TW202215511A - 氧化鎵半導體膜之製造方法及成膜裝置 - Google Patents

氧化鎵半導體膜之製造方法及成膜裝置 Download PDF

Info

Publication number
TW202215511A
TW202215511A TW110124713A TW110124713A TW202215511A TW 202215511 A TW202215511 A TW 202215511A TW 110124713 A TW110124713 A TW 110124713A TW 110124713 A TW110124713 A TW 110124713A TW 202215511 A TW202215511 A TW 202215511A
Authority
TW
Taiwan
Prior art keywords
substrate
film
mist
carrier gas
flow
Prior art date
Application number
TW110124713A
Other languages
English (en)
Inventor
渡部武紀
Original Assignee
日商信越化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商信越化學工業股份有限公司 filed Critical 日商信越化學工業股份有限公司
Publication of TW202215511A publication Critical patent/TW202215511A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45517Confinement of gases to vicinity of substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本發明為一種氧化鎵半導體膜之製造方法,其係藉由霧化CVD法的氧化鎵半導體膜之製造方法,包含:於霧化部中,將含鎵的原料溶液霧化而產生霧之霧產生步驟;將用於搬送前述霧的載體氣體供給至前述霧化部之載體氣體供給步驟;通過連接前述霧化部與成膜室的供給管,從前述霧化部向前述成膜室,藉由前述載體氣體搬送前述霧之搬送步驟;以前述成膜室中供給至基板的表面之前述霧及前述載體氣體的流動成為沿著前述基板的表面的流動之方式進行整流之整流步驟;熱處理前述經整流的霧,在前述基板上進行成膜之成膜步驟;與向前述基板的上方排出廢氣之排氣步驟。藉此,可提供膜厚的面內均勻性和成膜速度優異的氧化鎵半導體膜之製造方法。

