TW202208061A - 陰離子交換體之離子形變更方法以及陰離子交換體之製造方法 - Google Patents

陰離子交換體之離子形變更方法以及陰離子交換體之製造方法 Download PDF

Info

Publication number
TW202208061A
TW202208061A TW110120110A TW110120110A TW202208061A TW 202208061 A TW202208061 A TW 202208061A TW 110120110 A TW110120110 A TW 110120110A TW 110120110 A TW110120110 A TW 110120110A TW 202208061 A TW202208061 A TW 202208061A
Authority
TW
Taiwan
Prior art keywords
anion exchanger
anion
monolithic
quaternary ammonium
aqueous solution
Prior art date
Application number
TW110120110A
Other languages
English (en)
Inventor
蔦野恭平
Original Assignee
日商奧璐佳瑙股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020097857A external-priority patent/JP7477374B2/ja
Priority claimed from JP2020097856A external-priority patent/JP7477373B2/ja
Application filed by 日商奧璐佳瑙股份有限公司 filed Critical 日商奧璐佳瑙股份有限公司
Publication of TW202208061A publication Critical patent/TW202208061A/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/016Modification or after-treatment of ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum

Abstract

本發明係提供,在抑制各種金屬之殘留的狀態下,將陰離子交換體之離子形簡便且短時間地以高比率進行變更的方法。 一種陰離子交換體之離子形變更方法,其特徵在於,為了變更陰離子交換體之離子形,使該陰離子交換體與四級銨氫氧化物之水溶液接觸,宜為該四級銨氫氧化物係選自通式[R1 R2 R3 R4 N+ ]OH- (I)(式中,R1 ~R4 各別係亦可具有羥基之碳數1~4之烴基,彼此可相同亦可不同。)表示之化合物中的一種以上。

