TW202204666A - 結晶性之氮化鎵薄膜之製造方法 - Google Patents

結晶性之氮化鎵薄膜之製造方法 Download PDF

Info

Publication number
TW202204666A
TW202204666A TW110118944A TW110118944A TW202204666A TW 202204666 A TW202204666 A TW 202204666A TW 110118944 A TW110118944 A TW 110118944A TW 110118944 A TW110118944 A TW 110118944A TW 202204666 A TW202204666 A TW 202204666A
Authority
TW
Taiwan
Prior art keywords
thin film
gan
gas
gallium nitride
substrate
Prior art date
Application number
TW110118944A
Other languages
English (en)
Other versions
TWI768927B (zh
Inventor
水谷文一
東慎太郎
高橋伸尚
Original Assignee
日商高純度化學研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021079631A external-priority patent/JP2021188127A/ja
Application filed by 日商高純度化學研究所股份有限公司 filed Critical 日商高純度化學研究所股份有限公司
Publication of TW202204666A publication Critical patent/TW202204666A/zh
Application granted granted Critical
Publication of TWI768927B publication Critical patent/TWI768927B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本發明提供一種藉由原子層沉積(ALD)所實施之更有效率的GaN膜之製造方法,係不進行雷射退火等之高溫熱處理,使用一價的鎵化合物,製造雜質極少且結晶性高的GaN膜。本發明為一種結晶性之氮化鎵薄膜之製造方法,係使用了ALD,且包含下述工序:工序1,係將一價的有機鎵錯合物供給至已將基板溫度設為350℃以下之反應室內;與工序2,係向該反應室內供給氮化氣體。