Description

氧化鎵半導體膜之製造方法及成膜裝置
本發明關於氧化鎵半導體膜之製造方法及成膜裝置。
以往已開發可實現脈衝雷射沉積法(Pulsed laser deposition:PLD)、分子線磊晶法(Molecular beam epitaxy:MBE)、濺鍍法等之非平衡狀態之高真空成膜裝置,而可製作以迄今之熔液法等無法製作之氧化物半導體。又,已開發使用霧化之霧狀原料,於基板上結晶成長之霧狀化學氣相成長法(Mist Chemical Vapor Deposition:霧化CVD,以下亦稱為「霧化CVD法」),而可製作具有剛玉構造之氧化鎵(α-Ga 2O 3)。α-Ga 2O 3可作為帶隙較大的半導體,被期待應用於可實現高耐壓、低損失及高耐熱之下一代的開關元件。
關於霧化CVD法,專利文獻1中記載管狀爐型之霧化CVD裝置。專利文獻2中記載細通道型之霧化CVD裝置。專利文獻3中記載線性源型之霧化CVD裝置。專利文獻4中記載管狀爐之霧化CVD裝置,與專利文獻1之霧化CVD裝置係在霧產生器內導入載體氣體之點不同。專利文獻5中記載在霧產生器之上方設置基板,進而在加熱板上配備有基座的旋轉台之霧化CVD裝置。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開平1-257337號公報 [專利文獻2]日本特開2005-307238號公報 [專利文獻3]日本特開2012-46772號公報 [專利文獻4]日本發明專利第5397794號公報 [專利文獻5]日本特開2014-63973號公報 [專利文獻6]日本特開2020-2396號公報
[發明所欲解決的課題]
霧化CVD法係與其他CVD法不同,可在比較低溫下進行成膜,亦可製造如α-氧化鎵之剛玉構造的準安定相之結晶構造。然而,本發明者發現以下之新的問題點:若為了以熱反應進行成膜而在成膜室內進行加熱,則所供給的霧係指數函數性地減少,成膜速度降低,同時難以維持膜厚的面內均勻性之新問題點。此問題係基板的直徑愈大愈顯著。對於如此的問題,專利文獻3或專利文獻5中記載之發明係藉由使基板掃描、旋轉而謀求解決。然而,即便使用此等方法,也不完全解決膜厚的面內均勻性。又,因在成膜裝置設置用於掃描或旋轉的驅動部而裝置的初期成本增加,進而亦發生維修變煩雜之次要的問題。
相對於此,專利文獻6中記載在成膜室之側面,設置在相對的方向供給霧之手段,藉此,藉由簡便的裝置構成而膜厚的面內均勻性高,可大幅改善成膜速度。然而,由於霧供給口係對於基板不是成為完全的對稱形,故某程度地在膜厚分布發生偏差,而希望改善。
本發明係為了解決上述問題而完成者,目的在於提供膜厚的面內均勻性和成膜速度優異之能適用霧化CVD法之成膜裝置,以及膜厚的面內均勻性和成膜速度優異的氧化鎵半導體膜之製造方法。 [解決課題的手段]
本發明係為了達成上述目的而完成者,提供一種氧化鎵半導體膜之製造方法,其係藉由霧化CVD法的氧化鎵半導體膜之製造方法,包含:於霧化部中,將含鎵的原料溶液霧化而產生霧之霧產生步驟;將用於搬送前述霧的載體氣體供給至前述霧化部之載體氣體供給步驟;通過連接前述霧化部與成膜室的供給管,從前述霧化部向前述成膜室,藉由前述載體氣體搬送前述霧之搬送步驟;以前述成膜室中供給至基板的表面之前述霧及前述載體氣體的流動成為沿著前述基板的表面的流動之方式進行整流之整流步驟;熱處理前述經整流的霧,在前述基板上進行成膜之成膜步驟;與向前述基板的上方排出廢氣之排氣步驟。
根據如此的氧化鎵半導體膜之製造方法,可藉由簡便的方法,提高膜厚的面內均勻性,大幅改善成膜速度。
此時,作為前述基板,較佳使用面積為100mm 2以上或直徑2吋(50mm)以上的基板。
本發明之氧化鎵半導體膜之製造方法,係即便使用如此的膜厚容易變不均勻之大面積基板時,也可成為更高的膜厚之面內均勻性。
此處,於前述整流步驟時,供給至前述基板的表面之前述霧及前述載體氣體的流動較佳為以從前述基板的外周向前述基板的中心流動之方式進行整流。
藉此,可藉由更加簡便的方法,更確實地提高膜厚的面內均勻性,大幅改善成膜速度。
又,提供一種成膜裝置,其至少具有:將原料溶液霧化而產生霧之霧化部;供給搬送前述霧的載體氣體之載體氣體供給部;連接前述霧化部與成膜室,且藉由前述載體氣體搬送前述霧之供給管;與將從供給口與前述載體氣體一起被供給的前述霧予以熱處理,在基板載置部所載置的基板上進行成膜之成膜室;其中前述成膜室係在內部具有:將前述霧及前述載體氣體的流動予以整流之中板,與將廢氣排氣之排氣配管;前述中板係位於前述基板載置部之上方且前述供給口與前述基板載置部之間,同時以與前述成膜室的側壁具有一定的空隙之方式設置;前述排氣配管係連接至前述中板之對向於前述基板載置部的面之開口部,以從前述中板向上方延伸而貫穿前述成膜室的壁之方式設置;從前述供給口與前述載體氣體一起被供給至前述成膜室之前述霧的流動,係藉由前述中板整流成沿著前述基板的表面之流動,而在前述基板上成膜者。
根據如此的成膜裝置,藉由簡便的裝置構成,而膜厚的面內均勻性高,成膜速度優異。
此時,較佳為處理面積為100mm 2以上或直徑2吋(50mm)以上的基板。
本發明之成膜裝置,係即便使用膜厚容易變不均勻之大面積基板時,也可得到更高的膜厚之面內均勻性。
此時,從前述供給口與前述載體氣體一起被供給至前述成膜室之前述霧的流動,較佳為藉由前述中板整流成從前述基板的外周朝向前述基板的中心之流動,而在前述基板上成膜者。
藉此,藉由更加簡便的裝置構成,膜厚的面內均勻性更確實地高,成膜速度優異。
此時,於前述成膜室的內部,前述基板載置部較佳為在比前述基板載置部的周圍較高的位置具有基板載置面。
藉此,可抑制在基板外反應的霧被供給至基板上,可得到更高品質的膜。
此時,於前述成膜室中,進行前述霧的前述熱處理之加熱區域較佳為與前述基板載置部相同的大小。
藉此,可進一步抑制在基板外的霧之反應,可得到更高品質的膜。 [發明的效果]
如以上,根據本發明之成膜裝置,藉由簡便的裝置構成而膜厚的面內均勻性高,成膜速度優異。又,根據本發明之成膜方法,可藉由簡便的方法提高膜厚的面內均勻性,並大幅改善成膜速度。特別是,即使在膜厚容易變不均勻之大面積基板上進行成膜時,也可以高的成膜速度,得到更高的膜厚之面內均勻性。
[實施發明的形態]
以下,詳細說明本發明,惟本發明不受此等所限定。