Description

陰離子交換體之離子形變更方法以及陰離子交換體之製造方法
本發明係關於變更陰離子交換體之離子形的方法及製造陰離子交換體的方法。
以往,為了除去混入於超純水中之金屬離子等、或為了除去混入於各種醇或醚等藥液中之金屬離子等,會利用陰離子交換體。
例如,半導體製造流程中使用之超純水係在被稱為子系統(sub system)之精製設備進行高純度化(例如,參照專利文獻1(日本特開2010-234356號公報)),但在從子系統送至進行半導體製造處理之各使用點(溼式設備(Wet station))的送液中,有時有金屬成分等雜質從配管或閥等溶出的情況。此外,清洗劑、溶解溶劑中使用之各種醇或醚等藥液,有時亦有金屬成分等雜質從藥液儲存槽或送液配管溶出之情況。
因此,在上述雜質為陰離子性之情況,考慮在各使用點附近配置含有陰離子交換體之精製筒柱來除去雜質。
此外,上述半導體製造流程中供給至使用點並用於清洗的超純水,係可作為回收水,再次作為超純水製造用原料水的一部分來使用。
然而,上述半導體製造步驟中,考慮到有B元素、As元素等離子性雜質或微粒等從被處理物之構成材料(半導體材料)溶出至超純水中的情況,據認為回收之超純水係含有大量的離子性雜質或微粒等。 因此,在將回收之超純水予以再利用方面,要求預先將混入於超純水中之離子性雜質或微粒等除去。
就從上述回收之超純水中除去離子性雜質或微粒等之方法而言,申請人之前有提出了使用填充了單塊(monolith)狀有機多孔質陰離子交換體的離子交換體填充模組來精製超純水的方法(參照專利文獻1(WO2019/221187號說明書)。
如上述,有人提案使用陰離子交換體以除去超純水中或藥液中含有之離子性雜質或微粒等,且會要求製備適合上述超純水之精製的陰離子交換體、或將使用於上述超純水之精製的陰離子交換體在使用後予以再生而再次使用。
另一方面,在半導體製造流程或醫藥品製造流程中所使用之超純水的製造中,掌握最後製得之超純水、或超純水製造步驟之製程水中微量含有之離子性雜質的含量亦為重要。
如上述,半導體製造流程中使用之超純水係在被稱為子系統之精製設備中高純度化,在從子系統送至進行半導體製造處理之各使用點(溼式設備)的送液中,有時有金屬成分等雜質從配管或閥等溶出的情況。此外,關於各種醇或醚等藥液,有時亦有金屬成分等雜質從藥液儲存槽或送液配管溶出的情況。 上述金屬成分就種類或形態並沒有固定,據認為除了離子之外,亦以凝聚狀態或分散狀態之微粒的形態存在。
就水中之離子性雜質濃度之測定方法而言,有人提出使用上述之單塊狀有機多孔質陰離子交換體來捕捉超純水中之金屬雜質,將捕捉的金屬雜質予以溶離、回收來測定金屬雜質的方法(參照專利文獻1(WO2019/221187號說明書)。
此外,作為水中之離子性雜質濃度之測定方法,有將分析對象水通液至具有離子交換功能之多孔性膜、離子交換樹脂等之離子交換體中,並將經捕捉之離子性雜質藉由溶離液溶離,測定回收之溶離液中之離子性雜質濃度的方法(濃縮法)。例如,專利文獻2(日本特開平5-45351號公報)中揭示使用了具有離子交換功能之多孔性膜之濃縮法的分析方法。
如上述,為了分析超純水中或藥液中所含有之離子性雜質等之含量,有人提案使用陰離子交換體,要求製備適合上述分析之陰離子交換體,或將使用於上述分析之陰離子交換體在使用後予以再生而再次使用。 [先前技術文獻] [專利文獻]
專利文獻1:WO2019/221187號說明書 專利文獻2:日本特開平5-45351號公報
[發明所欲解決之課題]
在具有四級銨基或胺基作為陰離子交換基之陰離子交換體中,其離子形(陰離子交換基之相對離子之形態),就提高雜質元素之捕捉性能方面,宜為OH形,故要求在製備陰離子交換體時使離子形製成OH形、或在陰離子交換體之離子形之再生時將離子形再生為OH形。 為了將陰離子交換體之離子形變更為OH形,通常按(1)酸處理、(2)水處理、(3)鹽酸處理、(4)水處理、(5)碳酸鹽或重碳酸鹽處理、(6)水處理及(7)氫氧化鈉處理之順序進行處理。 亦即,在進行了陰離子交換體之酸清洗後,將陰離子交換基之相對離子按順序製成氯化物離子及碳酸離子後,進行成為氫氧化物離子之處理,藉由以如此順序進行處理,能將離子形以高比率變更為OH形。
然而,上述離子形變更方法係處理步驟數多、處理時間長或處理費工,尋求更簡便且短時間地將離子形變更為OH形的方法。 此外,上述離子形之變更方法,會有在上述「(5)碳酸鹽或重碳酸鹽處理」時混入碳酸鹽或重碳酸鹽中為雜質的各種金屬殘留於陰離子交換體中、或在上述「(7)氫氧化鈉處理」時鈉殘留於陰離子交換體中的情形,故上述「(7)氫氧化鈉」處理後更需要長時間之水處理、或在使用時於陰離子交換體之下游側需要更配置陽離子交換體來除去金屬溶出物(金屬離子)。
在如此狀況下,本發明之目的係提供在抑制各種金屬之殘留的狀態下,將陰離子交換體之離子形簡便且短時間地以高比率進行變更之方法及陰離子交換體之製造方法。
本發明者等為了達成上述目的深入研究之結果,發現為了變更陰離子交換體之離子形,藉由將上述陰離子交換體與四級銨氫氧化物之水溶液進行接觸,可解決上述技術課題,根據該發現而完成了本發明。
亦即,本發明係提供: (1)一種陰離子交換體之離子形變更方法,其特徵在於,為了變更陰離子交換體之離子形,使該陰離子交換體與四級銨氫氧化物之水溶液接觸。 (2)如(1)之陰離子交換體之離子形變更方法,其中,該四級銨氫氧化物係選自下述通式(I)表示之化合物中之一種以上: [化1]
Figure 02_image001
(式中,R1 ~R4 各自係亦可具有羥基之碳數1~4的烴基,彼此可相同亦可不同。)、 (3)如(1)之陰離子交換體之離子形變更方法,其中,該四級銨氫氧化物之水溶液中之四級銨氫氧化物的濃度為0.1~2.0N、 (4)如(1)之陰離子交換體之離子形變更方法,其中,將該陰離子交換體與無機酸接觸,然後以水清洗後使其與該四級銨氫氧化物之水溶液接觸、 (5)如(1)之陰離子交換體之離子形變更方法,其中,將該陰離子交換體與無機酸接觸,然後以水清洗後更與鹽酸接觸,然後以水清洗後使其與該四級銨氫氧化物之水溶液接觸、 (6)如(1)之陰離子交換體之離子形變更方法,其中,該陰離子交換體係單塊狀有機多孔質陰離子交換體、 (7)如(6)之陰離子交換體之離子形變更方法,其中,該單塊狀有機多孔質陰離子交換體係共連續結構體,該共連續結構體由:由全部構成單元中,含有交聯結構單元0.1~5.0莫耳%之芳香族乙烯基聚合物構成之平均粗細度於乾燥狀態為1~60μm之三維上為連續的骨架、及於該骨架之間之平均直徑於乾燥狀態為10~200μm之三維上為連續之空孔構成,於乾燥狀態之全細孔容積為0.5~10mL/g,具有陰離子交換基,於水濕潤狀態下之每單位體積的陰離子交換容量為0.2~1.0mg當量/mL(水濕潤狀態),且陰離子交換基均勻地分布於有機多孔質陰離子交換體中、 (8)如(6)之陰離子交換體之離子形變更方法,其中,對於該陰離子交換體,將四級銨氫氧化物之水溶液以液空間速度SV成為20000h-1 以下之方式進行通液、 (9)如(1)之陰離子交換體之離子形變更方法,其中,為了將超純水之精製或藥液之精製中使用之陰離子交換體的離子形進行變更、或為了將超純水中或藥液中之陰離子性雜質之分析中使用之陰離子交換體的離子形進行變更,而使該陰離子交換體與四級銨氫氧化物之水溶液接觸、 (10)一種陰離子交換體之製造方法,其特徵在於,為了變更陰離子交換體之離子形,使該陰離子交換體與四級銨氫氧化物之水溶液接觸、及 (11)如(10)之陰離子交換體之製造方法,為了變更在超純水之精製或藥液之精製中使用之陰離子交換體之離子形,或為了變更在超純水中或藥液中之陰離子性雜質之分析中使用之陰離子交換體之離子形,使該陰離子交換體與四級銨氫氧化物之水溶液接觸。 [發明之效果]
根據本發明,可提供在抑制各種金屬之殘留之狀態下,將陰離子交換體之離子形簡便且短時間地以高比率進行變更之方法及陰離子交換體之製造方法。
首先,針對本發明中之陰離子交換體之離子形變更方法進行說明。 本發明中之陰離子交換體之離子形變更方法,其特徵在於,為了變更陰離子交換體之離子形,使該陰離子交換體與四級銨氫氧化物之水溶液接觸。
<陰離子交換體> 本發明中,陰離子交換體係指具有陰離子交換能力之離子交換體,作為陰離子交換體,可選自單塊狀有機多孔質陰離子交換體、陰離子交換樹脂(陰離子交換樹脂)等,宜為單塊狀有機多孔質陰離子交換體。
<單塊狀有機多孔質陰離子交換體> 本發明中,陰離子交換體為單塊狀有機多孔質陰離子交換體之情況,就單塊狀有機多孔質陰離子交換體而言沒有特別之限定。
單塊狀有機多孔質陰離子交換體係於單塊狀有機多孔質體中導入了陰離子交換基的多孔質體。單塊狀有機多孔質陰離子交換體之單塊狀有機多孔質體,係骨架為藉由有機聚合物所形成,且於骨架間具有多個成為反應液之流通道之連通孔的多孔質體。而,單塊狀有機多孔質陰離子交換體,係於該單塊狀有機多孔質體之骨架中導入陰離子交換基且使其均勻地分布的多孔質體。 此外,本說明書中,「單塊狀有機多孔質體」亦簡稱為「單塊」,「單塊狀有機多孔質陰離子交換體」亦簡稱為「單塊陰離子交換體」,「單塊狀有機多孔質陽離子交換體」亦簡稱為「單塊陽離子交換體」,此外,單塊之製造時為中間體(單塊之前驅物)之「單塊狀有機多孔質中間體」亦簡稱為「單塊中間體」。
本發明中,單塊陰離子交換體係藉由於單塊導入陰離子交換基所獲得者,其結構宜為係由連續骨架相及連續空孔相構成之有機多孔質體,且連續骨架之厚度為1~100μm、連續空孔之平均直徑為1~1000μm、全細孔容積為0.5~50mL/g較理想。
若單塊陰離子交換體之連續骨架之厚度未達1μm,除了有每單位體積之陰離子交換容量降低等的缺點外,且機械強度降低,尤其以高流速進行通液之情況時單塊陰離子交換體容易有大的變形、或反應液與單塊陰離子交換體之接觸效率降低、觸媒活性容易降低,故較不理想。 另一方面,若單塊陰離子交換體之連續骨架之厚度超過100μm,則骨架變得過粗胖、基質之擴散變得費時,觸媒活性容易降低,故較不理想。 此外,上述連續骨架之厚度係藉由SEM觀察來確定。
若單塊陰離子交換體之連續空孔之平均直徑未達1μm,則通水時之壓力損失容易變高。若單塊陰離子交換體之連續空孔之平均直徑超過1000μm,則被處理液與單塊陰離子交換體之接觸變得不足,除去性能容易降低。 此外,單塊陰離子交換體之於乾燥狀態之連續空孔的平均直徑,係指以水銀壓入法測定,藉由水銀壓入法所獲得之細孔分布曲線之極大值。
若單塊陰離子交換體之全細孔容積未達0.5mL/g,則被處理液之接觸效率容易變低、每單位剖面積之透過液量變小,處理量容易變低。若單塊陰離子交換體之全細孔容積超過50mL/g,則每單位體積之陰離子交換容量降低、除去性能容易變低,且機械強度降低,尤其以高速進行通液時之單塊陰離子交換體容易有大的變形,通液時之壓力損失容易急速上升。 此外,全細孔容積係藉由水銀壓入法來測定。
就如此之單塊陰離子交換體之結構例而言,可列舉日本特開2002-306976號公報、日本特開2009-62512號公報中揭示之連續氣泡結構、日本特開2009-67982號公報中揭示之共連續結構、日本特開2009-7550號公報中揭示之粒子凝聚型結構、日本特開2009-108294號公報中揭示之粒子複合型結構等。
單塊陰離子交換體之於水濕潤狀態之每單位體積之陰離子交換容量宜為0.1~1.0mg當量/mL(水濕潤狀態)。 若單塊陰離子交換體之於乾燥狀態之陰離子交換容量未達0.1mg當量/mL,則到達貫穿(breakthrough)為止所處理之處理水量變小,填充單塊陰離子交換體之模組的更換頻率容易變高,此外,若上述單塊陰離子交換體之於乾燥狀態之陰離子交換容量超過1.0mg當量/mL,則通水時之壓力損失變得容易增大。 此外,陰離子交換基僅導入於骨架表面之多孔質體的陰離子交換容量,雖然取決於多孔質體、或陰離子交換基之種類而無法一概地決定,至多為500μg當量/g。
導入至單塊陰離子交換體之陰離子交換基不僅於單塊之表面,連單塊之骨架內部亦均勻地分布。此處所述之「陰離子交換基均勻地分布」係指,陰離子交換基之分布至少以μm級均勻地分布於表面及骨架內部。陰離子交換基之分布狀況可藉由使用EPMA而輕易地確認。此外,若陰離子交換基不僅於單塊之表面,連單塊之骨架內部亦均勻地分布,則表面與內部之物理性質及化學性質能成為均勻,故變得容易改善對於膨潤及收縮之耐久性。
就導入至單塊陰離子交換體之陰離子交換基而言,可列舉三甲基銨基、三乙基銨基、三丁基銨基、二甲基羥基乙基銨基、二甲基羥基丙基銨基、甲基二羥基乙基銨基等四級銨基、第三鋶基、鏻基等。
在單塊陰離子交換體中,構成連續骨架之材料通常係具有交聯結構之有機聚合物材料。 聚合物材料之交聯密度係沒有特別之限定,相對於構成聚合物材料之全部構成單元,宜含有0.1~30莫耳%、適宜為0.1~20莫耳%之交聯結構單元。 若交聯結構單元未達0.1莫耳%,則機械強度不足故較不理想,另一方面,若交聯結構單元超過30莫耳%,則有時有陰離子交換基之導入變得困難之情況而較不理想。該聚合物材料之種類係沒有特別之限制,可舉例如聚苯乙烯、聚(α-甲基苯乙烯)、聚乙烯基甲苯、聚乙烯基芐基氯、聚乙烯基聯苯、聚乙烯基萘等芳香族乙烯基聚合物;聚乙烯、聚丙烯等聚烯烴;聚氯乙烯、聚四氟乙烯等聚(鹵化聚烯烴);聚丙烯腈等腈系聚合物;聚甲基丙烯酸甲酯、聚甲基丙烯酸環氧丙酯、聚丙烯酸乙酯等(甲基)丙烯酸系聚合物等交聯聚合物。上述聚合物可為使單種之乙烯基單體與交聯劑共聚合所獲得之聚合物、亦可為使多種乙烯基單體與交聯劑聚合而獲得之聚合物,此外,亦可為二種以上之聚合物摻混而得者。此等有機聚合物材料中,考慮形成連續結構的容易性、導入陰離子交換基之容易性及機械強度之高程度、以及對於酸或鹼之安定性之高程度,宜為芳香族乙烯基聚合物之交聯聚合物,尤其可列舉苯乙烯-二乙烯基苯共聚物、乙烯基芐基氯-二乙烯基苯共聚物作為理想之材料。
<單塊狀有機多孔質陰離子交換體之形態例> 就單塊狀有機多孔質陰離子交換體之形態例(以下,適當地稱為單塊陰離子交換體a)而言,宜為單塊狀有機多孔質陰離子交換體係由:由全部構成單元中,含有交聯結構單元0.1~5.0莫耳%之芳香族乙烯基聚合物構成之平均粗細度於乾燥狀態為1~60μm之三維上為連續的骨架、及於該骨架之間之平均直徑於乾燥狀態為10~200μm之三維上為連續之空孔;構成的共連續結構體,於乾燥狀態之全細孔容積為0.5~10mL/g,具有陰離子交換基,於水濕潤狀態下之每單位體積的陰離子交換容量為0.2~1.0mg當量/mL(水濕潤狀態),且陰離子交換基均勻地分布於有機多孔質陰離子交換體中。 此外,構成單塊陰離子交換體a之(導入陰離子交換基前之)單塊(以下,適當地稱為單塊a)係有機多孔質體,該有機多孔質體宜為由:由全部構成單元中,含有交聯結構單元0.1~5.0莫耳%之芳香族乙烯基聚合物構成之平均粗細度於乾燥狀態為1~60μm之三維上為連續的骨架、及於該骨架之間之平均直徑於乾燥狀態為10~200μm之三維上為連續之空孔;構成的共連續結構體,於乾燥狀態之全細孔容積為0.5~10mL/g。
單塊陰離子交換體a係由:由平均粗細度於乾燥狀態為1~60μm、宜為3~58μm之三維上為連續之骨架、及於該骨架間之平均直徑於乾燥狀態為10~200μm、宜為15~180μm、尤其宜為20~150μm之三維上為連續之空孔;構成之共連續結構體。 圖1展示單塊陰離子交換體a之形態例之SEM圖像,圖2展示單塊陰離子交換體a之共連續結構之示意圖。共連續結構係如圖2之示意圖所示,連續之骨架相1與連續之空孔相2相互交織共同成為三維上為連續之結構10。該連續之空孔2相較於以往之連續氣泡型單塊、粒子凝聚型單塊,空孔之連續性較高且其尺寸沒有偏差。此外,骨架較粗胖故機械強度高。
