/cm 2及一頻率為約20-50 kHz的一超音波分散製程,使該複數個碳奈米管與該PEDOT:PSS溶液混合,以形成一基材混合物; 將至少一個基礎粒子、至少一個金屬鹽、至少一個充電子、或其組合引入該基材混合物中;以及 使包括該至少一個基礎粒子、該至少一個金屬鹽、及該至少一個充電子的該基材混合物暴露於一功率小於1W/cm 2及一頻率高於50 kHz的一超音波分散製程中,以形成一場發射材料前驅物的一穩定懸浮液。
  14. 如請求項13所述的方法,其中將該PEDOT:PSS溶液引入該液體介質中包括以碳奈米管與PEDOT:PSS溶液的該特定比例在10:1至1:10的範圍內,將一PEDOT:PSS溶液引入該水中。
  15. 如請求項13所述的方法,包括經由一共電沉積製程,將該場發射材料前驅物沉積於一基板上。
  16. 如請求項13所述的方法,其中引入至少一個基礎粒子包括引入至少一個玻璃粒子。
  17. 如請求項13所述的方法,其中引入至少一個基礎粒子包括引入至少一個基礎粒子,使得該至少一個基礎粒子以該場發射材料前驅物的總液體介質的至多10 wt%分散至該基材混合物中。
  18. 如請求項13所述的方法,其中引入至少一個基礎粒子包括引入從一銀鹽、一銅鹽、一鉑鹽、一鉍鹽、一鎢鹽、一銻鹽、一金鹽、或其組合成分的群組選出的至少一個金屬鹽。
  19. 如請求項13所述的方法,其中引入至少一個基礎粒子包括引入至少一個金屬鹽,使得該至少一個金屬鹽以該場發射前驅物材料的總液體介質的至多10 wt%分散至該基材混合物中。
  20. 如請求項13所述的方法,其中引入該至少一個基礎粒子包括引入從一鋰鹽、一鈉鹽、一鈣鹽、一鎂鹽、一鋁鹽、一鋅鹽、一鐵鹽、一鈷鹽、一鎳鹽、一銨鹽、或其組合成分的群組選出的至少一個充電子。
  21. 如請求項13所述的方法,其中引入至少一個基礎粒子包括引入至少一個充電子,使得該至少一個充電子以該場發射前驅物材料的總液體介質的至多1 wt%分散至該基材混合物中。
  22. 一種形成一場發射陰極的方法,包括: 經由一共電沉積製程,使請求項13所述的場發射材料之一層沉積於一基板的至少一部分上; 在大氣壓下或一真空下,在約20⁰C至約150⁰C的一溫度下,乾燥該層及該基板; 在一真空下,在約300⁰C至約1000⁰C的一溫度下使該層及該基板退火;以及 活化該場發射材料之該層,以獲得該場發射陰極。
  23. 一種場發射陰極裝置,包括依據前述請求項中任一項製造的一陰極。
TW110135850A 2020-09-30 2021-09-27 共電沉積形成場發射陰極方法 TW202229165A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063085542P 2020-09-30 2020-09-30
US63/085,542 2020-09-30

Publications (1)

Publication Number Publication Date
TW202229165A true TW202229165A (zh) 2022-08-01

Family

ID=78085994

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110135850A TW202229165A (zh) 2020-09-30 2021-09-27 共電沉積形成場發射陰極方法

Country Status (3)

Country Link
US (1) US20230411104A1 (zh)
TW (1) TW202229165A (zh)
WO (1) WO2022070103A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455757B2 (en) * 2001-11-30 2008-11-25 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
JP4061411B2 (ja) * 2005-01-25 2008-03-19 国立大学法人信州大学 電界放出電極およびその製造方法
US7850874B2 (en) * 2007-09-20 2010-12-14 Xintek, Inc. Methods and devices for electrophoretic deposition of a uniform carbon nanotube composite film
CN103346051A (zh) * 2013-06-09 2013-10-09 中国科学院深圳先进技术研究院 一种碳纳米管阴极制备方法及碳纳米管阴极

Also Published As

Publication number Publication date
US20230411104A1 (en) 2023-12-21
WO2022070103A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
US7811149B2 (en) Method for fabricating carbon nanotube-based field emission device
JP4563686B2 (ja) ナノ構造材料のための堆積方法
JP2003203557A (ja) カーボンナノチューブを含むペースト用複合物及びこれを利用した電子放出素子及びその製造方法
CN1913075B (zh) 电子发射源及其制备方法和采用其的电子发射装置
KR20050111139A (ko) 전계방출 에미터전극 제조방법 및 이를 이용하여 제조된전계방출장치
TW202229165A (zh) 共電沉積形成場發射陰極方法
JP2010519416A (ja) カーボンナノチューブの電気化学的堆積方法
US20230411105A1 (en) Methods of forming a field emission cathode
KR101700810B1 (ko) 그래파이트 접착 물질을 이용한 전계 방출 소자 및 그 제조 방법
JP2010500719A (ja) ナノワイヤーの整列を用いた電界放出エミッタ電極の製造方法
TW202232544A (zh) 形成碳奈米管/金屬複合膜及含此之場發射陰極之方法
JP5246938B2 (ja) カーボンナノチューブ成長用基板、トランジスタ及びカーボンナノチューブ成長用基板の製造方法
TW202229164A (zh) 形成場發射陰極方法
TW202230416A (zh) 形成場發射陰極之方法
US11929249B2 (en) Methods for forming a field emission cathode
JP2001283715A (ja) 電子放出陰極およびその製造方法
RU2666784C1 (ru) Матричный автоэмиссионный катод и способ его изготовления
TWI411006B (zh) 場發射陰極之製備方法
JP2006286621A (ja) 電界電子エミッタおよびその製造方法
JP3774463B2 (ja) 横型の電界放出型冷陰極装置
CN1876898A (zh) 一种批次电泳沉积碳纳米管的电子发射源制作方法
CN114171359A (zh) 一种碳纳米管冷阴极电子源及其对位焊接方法
JP2004199992A (ja) 蛍光ランプ用電極およびその製造方法および蛍光ランプ
JP4984130B2 (ja) ナノカーボンエミッタとその製造方法並びに面発光素子
JP2008192534A (ja) 電子エミッタ用基材、電子エミッタ用基材の製造方法および電子エミッタの製造方法