TW202221178A - 單晶纖維製造裝置及單晶纖維製造方法 - Google Patents

單晶纖維製造裝置及單晶纖維製造方法 Download PDF

Info

Publication number
TW202221178A
TW202221178A TW110141154A TW110141154A TW202221178A TW 202221178 A TW202221178 A TW 202221178A TW 110141154 A TW110141154 A TW 110141154A TW 110141154 A TW110141154 A TW 110141154A TW 202221178 A TW202221178 A TW 202221178A
Authority
TW
Taiwan
Prior art keywords
single crystal
crystal fiber
laser light
raw material
material rod
Prior art date
Application number
TW110141154A
Other languages
English (en)
Inventor
進藤勇
Original Assignee
日商水晶系統股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商水晶系統股份有限公司 filed Critical 日商水晶系統股份有限公司
Publication of TW202221178A publication Critical patent/TW202221178A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/005Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/32Mechanisms for moving either the charge or the heater
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • C30B15/16Heating of the melt or the crystallised materials by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Abstract

本發明係提供一種單晶纖維製造裝置及單晶纖維製造方法,該單晶纖維製造裝置係完全不需要在以往之單晶製造裝置中所需的高精度之控制性,且可極容易地長時間維持安定之穩定狀態,並可安定地製造數百m以上之長的單晶纖維。
本發明之單晶纖維製造裝置,係在腔室內對原料棒之上表面照射雷射光而形成熔液,在該熔液中浸漬單晶種並朝上方拉起,而製造單晶纖維。該單晶纖維製造裝置係具備:雷射光源,係以平行光之形式照射雷射光;拉起裝置,係構成為可在保持單晶種之狀態下朝垂直方向上下移動;以及平面反射鏡,係使雷射光反射而垂直入射到原料棒之上表面。並且,該單晶纖維製造裝置係構成為以使熔液之溫度成為圓環狀溫度分布的方式對原料棒之上表面照射雷射光。