若三維上為連續之空孔之平均直徑於乾燥狀態未達10μm,則被處理液變得不易擴散而較不理想,若超過200μm,則被處理液與單塊陰離子交換體a之接觸變得不充分,其結果,除去性能變得不足故較不理想。此外,若骨架之平均粗細度於乾燥狀態未達1μm,則陰離子交換容量變低、且機械強度變低故較不理想。另外,反應液與單塊陰離子交換體a之接觸效率降低、除去性能降低故較不理想。另一方面,若骨架之粗細度超過60μm,則骨架變得過粗胖,被處理液之擴散變得不均勻而較不理想。
乾燥狀態之單塊a之開口之平均直徑、乾燥狀態之單塊陰離子交換體a之開口之平均直徑、及以下所述之單塊a之製造之I步驟中獲得之乾燥狀態之單塊中間體(以下,適當地稱為單塊中間體a)之開口之平均直徑,係指以水銀壓入法求得之藉由水銀壓入法獲得之細孔分布曲線之極大值。此外,單塊陰離子交換體a之骨架於乾燥狀態之平均粗細度可藉由乾燥狀態之單塊陰離子交換體a之SEM觀察來求得。具體而言,進行至少3次乾燥狀態之單塊陰離子交換體a之SEM觀察,測定獲得之圖像中之骨架的粗細度,將此等之平均值作為平均粗細度。此外,骨架可為棒狀且為圓形剖面形狀,亦可包含橢圓剖面形狀等具有不同直徑之剖面者。於該情況,粗細度係短徑與長徑的平均。
此外,單塊陰離子交換體a之於乾燥狀態之每單位重量之全細孔容積係0.5~10mL/g。若全細孔容積未達0.5mL/g,則基質或溶劑之接觸效率變低故較不理想,進一步地,每單位剖面積之透過量變小、處理量會降低故較不理想。另一方面,若全細孔容積超過10ml/g,則被處理液與單塊陰離子交換體之接觸效率下降,則除去性能降低故較不理想。三維上為連續之空孔的大小及全細孔容積若為上述範圍,則與被處理液之接觸極為平均且接觸面積亦變大。
在單塊陰離子交換體a中,構成骨架之材料係在全部構成單元中,含有0.1~5.0莫耳%、宜為0.5~3.0莫耳%之交聯結構單元的芳香族乙烯基聚合物,且為疏水性。若交聯結構單元未達0.1莫耳%,則機械強度不足故較不理想,另一方面,若交聯結構單元超過5莫耳%,則多孔質體之結構變得容易偏離共連續結構。芳香族乙烯基聚合物之種類係沒有特別之限制,可舉例如聚苯乙烯、聚(α-甲基苯乙烯)、聚乙烯基甲苯、聚乙烯基芐基氯、聚乙烯基聯苯、聚乙烯基萘等。上述聚合物可為使一種之乙烯基單體與交聯劑共聚合而得之聚合物,亦可為使多種之乙烯基單體與交聯劑聚合而得之聚合物,此外,亦可為二種以上之聚合物經摻混而得者。此等有機聚合物材料之中,考慮形成共連續結構之容易性、導入陰離子交換基之容易性與機械強度之高程度、及對於酸或鹼的安定性之高程度,宜為苯乙烯-二乙烯基苯共聚物或乙烯基芐基氯-二乙烯基苯共聚物。
就導入至單塊陰離子交換體a之陰離子交換基(陰離子交換基)而言,可列舉選自三甲基銨基、三乙基銨基、三丁基銨基、二甲基羥基乙基銨基、二甲基羥基丙基銨基、甲基二羥基乙基銨基等四級銨基、或第三鋶基、鏻基等中之一種以上。
導入至單塊陰離子交換體a之陰離子交換基,不僅是多孔質體的表面,且連多孔質體之骨架內部亦均勻地分布。
單塊陰離子交換體a於水濕潤狀態下具有每單位體積之0.2~1.0mg當量/mL(水濕潤狀態)之陰離子交換容量。單塊陰離子交換體a係於三維上為連續之空孔之連續性、均勻性高,故基質或溶劑係均勻地擴散。因此,反應進行快。藉由陰離子交換容量為上述範圍,則除去性能高且壽命長。
<單塊a及單塊陰離子交換體a之製造方法> 單塊a係藉由進行下述步驟而獲得: I步驟,藉由將不含離子交換基之油溶性單體、界面活性劑及水之混合物攪拌來製備油中水滴型乳劑,然後使油中水滴型乳劑聚合而獲得全細孔容積超過16mL/g且為30mL/g以下之連續大孔結構之單塊狀之有機多孔質中間體(單塊中間體a)、 II步驟,製備由:芳香族乙烯基單體、一分子中至少具有2個以上之乙烯基之全油溶性單體中為0.3~5莫耳%之交聯劑、會溶解芳香族乙烯基單體、交聯劑但不會溶解芳香族乙烯基單體聚合所生成之聚合物的有機溶劑、及聚合起始劑;構成之混合物、 III步驟,將II步驟所獲得之混合物於靜置下,且有I步驟所獲得之單塊中間體a之存在下進行聚合,獲得為共連續結構體之有機多孔質體的單塊a。
上述單塊a之製造方法中,獲得單塊中間體a之I步驟,依循日本特開2002-306976號公報記載之方法進行即可。
亦即,單塊a之製造方法之I步驟中,就不含有離子交換基之油溶性單體而言,可舉例如不含有羧酸基、磺酸基、三級胺基、四級銨基等離子交換基,對於水之溶解性低而為親油性的單體。作為此等單體之具體例,可列舉苯乙烯、α-甲基苯乙烯、乙烯基甲苯、乙烯基芐基氯、乙烯基聯苯、乙烯基萘等芳香族乙烯基單體;乙烯、丙烯、1-丁烯、異丁烯等α-烯烴;丁二烯、異戊二烯、氯戊二烯等二烯系單體;氯乙烯、溴乙烯、二氯亞乙烯、四氟乙烯等鹵化烯烴;丙烯腈、甲基丙烯腈等腈系單體;乙酸乙烯酯、丙酸乙烯酯等乙烯酯;丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸2-乙基己酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丙酯、甲基丙烯酸丁酯、甲基丙烯酸2-乙基己酯、甲基丙烯酸環己酯、甲基丙烯酸芐酯、甲基丙烯酸環氧丙酯等(甲基)丙烯酸系單體。此等單體中,合適者係芳香族乙烯基單體,可舉例如苯乙烯、α-甲基苯乙烯、乙烯基甲苯、乙烯基芐基氯、二乙烯基苯等。此等單體可使用單獨一種或組合二種以上使用。惟,至少選擇二乙烯基苯、乙二醇二甲基丙烯酸酯等交聯性單體作為油溶性單體之一成分,並設其含量於全油溶性單體中成為0.3~5莫耳%、宜為0.3~3莫耳%的話,則對於共連續結構之形成有利故較為理想。
關於單塊a之製造方法中於I步驟使用之界面活性劑,只要是將不含有陰離子交換基之油溶性單體與水混合時,可形成油中水滴型(W/O)乳劑者便沒有特別之限制,可使用山梨糖醇單油酸酯、山梨糖醇單月桂酸酯、山梨糖醇單棕櫚酸酯、山梨糖醇單硬脂酸酯、山梨糖醇三油酸酯、聚氧伸乙基壬基苯基醚、聚氧伸乙基硬脂基醚、聚氧伸乙基山梨糖醇單油酸酯等非離子界面活性劑;油酸鉀、十二烷基苯磺酸鈉、磺基琥珀酸二辛基鈉等陰離子界面活性劑;二硬脂基二甲基氯化銨等陽離子界面活性劑;月桂基二甲基甜菜鹼等兩性界面活性劑。此等界面活性劑可使用單獨一種或組合二種以上使用。此外,油中水滴型乳劑係指油相成為連續相,於其中有水滴分散之乳劑。就上述界面活性劑之添加量而言,取決於油溶性單體之種類及目的之乳劑粒子(大孔)之大小而會變動,故不能一概而論,可在相對於油溶性單體與界面活性劑之合計量為約2~70%之範圍內選擇。
此外,關於單塊a之製造方法中之I步驟,在形成油中水滴型乳劑時,因應需求亦可使用聚合起始劑。聚合起始劑可適當地使用藉由熱或光照射而會產生自由基之化合物。聚合起始劑可為水溶性亦可為油溶性,可舉例如2,2’-偶氮雙(異丁腈)、2,2’-偶氮雙(2,4-二甲基戊腈)、2,2’-偶氮雙(2-甲基異丁腈)、2,2’-偶氮雙(4-甲氧基-2,4-二甲基戊腈)、2,2’-偶氮雙異丁酸二甲酯、4,4’-偶氮雙(4-氰基戊酸)、1,1’-偶氮雙(環己烷-1-甲腈)、過氧化苯甲醯、過氧化月桂醯、過硫酸鉀、過硫酸銨、硫蘭(tetramethylthiuram disulfide)、過氧化氫-氯化鐵(II)、過硫酸鈉-酸式亞硫酸鈉等。
關於單塊a之製造方法之I步驟中,作為將不含有離子交換基之油溶性單體、界面活性劑、水及聚合起始劑混合,使其形成油中水滴型乳劑時的混合方法係沒有特別之限制,可使用將各成分一起一次進行混合之方法、將油溶性單體、界面活性劑及油溶性聚合起始劑之油溶性成分、與水或水溶性聚合起始劑之水溶性成分各別地均勻溶解後,將各別之成分混合的方法等。關於用以形成乳劑之混合裝置亦沒有特別之限制,可使用通常之混合器或均質機、高壓均質機等,選擇就獲得目的之乳劑粒徑而言為適當的裝置即可。此外,針對混合條件亦沒有特別之限制,能任意地設定為可獲得目的之乳劑粒徑的攪拌轉速、攪拌時間。
關於單塊a之製造方法之於I步驟獲得的單塊中間體a,為具有交聯結構之有機聚合物材料,適宜為芳香族乙烯基聚合物。該聚合物材料之交聯密度係沒有特別之限定,相對於構成聚合物材料之全部構成單元,含有0.1~5莫耳%、宜為0.3~3莫耳%之交聯結構單元較為理想。若交聯結構單元未達0.3莫耳%,則機械強度不足故較不理想。另一方面,若交聯結構單元超過5莫耳%,則獲得之單塊的結構容易偏離共連續結構故較不理想。尤其,在全細孔容積為16~20ml/g之情況,為了使其形成共連續結構,交聯結構單元宜為未達3莫耳%。
關於單塊a之製造方法之I步驟中,單塊中間體a之聚合物材料之種類係沒有特別之限制,各種有機聚合物可舉例如聚苯乙烯、聚(α-甲基苯乙烯)、聚乙烯基甲苯、聚乙烯基芐基氯、聚乙烯基聯苯、聚乙烯基萘等芳香族乙烯基聚合物;聚乙烯、聚丙烯等聚烯烴;聚氯乙烯、聚四氟乙烯等聚(鹵化聚烯烴);聚丙烯腈等腈系聚合物;聚甲基丙烯酸甲酯、聚甲基丙烯酸環氧丙酯、聚丙烯酸乙酯等(甲基)丙烯酸系聚合物等交聯聚合物。 上述有機聚合物可為使一種之乙烯基單體與交聯劑共聚合而獲得之聚合物,亦可為使多種之乙烯基單體與交聯劑聚合而獲得之聚合物,此外,亦可為二種以上之聚合物經摻混而得者。此等有機聚合物材料之中,考慮形成連續大孔結構之容易性、導入陰離子交換基之容易性與機械強度之高程度、及對於酸或鹼之安定性的高程度,宜為芳香族乙烯基聚合物之交聯聚合物,尤其可列舉苯乙烯-二乙烯基苯共聚物、乙烯基芐基氯-二乙烯基苯共聚物作為理想的材料。
單塊a之製造方法中I步驟所獲得之單塊中間體a之於乾燥狀態之每單位重量的全細孔容積,係超過16mL/g且30mL/g以下,適宜為超過16mL/g且25mL/g以下。亦即,該單塊中間體a基本上為連續大孔結構,但大孔與大孔重疊之部分即開口(中孔)係特別大,故構成單塊結構之骨架具有從二維之壁面儘可能接近一維之棒狀骨架之結構。圖3中展示單塊中間體a之形態例之SEM圖像,係具有接近於棒狀之骨架。若使其共存於聚合系,則形成將單塊中間體a之結構作為模板之共連續結構的多孔質體。若全細孔容積過小,則使乙烯基單體聚合後獲得之單塊之結構會從共連續結構變化為連續大孔結構故較不理想,另一方面,若全細孔容積過大,則使乙烯基單體聚合後獲得之單塊之機械強度降低、或在導入陰離子交換基時,每單位體積之陰離子交換容量降低故較不理想。要使單塊中間體a之全細孔容積成為上述範圍,使單體與水之比成為約1:20~1:40即可。
此外,單塊a之製造方法之I步驟所獲得之單塊中間體a中,大孔與大孔之重疊部分即開口(中孔)的平均直徑於乾燥狀態為5~100μm。若開口之平均直徑於乾燥狀態未達5μm,則使乙烯基單體聚合後獲得之單塊之開口徑變小,流體透過時之壓力損失變大故較不理想。另一方面,若超過100μm,則使乙烯基單體聚合後獲得之單塊之開口徑變得過大,被處理液與單塊陰離子交換體之接觸變得不充分,其結果,除去性能會降低故較不理想。單塊中間體a適宜為大孔之尺寸、開口徑齊一的均勻結構,但不限定為該結構,亦可為均勻結構中,點綴著比均勻之大孔的尺寸更大的不均勻的大孔者。
關於單塊a之製造方法之II步驟係製備如下述之混合物的步驟,該混合物係由芳香族乙烯基單體、一分子中至少具有2個以上之乙烯基之全油溶性單體中為0.3~5莫耳%之交聯劑、會溶解芳香族乙烯基單體、交聯劑但不會溶解芳香族乙烯基單體聚合而生成之聚合物的有機溶劑及聚合起始劑構成。 此外,I步驟與II步驟沒有順序,可在I步驟後進行II步驟,亦可在II步驟後進行I步驟。
就單塊a之製造方法之於II步驟中使用之芳香族乙烯基單體而言,只要是分子中含有可聚合之乙烯基且為對於有機溶劑之溶解性高的親油性的芳香族乙烯基單體,便沒有特別之限制,宜選擇會生成與共存於上述聚合系之單塊中間體a同種類或類似之聚合物材料的乙烯基單體。就此等乙烯基單體之具體例而言,可列舉苯乙烯、α-甲基苯乙烯、乙烯基甲苯、乙烯基芐基氯、乙烯基聯苯、乙烯基萘等。此等單體,可使用單獨一種或組合二種以上使用。適宜使用之芳香族乙烯基單體係苯乙烯、乙烯基芐基氯等。
單塊a之製造方法之II步驟中使用之芳香族乙烯基單體之添加量,相對於聚合時共存之單塊中間體a,就重量計為5~50倍,宜為5~40倍。若芳香族乙烯基單體添加量相對於單塊中間體a未達5倍,則無法成為粗胖的棒狀骨架,此外,在導入陰離子交換基之情況,導入陰離子交換基後之每單位體積之陰離子交換容量變小故較不理想。另一方面,若芳香族乙烯基單體添加量超過50倍,則連續空孔之徑變小,通液時之壓力損失變大故較不理想。
單塊a之製造方法之II步驟使用之交聯劑,適宜使用分子中含有至少2個可聚合之乙烯基且對於有機溶劑之溶解性高者。就交聯劑之具體例而言,可列舉二乙烯基苯、二乙烯基萘、二乙烯基聯苯、乙二醇二甲基丙烯酸酯、三羥甲基丙烷三丙烯酸酯、丁二醇二丙烯酸酯等。此等交聯劑可使用單獨一種或組合二種以上使用。理想之交聯劑,考慮機械強度之高程度與對於水解之安定性,為二乙烯基苯、二乙烯基萘、二乙烯基聯苯等芳香族聚乙烯基化合物。交聯劑使用量,相對於乙烯基單體與交聯劑之合計量(全油溶性單體),為0.3~5莫耳%,尤其為0.3~3莫耳%。若交聯劑使用量未達0.3莫耳%,則單塊之機械強度不足故較不理想,另一方面,若過多,則在導入陰離子交換基之情況,有時有陰離子交換基難以定量地導入之情況故較不理想。此外,上述交聯劑使用量,以與乙烯基單體/交聯劑聚合時共存之單塊中間體a之交聯密度幾乎相等之方式來使用較為理想。兩者之使用量若差距太大,生成之單塊中會產生交聯密度分布之偏差,此外,在導入陰離子交換基之情況,導入陰離子交換基之反應時變得容易產生裂痕。
單塊a之製造方法之II步驟中使用之有機溶劑,係會溶解芳香族乙烯基單體、交聯劑但不會溶解芳香族乙烯基單體聚合而生成之聚合物的有機溶劑,換句話說,對於芳香族乙烯基單體聚合所生成之聚合物為不良溶劑。有機溶劑取決於芳香族乙烯基單體之種類而大不相同,故不易列舉一般之具體例,例如,在芳香族乙烯基單體為苯乙烯之情況,作為有機溶劑可列舉甲醇、乙醇、丙醇、丁醇、己醇、環己醇、辛醇、2-乙基己醇、癸醇、十二醇、丙二醇、四亞甲基二醇等醇類;二乙基醚、丁基賽珞蘇、聚乙二醇、聚丙二醇、聚四亞甲基二醇等鏈狀(聚)醚類;己烷、庚烷、辛烷、異辛烷、癸烷、十二烷等鏈狀飽和烴類;乙酸乙酯、乙酸異丙酯、乙酸賽珞蘇、丙酸乙酯等酯類。此外,即使為如二㗁烷、THF、甲苯般之聚苯乙烯之良溶劑,在與上述不良溶劑共同使用且其使用量少的情況下,亦可作為有機溶劑來使用。此等有機溶劑之使用量,宜以上述芳香族乙烯基單體之濃度成為30~80重量%之方式來使用。若有機溶劑使用量落在上述範圍外而芳香族乙烯基單體濃度未達30重量%,則聚合速度下降、或聚合後之單塊結構落於單塊a之範圍外,故較不理想。另一方面,若芳香族乙烯基單體濃度超過80重量%,則有聚合會失控之虞而較不理想。
單塊a之製造方法之II步驟中使用之聚合起始劑,可適宜使用藉由熱或光照射會產生自由基之化合物。聚合起始劑宜為油溶性。作為聚合起始劑之具體例,可列舉2,2’-偶氮雙(異丁腈)、2,2’-偶氮雙(2,4-二甲基戊腈)、2,2’-偶氮雙(2-甲基丁腈)、2,2’-偶氮雙(4-甲氧基-2,4-二甲基戊腈)、2,2’-偶氮雙異丁酸二甲酯、4,4’-偶氮雙(4-氰基戊酸)、1,1’-偶氮雙(環己烷-1-甲腈)、過氧化苯甲醯、過氧化月桂醯、過硫酸鉀、過硫酸銨、硫蘭等。聚合起始劑之使用量係取決於單體之種類、聚合溫度等會有大的變動,相對於乙烯基單體與交聯劑之合計量,可在約0.01~5%之範圍使用。
單塊a之製造方法的III步驟,係將II步驟獲得之混合物於靜置下、且於該I步驟獲得之單塊中間體a之存在下進行聚合,使該單塊中間體a之連續大孔結構變化為共連續結構,獲得為共連續結構單塊的單塊a的步驟。III步驟中使用之單塊中間體a,在創建具有本發明之結構之單塊方面發揮極為重要的作用。如日本特表平7-501140號等中所揭示,若在不存在單塊中間體a下將乙烯基單體與交聯劑於特定之有機溶劑中靜置聚合,則會獲得粒子凝聚型之單塊狀有機多孔質體。相對於此,若如單塊a般之於上述聚合系存在特定之連續大孔結構之單塊中間體a,則聚合後之單塊之結構會劇烈地變化,粒子凝聚消失,可獲得具有上述之共連續結構之單塊a。其理由之詳情雖尚未明瞭,據認為在不存在單塊中間體a之情況,由聚合產生之交聯聚合體會析出、沉澱為粒子狀從而形成粒子凝聚結構,反觀若聚合系中存在全細孔容積大之多孔質體(中間體),則乙烯基單體及交聯劑會從液相吸附或分配至多孔質體之骨架部,於多孔質體中進行聚合,構成單塊結構之骨架從二維之壁面變化為一維之棒狀骨架而形成具有共連續結構之單塊a。