如上述,於霧化CVD法中,要求膜厚的面內均勻性或成膜速度優異的成膜裝置,以及膜厚的面內均勻性或成膜速度優異的氧化鎵半導體膜之製造方法。
本發明者對於上述課題重複專心致力的檢討,結果發現藉由一種氧化鎵半導體膜之製造方法,可以簡便的方法提高膜厚的面內均勻性,使成膜速度成為優異者,而完成本發明,該製造方法係藉由霧化CVD法的氧化鎵半導體膜之製造方法,包含:於霧化部中,將含鎵的原料溶液霧化而產生霧之霧產生步驟;將用於搬送前述霧的載體氣體供給至前述霧化部之載體氣體供給步驟;通過連接前述霧化部與成膜室的供給管,從前述霧化部向前述成膜室,藉由前述載體氣體搬送前述霧之搬送步驟;以前述成膜室中供給至基板的表面之前述霧及前述載體氣體的流動成為沿著前述基板的表面的流動之方式進行整流之整流步驟;熱處理前述經整流的霧,在前述基板上進行成膜之成膜步驟;與向前述基板的上方排出廢氣之排氣步驟。
又,發現藉由一種成膜裝置,可利用簡便的裝置構成,而膜厚的面內均勻性高,成膜速度優異,而完成本發明,該成膜裝置至少具有:將原料溶液霧化而產生霧之霧化部;供給搬送前述霧的載體氣體之載體氣體供給部;連接前述霧化部與成膜室,且藉由前述載體氣體搬送前述霧之供給管;與將從供給口與前述載體氣體一起被供給的前述霧予以熱處理,在基板載置部所載置的基板上進行成膜之成膜室;其中前述成膜室係在內部具有:將前述霧及前述載體氣體的流動予以整流之中板,與將廢氣排氣之排氣配管;前述中板係位於前述基板載置部之上方且前述供給口與前述基板載置部之間,同時以與前述成膜室的側壁具有一定的空隙之方式設置;前述排氣配管係連接至前述中板之對向於前述基板載置部的面之開口部,以從前述中板向上方延伸而貫穿前述成膜室的壁之方式設置;從前述供給口與前述載體氣體一起被供給至前述成膜室之前述霧的流動,係藉由前述中板整流成沿著前述基板的表面之流動,而在前述基板上成膜者。
又特別是,本發明者對於上述課題重複專心致力的檢討,結果發現藉由一種氧化鎵半導體膜之製造方法,可以簡便的方法提高膜厚的面內均勻性,使成膜速度成為優異者,而完成本發明,該製造方法係藉由霧化CVD法的氧化鎵半導體膜之製造方法,包含:於霧化部中,將含鎵的原料溶液霧化而產生霧之霧產生步驟;將用於搬送前述霧的載體氣體供給至前述霧化部之載體氣體供給步驟;通過連接前述霧化部與成膜室的供給管,從前述霧化部向前述成膜室,藉由前述載體氣體搬送前述霧之搬送步驟;以前述成膜室中供給至基板的表面之前述霧及前述載體氣體的流動成為從前述基板的外周朝向前述基板的中心流動之方式進行整流之整流步驟;熱處理前述經整流的霧,在前述基板上進行成膜之成膜步驟;與向前述基板的上方排出廢氣之排氣步驟。
又,發現藉由一種成膜裝置,可利用簡便的裝置構成,而膜厚的面內均勻性高,成膜速度優異,而完成本發明,該成膜裝置至少具有:將原料溶液霧化而產生霧之霧化部;供給搬送前述霧的載體氣體之載體氣體供給部;連接前述霧化部與成膜室,且藉由前述載體氣體搬送前述霧之供給管;與將從供給口與前述載體氣體一起被供給的前述霧予以熱處理,在基板載置部所載置的基板上進行成膜之成膜室;其中前述成膜室係在內部具有:將前述霧及前述載體氣體的流動予以整流之中板,與將廢氣排氣之排氣配管;前述中板係位於前述基板載置部之上方且前述供給口與前述基板載置部之間,同時以與前述成膜室的側壁具有一定的空隙之方式設置;前述排氣配管係連接至前述中板之對向於前述基板載置部的面之開口部,以從前述中板向上方延伸而貫穿前述成膜室的壁之方式設置;從前述供給口與前述載體氣體一起被供給至前述成膜室之前述霧的流動,係藉由前述中板整流成從前述基板的外周朝向前述基板的中心之流動,而在前述基板上成膜者。
此處,本發明所言的霧(mist),就是指分散於氣體中的液體微粒子之總稱,包含被稱為霧、液滴等。
以下,參照圖式進行說明。
<第一實施態樣> (成膜裝置) 圖1中顯示本發明之成膜裝置101的一例。成膜裝置101至少具有將原料溶液104a霧化而產生霧之霧化部120、供給搬送霧的載體氣體之載體氣體供給部130、連接霧化部120與成膜室300並藉由載體氣體搬送霧之供給管109、及將從供給口301與前述載體氣體一起被供給的前述霧予以熱處理且在基板載置部313所載置的基板310上進行成膜之成膜室300。
(霧化部) 於霧化部120中,將原料溶液104a霧化而產生霧。霧化手段只要能使原料溶液104a霧化,則沒有特別的限定,可為眾所周知的霧化手段,但較佳為使用藉由超音波振動的霧化手段,因為可更穩定地霧化。
亦合併圖2,邊參照邊說明那樣的霧化部120之一例。例如,霧化部120可包含:收容原料溶液104a的霧產生源104、裝有能傳達超音波振動的介質例如水105a的容器105、及安裝在容器105之底面的超音波振動子106。詳細而言,可使用支撐體(未圖示),將由收容有原料溶液104a的容器所構成之霧產生源104收納在收容有水105a的容器105中。可於容器105之底部,配備超音波振動子106,也可連接超音波振動子106與振盪器116。而且,若使振盪器116作動,則超音波振動子106進行振動,通過水105a將超音波傳播至霧產生源104內,可使原料溶液104a霧化而構成。
(原料溶液) 原料溶液104a只要包含至少鎵,且能霧化,則溶液中所含有的材料係沒有特別的限定,可為無機材料,也可為有機材料。又,除了鎵之外,還可混合金屬或金屬化合物,例如亦可使用包含由鐵、銦、鋁、釩、鈦、鉻、銠、鎳及鈷中選出的1種或2種以上之金屬者。
原料溶液只要能使上述金屬霧化,則沒有特別的限定,但作為原料溶液,可較宜使用使金屬以錯合物或鹽之形態溶解或分散於有機溶劑或水中者。作為錯合物之形態,例如可舉出乙醯基丙酮酸鹽錯合物、羰基錯合物、氨錯合物、氫化物錯合物等。作為鹽之形態,例如可舉出氯化金屬鹽、溴化金屬鹽、碘化金屬鹽等。又,將上述金屬溶解於氫溴酸、鹽酸、氫碘酸等者亦可作為鹽的水溶液使用。
又,於原料溶液中,可混合氫鹵酸或氧化劑等之添加劑。作為氫鹵酸,例如可舉出氫溴酸、鹽酸、氫碘酸等,其中較佳為氫溴酸或氫碘酸。作為氧化劑,例如可舉出過氧化氫(H 2O 2)、過氧化鈉(Na 2O 2)、過氧化鋇(BaO 2)、過氧化苯甲醯(C 6H 5CO) 2O 2等之過氧化物、次氯酸(HClO)、過氯酸、硝酸、溴氧水、過乙酸或硝基苯等之有機過氧化物等。