Description

單晶纖維製造裝置及單晶纖維製造方法
本發明係關於一種單晶製造裝置及單晶製造方法,尤其,關於一種直徑極細至數十μm且長度至少達到數百m以上(較佳為數km)之單晶纖維之製造裝置及單晶纖維製造方法。
以往,為了實現新穎的電子機器之開發、電子零件的小型化、及高性能化等,遂進行高品質的極細單晶纖維之製造方法的開發。1980年代,以美國史丹佛大學為中心,利用雷射光而開發直徑數十μm之單晶纖維之製造方法,且命名為雷射加熱提拉法(LHPG(Laser Heated Pedestal Growth)法)(非專利文獻1等)。然而,該LHPG法如後所述,因必須為極高精度控制之方法,故至今日尚未實用化。
因此,就更提高控制性之方法而言,已開發使用坩鍋等容器從噴嘴逐次一點點地垂下原料熔液而使其在下方固化以製造單晶纖維之拉下法或μ-PD法等。
然而,在使用此等容器的方法中,經常發生根據材料而找不到適當的容器材料的情形、或不能忽視容器對原料熔液之污染而對實用化造成阻礙的情形等。因此,期盼開發一種不需要使用容器且可安定又廉價地製造高純度且高品質的單晶纖維之新穎的製造方法。
[先前技術文獻]
[非專利文獻]
[非專利文獻1]R.S. Feigelson,"Pulling optical fibers",Journal of Crystal Growth 79 (1986) 669-680
圖5為使用習知之LHPG法的單晶纖維製造裝置之示意圖。
如圖5所示,在單晶纖維製造裝置100中,係使從雷射光源102照射之雷射光藉由拋物面鏡104而聚光於原料棒106之上表面106a並進行熔融,在所得到之熔液中浸漬目標之直徑細的單晶種108後,使用拉起裝置110朝上方拉起。
此外,可藉由使熔液之熱被單晶種108所奪去,使接觸單晶種108之熔液進行固化而拉起。藉此,可製造具有所期望之直徑的單晶纖維112。此時,為了持續安定地製造,如圖6所示,有報告指出較佳係將要製造之單晶纖維112的半徑rf與原料棒106之半徑Rs的比設為1:3左右。
使用以習知的LHPG法所運作的單晶纖維製造裝置100來製造單晶纖維112時,為了使單晶纖維112安定地成長,必須正確且精密地控制關於原料棒之熔解、固化的全部控制因素,亦即,
(1)雷射光之照射強度、
(2)雷射光之照射分布、
(3)雷射光之照射位置、
(4)原料棒前端部之垂直方向位置、
(5)原料棒前端部之水平面內位置、
(6)與單晶纖維之拉起連動而使原料棒前端部朝上方移動之移動速度、
(7)單晶纖維之水平面內位置、
(8)朝上方拉起單晶纖維之拉起速度等全部之因素。
例如,製造直徑20μm之單晶纖維時,上述之位置的控制精度係必須以至少±2μm,較佳為以±0.2μm之精度進行控制。然而,要滿足該要求極為困難,且會造成單晶纖維製造裝置之價格推升成昂貴高價。
本發明係有鑑於如此之現狀,其目的在於提供一種單晶纖維製造裝置及單晶纖維製造方法,該單晶纖維製造裝置係對於藉由習知之LHPG法所運行的單晶纖維製造裝置中所需的上述控制因素,完全不需要高精度之控制性,且極容易長時間維持安定之穩定狀態,並可安定地製造數百m以上之長的單晶纖維。
本發明係為了解決「必須極高精度地控制如上述之習知技術的LHPG法中之位置控制的課題」而發明者,
本發明之單晶纖維製造裝置,係在腔室內對原料棒之上表面照射雷射光而形成熔液,且在該熔液中浸漬單晶種並朝上方拉起,而製造單晶纖維;該單晶纖維製造裝置具備:
雷射光源,係以平行光之形式照射前述雷射光;
拉起裝置,係構成為可在保持前述單晶種之狀態下朝垂直方向上下移動;以及
平面反射鏡,係使前述雷射光反射而垂直入射到前述原料棒之上表面;
其中,該單晶纖維製造裝置係構成為以使前述熔液之溫度成為圓環狀溫度分布之方式對前述原料棒之上表面照射前述雷射光。
在如此之單晶纖維製造裝置中,較佳係前述雷射光為具有圓環狀強度分布之雷射光。
又,較佳係前述原料棒之半徑為要製造的單晶纖維之半徑的10倍以上。
又,更佳係要製造之單晶纖維的半徑為100μm以下時,將前述原料棒之半徑設為2mm至5mm之範圍。
又,亦可更具備:導光器具,係收容前述腔室之雷射光導入窗與前述平面反射鏡。
此時,亦可構成為從前述導光器具使環境氣體導入至前述腔室內。
又,可更具備:位置控制手段,係用以將前述單晶纖維之水平面內位置控制於預定之限制範圍內。
又,本發明之單晶纖維製造方法,係對原料棒之上表面照射屬於平行光之雷射光而形成熔液,在該熔液中浸漬單晶種並朝上方拉起,而製造單晶纖維;其中,以使前述熔液之溫度成為圓環狀溫度分布之方式對前述原料棒之上表面照射前述雷射光。
在如此之單晶纖維製造方法中,較佳係前述雷射光為具有圓環狀強度分布之雷射光。
又,較佳係前述原料棒之半徑為要製造的單晶纖維之半徑的10倍以上。
又,更佳係要製造之單晶纖維的半徑為100μm以下時,將前述原料棒之半徑設為2mm至5mm之範圍。
若依據本發明,在單晶纖維之製造過程中,即使消耗原料棒,原料棒前端部之垂直方向位置亦僅稍微變動,例如,使用半徑3mm之原料棒而製造半徑10μm、長度100m之單晶纖維時,原料棒被消耗的長度不過僅1.1mm左右。