在單塊a之製造方法中,反應容器之內容積只要是使單塊中間體a存在於反應容器中之大小者便沒有特別之限制,在反應容器內放置單塊中間體a時於俯視觀察單塊之周圍係具有間隙者、反應容器內無間隙地裝填單塊中間體a中之任一者皆可。其中,聚合後之堅實的單塊不受到來自容器內壁的擠壓而無間縫地進入反應容器內者,單塊不會產生應變,不會浪費反應原料等而較有效率。此外,即使在反應容器之內容積大而聚合後之單塊的周圍存在有間隙的情況,因為乙烯基單體、交聯劑係吸附、分配於單塊中間體a,故在反應容器內之間隙部分不會產生粒子凝聚結構物。
在單塊a之製造方法之III步驟中,單塊中間體a係以含浸於混合物(溶液)之狀態下放置於反應容器中。II步驟中獲得之混合物與單塊中間體a之摻合比,如前述,適宜以相對於單塊中間體a,乙烯基單體之添加量以重量計成為3~50倍之方式來摻合,宜為成為4~40倍。藉此,可獲得具有適當之開口徑,且具有粗胖骨架的單塊a。反應容器中,混合物中之乙烯基單體與交聯劑係吸附、分配於靜置的單塊中間體的骨架,在單塊中間體a之骨架內進行聚合。
在單塊a之製造方法之III步驟中,單塊中間體a係以含浸於混合物(溶液)之狀態置於反應容器中。II步驟獲得之混合物與單塊中間體a的摻合比,如上述,適宜以相對於單塊中間體a,芳香族乙烯基單體之添加量按重量計成為5~50倍之方式來摻合,宜為5~40倍。藉此,可獲得適當尺寸之空孔於三維上連續,且粗胖骨架於3維上連續之共連續結構的單塊a。反應容器中,混合物中之芳香族乙烯基單體及交聯劑係吸附、分配於靜置之單塊中間體a的骨架,於單塊中間體a之骨架內進行聚合。
單塊a之製造方法之III步驟的聚合條件,取決於單體之種類、起始劑之種類來選擇各種的條件。例如,作為起始劑使用2,2’-偶氮雙(異丁腈)、2,2’-偶氮雙(2,4-二甲基戊腈)、過氧化苯甲醯、過氧化月桂醯、過硫酸鉀等時,在不活潑的環境下之密封容器內,以30~100℃使其加熱聚合1~48小時即可。藉由加熱聚合,經吸附、分配於單塊中間體a之骨架的乙烯基單體及交聯劑在骨架內進行聚合,使骨架變得粗胖。聚合結束後,取出內容物,為了除去未反應乙烯基單體及有機溶劑的目的,以丙酮等溶劑進行萃取而獲得單塊a。
單塊陰離子交換體a可藉由對於III步驟獲得之單塊a實施導入陰離子交換基之IV步驟來獲得。 就將陰離子交換基導入至上述單塊a的方法而言,係沒有特別之限制,可使用高分子反應或接枝聚合等公知的方法。 例如,作為導入四級銨基之方法,可列舉:單塊為苯乙烯-二乙烯基苯共聚物等的話,藉由氯甲基甲基醚等導入氯甲基後,使其與三級胺反應之方法;藉由氯甲基苯乙烯與二乙烯基苯之共聚來製造單塊,使其與三級胺反應之方法;對於單塊,將自由基起始基、鏈轉移基均勻地導入骨架表面及骨架內部,將N,N,N-三甲基銨乙基丙烯酸酯或N,N,N-三甲基銨丙基丙烯酸醯胺進行接枝聚合的方法;同樣地將甲基丙烯酸環氧丙酯進行接枝聚合後,藉由官能基轉換來導入四級銨基的方法等。 此等方法中,就導入四級銨基之方法而言,對於苯乙烯-二乙烯基苯共聚物藉由氯甲基甲基醚等導入氯甲基後使其與三級胺反應之方法、或藉由氯甲基苯乙烯與二乙烯基苯之共聚來製造單塊並使其與三級胺反應之方法,就可均勻且定量地導入離子交換基的觀點較為理想。此外,作為導入之離子交換基,可列舉三甲基銨基、三乙基銨基、三丁基銨基、二甲基羥基乙基銨基、二甲基羥基丙基銨基、甲基二羥基乙基銨基等四級銨基、或第三鋶基、鏻基等。
單塊a及單塊陰離子交換體a儘管於3維上為連續之空孔的尺寸特別大,因為具有粗胖的骨架而機械強度高。此外,單塊陰離子交換體a因骨架粗胖,故能使於水濕潤狀態之每單位體積之陽離子交換容量大,進一步地被處理液能以低壓、大流量來長時間地進行通液。
<陰離子交換樹脂(陰離子交換樹脂)> 本發明中,陰離子交換體為陰離子交換樹脂(陰離子交換樹脂)之情況,作為陰離子交換樹脂,係沒有特別之限制,宜為將有機高分子作為母體之有機高分子系者,就成為母體之有機高分子而言,可列舉苯乙烯系樹脂或丙烯酸系樹脂。
本說明書中,苯乙烯系樹脂係指將苯乙烯或苯乙烯衍生物予以均聚或共聚成之含有來自苯乙烯或苯乙烯衍生物之構成單元為50質量%以上的樹脂。
就上述苯乙烯衍生物而言,可列舉α-甲基苯乙烯、乙烯基甲苯、氯苯乙烯、乙基苯乙烯、異丙基苯乙烯、二甲基苯乙烯、溴苯乙烯等。
就苯乙烯系樹脂而言,只要是將苯乙烯或苯乙烯衍生物之均聚物或共聚物作為主成分者即可,亦可為與其他可共聚之乙烯基單體的共聚物,就如此之乙烯基單體而言,可舉例如選自鄰二乙烯基苯、間二乙烯基苯、對二乙烯基苯等二乙烯基苯、乙二醇二(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯等伸烷基二醇二(甲基)丙烯酸酯等多官能性單體、或(甲基)丙烯腈、(甲基)丙烯酸甲酯等中之一種以上。
就上述可共聚之其他乙烯基單體而言,更宜為乙二醇二(甲基)丙烯酸酯、伸乙基共聚數為4~16之聚乙二醇二(甲基)丙烯酸酯、二乙烯基苯,進一步宜為二乙烯基苯、乙二醇二(甲基)丙烯酸酯,更進一步宜為二乙烯基苯。
本說明書中,丙烯酸系樹脂係指將選自丙烯酸、甲基丙烯酸、丙烯酸酯及甲基丙烯酸酯中之一種以上進行均聚或共聚而得之含有選自來自丙烯酸之構成單元、來自甲基丙烯酸之構成單元、來自丙烯酸酯之構成單元及來自甲基丙烯酸酯之構成單元中之構成單元為50質量%以上的樹脂。
作為上述丙烯酸系樹脂,更具體而言,可列舉選自丙烯酸之均聚物、甲基丙烯酸之均聚物、丙烯酸酯之均聚物、甲基丙烯酸酯之均聚物、丙烯酸與其他單體(例如丙烯酸酯、甲基丙烯酸、甲基丙烯酸酯、α-烯烴(例如乙烯、二乙烯基苯等)等)的共聚物、甲基丙烯酸與其他單體(例如丙烯酸、丙烯酸酯、甲基丙烯酸酯、α-烯烴(例如乙烯、二乙烯基苯等)等)的共聚物、丙烯酸酯與其他單體(例如丙烯酸、甲基丙烯酸、甲基丙烯酸酯、α-烯烴(例如乙烯、二乙烯基苯等)等)的共聚物、甲基丙烯酸酯與其他單體(例如丙烯酸、丙烯酸酯、甲基丙烯酸、α-烯烴(例如乙烯、二乙烯基苯等)等)的共聚物中之一種以上,此等之中,宜為甲基丙烯酸二乙烯基苯共聚物或丙烯酸二乙烯基苯共聚物。
作為丙烯酸酯,宜為丙烯酸烷基酯,更宜為丙烯酸之直鏈烷基酯或分支鏈烷基酯,進一步宜為丙烯酸之直鏈烷基酯。 作為丙烯酸酯,更宜為烷基酯之部位所含之烷基之碳數為1~4之丙烯酸烷基酯,進一步宜為丙烯酸甲酯、丙烯酸乙酯,尤其宜為丙烯酸甲酯。
作為甲基丙烯酸酯,宜為甲基丙烯酸烷基酯,更宜為甲基丙烯酸之直鏈烷基酯或分支鏈烷基酯,進一步宜為甲基丙烯酸之直鏈烷基酯。 作為甲基丙烯酸酯,更宜為烷基酯之部位含有之烷基之碳數為1~4之甲基丙烯酸烷基酯,進一步宜為甲基丙烯酸甲酯、甲基丙烯酸乙酯,尤其宜為甲基丙烯酸甲酯。
就上述陰離子交換樹脂而言,可列舉具有四級銨基作為陰離子交換基之強鹼性者、具有胺基作為陰離子交換基之弱鹼性者。 本發明之離子交換樹脂之前處理裝置中,就容納於離子交換樹脂容器中之通液非水溶劑之離子交換樹脂而言,宜為弱鹼性離子交換樹脂。
就構成弱鹼性離子交換樹脂之弱鹼性之離子交換基而言,宜為一級~三級之胺基。
如此之陰離子交換樹脂可為市售品,可舉例如選自三菱化學(股)公司製DIAION WA30、奧璐佳瑙(股)公司製ORLITEDS-6等中之一種以上。
上述陰離子交換樹脂可為具有凝膠型結構者,可為具有大網格(macroreticular)型(MR型)結構者,亦可為具有大孔(macroporous)型(MP型)結構者,亦可為具有多孔(porous)型結構者。
上述陰離子交換樹脂之大小係沒有特別之限制,其調和平均徑宜為300~1000μm,更宜為400~800μm,進一步宜為500~700μm。
此外,就上述陰離子交換樹脂而言,其濕潤狀態之總離子交換容量宜為0.1~3.0(eq/L-R),更宜為0.5~2.5(eq/L-R),進一步宜為1.0~2.0(eq/L-R)。
本發明中,陰離子交換體之容納形態只要是可與後述之四級銨氫氧化物之水溶液接觸的形態,便沒有特別之限制。 例如,陰離子交換體之容納形態亦可為經以能通液四級銨氫氧化物之水溶液的方式填充之管柱或槽等的形態。 上述管柱或槽亦可具備用以通液四級銨氫氧化物之水溶液的泵。
<陰離子交換體之離子形變更態樣> 本發明中,使上述陰離子交換體與四級銨氫氧化物之水溶液接觸。 本發明中,作為使陰離子交換體與四級銨氫氧化物之水溶液接觸的態樣,可列舉以下之態樣(a)~態樣(c)。 (態樣(a)) 使陰離子交換體接觸四級銨氫氧化物之水溶液,變更陰離子交換體之離子形的態樣。 (態樣(b)) 將陰離子交換體與無機酸接觸,然後以水清洗後使其與四級銨氫氧化物之水溶液接觸,變更陰離子交換體之離子形的態樣。 (態樣(c)) 將陰離子交換體與無機酸接觸,然後以水清洗後,更與鹽酸接觸,然後以水清洗後,使其與上述四級銨氫氧化物之水溶液接觸的態樣。 藉由上述態樣(a)~態樣(c)之任一態樣,可有效地將陰離子交換體之離子形變更為OH形。 本發明中,宜藉由態樣(b)或態樣(c)變更陰離子交換體之離子形,更宜藉由態樣(c)變更陰離子交換體之離子形。 以下說明,若無特別指明,係記載態樣(a)~態樣(c)中之共通事項。
如上述態樣(a)~態樣(c)例示,本發明中,使陰離子交換體與四級銨氫氧化物之水溶液接觸。 <四級銨氫氧化物> 就四級銨氫氧化物而言,宜為選自下述通式(I)表示之化合物中之一種以上。 [化2]
Figure 02_image004
(式中,R1 ~R4 係各別亦可具有羥基之碳數1~4之烴基,彼此可相同亦可不相同。)
作為R1 ~R4 ,在氫原子以外,還可列舉亦可具有羥基之直鏈狀或分支鏈狀之烴基,可舉例如甲基、乙基、正丙基、異丙基、丁基。 R1 ~R4 係彼此可相同亦可不相同。
作為下述通式(I)表示之化合物,具體而言,可列舉選自三甲基羥基銨、四甲基氫氧化銨(TMAH)、三甲基羥基乙基氫氧化銨(膽鹼)、甲基三羥基乙基氫氧化銨、二甲基二羥基乙基氫氧化銨、四乙基氫氧化銨、三甲基乙基氫氧化銨、四丁基羥基銨(TBAH)等中之一種以上。
本發明中,四級銨氫氧化物之水溶液中之四級銨氫氧化物之濃度宜為0.1~2.0N,更宜為0.5~2.0N,進一步宜為0.5~1.0N。 此外,本發明中,上述四級銨氫氧化物之水溶液中之金屬雜質之濃度宜為1000ng/L以下,更宜為100ng/L以下。 此外,本說明書中之金屬雜質之濃度係指使用感應耦合電漿質量分析法(ICP-MS、Agilent Technologies, Ltd.製Agilent7500cs)所測定之值。
本發明中,四級銨氫氧化物之水溶液通液於陰離子交換體之通液速度(液空間速度)只要是可將構成陰離子交換體之陰離子交換基的相對離子變更為OH形的速度,便沒有特別之限制。
本發明中,對於上述陰離子交換體,將四級銨氫氧化物之水溶液以液空間速度SV(流量/陰離子交換體體積比)成為20000h-1 以下之方式進行通液較為理想,更宜為10~4000h-1 ,進一步宜為300~1000h-1
本發明中,對於上述陰離子交換體之四級銨氫氧化物之水溶液之通液量,按體積基準計,宜為5~100倍量,更宜為10~100倍量,進一步宜為15~75倍量。
本發明中,對於容納於容器內之陰離子交換體,以四級銨氫氧化物之水溶液成為向上流動或向下流動之方式來進行通液使兩者接觸較為理想,更宜為對於容納於容器內之陰離子交換體,以四級銨氫氧化物之水溶液成為向上流動之方式來進行通液使兩者接觸較為理想。
可舉例如,如圖4所示,進行如下述處理的通液處理:將儲存於槽4之四級銨氫氧化物之水溶液S,使用泵P從容納了上述陰離子交換體之容器3之底部朝頂部之方向以向上流動來通液後,將流出之排出液W儲存於儲存槽5內。
藉由對於容納於容器3內之陰離子交換體,將四級銨氫氧化物之水溶液以向上流動來進行通液,即使在容納於容器3內之陰離子交換體中混入氣泡等的情況,在四級銨氫氧化物之水溶液於陰離子交換體內朝上流通之時,能邊將陰離子交換體中之氣泡脫泡邊進行流通將其除去。 因此,即使在於陰離子交換體中有混入氣泡等之情況,仍能在適當地維持四級銨氫氧化物之水溶液與陰離子交換體之接觸性的狀態下,將陰離子交換體之離子形以高比率簡便且短時間地變更為OH形。
本發明中,如上述態樣(b)及態樣(c)所例示,在使陰離子交換體與四級銨氫氧化物之水溶液接觸之前,宜使其與無機酸接觸。 作為無機酸,可列舉選自硝酸、鹽酸、硫酸等中之一種以上,宜為選自硝酸及鹽酸中之一種以上,更宜為硝酸。
本發明中,無機酸之濃度宜為0.1~2.0N,更宜為0.5~2.0N,進一步宜為1.0~2.0N。 此外,本發明中,上述無機酸中之金屬雜質之濃度宜為100ng/L以下,更宜為10ng/L以下。
本發明中,對於上述陰離子交換體,將無機酸以液空間速度SV(流量/陰離子交換體體積比)成為20000h-1 以下之方式進行通液較為理想,更宜為10~4000h-1 ,進一步宜為300~1000h-1
本發明中,無機酸對於上述陰離子交換體之通液量,按體積基準計,宜為5~100倍量,更宜為10~100倍量,進一步宜為15~75倍量。
本發明中,對於容納於容器內之陰離子交換體,將無機酸以向上流動或向下流動之方式進行通液使兩者接觸較為理想,更宜為對於容納於容器內之陰離子交換體,將無機酸以向上流動之方式進行通液使兩者接觸。 該情況,具體而言,可列舉以與上述圖4所示之態樣同樣地將儲存於槽內之無機酸,使用泵P從容納上述陰離子交換體之容器之底部朝頂部之方向以向上流動進行通液的接觸態樣。
然後,將與上述無機酸接觸後之上述陰離子交換體以水清洗。 上述水所為之清洗處理只要能使存在於陰離子交換體中之剩餘之硝酸流出則其通液速度、通液時間係沒有特別之限制。
上述態樣(b)中,係使藉由上述方法與無機酸接觸,然後以水清洗後之陰離子交換體,與四級銨氫氧化物之水溶液接觸。 使陰離子交換體與四級銨氫氧化物之水溶液接觸之方法的詳情,係與上述內容相同。
本發明之態樣(b)中,藉由使陰離子交換體與無機酸接觸,能將構成陰離子交換體之陰離子之至少一部分置換為對應的離子形,之後,使其與四級銨氫氧化物之水溶液接觸,藉此能簡便且短時間地以高比率變更為OH形(氫氧化物離子)。 例如,本發明之態樣(b)中,藉由使陰離子交換體與硝酸或鹽酸接觸,能將構成陰離子交換體之陰離子之至少一部分置換為硝酸離子或氯化物離子,之後,使其與四級銨氫氧化物之水溶液接觸,藉此能簡便且短時間地以高比率從硝酸形(硝酸離子)或鹽酸形(氯化物離子)變更為OH形(氫氧化物離子)。
本發明中,如上述態樣(c)所例示,使陰離子交換體與無機酸接觸,然後以水清洗後,更與鹽酸接觸,然後以水清洗後,使其與上述四級銨氫氧化物之水溶液接觸較為理想。
將陰離子交換體與無機酸接觸,然後以水進行清洗之方法的詳情,係與上述內容相同。
將上述與無機酸接觸,然後以水清洗而得之陰離子交換體,更與鹽酸接觸,然後以水進行清洗。
本發明中,(與無機酸接觸、以水清洗後接觸之)上述鹽酸之濃度宜為0.1~2.0N,更宜為0.5~2.0N,進一步宜為1.0~2.0N。此外,本發明中,上述鹽酸中之金屬雜質之含量宜為100ng/L以下,更宜為10ng/L以下。
本發明中,對於上述陰離子交換體,將鹽酸以液空間速度SV(鹽酸之流量/陰離子交換體體積比)成為20000h-1 以下之方式進行通液較為理想,更宜為10~4000h-1 ,進一步宜以成為300~1000h-1 之方式進行通液。