再者,於原料溶液中,可包含摻雜物。摻雜物係沒有特別的限定。例如,可舉出錫、鍺、矽、鈦、鋯、釩或鈮等之n型摻雜物,或銅、銀、錫、銥、銠等之p型摻雜物等。摻雜物之濃度例如可為約1×10 16/cm 3~1×10 22/cm 3,也可為約1×10 17/cm 3以下之低濃度,亦可為約1×10 20/cm 3以上之高濃度
(載體氣體供給部) 如圖1所示,載體氣體供給部130具有供給載體氣體之載體氣體源102a。此時,可具有用於調節從載體氣體源102a送出的載體氣體之流量的流量調節閥103a。又,視需要亦可具備供給稀釋用載體氣體之稀釋用載體氣體源102b,或用於調節從稀釋用載體氣體源102b送出的稀釋用載體氣體流量之流量調節閥103b。
載體氣體之種類係沒有特別的限定,可按照成膜物來適宜選擇。例如可舉出氧、溴氧、氮或氬等之惰性氣體,或者氫氣或組成氣體(forming gas)等之還原氣體等。又,載體氣體之種類可為1種類,也可為2種類以上。例如作為第2載體氣體,可進一步使用將與第1載體氣體相同的氣體用其以外的氣體稀釋後(例如稀釋至10倍)的稀釋氣體等,也可使用空氣。載體氣體之流量係沒有特別的限定。例如,在30mm見方的基板上成膜時,載體氣體之流量較佳設為0.01~20L/分鐘,更佳設為1~10L/分鐘。
(供給管) 成膜裝置101具有連接霧化部120與成膜室300之供給管109。此時,霧係藉由從霧化部120的霧產生源104通過供給管109,藉由載體氣體而被搬送,供給至成膜室300內。供給管109例如可使用石英管或樹脂製管等。
(成膜室) 圖3係顯示本發明之成膜裝置的成膜室300之一例(與圖1之成膜室300相同)的剖面概略圖。成膜室300係基本上被密閉,具有至少1個以上的霧入口之供給口301、向基板310之上方將廢氣排氣之排氣配管312、及將霧及載體氣體的流動予以整流之中板321。供給口301係與供給管109連接,將霧供給至成膜室300內。 藉由設置供給口301的開口之位置調整機構,可按照成膜狀況來改變成膜室300內的供給口301之前端位置,而改變霧及載體氣體噴出的位置。
(中板) 圖3所示的成膜室300係在內部,於基板載置部313之上方且供給口301與基板載置部313之間,具有中板321。又,在中板321的外周與成膜室300的內部之側壁,形成一定的空隙322。藉由將如此的中板321設置於成膜室300的內部,從供給口301與載體氣體一起被供給至成膜室300之霧的流動,係從供給口301所供給的霧通過成膜室300的側壁與中板321之空隙322,進而通過基板310與中板321之空隙323。亦即,霧係被整流成從基板310的外周朝向基板310的中心之流動,而謀求霧之流速、方向的均勻化。中板321的大小較佳為完全覆蓋基板310(基板載置部313)者。藉此,除了霧之利用效率變良好,還謀求霧之流速、方向的均勻化。中板321之形狀較佳為圓形,但沒有特別的限定。中板321的材料係沒有特別的限制,但較佳為與霧不反應的材料。
中板321的外周與成膜室300的內部之側壁的空隙322較佳設為0.1~10mm。若為如此範圍之空隙322,則可有效地抑制在空隙所發生的偏差或含有霧的氣體之片流,基板310上之霧的流動變更均勻。亦可按照成膜條件來改變空隙322而無妨。例如,當中板321為圓形時,準備2種以上的改變直徑之板,進行更換,可任意地改變空隙322。中板321與基板310之空隙323較佳設為0.5~10mm。若為如此範圍之空隙323,則可使含有霧的氣體之流動更穩定,另外可以更高的狀態維持霧的利用效率。亦可按照成膜條件來改變空隙323而無妨。例如,可預先設置中板321的高度調整機構,而任意地改變空隙323。
(排氣配管) 又,排氣配管312係連接至中板321之對向於基板載置部313的面之開口部,以從中板321向上方延伸而貫穿成膜室300的壁例如頂板之方式設置。排氣配管312的開口部之位置係沒有特別的限定,但於基板310的外周朝向中心流動的氣體之中,為了將成膜時未使用的廢氣予以排氣,較佳為以中板321的中心、開口部的中心與基板載置部313的中心成為一致之方式配置。中板321之與排氣配管312連接的部分之開口部的口徑係可適宜設定,但宜為1~15mm。
藉由使成膜室300成為以上之構成,霧係被中板321所整流,可以相同的流速從基板310的外周朝向中心方向均勻地流動。再者,由於愈接基板310中心,每面積的體積流量愈增加,故有表觀上抑制因成膜而消耗霧量之效果。藉由此等效果,可以高的成膜速度,極小化膜厚的偏差。
(基板載置部) 基板310係被載置於成膜室300內的基板載置部313之基板載置面314。此處,所謂基板載置部313,就是指在支撐基板310的構件上放置基板310時,支撐基板310的構件中之對向於基板310的下面之部分。又,基板載置面314係指支撐基板310的面。於基板310之下,可具備加熱基板310且進行霧的熱處理之加熱手段。加熱手段係沒有特別的限定,但例如可成為加熱板308。加熱板308係如圖3所示,可設於成膜室300之內部,也可設於成膜室300之外部。又,加熱板308可構成成膜室300的底面全面,也可若干大於基板310,再者亦可為與基板310相同程度的大小。藉此,可抑制在基板310外的霧之反應,可得到更高品質的膜。又,加熱區域較佳為與基板載置部313略相同的大小,更佳為相同的大小。 在基板載置部313亦可具備冷卻手段。藉由在加熱的同時地進行冷卻,可防止局部的升溫或升溫的過衝(overshoot),可更高精度地調溫。冷卻手段係沒有特別的限定,例如可使用帕爾帖(Peltier)元件,也可使用使冷卻液循環的方式。 在基板載置部313可具備用於使成膜中的基板310旋轉之旋轉機構,藉由而可更減小膜厚的偏差。 在基板載置部313可具備吸附基板310的機構。藉由基板的吸附,熱的傳達效率與均勻性變高,更短時間的升溫・降溫變更能,另外基板的溫度分布亦更均勻。又,可防止使用前述旋轉機構時的基板之滑動或脫逃。吸附手段係沒有特別的限定,但例如可為使用靜電的吸附或使用真空的吸附。
再者,亦較佳為使加熱區域例如成為設置在基板310之下的熱傳導性良好的金屬製塊體,或形成加熱板308的凸形狀,使基板載置面314的高度成為比基板載置部313的周圍較高的位置,可在比周圍較高1~50mm左右的位置。由於這樣子,可抑制在基板310外反應的霧被供給至基板310上,故可得到更高品質的膜。