再者,由於雷射光係在維持一定形狀的情況下從上方垂直照射到原料棒上表面,故原料棒前端部之垂直方向位置即使稍微變低,所照射之雷射光的形狀、強度亦仍保持一定。因此,即使進行單晶纖維之製造而使原料棒前端部的垂直方向位置變低,對於原料棒之位置(原料棒前端部之垂直方向位置及水平面內位置)亦不需要予以控制,可保持固定。
因此,可極容易長時間維持安定之穩定狀態,並可安定地製造數百m以上之長的單晶纖維。
10,100:單晶纖維製造裝置
12,102:雷射光源
13:光學系
13a:擴束器
13b:錐形透鏡
14:平面反射鏡
16,106:原料棒
16a,106a:上表面
17:位置控制手段
17a:圓形環
17b:線
18,108:單晶種
20:捲取裝置
22,112:單晶纖維
24:導光器具
24a:導入孔
24b:排出孔
26:腔室
26a:窗
30:環境氣體導入裝置
104:拋物面鏡
110:拉起裝置
圖1係說明本實施型態之單晶纖維製造裝置的構成之示意圖。
圖2係表示雷射光之強度分布的圖表。
圖3係表示位置控制手段之構成的概略圖。
圖4係表示熔液之溫度分布的圖表。
圖5係使用習知之LHPG法的單晶纖維製造裝置之示意圖。
圖6係用以說明藉由圖5所示之單晶纖維製造裝置而製造單晶纖維時之單晶纖維的半徑與原料棒的半徑之關係的示意圖。
以下,依據圖式,以氟化鋰單晶纖維之製造為例,更詳細地說明本發明之實施型態(實施例)。
圖1係說明本實施型態之單晶纖維製造裝置的構成之示意圖。
如圖1所示,本實施型態之單晶纖維製造裝置10係具備:二氧化碳氣體雷射光源12,係照射雷射光;光學系13,係用以將雷射光調整形狀成最適當的直徑與圓環狀強度分布;平面反射鏡14,係為了使雷射光照射到原料棒16之上表面16a,而使水平地入射之雷射光呈直角反射;以及捲取裝置20,係在藉由將原料棒16之上表面16a熔解所形成的熔液中浸漬單晶種18後,朝上方拉起,並捲取於滾筒(drum)。
又,原料棒16或單晶種18等係配置於腔室26內,在腔室26導入適用於對象材料之氣體,例如在製造氟化鋰單晶纖維時,係藉由環境氣體導入裝置30而導入四氟甲烷等環境氣體。在該腔室26內進行單晶纖維22之製造。
又,在腔室26設有:雷射光導入窗(窗26a),係用以將從外部之雷射光源12照射之屬於平行光的雷射光導入腔室26內。
在本實施型態中,雷射光源12係構成為可藉由光學系13而照射具有如圖2所示之圓環狀強度分布的屬於平行光之雷射光。
又,在本實施型態中,光學系13係包含擴束器(beam expander)13a及錐形透鏡(Axicon lens)13b。
又,平面反射鏡14如圖1所示,係配置成捲取單晶種18,並設置成使從雷射光源12水平照射之屬於平行光的雷射光呈直角反射,並垂直入射到原料棒16之上表面16a。
捲取裝置20係構成為使單晶種18連接於例如直徑15μm之金屬線且可在保持該金線之狀態下使單晶種18朝垂直方向上下移動,並且,構成為在藉由雷射光之照射而熔解的原料棒16之上表面16a所形成的熔液(原料熔液)中浸漬單晶種之後,以預定之速度朝上方拉起且同時將所製造之單晶纖維22捲取於滾筒。
又,在本實施型態中,較佳係將平面反射鏡14及設於腔室26之窗26a收容於導光器具24內。如此,藉由在導光器具24內配置平面反射鏡14及窗26a,並使環境氣體導入至導光器具24內,而可防止因來自熔液(原料熔液)之蒸發物的附著而導致平面反射鏡14及窗26a之污染。
又,形成導光器具24之材料並無特別限定,例如可使用透明石英或不銹鋼等來形成。
又,如此地構成時,較佳係從腔室26之窗26a附近所設的環境氣體導入裝置30經由導入孔24a而將環境氣體導入至導光器具24內,並在離原料棒16之熔液約10mm至20mm上方的位置,從導光器具24將環境氣體釋放至腔室26內。
腔室26係構成為在原料棒16之熔液的側部附近設有排出孔24b,並從該排出孔24b將環境氣體排出至腔室26外。藉此,腔室26內可維持為充滿適於製造單晶纖維22之環境氣體的狀態。
又,在本實施型態中,為了抑制所製造之單晶纖維22的水平面內位置之晃動,而具備位置控制手段17。位置控制手段17只要是構成為使單晶纖維22之水平面內位置的晃動被控制在預定之限制範圍內者即可,並無特別限定。
位置控制手段17係構成為例如使如圖3(a)所示之圓形環17a或如圖3(b)所示之4條細線17b以預定的間隔正交的方式配置。藉由使單晶纖維22通過如此之圓形環17a之內側或線17b所包圍的區域,可利用圓形環17a或線17b來抑制單晶纖維22之晃動。
又,製造直徑數十μm左右之單晶纖維22時,圓形環17a之直徑或配置之線17b彼此間的間隔係以100μm左右為較佳。
如此構成之本實施型態的單晶纖維製造裝置10中,係使用具有欲製造之單晶纖維22的半徑之10倍以上的半徑之原料棒16。尤其,欲製造之單晶纖維22的半徑為100μm以下時,原料棒之半徑以設為2mm至5mm之範圍為較佳。藉由對如此之原料棒16的上表面16a照射雷射光,使原料棒16之照射 處熔解而液化。又,雷射光之外徑較佳係設為與原料棒16之直徑幾乎相同或稍大的程度。藉由如此地使雷射光之外徑最佳化,可使原料棒16之上表面16a整面安定地熔解而獲得熔液。