本發明中,對於上述陰離子交換體之鹽酸之通液量,以體積基準計,宜為5~100倍量,更宜為10~100倍量,進一步宜為15~75倍量。
本發明中,對於容納於容器內之陰離子交換體,將鹽酸以向上流動或向下流動之方式進行通液來使兩者接觸較為理想,更宜為對於容納於容器內之陰離子交換體,將鹽酸以向上流動之方式進行通液來使兩者接觸。 該情況,具體而言,可列舉與上述圖4所示之態樣同樣地,將儲存於槽內之鹽酸,使用泵P從容納上述陰離子交換體之容器之底部朝頂部之方向以向上流動之方式進行通液的接觸態樣。
然後,將與上述鹽酸接觸後之上述陰離子交換體以水清洗。上述水所為之清洗處理,只要能使存在於陰離子交換體中之剩餘的鹽酸流出即可,其通液速度、通液時間沒有特別之限制。
上述態樣(c)中,將藉由上述方法與無機酸接觸,然後以水清洗後,更與鹽酸接觸,然後以水清洗後而得之陰離子交換體,與四級銨氫氧化物之水溶液接觸。 使陰離子交換體與四級銨氫氧化物之水溶液接觸之方法的詳情,係與上述內容相同。
本發明之態樣(c)中,藉由將陰離子交換體以無機酸初步清洗後,使其與鹽酸接觸,以減少陰離子交換體之金屬含量,能將構成陰離子交換體之至少一部份的陰離子置換為氯化物離子,之後使其與四級銨氫氧化物之水溶液接觸,藉此能簡便且短時間地以高比率從鹽酸形(氯化物離子)變更為OH形(氫氧化物離子)。
本發明之陰離子交換體之離子形變更方法,為了變更超純水之精製或藥液之精製中使用之陰離子交換體的離子形、或為了變更超純水中或藥液中之陰離子性雜質之分析中使用之陰離子交換體的離子形,宜為使上述陰離子交換體與四級銨氫氧化物之水溶液接觸。
在實施本發明之陰離子交換體之離子形變更方法以變更藥液之精製中使用之陰離子交換體之離子形的情況,就上述藥液而言,沒有特別之限制,可列舉選自過氧化氫、鹽酸、氫氟酸、磷酸、乙酸、氫氧化四甲基銨、氟化銨、丙酮、2-丁酮、乙酸正丁酯、乙醇、甲醇、2-丙醇、甲苯、二甲苯、乙酸丙二醇甲基醚、N-甲基-2-吡咯啶酮、乳酸乙酯、酚化合物、二甲基亞碸、四氫呋喃、γ-丁基內酯、聚乙二醇一甲基醚(PGMEA)等中之一種以上。
在實施本發明之陰離子交換體之離子形變更方法以變更藥液中之陰離子性雜質之分析中使用之陰離子交換體之離子形的情況,就上述藥液而言,沒有特別之限制,可舉例如選自氫氧化四甲基銨、氟化銨、丙酮、2-丁酮、乙酸正丁酯、乙醇、甲醇、2-丙醇、甲苯、二甲苯、乙酸丙二醇甲基醚、N-甲基-2-吡咯啶酮、乳酸乙酯、酚化合物、二甲基亞碸、四氫呋喃、γ-丁基內酯、聚乙二醇一甲基醚(PGMEA)等中之一種以上。
在實施本發明之陰離子交換體之離子形變更方法以變更超純水之精製中使用之陰離子交換體之離子形的情況,就陰離子交換體而言,可為用以精製各種製造步驟中使用之超純水而組裝於同製造步驟中者,亦可為用以將經使用後之超純水回收並精製而使用者。
在實施本發明之陰離子交換體之離子形變更方法以變更藥液之精製中使用之陰離子交換體之離子形的情況,就陰離子交換體而言,可為用以精製藥液而組裝於藥液之製造步驟中者,亦可為將經製造後之藥液另外進行精製所使用者。
然後,針對藉由本發明而再生之陰離子交換體之使用態樣進行說明。 圖5(a)中展示,在各種製造流程中,組裝於有被供給超純水之任意使用點的下游側,含有陰離子交換體之容器A及含有陽離子交換體之容器C以能通水之狀態連接的精製裝置U。在圖5(a)所示之形態中,從容器A之一側之端部流入超純水,流通容器A及容器C內後,從容器C之另一側之端部流出。 藉由將以本發明而再生之陰離子交換體裝入上述容器A中,即使假設在再生時於陰離子交換體中有金屬成分殘留,該金屬成分流出之情況下,亦能以配置於陰離子交換體之下游側的陽離子交換體輕易地除去。 另一方面,圖5(b)係展示,在各種製造流程中,組裝於被供給超純水之任意之使用點的下游側,含有陽離子交換體之容器C及陰離子交換體之容器A以能通水之狀態連接之精製裝置U。在圖5(b)所示之形態中,從容器C之一側之端部流入超純水,流通容器C及容器A內後,從容器A之另一側之端部流出。 以本發明所再生之陰離子交換體,因為高程度地減低了再生時殘留的金屬成分,故即使在將含有以本發明所再生而得之陰離子交換體的容器A配置於含有陽離子交換體之容器C的下游側的情況,仍能高程度地抑制各種金屬從陰離子交換體流出。此外,即使假設從容器C中之陽離子交換體有帶負電之微粒等雜質流出的情況,亦能藉由配置於下游側之容器A中之陰離子交換體輕易地除去。
根據本發明,可提供在抑制各種金屬之殘留的狀態下,將陰離子交換體之離子形簡便且短時間地以高比率變更為OH形之方法。
然後,針對本發明之陰離子交換體之製造方法進行說明。 本發明之陰離子交換體之製造方法,其特徵在於,為了變更陰離子交換體之離子形,使上述陰離子交換體與四級銨氫氧化物之水溶液接觸。
本發明之陰離子交換體之製造方法中,成為製造對象之陰離子交換體或離子形之變更方法的詳情,係如同本發明之陰離子交換體之離子形變更方法之說明中所述。
就本發明之陰離子交換體之製造方法而言,為了變更超純水之精製或藥液之精製中使用之陰離子交換體之離子形、或者為了變更超純水中或藥液中之陰離子性雜質之分析中使用之陰離子交換體之離子形,可列舉使上述陰離子交換體與四級銨氫氧化物之水溶液接觸,而在抑制各種金屬之殘留的狀態下,變更陰離子交換體之離子形的態樣。
更具體而言,作為本發明之陰離子交換體之製造方法,可列舉在超純水之精製或藥液之精製中使用之陰離子交換體的製造時、亦即超純水中或藥液中之陰離子性雜質之除去中使用之陰離子交換體之製備時或再生時,為了變更其離子形而使用本發明之陰離子交換體之離子形變更方法的態樣。
此外,作為本發明之陰離子交換體之製造方法,可列舉在超純水中或藥液中之陰離子性雜質之分析中使用之陰離子交換體的製造時,亦即超純水中或藥液中之陰離子性雜質之分析中使用之陰離子交換體之製備時或再生時,為了變更其離子形而使用本發明之陰離子交換體之離子形變更方法的態樣。
根據本發明,可提供在抑制各種金屬之殘留的狀態下,能將陰離子交換體之離子形簡便且短時間地以高比率變更為OH形的陰離子交換體的製造方法。 實施例
然後,列舉實施例來更具體地說明本發明,其係單純之例示,並沒有限制本發明。
以與日本特開平2010-234357號公報之說明書之實施例之參考例17同樣的方法,製造單塊陰離子交換體,且製造單塊陽離子交換體。 (参考例1) <單塊陰離子交換體及單塊陽離子交換體之製造> (I步驟;單塊中間體之製造) 將苯乙烯5.4g、二乙烯基苯0.17g、山梨糖醇單油酸酯(以下簡稱為SMO)1.4g及2,2’-偶氮雙(異丁腈)0.26g混合並均勻地溶解。然後,將該苯乙烯/二乙烯基苯/SMO/2,2’-偶氮雙(異丁腈)混合物添加至180g之純水中,使用為行星式攪拌裝置之真空攪拌消泡混合機(EME公司製)在5~20℃之溫度範圍內於減壓下進行攪拌,獲得油中水滴型乳劑。將該乳劑迅速地移至反應容器中,密封後於靜置下使其於60℃聚合24小時。聚合結束後,取出內容物,以甲醇萃取後,進行減壓乾燥,製造具有連續大孔結構之單塊中間體。將如此方式獲得之單塊中間體(乾燥體)之內部結構藉由SEM圖像觀察,劃分相鄰之2個大孔的壁部為極細之棒狀,但具有連續氣泡結構,藉由水銀壓入法所測定之大孔與大孔重疊部分的開口(中孔)的平均直徑為70μm,全細孔容積為21.0ml/g。
(共連續結構單塊之製造) 然後,將苯乙烯76.0g、二乙烯基苯4.0g、1-癸醇120g、2,2’-偶氮雙(2,4-二甲基戊腈)0.8g混合並均勻地溶解(II步驟)。然後,將上述單塊中間體剪切成直徑70mm、厚度約40mm之圓盤狀,取4.1g。將所取之單塊中間體加入至內徑110mm之反應容器中,浸漬於該苯乙烯/二乙烯基苯/1-癸醇/2,2’-偶氮雙 (2,4-二甲基戊腈)混合物中,於減壓室中消泡後,將反應容器密封,在靜置下於60℃聚合24小時。聚合結束後,取出厚度約60mm之單塊狀之內容物,以丙酮經索氏萃取(Soxhlet extraction)後,於85℃進行一晚的減壓乾燥(III步驟)。
將如此獲得之由苯乙烯/二乙烯基苯共聚物構成之含有3.2莫耳%之交聯成分的單塊(乾燥體)的內部結構以SEM進行觀察,結果,該單塊係骨架及空孔各別於3維上連續,且兩相相互交織的共連續結構。此外,由SEM圖像所測定之骨架之粗細度為17μm。此外,藉由水銀壓入法所測定之該單塊之於三維上連續之空洞的尺寸為41μm、全細孔容積為2.9ml/g。
(共連續結構單塊陰離子交換體之製造) 將以上述方法製得的單塊,剪切為直徑70mm、厚度約50mm之圓盤狀。對於其添加二甲氧基甲烷4700ml、四氯化錫67ml,於冰冷下滴加氯磺酸1870ml。滴加結束後,進行升溫於35℃反應5小時,導入氯甲基。反應結束後,藉由虹吸將母液抽出,以THF/水=2/1之混合溶劑清洗後,更以THF清洗。對於該氯甲基化單塊狀有機多孔質體添加THF3400ml及三甲基胺30%水溶液2000ml,於60℃反應6小時。反應結束後,將生成物以甲醇/水混合溶劑清洗,然後以純水清洗並分離,獲得具有共連續結構之單塊陰離子交換體a。
(共連續結構單塊陽離子交換體之製造) 將上述方法所製得的單塊剪切為直徑75mm、厚度約15mm之圓盤狀。對於其添加二氯甲烷1500ml,於35℃加熱1小時後,冷卻至10℃以下,緩慢地添加氯磺酸99g,升溫於35℃反應24小時。之後,添加甲醇,將殘留之氯磺酸終止反應(quench)後,以甲醇清洗而除去二氯甲烷,更以純水清洗而獲得具有共連續結構之單塊陽離子交換體c。
(單塊陰離子交換體a之分析) 將獲得之單塊陰離子交換體a切出一部分,使其乾燥後,藉由SEM觀察其內部結構,確認維持共連續結構。此外,上述單塊陰離子交換體a之反應前後之膨潤率為1.4倍,每單位體積之陰離子交換容量於水濕潤狀態下為0.72mg當量/ml。於水濕潤狀態之單塊之連續空洞之尺寸,從單塊之值與水濕潤狀態之陽離子交換體之膨潤率來估計為70μm,骨架之直徑為23μm,全細孔容積為2.9ml/g。
此外,為水透過時之壓力損失之指標的差壓係數,係0.005MPa/m・LV。另外,測定該單塊陰離子交換體a之氯化物離子之離子交換帶長度,在LV=20m/h中之離子交換帶長度為16mm。
然後,為了確認單塊陰離子交換體a中之四級銨基之分布狀態,將陰離子交換體a以鹽酸水溶液處理而成為氯化物型後,藉由EPMA觀察氯原子之分布狀態。其結果,有觀察到四級銨基係各別且均勻地導入至陰離子交換體之骨架表面及骨架內部(剖面方向)。
(單塊陽離子交換體之分析) 此外,將獲得之單塊陽離子交換體c切出一部分,並使其乾燥後,藉由SEM觀察其內部結構,確認該單塊陽離子交換體c維持共連續結構。此外,該單塊陽離子交換體c之反應前後之膨潤率為1.4倍,每單位體積之陽離子交換容量於水濕潤狀態下係0.72mg當量/ml。水濕潤狀態下之單塊之連續空孔的尺寸,從單塊之值及水濕潤狀態之陽離子交換體之膨潤率來估計,為70μm,骨架之直徑(平均粗細度)為23μm,全細孔容積為2.9ml/g。
此外,為使水透過時之壓力損失之指標的差壓係數,係0.005MPa/m・LV。另外,測定該單塊陽離子交換體c之鈉離子之離子交換帶長度,於LV=20m/h之離子交換帶長度為16mm,不僅相較於市售之為強酸性陽離子交換樹脂的AmberliteI R120B(陶氏化學公司製)之值(320mm)壓倒性地短,且相較於以往之具有連續氣泡結構之單塊狀多孔質陽離子交換體的值亦較短。
然後,為了確認單塊陽離子交換體c中之磺酸基之分布狀態,藉由EPMA觀察硫原子之分布狀態。其結果,觀察到磺酸基係各別均勻地導入至陽離子交換體之骨架表面及骨架內部(剖面方向)。
<金屬元素之分析方法> 在以下之實施例及比較例中,水溶劑中之金屬元素量(質量ppb)係指使用感應耦合電漿質量分析法(ICP-MS、Agilent Technologies, Ltd.製Agilent7500cs)所測定之值。
(實施例1) 將合成之單塊陰離子交換體a之一部分填充3.9mL至內徑10mm×高度50mm之PFA(四氟乙烯・全氟烷基乙烯基醚共聚物)管柱,製作陰離子交換體填充筒柱A。 藉由對於上述陰離子交換體填充筒柱A,實施以下(1)~(3)之處理來進行離子形之變更處理。 (1)無機酸處理及水洗處理 對於上述陰離子交換體填充筒柱A,將濃度1.0N之硝酸水溶液(多摩化學工業(股)製TAMAPURE-AA-100)300mL以SV(流量/單塊陰離子交換體體積比)=1500(100ml/min)進行通液處理後,將超純水以SV(流量/單塊陰離子交換體體積比)=750(50ml/min)進行10分鐘之水洗處理。 (2)鹽酸處理及水洗處理 對於經實施上述(1)之處理的陰離子交換體填充筒柱A,將濃度1.0N之鹽酸水溶液(多摩化學工業(股)製TAMAPURE-AA-100)300mL以SV(流量/單塊陰離子交換體體積比)=1500(100ml/min)進行通液處理後,將超純水以SV(流量/單塊陰離子交換體體積比)=750(50ml/min)進行10分鐘水洗處理。 (3)四級銨氫氧化物之水溶液所為之處理 對於經實施上述(2)之處理之陰離子交換體填充筒柱A,將濃度1.0N之三甲基羥基銨(TMAH)水溶液(多摩化學工業(股)製TAMAPURE-AA TMAH)300mL以SV(流量/單塊陰離子交換體體積比)=1500(100ml/min)進行通液處理後,將超純水以SV(流量/單塊陰離子交換體體積比)=750(50ml/min)進行10分水洗處理。 上述(1)~(3)之處理所需之全部合計時間為約40分鐘。 上述(3)之通液處理後,流通超純水,測定於陰離子交換體填充筒柱A端部之出口所採取之排出液中的金屬元素量。結果表示於表1。
(比較例1) 將與實施例1中作為離子形之變更處理對象之單塊陰離子交換體a同樣的單塊陰離子交換體a,填充3.9mL至內徑10mm×高度50mm之PFA(四氟乙烯・全氟烷基乙烯基醚共聚物)管柱中,製作陰離子交換體填充筒柱。對於上述陰離子交換體填充筒柱,實施以下之(1)~(4)之處理。 (1)無機酸處理及水洗處理 對於上述陰離子交換體填充筒柱,將濃度1.0N之硝酸水溶液300mL以SV(流量/單塊陰離子交換體體積比)=1500(100ml/min)進行通液處理後,將超純水以SV(流量/單塊陰離子交換體體積比)=750(50ml/min)進行10分鐘之水洗處理。 (2)鹽酸處理及水洗處理 對於實施了上述(1)之處理之陰離子交換體填充筒柱,將濃度1.0N之鹽酸水溶液300mL以SV(流量/單塊陰離子交換體體積比)=1500(100ml/min)進行通液處理後,將超純水以SV(流量/單塊陰離子交換體體積比)=750(50ml/min)進行10分鐘之水洗處理。 (3)重碳酸鹽處理及水洗處理 對於經實施上述(2)之處理之陰離子交換體填充筒柱,將濃度2.0%之重碳酸銨水溶液(關東化學(股)、鹿特級)300mL以SV(流量/單塊陰離子交換體體積比)=1500(100ml/min)進行通液處理後,將超純水以SV(流量/單塊陰離子交換體體積比)=750(50ml/min)進行10分鐘水洗處理。 (4)氫氧化鈉處理 對於經實施上述(3)之處理之陰離子交換體填充筒柱,將濃度1.0N之氫氧化鈉水溶液(關東化學(股)、特級)300mL以SV(流量/單塊陰離子交換體體積比)=1500(100ml/min)進行通液處理後,將超純水以SV(流量/單塊陰離子交換體體積比)=750(50ml/min)進行10分鐘之水洗處理。 上述(1)~(4)之處理所需之全部合計時間為約60分鐘。 上述(4)之通液處理後,流通超純水,測定於陰離子交換體填充筒柱出口所採取之排出液中的金屬元素量。結果表示於表1。
[表1] (單位:ng/L)
B Na Al K Ca Cr Co Ni As Cd Sn Ba
實施例1 <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