(基板) 基板310只要是能成膜且能支撐膜者,則沒有特別的限定。前述基板310之材料亦沒有特別的限定,可使用眾所周知的基板,可為有機化合物,也可為無機化合物。例如,可舉出聚碸、聚醚碸、聚苯硫醚、聚醚醚酮、聚醯亞胺、聚醚醯亞胺、氟樹脂、鐵或鋁、不銹鋼、金等之金屬、矽、硫、石英、玻璃、鉭酸鋰、鉭酸鉀、氧化鎵等之無機化合物,但不受此等所限制。基板的厚度係沒有特別的限定,但較佳為10~2000μm,更佳為50~800μm。
基板310的大小係沒有特別的限定,於通常的方法中愈大面積則膜厚愈容易變不均勻,本發明之效果變顯著。因此,本發明較佳為使用基板面積為100mm 2以上或直徑2吋(50mm)以上者,亦可使用直徑為2~8吋(50~200mm)或其以上的基板。如上述,由於愈大面積則本發明之效果愈顯著而較宜,故未決定基板的面積或直徑之上限。
(氧化鎵半導體膜之製造方法) 接著,一邊參照圖1,一邊說明本發明之氧化鎵半導體膜之製造方法的一例。
首先,將含鎵的原料溶液104a收容於霧產生源104內,將基板310直接或隔著成膜室300之壁而設置於加熱板308上,使加熱板308作動。其次,打開流量調節閥103a、103b,從載體氣體源102a、102b將載體氣體供給至成膜室300內,以載體氣體充分置換成膜室300的環境後,分別調節載體氣體的流量與稀釋用載體氣體的流量。
接著,作為霧產生步驟,使超音波振動子106振動,藉由使該振動通過水105a傳播至原料溶液104a,而將原料溶液104a霧化,產生霧。
接著,作為載體氣體供給步驟,將用於搬送霧的載體氣體供給至霧化部120。
接著,作為搬送步驟,通過連接霧化部120與成膜室300之供給管109,從霧化部120向成膜室300,藉由載體氣體搬送霧。霧係從中板321之上方來供給,可不僅從一方向,而且從複數的方向來供給。
接著,作為整流步驟,以成膜室300中供給至基板310的表面之霧及載體氣體的流動成為從基板310的外周朝向基板310的中心之流動的方式進行整流。藉由成膜室300內的中板321來將霧整流,而作出平行於基板310面的均勻流動。
接著,作為成膜步驟,熱處理經整流的霧,在基板310上進行成膜。霧係藉由成膜室300內加熱板308之熱而進行熱反應,在基板310上成膜。
於成膜室300中,加熱霧而發生熱反應,在基板310上進行成膜。熱反應只要是因加熱而霧進行反應即可,反應條件等亦沒有特別的限定。可按照原料或成膜物來適宜設定。例如,加熱溫度為120~600℃之範圍,較佳為200℃~600℃之範圍,更佳設為300℃~550℃之範圍。
又,熱反應可在真空下、非氧環境下、還原氣體環境下、空氣環境下及氧環境下之任一環境下進行,可按照成膜物來適宜設定。又,反應壓力可在大氣壓下、加壓下或減壓下之任一條件下進行,但若為大氣壓下的成膜,則裝置構成可簡化而較宜。
此處,作為排氣步驟,向基板310之上方排出廢氣。成膜室300內的氣體係從設於基板310之上方的排氣配管312,向成膜室300之外部排氣。
如此地,藉由進行霧之供給,經導入至成膜室300內的霧係在基板310上的寬廣範圍中變均勻且高密度,故可改善膜厚的面內分布,同時亦可提高成膜速度。
(緩衝層) 於上述含有氧化鎵的膜之成膜時,可在基板與該膜之間適宜地設置緩衝層。作為緩衝層的材料,可適宜使用Al 2O 3、Ga 2O 3、Cr 2O 3、Fe 2O 3、In 2O 3、Rh 2O 3、V 2O 3、Ti 2O 3、Ir 2O 3等。緩衝層的形成方法係沒有特別的限定,可藉由濺鍍法、蒸鍍法等眾所周知的方法進行成膜,但使用如上述的霧化CVD法時,僅適宜變更而可形成緩衝層的原料溶液,為簡便的。具體而言,可較宜使用使由鋁、鎵、鉻、鐵、銦、銠、釩、鈦、銥中選出的1種或2種以上之金屬以錯合物或鹽之形態溶解或分散於水中者作為緩衝層的原料水溶液。作為錯合物之形態,例如可舉出乙醯基丙酮酸鹽錯合物、羰基錯合物、氨錯合物、氫化物錯合物等。作為鹽之形態,例如可舉出氯化金屬鹽、溴化金屬鹽、碘化金屬鹽等。又,將上述金屬溶解於氫溴酸、鹽酸、氫碘酸等者亦可作為鹽的水溶液使用。緩衝層的原料溶液之溶質濃度較佳為0.01~1mol/L。關於其他條件,可藉由與上述同樣地形成緩衝層。使緩衝層進行指定的厚度的成膜後,藉由上述方法將以鎵為主成分的氧化物半導體膜予以成膜。緩衝層的厚度較佳為0.1μm~2μm。
(熱處理) 又,可將本發明之氧化鎵半導體膜之製造方法所得的膜在200~600℃下熱處理。藉此,去除膜中的未反應物種等,可得到更高品質的積層構造體。熱處理可在空氣中、氧環境中進行,也可在氮或氬等之惰性氣體環境下進行。熱處理時間係可適宜決定,但例如可設為5~240分鐘。
<第二實施態樣> 除了前述第一實施態樣中的成膜裝置及氧化鎵半導體膜之製造方法之外,還可為如以下的裝置及方法。 關於第二實施態樣,首先說明成膜裝置。於第一實施態樣中,得到霧及載體氣體以從基板310的外周(外周側)朝向基板310的中心流動之方式的整流,但於第二實施態樣中,作為更廣的形態,以沿著基板310的表面之流動的方式整流。亦即,以霧及載體氣體沿著基板310的表面朝向排氣配管312的開口部流動之方式整流,如此的裝置,亦簡便地謀求比習知者較改善膜厚的面內均勻性或成長速度。排氣管312的開口部之位置可接近基板310的中心,也可遠離。
又,亦可設置中板321的橫向位置調整機構,配合對應於成膜狀況的供給口301之移動,改變中板321之位置。 另外,關於排氣配管312,藉由設置排氣配管312的位置調整機構,可按照成膜狀況,改變排氣配管312之下端的開口部與基板310之相對位置。此時,中板321可固定於排氣配管312而一體地改變位置,也可使排氣配管312貫穿的中板321之開口部大於排氣配管312之尺寸,成為排氣配管312在該開口部的開口範圍中移動之構成。