此時,形成於原料棒16之上表面16a的熔液之溫度分布,係如圖4所示,外周部之溫度略高於中心部(在本說明書中,將如此之溫度分布稱為「圓環狀溫度分布」)。此乃因為照射了具有如圖2所示之圓環狀強度分布的雷射光,雷射光之強度分布係周邊部比中心部附近更強。因此,對原料棒16之上表面16a照射雷射光所形成之熔液(原料熔液)的中心部附近,雷射光之照射量少,且加熱亦變少。又,中心部附近之熔液(原料熔液)係從受到高強度雷射光照射而成為高溫之周邊部的熔液藉由熱傳導進行加熱,故其溫度係比周邊部低。
又,如此構成之原料棒16上表面的中心部附近之熔液溫度,即使有雷射光之照射強度稍微變動之情形,亦可降低其影響,並可安定地維持原料熔液之溫度。
若在該狀態下使單晶種18附著於原料棒16之熔液,則會因熱傳導使熱被單晶種18奪去,故接觸單晶種18之熔液會固化,而可拉起。此時,在比要製造之單晶纖維22之直徑更充分大的直徑之原料熔液中,雖然浸漬有所製造之單晶纖維22,但藉由對所製造之單晶纖維22的熱傳導,使單晶纖維22與原料熔液之界面部的溫度變低,故可持繼進行單晶化。
又,傳導至單晶纖維22之熱係以幅射熱之形式從周圍散發,並持繼進行單晶化。藉此,在單晶纖維22之材料的熱傳導性高時,可使拉起速度高速化,且即使為熱傳導性低的原材料,在為直徑細的單晶纖維22時,因表面積之比例高,故藉由來自表面之熱的輻射,相較於習知之塊體(bulk)單晶製造方法, 例如在產業上常使用之拉起法的情形,可大幅度地以高速拉起,並以低成本製造高品質的單晶纖維22。
又,如此使熔液之溫度成為圓環狀溫度分布時,單晶種18之位置精度即使不精密,接觸原料棒16之熔液的部分之溫度亦幾乎不會改變,故幾乎不影響單晶之成長。
又,在本發明中,由於不使雷射光聚光而直接以平行光而垂直照射到原料棒16之上表面16a,故在單晶纖維22之製造過程中,即使原料棒16被消耗而變短,與單晶纖維22之半徑相比較,原料棒16之半徑仍非常大,故原料棒16變短之長度有限。因此,照射於原料棒16之上表面16a的雷射光之強度經常為一定,形成於原料棒16之上表面16a的熔液之量並無變動。因此,即便繼續進行製造單晶纖維22,若因原料棒16之消耗而變短的長度(變動量)能在20mm左右以內,就不需要改變原料棒16前端部之垂直方向位置。
因此,若依據本發明之單晶纖維製造裝置10,就不需要對於雷射光之照射位置、或原料棒前端部之垂直方向位置及水平面內位置進行控制,又,相較於屬於習知方法之LHPG法,對於雷射光之照射強度或單晶種之水平面內位置亦不需要高精度的控制性。
又,若依據本發明之單晶纖維製造裝置10,即使在使用分解熔解物質或固熔體物質作為單晶材料時,亦不需要高精度的控制性,又,可長時間安定地持續製造。
使用分解熔解物質或固熔體物質作為單晶材料時,熔液被調整成使要製造之單晶纖維22的組成之固體為平衡共存的液相(以下稱為「溶劑」)之 組成。此時,一般而言,溶劑之熔點大多比要製造之單晶纖維22的材料之熔點低數十度。
即使為如此之情形,藉由相對於要製造之單晶纖維22的半徑而具有非常大的半徑之原料棒16,亦即從直徑大的溶劑製造單晶纖維22,即使單晶纖維22之位置(亦即單晶種18之位置)變動數十μm左右,因溶劑之溫度亦幾乎不變動,故可忽略對單晶成長影響的程度。
又,使用分解熔解物質或固熔體物質作為單晶材料時,原料棒16之半徑較佳係要製造之單晶纖維22的半徑之100倍以上,更佳係2mm至5mm左右。此乃因為伴隨單晶之成長,安定地維持因溶液擴散而使從固液界面所吐出之溶劑的較濃的組成部分(境界區域)被均質化之範圍係為較佳,且可使單晶成長安定化的緣故。
隨著單晶纖維22之成長,溶劑之組成與量雖然會變動,但組成係朝熔點低的方向進行變動,若溶劑之量變少則會使溶劑通過,而抵達溶劑與原料棒之界面的雷射光之量會增加,故朝向促進原料棒溶解於溶劑的方向產生作用。因此,溶劑之組成與量係經常維持一定。結果,成長之單晶纖維22的組成與直徑經常成為一定,可依據預定之組成製造一定直徑之單晶纖維22。
以上,說明有關本發明較佳的實施型態,但本發明並不限定於此,例如,在上述實施型態中,為了將原料棒16之熔液的溫度設為圓環狀溫度分布,而使用具有圓環狀強度分布之雷射光,但就雷射光而言,例如,亦可為具有高斯(Gaussian)形狀之強度分布者等。在使用具有高斯形狀之強度分布的雷射光時,為了降低中心部附近之溫度,亦可在雷射光之光程上配置遮光板等。如此,可在不超出本發明之目的之範圍內做出各種變更。
10:單晶纖維製造裝置
12:雷射光源
13:光學系
13a:擴束器
13b:錐形透鏡
14:平面反射鏡
16:原料棒
16a:上表面
17:位置控制手段
17a:圓形環
17b:線
18:單晶種
20:捲取裝置
22:單晶纖維
24:導光器具
24a:導入孔
24b:排出孔
26:腔室
26a:窗
30:環境氣體導入裝置