比較例1 5 526 1 1 1 1 1 1 1 1 1 1
•表中<DL係指小於檢測極限的含意
(實施例2) 以與實施例1同樣的方式,經實施(1)無機酸處理及水洗處理、(2)鹽酸處理及水洗處理、以及(3)四級銨氫氧化物之水溶液所為之處理後,對於上述(3)之通液處理後之陰離子交換體填充筒柱,流通1.0N硝酸100ml,測定於筒柱出口所採取之硝酸液中之金屬元素量。結果表示於表2。
(比較例2) 以與比較例1同樣的方式,經實施(1)無機酸處理及水洗處理、(2)鹽酸處理及水洗處理、(3)重碳酸鹽處理及水洗處理、以及(4)氫氧化鈉處理後,對於上述(4)之通液處理後之陰離子交換體填充筒柱,流通1.0N硝酸100ml,測定於筒柱出口所採取之硝酸液中之金屬元素量。結果表示於表2。
[表2] (單位:ng/L)
B Na Mg Al Tl V Cr Fe Cu Zn Ga As Pd Cd Ba Pb
實施例2 <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL <DL
比較例2 333 276 135 743 88 4 2440 2046 295 120 6 3 180 0 26 18
•表中<DL係指小於檢測極限的含意
從上述結果可知,實施例1及實施例2中,因為在製備單塊陰離子交換體時使其與四級銨氫氧化物之水溶液接觸,能在抑制各種金屬之殘留的狀態下,簡便且短時間地製備陰離子交換體。 另一方面,可知在比較例1及比較例2中,因為在單塊陰離子交換體之製備時使其接觸氫氧化鈉之水溶液,故製備步驟係步驟多且需要長時間,此外單塊陰離子交換體中有殘留一定量之Na元素等各種金屬元素。 尤其,可知比較例2中,單塊陰離子交換體之製備時使用之重碳酸銨水溶液或氫氧化鈉水溶液中含有之各種金屬元素,會吸附並殘留於單塊陰離子交換體中,而在流通硝酸時會從單塊陰離子交換體大量地流出。
(實施例3) 如圖5(a)所示,對於以與實施例1同樣之方式製備而得的陰離子交換體填充筒柱A,以能通液的方式連接將上述單塊陽離子交換體c填充3.9mL至內徑10mm×高度50mm之PFA(四氟乙烯・全氟烷基乙烯基醚共聚物)管柱中製得之陽離子交換體填充筒柱C,而製得精製裝置U。 如圖5(a)所示,從設置於上述精製裝置U之陰離子交換體填充筒柱A之端部的入口將濃度1000ng/L之Na離子水溶液以SV(流量/陰離子交換體體積比)=1500(100ml/min)進行通液,每隔一段時間便測定從設置於上述精製裝置U之陽離子交換體填充筒柱C之端部的出口流出之排出液中的Na離子濃度。 結果表示於圖6。 圖6中,根據陽離子交換體填充筒柱之於出口之Na離子濃度相對於陰離子交換體填充筒柱之於入口之Na離子濃度的比(陽離子交換體填充筒柱之於出口之Na離子濃度/陰離子交換體填充筒柱之於入口之Na離子濃度)隨時間的變化,來評價上述精製裝置U所為之除去性能。
(比較例3) 對於以與比較例1同樣之方式製備之陰離子交換體填充筒柱,以能通液的方式連結將上述單塊陽離子交換體c填充3.9mL至內徑10mm×高度50mm之PFA(四氟乙烯・全氟烷基乙烯基醚共聚物)管柱中所製得的陽離子交換體填充筒柱,而製得精製裝置。 從設置於上述精製裝置之陰離子交換體填充筒柱之端部的入口將濃度1000ng/L之Na離子水溶液以SV(流量/陰離子交換體體積比)=1500(100ml/min)進行通液,每隔一段時間便測定從設置於上述精製裝置之陽離子交換體填充筒柱之端部的出口流出之排出液中的Na離子濃度。 結果表示於圖6。
從上述結果,可知實施例3中,因為單塊陰離子交換體之再生時與四級銨氫氧化物之水溶液接觸,可抑制金屬離子之殘留,故即使流通Na離子水溶液,藉由單塊陽離子交換體而能有效地除去Na離子並能抑制其流出。 另一方面,可知比較例3中,因為單塊陰離子交換體之再生時與氫氧化鈉之水溶液接觸,Na元素殘留於單塊陰離子交換體中,因此Na離子水溶液流通時Na離子從單塊陰離子交換體流出,故對於後續單塊陽離子交換體之Na離子的負荷量會增加,除去性能會下降。
(實施例4) 將合成之單塊陰離子交換體a之一部分填充3.9mL至內徑10mm×高度50mm之PFA(四氟乙烯・全氟烷基乙烯基醚共聚物)管柱中,製作陰離子交換體填充筒柱。 對於上述陰離子交換體填充筒柱,藉由實施以下(1)~(3)之處理來進行再生處理。 (1)無機酸處理及水洗處理 對於上述陰離子交換體填充筒柱,將濃度1.0N之硝酸水溶液300mL以SV(流量/單塊陰離子交換體體積比)=1500(100ml/min)進行通液處理後,將超純水以SV(流量/單塊陰離子交換體體積比)=750(50ml/min)進行10分鐘之水洗處理。 (2)鹽酸處理及水洗處理 對於上述陰離子交換體填充筒柱,將濃度1.0N之硝酸水溶液300mL以SV(流量/單塊陰離子交換體體積比)=1500(100ml/min)進行通液處理後,將超純水以SV(流量/單塊陰離子交換體體積比)=750(50ml/min)進行10分鐘之水洗處理。 (3)四級銨氫氧化物之水溶液所為之處理 對於上述陰離子交換體填充筒柱,將濃度1.0N之三甲基羥基銨(TMAH)水溶液80mL以SV(流量/單塊陰離子交換體體積比)=800(53ml/min)進行通液處理。上述(1)~(3)之處理所需之全部合計時間為約35分鐘。實施上述(1)~(3)之處理所得之陰離子交換體填充筒柱之再生率能按以下方法算出。
<再生率之計算方法> 再生率(%)={R-OH(meq/g)/總離子交換容量(meq/g)}×100
本案說明書中,上述R-OH係指陰離子交換體具有之四級銨基(R)中作為相對離子存在之OH離子之量。此外,本案說明書中,R-OH係指對於以規定方法經再生處理的陰離子交換體通液硝酸鈉溶液,將回收之液體以硫酸進行滴定所測得之值。 此外,本案說明書中,總離子交換容量係對於上述陰離子交換體通液鹽酸而成為Cl形後,通液硝酸鈉,將回收之液體藉由硝酸銀滴定法(莫爾法(Mohr Method))所測得之值。 結果表示於表3。
(實施例5) 在實施例4之「(3)四級銨氫氧化物之水溶液所為之處理」中,將濃度1.0N之三甲基羥基銨(TMAH)水溶液之通液速度變更為以SV(流量/單塊陰離子交換體體積比)=400(25ml/min)進行處理,除此以外,以與實施例4同樣的方式進行處理來再生陰離子交換體填充筒柱。 上述再生處理所需之全部合計時間為約40分鐘。 以與實施例4同樣的方法算出實施上述再生處理獲得之陰離子交換體填充筒柱之再生率。結果表示於表3。
(實施例6) 將合成之單塊陰離子交換體a於超純水製造裝置中使用1個月後,以與實施例5同樣的方式進行處理來再生填充了陰離子交換體的筒柱。 上述再生處理所需之全部合計時間為約40分鐘。 以與實施例4同樣的方法算出實施上述再生處理獲得之陰離子交換體填充筒柱之再生率。結果表示於表3。
(實施例7) 將下述陰離子交換樹脂填充3.9mL至內徑10mm×高度50mm之PFA(四氟乙烯・全氟烷基乙烯基醚共聚物)管柱中,製作陰離子交換體填充筒柱。 <陰離子交換樹脂> Cl型之強鹼性陰離子交換樹脂(陶氏化學公司Amberjet4002,詳如下述)。 母體(樹脂之材質):苯乙烯系 離子交換基:四級銨基 離子交換當量:陰離子交換基1.2mg當量/ml濕潤樹脂以上 飽和平衡狀態之含水率:40質量% 飽和水濕潤狀態之離子形:Cl形 使用上述陰離子交換樹脂來替代單塊陰離子交換體a,除此以外,以與實施例3進行同樣的處理來再生陰離子交換體填充筒柱。 上述再生處理所需之全部合計時間為35分鐘。 以與實施例4同樣的方法算出實施上述再生處理獲得之陰離子交換體填充筒柱之再生率。結果表示於表3。
(實施例8) 實施例7中,將濃度1.0N之三甲基羥基銨(TMAH)水溶液之通液速度變更為SV(流量/單塊陰離子交換體體積比)=400,除此以外,以與實施例5同樣方式進行處理來再生陰離子交換體填充筒柱。 上述再生處理所需之全部合計時間為40分鐘。 以與實施例4同樣的方法算出實施上述再生處理獲得之陰離子交換體填充筒柱之再生率。結果表示於表3。
(比較例4) 將與實施例7中作為再生處理對象之陰離子交換樹脂同樣的陰離子交換樹脂,填充3.9mL至內徑10mm×高度50mm之PFA(四氟乙烯・全氟烷基乙烯基醚共聚物)管柱中,製作陰離子交換體填充筒柱。 對於上述陰離子交換體填充筒柱,藉由實施以下(1)~(4)之處理來進行再生處理。 (1)無機酸處理及水洗處理 對於上述陰離子交換體填充筒柱,將濃度1.0N之硝酸水溶液300mL以SV(流量/單塊陰離子交換體體積比)=1500(100ml/min)進行通液處理後,將超純水以SV(流量/陰離子交換樹脂體積比)=750(50ml/min)進行10分鐘之水洗處理。 (2)鹽酸處理及水洗處理 對於上述陰離子交換體填充筒柱,將濃度1.0N之硝酸水溶液300mL以SV(流量/單塊陰離子交換體體積比)=1500(100ml/min)進行通液處理後,將超純水以SV(流量/陰離子交換樹脂體積比)=750(50ml/min)進行10分鐘之水洗處理。 (3)重碳酸鹽處理及水洗處理 對於上述陰離子交換體填充筒柱,將濃度2.0%之重碳酸銨水溶液(關東化學、鹿特級)300mL以SV(流量/單塊陰離子交換體體積比)=1500(100ml/min)進行通液處理後,將超純水以SV(流量/陰離子交換樹脂體積比)=750(50ml/min)進行10分鐘之水洗處理。 (4)氫氧化鈉處理 對於上述陰離子交換體填充筒柱,將濃度1.0N之氫氧化鈉水溶液300mL以SV(流量/單塊陰離子交換體體積比)=800(53ml/min)進行通液處理。 上述(1)~(4)之再生處理所需之全部合計時間為約60分鐘。 以與實施例4同樣的方法算出實施上述再生處理獲得之陰離子交換體填充筒柱之再生率。結果表示於表3。
[表3]
陰離子交換體 再生試藥 再生試藥之通液速度SV(hr-1 再生率 (R-OH/cap%)
實施例4 單塊陰離子交換體 三甲基羥基銨水溶液 800 87
實施例5 單塊陰離子交換體 三甲基羥基銨水溶液 400 87
實施例6 單塊陰離子交換體 三甲基羥基銨水溶液 400 88
實施例7 陰離子交換樹脂 三甲基羥基銨水溶液 800 61
實施例8 陰離子交換樹脂 三甲基羥基銨水溶液 400 59
比較例4 陰離子交換樹脂 NaOH水溶液 800 50
從上述結果,可知實施例4~實施例8中,因為在變更並再生陰離子交換體之離子形時與四級銨氫氧化物之水溶液接觸,而能在抑制各種金屬之殘留的狀態下,將陰離子交換體之離子形簡便且短時間地以高比率變更為OH形。 另一方面,可知比較例4中,因為在陰離子交換體之再生時接觸氫氧化鈉之水溶液,故再生步驟為多步驟且需要長時間,且再生率差。
(實施例9) 將單塊陰離子交換體A,於超純水中之金屬雜質之測定中使用了一定時間後,將其一部分填充3.9mL至內徑10mm×高度50mm之PFA(四氟乙烯・全氟乙烯烷基乙烯基醚共聚物)管柱中,製作陰離子交換體填充筒柱。 對於上述陰離子交換體填充筒柱,藉由實施以下之(1)~(3)之變更離子形的處理來進行再生處理。 (1)無機酸處理及水洗處理 對於上述陰離子交換體填充筒柱,將1.0N硝酸300mL以SV(流量/單塊陰離子交換體體積比)=1500(100ml/min)進行通液處理後,將超純水以SV(流量/單塊陰離子交換體體積比)=750(50ml/min)通液10分鐘藉此進行水洗處理。 (2)鹽酸處理及水洗處理 對於經實施上述(1)之處理之陰離子交換體填充筒柱,將濃度1.0N之鹽酸水溶液300mL以SV(流量/單塊陰離子交換體體積比)=1500(100ml/min)進行通液處理後,將超純水以SV(流量/單塊陰離子交換體體積比)=750(50ml/min)進行10分鐘之水洗處理。 (3)四級銨氫氧化物之水溶液所為之處理 對於上述陰離子交換體填充筒柱,將濃度1.0N之三甲基羥基銨(TMAH)水溶液300mL以SV(流量/單塊陰離子交換體體積比)=1500(100ml/min)進行通液處理。 上述(1)~(3)之處理所需之全部合計時間為約40分鐘。 以與上述實施例4同樣的方法算出實施上述(1)~(3)之處理所獲得之陰離子交換體填充筒柱的再生率。 結果表示於表4。
(實施例10) 對於與實施例9中製得者為同樣的陰離子交換體筒柱,藉由實施以下之(1)~(3)之變更離子形的處理來進行再生處理。 (1)無機酸處理及水洗處理 對於上述陰離子交換體填充筒柱,將1.0N硝酸300mL以SV(流量/單塊陰離子交換體體積比)=1500(100ml/min)進行通液處理後,將超純水以SV(流量/單塊陰離子交換體體積比)=750(50ml/min)通液10分鐘藉此進行水洗處理。 (2)四級銨氫氧化物之水溶液所為之處理 對於經實施上述(1)之處理的陰離子交換體填充筒柱,將濃度1.0N之三甲基羥基銨(TMAH)水溶液300mL以SV(流量/單塊陰離子交換體體積比)=1500(100ml/min)進行通液處理。 上述(1)及(2)之處理所需之全部合計時間為約25分鐘。 以與實施例4同樣的方法算出實施上述(1)及(2)之處理所獲得之陰離子交換體填充筒柱的再生率。結果表示於表4。
(實施例11) 將下述陰離子交換樹脂於超純水中之金屬雜質之測定使用了一定時間後,將其一部分填充3.9mL至內徑10mm×高度50mm之PFA(四氟乙烯・全氟烷基乙烯基醚共聚物)管柱中,製作陰離子交換體填充筒柱。 <陰離子交換樹脂> Cl型之強鹼性陰離子交換樹脂(陶氏化學公司製Amberjet4002、詳如下述)。 母體(樹脂之材質):苯乙烯系 離子交換基:四級銨基 離子交換當量:陰離子交換基1.2mg當量/ml濕潤樹脂以上 飽和平衡狀態之含水率:40質量% 飽和水濕潤狀態之離子形:Cl形 使用上述陰離子交換樹脂來替代單塊陰離子交換體A,除此以外,以與實施例2同樣的方式進行處理來再生陰離子交換體填充筒柱。 上述再生處理所需之全部合計時間為約40分鐘。 以與實施例4同樣的方法算出實施上述再生處理所獲得之陰離子交換體填充筒柱的再生率。結果表示於表4。
(實施例12) 使用與實施例11中使用者為同樣的陰離子交換樹脂替代單塊陰離子交換體A來製作陰離子交換體填充筒柱,以與實施例10同樣的方式進行處理來再生陰離子交換體填充筒柱。 上述再生處理所需之全部合計時間為約25分鐘。 以與實施例4同樣的方法算出實施上述再生處理所獲得之陰離子交換體填充筒柱的再生率。結果表示於表4。
[表4]
陰離子交換體 再生率
實施例9 單塊陰離子交換體 >90%*
實施例10 單塊陰離子交換體 >90%*
實施例11 陰離子交換樹脂 65%
實施例12 陰離子交換樹脂 55%
*:表中,「>90%」係指90%以上。
從表4,可知實施例9~實施例12中,藉由在變更陰離子交換體之離子形時接觸四級銨氫氧化物之水溶液,能在抑制各種金屬之殘留的狀態下,將陰離子交換體之離子形簡便且短時間地以高比率變更為OH形。 [產業上利用性]
根據本發明,可提供在抑制各種金屬之殘留的狀態下,將陰離子交換體之離子形簡便且短時間地以高比率變更為OH形的方法以及陰離子交換體之製造方法。
1:骨架相 2:空孔相 3:容器 4:槽 5:儲存槽 10:結構 P:泵 S:四級銨氫氧化物之水溶液 W:排出液 A:陰離子交換體 C:陽離子交換體
[圖1]單塊狀有機多孔質陰離子交換體之形態例的SEM圖像。 [圖2]單塊狀有機多孔質陰離子交換體之共連續結構之示意圖。 [圖3]單塊狀有機多孔質中間體之形態例的SEM圖像。 [圖4]用以說明本發明中之陰離子交換體與四級銨氫氧化物之水溶液的接觸形態例的圖。 [圖5](a)、(b)展示具有含有陰離子交換體之容器A與含有陽離子交換體之容器C之精製裝置U的圖。 [圖6]展示本發明之實施例及比較例之結果的圖。
Figure 110120110-A0101-11-0002-1