藉由使成膜室300成為以上之構成,霧係被中板321所整流,可以相同的流速沿著基板310之表面(尤其平行於基板310之表面)而均勻地流動。再者,由於愈接近所配置的排氣配管312之開口部,每面積的體積流量愈增加,故有表觀上抑制因成膜而消耗霧量之效果。藉由此等效果,可以高的成膜速度,極小化膜厚的偏差。藉由按照成膜狀況來適宜改變排氣配管312的開口位置,可進一步減小膜厚的偏差。 特別是,例如可以中板321的中心與其開口部的中心(排氣配管312的開口部位置)與基板載置部313的中心成為一致之方式配置,以如此的更簡便之構成,可更確實地,將霧及載體氣體以相同的流速從基板310的外周(外周側)沿著基板310的表面朝向其中心方向(朝向位於中心方向的排氣配管312之開口部)均勻地流動。再者此時,成為與第一實施態樣實質上同樣的構成。 如此地,可使中板321的中心、排氣配管312、基板310的中心之相對位置,成為能按照成膜前或成膜中的成膜狀況等來適宜變之構成。尚且,上述中板321的橫向位置調整機構或排氣配管312的位置調整機構本身亦可在第一實施態樣中具備。於第一實施態樣中,如重複的說明,只要結果霧或載體氣體的流動係藉由中板321整流成從基板310的外周(外周側)朝向中心之流動即可。
又,作為第二實施態樣中的氧化鎵半導體膜之製造方法,於整流步驟時,以成膜室300中供給至基板310的表面之霧及載體氣體的流動成為沿著基板310的表面的流動(尤其平行於基板310的表面的流動)之方式進行整流。藉由成膜室300內的中板321,可將霧或載體氣體如上述地整流,可簡便地提高膜厚的面內均勻性,得到大幅改善成膜速度之效果。 此時,尤其可以從基板310的外周(外周側)朝向基板310的中心之流動的方式進行整流。如前述,例如以中板321的中心與其開口部的中心(排氣配管312的開口部位置)與基板載置部313的中心成為一致之方式配置,可更簡便且確實地得到上述效果。再者此時,成為與第一實施態樣之方法實質上同樣之方法。 [實施例]
以下,舉出實施例來具體地說明本發明,惟此不限定本發明。
(實施例1) (成膜裝置) 一邊參照圖1,一邊說明本實施例所用的成膜裝置101(第一實施態樣)。成膜裝置101具備:供給載體氣體之載體氣體源102a、用於調節從載體氣體源102a送出的載體氣體之流量之流量調節閥103a、供給稀釋用載體氣體之稀釋用載體氣體源102b、用於調節從稀釋用載體氣體源102b送出的稀釋用載體氣體之流量之流量調節閥103b、收容原料溶液104a之霧產生源104、收容水105a之容器105、安裝於容器105的底面之超音波振動子106、成膜室300、從霧產生源104連接到成膜室300之石英製供給管109、及設於成膜室300的內部之加熱板308。基板310係設置於成膜室300內,被加熱板308加熱。
於成膜室300內具備中板321,其直徑係設為120mm,在中心設置直徑10mm的開口而與排氣配管312連接。中板321與成膜室300的側壁之空隙322係設為4mm,中板321與基板310的空隙323亦設為4mm。從中板321延伸的排氣配管312係貫穿成膜室300之頂板。
(基板) 作為基板310,將直徑4吋(100mm)的c面藍寶石基板載置於成膜室300內的加熱板308上,使加熱板308作動而將溫度升溫到500℃。於基板310之下放置直徑101mm、高度13mm的Cu塊,在保持著溫度一定的同時加高基板310。
(原料溶液) 調整溴化鎵0.1mo1/L的水溶液,更使48%氫溴酸溶液以體積比成為10%之方式含有,將其當作原料溶液104a。
(成膜) 將如上述所得之原料溶液104a收容於霧產生源104內。接著,打開流量調節閥103a、103b而從載體氣體源102a、102b將載體氣體供給至成膜室300內,以載體氣體充分置換成膜室300的環境後,將載體氣體的流量調節成10L/分鐘,將稀釋用載體氣體的流量調節成30L/分鐘。作為載體氣體,使用氧。
接著,使超音波振動子106以2.4MHz振動,藉由使其振動通過水105a傳播至原料溶液104a,而將原料溶液104a霧化,產生霧。藉由載體氣體,經由供給管109將霧導入至成膜室300內。於大氣壓下、500℃之條件下,在成膜室300內使霧進行熱反應,在基板310上形成具有剛玉構造的氧化鎵(α-Ga 2O 3)之薄膜。成膜時間為30分鐘。
對於在基板310上所形成的薄膜,將測定處設為基板310上的面內之17點,使用光干涉式的膜厚計來測定膜厚,算出平均膜厚、成膜速度、標準偏差。其結果為平均膜厚5.0μm、成膜速度10.0μm/小時、標準偏差0.3μm。
(實施例2) 除了將載體氣體的流量設為5L/分鐘,將稀釋用載體氣體的流量設為15L/分鐘以外,於與實施例1相同的條件下進行成膜、評價。其結果為平均膜厚2.4μm、成膜速度4.8μm/小時、標準偏差0.1μm。
(實施例3) 除了將稀釋用載體氣體的流量設為60L/分鐘以外,於與實施例1相同的條件下進行成膜、評價。其結果為平均膜厚4.7μm、成膜速度9.4μm/小時、標準偏差0.2μm。
(比較例) 除了不設置成膜室300的中板321以外,於與實施例1相同的條件下進行成膜、評價。其結果為平均膜厚0.7μm、成膜速度1.4μm/小時,幾乎無法成膜。又,標準偏差成為0.4μm,若考慮膜厚為薄,則為偏差非常大的結果。
如以上,以本發明之成膜裝置的構成,進行本發明之氧化鎵之製造方法,即便使用面積大的基板,成膜速度亦優異,且可將面內均勻性優異的充分膜厚之氧化鎵膜予以成膜。
再者,本發明不受上述實施形態所限定。上述實施形態為例示,具有與本發明申請專利範圍中記載的技術思想實質上相同構成,發揮相同作用效果者,皆被包含於本發明之技術範圍中。
101:成膜裝置 102a:載體氣體源 102b:稀釋用載體氣體源 103a,103b:流量調節閥 104:霧產生源 104a:原料溶液 105:容器 105a:水 106:超音波振動子 109:供給管 116:振盪器 120:霧化部 130:載體氣體供給部 300:成膜室 301:供給口 308:加熱板 310:基板 312:排氣配管 313:基板載置部 314:基板載置面 321:中板 322:空隙 323:空隙
[圖1]係顯示本發明之成膜裝置的概略構成圖。 [圖2]係說明本發明之成膜裝置的霧化部之一例的圖。 [圖3]係顯示本發明之成膜裝置的成膜室之一例的剖面概略圖。
101:成膜裝置
102a:載體氣體源
102b:稀釋用載體氣體源
103a,103b:流量調節閥
104:霧產生源
104a:原料溶液
105:容器
105a:水
106:超音波振動子
109:供給管
120:霧化部
130:載體氣體供給部
300:成膜室
308:加熱板
310:基板
312:排氣配管
321:中板