Claims (11)

  1. 一種單晶纖維製造裝置,係在腔室內對原料棒之上表面照射雷射光而形成熔液,且在該熔液中浸漬單晶種並朝上方拉起,而製造單晶纖維;該單晶纖維製造裝置具備:
    雷射光源,係以平行光之形式照射前述雷射光;
    拉起裝置,係構成為可在保持前述單晶種之狀態下朝垂直方向上下移動;以及
    平面反射鏡,係使前述雷射光反射而垂直入射到前述原料棒之上表面;
    其中,該單晶纖維製造裝置係構成為以使前述熔液之溫度成為圓環狀溫度分布之方式對前述原料棒之上表面照射前述雷射光。
  2. 如請求項1所述之單晶纖維製造裝置,其中,前述雷射光為具有圓環狀強度分布之雷射光。
  3. 如請求項1或2所述之單晶纖維製造裝置,其中,前述原料棒之半徑為要製造的單晶纖維之半徑的10倍以上。
  4. 如請求項3所述之單晶纖維製造裝置,其中,要製造之單晶纖維的半徑為100μm以下時,前述原料棒之半徑設為2mm至5mm之範圍。
  5. 如請求項1所述之單晶纖維製造裝置,更具備:導光器具,係收容前述腔室之雷射光導入窗與前述平面反射鏡。
  6. 如請求項5所述之單晶纖維製造裝置,係構成為從前述導光器具將環境氣體導入至前述腔室內。
  7. 如請求項1所述之單晶纖維製造裝置,更具備:位置控制手段,係用以將前述單晶纖維之水平面內位置控制於預定的限制範圍內。
  8. 一種單晶纖維製造方法,係對原料棒之上表面照射屬於平行光之雷射光而形成熔液,且在該熔液中浸漬單晶種並朝上方拉起,而製造單晶纖維;其中,以使前述熔液之溫度成為圓環狀溫度分布之方式對前述原料棒之上表面照射前述雷射光。
  9. 如請求項8所述之單晶纖維製造方法,其中,前述雷射光為具有圓環狀強度分布之雷射光。
  10. 如請求項8或9所述之單晶纖維製造方法,其中,前述原料棒之半徑為要製造的單晶纖維之半徑的10倍以上。
  11. 如請求項10所述之單晶纖維製造方法,其中,要製造之單晶纖維的半徑為100μm以下時,前述原料棒之半徑設為2mm至5mm之範圍。
TW110141154A 2020-11-19 2021-11-04 單晶纖維製造裝置及單晶纖維製造方法 TW202221178A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-192453 2020-11-19
JP2020192453A JP2022081116A (ja) 2020-11-19 2020-11-19 単結晶ファイバー製造装置及び単結晶ファイバー製造方法