Claims (10)

  1. 一種陰離子交換體之離子形變更方法,其特徵在於: 為了變更陰離子交換體之離子形,使該陰離子交換體與四級銨氫氧化物之水溶液接觸。
  2. 如請求項1之陰離子交換體之離子形變更方法,其中,該四級銨氫氧化物係選自下述通式(I)表示之化合物中之一種以上:
    Figure 03_image001
    式中,R1 ~R4 各自係亦可具有羥基之碳數1~4的烴基,彼此可相同亦可不同。
  3. 如請求項1之陰離子交換體之離子形變更方法,其中,該四級銨氫氧化物之水溶液中之四級銨氫氧化物的濃度為0.1~2.0N。
  4. 如請求項1之陰離子交換體之離子形變更方法,係使該陰離子交換體與無機酸接觸,然後以水清洗後使其與該四級銨氫氧化物之水溶液接觸。
  5. 如請求項1之陰離子交換體之離子形變更方法,係使該陰離子交換體與無機酸接觸,然後以水清洗後更與鹽酸接觸,然後以水清洗後使其與該四級銨氫氧化物之水溶液接觸。
  6. 如請求項1之陰離子交換體之離子形變更方法,其中,該陰離子交換體係單塊狀有機多孔質陰離子交換體。
  7. 如請求項6之陰離子交換體之離子形變更方法,其中,該單塊狀有機多孔質陰離子交換體係共連續結構體,該共連續結構體係由: 由全部構成單元中含有交聯結構單元0.1~5.0莫耳%之芳香族乙烯基聚合物構成之平均粗細度於乾燥狀態為1~60μm之三維上為連續的骨架、及於該骨架之間之平均直徑於乾燥狀態為10~200μm之三維上為連續之空孔構成, 乾燥狀態之全細孔容積為0.5~10mL/g,具有陰離子交換基,於水濕潤狀態下之每單位體積的陰離子交換容量為0.2~1.0mg當量/mL(水濕潤狀態),且陰離子交換基均勻地分布於有機多孔質陰離子交換體中。
  8. 如請求項6之陰離子交換體之離子形變更方法,其中,對於該陰離子交換體,將四級銨氫氧化物之水溶液以液空間速度SV成為20000h-1 以下之方式進行通液。
  9. 如請求項1之陰離子交換體之離子形變更方法,其中,為了將超純水之精製或藥液之精製中使用之陰離子交換體的離子形進行變更、或為了將超純水中或藥液中之陰離子性雜質之分析中使用之陰離子交換體的離子形進行變更,而使該陰離子交換體與四級銨氫氧化物之水溶液接觸。
  10. 一種陰離子交換體之製造方法,其特徵在於: 為了變更陰離子交換體之離子形,使該陰離子交換體與四級銨氫氧化物之水溶液接觸。
TW110120110A 2020-06-04 2021-06-03 陰離子交換體之離子形變更方法以及陰離子交換體之製造方法 TW202208061A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-097857 2020-06-04
JP2020097857A JP7477374B2 (ja) 2020-06-04 2020-06-04 モノリス状有機多孔質アニオン交換体のイオン形変更方法およびモノリス状有機多孔質アニオン交換体の製造方法
JP2020097856A JP7477373B2 (ja) 2020-06-04 2020-06-04 モノリス状有機多孔質アニオン交換体のイオン形変更方法およびモノリス状有機多孔質アニオン交換体の製造方法
JP2020-097856 2020-06-04