Claims (8)

  1. 一種氧化鎵半導體膜之製造方法,其係藉由霧化CVD法的氧化鎵半導體膜之製造方法,其特徵在於包含: 於霧化部中,將含鎵的原料溶液霧化而產生霧之霧產生步驟; 將用於搬送前述霧的載體氣體供給至前述霧化部之載體氣體供給步驟; 通過連接前述霧化部與成膜室的供給管,從前述霧化部向前述成膜室,藉由前述載體氣體搬送前述霧之搬送步驟; 以前述成膜室中供給至基板的表面之前述霧及前述載體氣體的流動成為沿著前述基板的表面的流動之方式進行整流之整流步驟; 熱處理前述經整流的霧,在前述基板上進行成膜之成膜步驟;與 向前述基板的上方排出廢氣之排氣步驟。
  2. 如請求項1之氧化鎵半導體膜之製造方法,其中作為前述基板,使用面積為100mm 2以上或直徑2吋(50mm)以上的基板。
  3. 如請求項1或2之氧化鎵半導體膜之製造方法,其中於前述整流步驟時,供給至前述基板的表面之前述霧及前述載體氣體的流動係以從前述基板的外周朝向前述基板的中心流動之方式進行整流。
  4. 一種成膜裝置,其至少具有: 將原料溶液霧化而產生霧之霧化部; 供給搬送前述霧的載體氣體之載體氣體供給部; 連接前述霧化部與成膜室,且藉由前述載體氣體搬送前述霧之供給管;與 將從供給口與前述載體氣體一起被供給的前述霧予以熱處理,在基板載置部所載置的基板上進行成膜之成膜室; 其特徵在於: 前述成膜室係在內部具有, 將前述霧及前述載體氣體的流動予以整流之中板,與將廢氣排氣之排氣配管; 前述中板係位於前述基板載置部之上方且前述供給口與前述基板載置部之間,同時以與前述成膜室的側壁具有一定的空隙之方式設置; 前述排氣配管係連接至前述中板之對向於前述基板載置部的面之開口部,以從前述中板向上方延伸而貫穿前述成膜室的壁之方式設置; 從前述供給口與前述載體氣體一起被供給至前述成膜室之前述霧的流動,係藉由前述中板整流成沿著前述基板的表面之流動,而在前述基板上成膜者。
  5. 如請求項4之成膜裝置,其係處理面積為100mm 2以上或直徑2吋(50mm)以上的基板者。
  6. 如請求項4或5之成膜裝置,其中從前述供給口與前述載體氣體一起被供給至前述成膜室之前述霧的流動,係藉由前述中板整流成從前述基板的外周朝向前述基板的中心之流動,而在前述基板上成膜者。
  7. 如請求項4~6中任一項之成膜裝置,其中於前述成膜室的內部,前述基板載置部係在比前述基板載置部的周圍較高的位置具有基板載置面。
  8. 如請求項4~7中任一項之成膜裝置,其中於前述成膜室中,進行前述霧的前述熱處理之加熱區域係與前述基板載置部相同的大小。
TW110124713A 2020-07-08 2021-07-06 氧化鎵半導體膜之製造方法及成膜裝置 TW202215511A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020117919 2020-07-08
JP2020-117919 2020-07-08
JP2021-000265 2021-01-04
JP2021000265A JP6925548B1 (ja) 2020-07-08 2021-01-04 酸化ガリウム半導体膜の製造方法及び成膜装置