Publications (1)

Publication Number Publication Date
TW202221178A true TW202221178A (zh) 2022-06-01

Family

ID=81708680

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110141154A TW202221178A (zh) 2020-11-19 2021-11-04 單晶纖維製造裝置及單晶纖維製造方法

Country Status (7)

Country Link
US (1) US11739435B2 (zh)
EP (1) EP4249648A1 (zh)
JP (1) JP2022081116A (zh)
KR (1) KR20230107726A (zh)
CN (1) CN114829684A (zh)
TW (1) TW202221178A (zh)
WO (1) WO2022107345A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116969670B (zh) * 2023-09-21 2024-01-09 之江实验室 光学系统、特种光纤生长装置及其方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133104A (en) * 1975-05-16 1976-11-18 Hitachi Ltd A process for producing single crystal from high-melting-point materia ls
JP2002249399A (ja) * 2001-02-21 2002-09-06 Murata Mfg Co Ltd 単結晶の製造方法および単結晶
TW200811494A (en) * 2006-08-25 2008-03-01 Univ Nat Sun Yat Sen Method for fabricating indirect-heated double-clad crystal fiber
DE102011121831A1 (de) * 2011-12-21 2013-06-27 Anvis Deutschland Gmbh Elastisches Gelenk insbesondere für eine Radaufhängung eines Kraftfahrzeugs
EA201791769A1 (ru) 2015-03-25 2018-03-30 Шаста Кристалз, Инк. Устройства и способы получения тонких кристаллических волокон путем выращивания на пьедестале лазерным нагревом
US11352712B1 (en) * 2018-03-29 2022-06-07 Energy, United States Department Of Method for controlling fiber growth in a laser heated pedestal growth system by controlling a laser power output, a pedestal feedstock rate of motion, and a draw rate

Also Published As

Publication number Publication date
CN114829684A (zh) 2022-07-29
JP2022081116A (ja) 2022-05-31
EP4249648A1 (en) 2023-09-27
WO2022107345A1 (ja) 2022-05-27
KR20230107726A (ko) 2023-07-18
US11739435B2 (en) 2023-08-29
US20220349085A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
US20180052279A1 (en) Sol-Gel Cladding for Optical Fiber
TW202221178A (zh) 單晶纖維製造裝置及單晶纖維製造方法
KR101157311B1 (ko) 부유대역용융장치
US5077087A (en) Method of cladding single crystal optical fiber
US5037181A (en) Claddings for single crystal optical fibers and devices and methods and apparatus for making such claddings
AU2021414764A1 (en) Process for manufacturing a monocrystalline crystal, in particular a sapphire
JP2019214486A (ja) 融液面と種結晶の間隔測定方法、種結晶の予熱方法、及び単結晶の製造方法
KR100286487B1 (ko) 고체레이저 결정박막 작성방법 및 고체레이저 결정박막 작성장치
JP2006219352A (ja) 単結晶製造装置及び単結晶製造方法
US3360405A (en) Apparatus and method of producing semiconductor rods by pulling the same from a melt
RU2451117C2 (ru) Устройство для выращивания профилированных кристаллов в виде полых тел вращения
US4847053A (en) Growth of glass-clad single crystal fibers
WO2016038817A1 (ja) 単結晶の製造方法
JP2011037667A (ja) 単結晶製造装置および単結晶製造方法
JP3106182B2 (ja) バルク単結晶の製造方法
US20120027959A1 (en) Method of sheathing a solid-state laser medium and device for implementing it
JP2008156203A (ja) 結晶成長装置
WO2023017670A1 (ja) 薄板状単結晶製造装置および薄板状単結晶製造方法
JP3367616B2 (ja) 単結晶作製方法及び単結晶作製装置
JP2006080511A (ja) レーザ放射によってアモルファス半導体を改質するための方法及び装置
JPS6339555B2 (zh)
JPH04292784A (ja) 円盤型プラズマイメージ加熱装置
JP2005132676A (ja) 単結晶製造方法及び装置
JP2002137989A (ja) 単結晶引上げ方法
JPH11302095A (ja) 集光加熱装置及び集光加熱式単結晶製造装置