Publications (1)

Publication Number Publication Date
TW202208061A true TW202208061A (zh) 2022-03-01

Family

ID=78830980

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110120110A TW202208061A (zh) 2020-06-04 2021-06-03 陰離子交換體之離子形變更方法以及陰離子交換體之製造方法

Country Status (2)

Country Link
TW (1) TW202208061A (zh)
WO (1) WO2021246198A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786555B2 (ja) * 1987-09-08 1995-09-20 財団法人産業創造研究所 揮発再生法によるイオン交換樹脂再生廃液の減容法
JPH09234379A (ja) * 1996-02-29 1997-09-09 Tama Kagaku Kogyo Kk 陰イオン交換樹脂の再生又は清浄化方法
JP2000009703A (ja) * 1998-06-22 2000-01-14 Japan Organo Co Ltd アニオン交換樹脂の性能評価方法
JP3724247B2 (ja) * 1999-03-25 2005-12-07 住友化学株式会社 過酸化水素水の精製方法
JP4292366B2 (ja) * 2001-12-06 2009-07-08 オルガノ株式会社 陰イオン交換体の回生方法及び陰イオン交換体の回生剤
JP5290604B2 (ja) * 2007-08-22 2013-09-18 オルガノ株式会社 モノリス状有機多孔質体、モノリス状有機多孔質イオン交換体、それらの製造方法及びケミカルフィルター
JP5021540B2 (ja) * 2007-10-11 2012-09-12 オルガノ株式会社 モノリス状有機多孔質体、モノリス状有機多孔質イオン交換体、それらの製造方法及びケミカルフィルター

Also Published As

Publication number Publication date
WO2021246198A1 (ja) 2021-12-09

Similar Documents

Publication Publication Date Title
JP5430983B2 (ja) 白金族金属担持触媒、過酸化水素の分解処理水の製造方法、溶存酸素の除去処理水の製造方法及び電子部品の洗浄方法
JP5329463B2 (ja) 過酸化水素分解処理水の製造方法、過酸化水素分解処理水の製造装置、処理槽、超純水の製造方法、超純水の製造装置、水素溶解水の製造方法、水素溶解水の製造装置、オゾン溶解水の製造方法、オゾン溶解水の製造装置および電子部品の洗浄方法
JP3966501B2 (ja) 超純水製造装置
JP5231300B2 (ja) 白金族金属担持触媒、過酸化水素の分解処理水の製造方法、溶存酸素の除去処理水の製造方法及び電子部品の洗浄方法
TWI758266B (zh) 有機溶劑之精製方法
TWI794494B (zh) 金屬不純物含有量之分析方法及分析對象水用之分析套件
JP5231299B2 (ja) 白金族金属担持触媒、過酸化水素の分解処理水の製造方法、溶存酸素の除去処理水の製造方法及び電子部品の洗浄方法
JP5604143B2 (ja) 溶存酸素除去水の製造方法、溶存酸素除去水の製造装置、溶存酸素処理槽、超純水の製造方法、水素溶解水の製造方法、水素溶解水の製造装置および電子部品の洗浄方法
JP5486162B2 (ja) モノリス状有機多孔質体、その製造方法及びモノリス状有機多孔質イオン交換体
WO2010104004A1 (ja) イオン吸着モジュール及び水処理方法
JP5411737B2 (ja) イオン吸着モジュール及び水処理方法
JP5525754B2 (ja) 白金族金属担持触媒、過酸化水素の分解処理水の製造方法、溶存酸素の除去処理水の製造方法及び電子部品の洗浄方法
JP5421689B2 (ja) 白金族金属担持触媒、過酸化水素の分解処理水の製造方法、溶存酸素の除去処理水の製造方法及び電子部品の洗浄方法
JP5465463B2 (ja) イオン吸着モジュール及び水処理方法
JP7477374B2 (ja) モノリス状有機多孔質アニオン交換体のイオン形変更方法およびモノリス状有機多孔質アニオン交換体の製造方法
JP7081974B2 (ja) 液体精製カートリッジ及び液体の精製方法
JP7266029B2 (ja) 超純水の製造方法、超純水製造システム及びイオン交換体充填モジュール
TW202208061A (zh) 陰離子交換體之離子形變更方法以及陰離子交換體之製造方法
JP7477373B2 (ja) モノリス状有機多孔質アニオン交換体のイオン形変更方法およびモノリス状有機多孔質アニオン交換体の製造方法
JP5567958B2 (ja) 白金族金属担持触媒の製造方法
TWI447150B (zh) 單塊(monolith)狀有機多孔質體、單塊狀有機多孔質離子交換體及該等之製造方法