Publications (1)

Publication Number Publication Date
TW202215511A true TW202215511A (zh) 2022-04-16

Family

ID=77364569

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110124713A TW202215511A (zh) 2020-07-08 2021-07-06 氧化鎵半導體膜之製造方法及成膜裝置

Country Status (7)

Country Link
US (1) US20230257880A1 (zh)
EP (1) EP4180557A1 (zh)
JP (5) JP6925548B1 (zh)
KR (1) KR20230035263A (zh)
CN (1) CN115997277A (zh)
TW (1) TW202215511A (zh)
WO (1) WO2022009524A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023056328A (ja) * 2021-10-07 2023-04-19 信越化学工業株式会社 成膜装置およびこれを用いた結晶性半導体膜の成膜方法
WO2023062889A1 (ja) * 2021-10-14 2023-04-20 信越化学工業株式会社 成膜装置及び製造方法
WO2023079787A1 (ja) * 2021-11-02 2023-05-11 信越化学工業株式会社 成膜装置及び成膜方法並びに酸化物半導体膜及び積層体
WO2024043049A1 (ja) * 2022-08-25 2024-02-29 信越化学工業株式会社 成膜方法、成膜装置、及びα-Ga2O3膜

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2671367B2 (ja) 1988-04-06 1997-10-29 富士通株式会社 気相エピタキシャル成長装置
NZ228906A (en) 1988-04-29 1990-12-21 Du Pont Multilayer laminated structure containing microwave receptor material for browning or crispening food cooked adjacent thereto
JP3761951B2 (ja) * 1996-01-16 2006-03-29 松下電器産業株式会社 強誘電体薄膜形成装置
JP3735452B2 (ja) * 1997-10-24 2006-01-18 松下電器産業株式会社 誘電体薄膜形成装置及び誘電体薄膜形成方法
WO2000079576A1 (en) * 1999-06-19 2000-12-28 Genitech, Inc. Chemical deposition reactor and method of forming a thin film using the same
JP5124760B2 (ja) 2004-04-19 2013-01-23 静雄 藤田 成膜方法及び成膜装置
JP2012046772A (ja) 2010-08-24 2012-03-08 Sharp Corp ミストcvd装置及びミスト発生方法
JP5793732B2 (ja) * 2011-07-27 2015-10-14 高知県公立大学法人 ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法
JP6137668B2 (ja) 2012-08-26 2017-05-31 国立大学法人 熊本大学 酸化亜鉛結晶層の製造方法及びミスト化学気相成長装置
JP6146042B2 (ja) * 2013-02-18 2017-06-14 住友電気工業株式会社 Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
JP5397794B1 (ja) 2013-06-04 2014-01-22 Roca株式会社 酸化物結晶薄膜の製造方法
JP6867637B2 (ja) * 2014-06-27 2021-04-28 株式会社Flosfia サセプタ
JP2016051824A (ja) * 2014-08-29 2016-04-11 高知県公立大学法人 エピタキシャル成長方法および成長装置ならびに量子井戸構造の作製方法
JP6478103B2 (ja) * 2015-01-29 2019-03-06 株式会社Flosfia 成膜装置および成膜方法
JP2016157879A (ja) * 2015-02-25 2016-09-01 株式会社Flosfia 結晶性酸化物半導体膜、半導体装置
JP6791156B2 (ja) * 2015-10-15 2020-11-25 三菱ケミカル株式会社 有機光電変換素子及び有機薄膜太陽電池モジュール
JP7053202B2 (ja) * 2017-09-15 2022-04-12 出光興産株式会社 光電変換モジュール
JP7223515B2 (ja) 2018-06-26 2023-02-16 信越化学工業株式会社 成膜装置及び成膜方法
JP7006793B2 (ja) * 2018-08-01 2022-02-10 株式会社ニコン ミスト成膜装置、並びにミスト成膜方法

Also Published As

Publication number Publication date
JP2022016428A (ja) 2022-01-21
JP2023068031A (ja) 2023-05-16
JP2022016263A (ja) 2022-01-21
CN115997277A (zh) 2023-04-21
JP2022016427A (ja) 2022-01-21
KR20230035263A (ko) 2023-03-13
JP7285889B2 (ja) 2023-06-02
JP7492621B2 (ja) 2024-05-29
JP6925548B1 (ja) 2021-08-25
JP7234310B2 (ja) 2023-03-07
US20230257880A1 (en) 2023-08-17
JP2022016426A (ja) 2022-01-21
EP4180557A1 (en) 2023-05-17
WO2022009524A1 (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
TW202215511A (zh) 氧化鎵半導體膜之製造方法及成膜裝置
JP7223515B2 (ja) 成膜装置及び成膜方法
TWI821481B (zh) 氧化鎵膜之製造方法
JP7473591B2 (ja) 成膜装置及び成膜方法
JP2023030097A (ja) 結晶性酸化物薄膜
CN217948254U (zh) 成膜系统及成膜装置
JP7436333B2 (ja) 成膜方法及び成膜装置
WO2023062889A1 (ja) 成膜装置及び製造方法
JP7265517B2 (ja) 成膜方法
US20230151485A1 (en) Film forming apparatus and film forming method
US20240229236A9 (en) Film-forming apparatus, film-forming method, gallium oxide film and laminate
TW202223140A (zh) 成膜方法及原料溶液
TW202319580A (zh) 成膜裝置及成膜方法以及氧化物半導體膜及積層體
JP2023036791A (ja) 成膜方法