Description

結晶性之氮化鎵薄膜之製造方法
本發明係關於一種藉由原子層沉積(Atomic Layer Deposition;ALD)法所實施的結晶性之氮化鎵薄膜之形成方法。
氮化鎵(GaN)係發光二極體(Light Emitting Diode;LED)及藍光雷射在發射出藍光至藍紫光時所使用之重要的半導體材料。非常希望在矽基板之上成長出單晶GaN層,但由於GaN與矽之晶格面間隔的未匹配,故在晶格常數與GaN相近的藍寶石基板進行使結晶性的GaN磊晶成長。然而,由於單晶藍寶石基板一般而言顯著較矽基板耗費成本,因此期望著在如矽基板般具通用性且價廉的基板來使得結晶性高的GaN膜成長之技術。
對於GaN的製膜,一般是使用化學氣相成長(Chemical Vapor Deposition;CVD)法。作為CVD法之一種的原子層沉積(ALD)法,由於不使原料連續地沉積,而是一層一層地沉積,因此能夠以高精度地控制的方法將數奈米單位的超薄膜進行沉積。
於是,使用了ALD的結晶性GaN之成膜方法正被探討著。例如,有報告指出將氫氣設為載體氣體,使用三乙基鎵(triethylgallium;TEG)及氨氣,於450℃至900℃在藍寶石基板上形成單晶GaN薄膜之方法(非專利文獻1)。藍寶石可耐450℃至900℃的高溫,在耐熱性高這一點也適合使GaN磊晶成長。
在專利文獻1,作為GaN-ALD膜之形成方法,揭示了在塗佈有氮化鋁(AlN)核生成層之矽基板上形成GaN元件層,並藉由雷射退火使GaN結晶化之方法。
作為雷射退火以外的結晶化之方法,亦有依序導入三甲基鎵(trimethylgallium;TMG)、氫自由基、及氨氣,於100℃實施ALD時,在導入氫自由基之後及導入氨氣之後照射電子束使氫脫離,藉此形成結晶性的GaN膜之方法(非專利文獻2)。不過,此方法所獲得之GaN膜的碳雜質多到10at%(atomic percent;原子百分比數)至35at%。
再者,作為使用電漿進行結晶化之例,在非專利文獻3係使用TMG和氨電漿、氮氣及氫氣之混合氣體的電漿(以下記為「氮/氫電漿」)、或氮電漿,於200℃形成結晶性薄膜。不過,在前述結晶性薄膜中,N/Ga比為顯著富含N,在無氫的氮電漿則膜的品質不良。在非專利文獻4,係使用TEG及氮/氫電漿,於200℃、285℃、及350℃形成結晶性GaN薄膜。針對前述結晶性薄膜,在對Si(100)面的成膜中,自與矽基板的界面起有18nm左右的非晶質層。任一種膜的N/Ga比都是大幅地富含N。在非專利文獻5,係使用TMG及氮/水素的混合電漿,於250℃進行ALD來形成結晶性膜。
在非專利文獻5,即便使用電漿,在未達210℃仍無法ALD成膜,在250℃所獲得之ALD膜的N/Ga比係稍微富含Ga但C雜質約含9%。針對使用電漿的結晶化,於專利文獻2亦有例示。在專利文獻2,係使用TMG或者TEG與氮/氫電漿來形成GaN薄膜,亦例示有GaCl3 、GaCl、GaI3 等的鹵化鎵。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特表2016-533645號公報。 [專利文獻2]US8,846,502公報。 [非專利文獻]
[非專利文獻1]「Atomic layer epitaxy of GaN over sapphire using switched metal organic chemical vapor deposition」,M. Asif Khan et al., Appl. Phys. Lett. 60, 1366 (1992)。 [非專利文獻2]「Electron enhanced growth of crystalline gallium nitride thin films at room temperature and 100 °C using sequential surface reactions」,Jaclyn K. Sprenger et al., Chem. Mater. 2016, 28, 15, 5282-5294。 [非專利文獻3]「Hollow cathode plasma-assisted atomic layer deposition of crystalline AlN, GaN and Alx Ga1-x N thin films at low temperatures」,Cagla Ozgit-Akgun et al., J. Mater. Chem. C, 2014, 2, 2123。 [非專利文獻4]「PEALD-deposited crystalline GaN films on Si (100) substrates with sharp interfaces」,San-Jie Liu et al., Chin. Phys. B Vol. 28, No. 2 (2019) 026801。 [非專利文獻5]「Low temperature depositions of GaN thin films by plasma-enhanced atomic layer deposition」,Tang Wen-Hui et al., Acta Physica Sinica, 66, 098101 (2017)。
[發明所欲解決之課題]
用以藉由ALD法來形成GaN膜之Ga源,雖然TMG和TEG被廣泛使用,但由於這些Ga源在空氣中非常地不穩定而會自然發火,無法說容易操作。而且,在為了形成結晶性高的GaN薄膜,需要於高溫進行ALD,或是需要與ALD同時或者在ALD隨後,將高溫熱處理組合採用雷射或電子束之照射的退火技術來進行。
於基板上形成之GaN膜係一價的鎵化合物。為此,若在原料使用TMG和TEG等之三價的鎵錯合物,則由於需要將鎵還原故而有混入C之虞,進而成為結晶性不佳的GaN膜這樣的問題。再者,即便是一價的鎵錯合物,在無機鎵錯合物的情況,仍有無機元素混入GaN之虞。於是,本發明的目的在於提供一種藉由效率更佳的ALD所實施的GaN膜之製造方法,係製造雜質極少且結晶性高的GaN膜。
再者,以往為了提高GaN薄膜的結晶性而使用GaN、或者藍寶石和AlN等之與GaN晶格常數相近的基板,但本發明的目的亦在於即便在不含作為GaN和藍寶石的構成元素之氮、鎵、及鋁之中任一種作為主成分的基板上,仍可獲得結晶性高的GaN。 [用以解決課題之手段]
本發明的結晶性之氮化鎵薄膜之製造方法,特徵在於包含下述工序:工序1,係使用原子層沉積(ALD)法,將一價的有機鎵錯合物供給至已將基板溫度設為350℃以下之反應室內;與工序2,係向該反應室內供給氮化氣體。 前述氮化氣體較佳為氮電漿氣體。 前述有機鎵錯合物較佳為環戊二烯基系錯合物。 在前述工序1與工序2之間,較佳為進而包含工序3,前述工序3係供給不含氧的還原氣體。 在本發明的較佳實施形態,前述基板的表面不含氮、鎵、及鋁之中任一種作為主成分。 在前述工序1之前,較佳為包含沉積工序,前述沉積工序係作為基板的前處理,使用前述原料與氧化劑來沉積5nm以下的氧化鎵。 [發明功效]
根據本發明的ALD法,即便不進行雷射退火等之高溫熱處理,仍能夠由有機鎵錯合物形成結晶性高的GaN膜。
以下針對本發明詳細地進行說明。 本發明的氮化鎵(GaN)薄膜之製造方法具有下述工序:工序1,係使用ALD,將一價的有機鎵錯合物供給至已將基板溫度設為350℃以下之反應室內;與工序2,係向該反應室內供給氮化氣體。
關於ALD,有著熱ALD及電漿ALD(plasma enhanced atomic layer deposition;PEALD)之2種。在熱ALD能夠沿著高的高寬比表面形成均勻的膜。另一方面,PEALD雖然對於高的高寬比表面的膜形成能力有較熱ALD差的情況,但能夠在低溫進行。在本發明雖然哪一種方法都能使用,但就使用一價的鎵化學物種,效率佳地形成結晶性高的GaN膜這樣的本發明之目的而言,較合適為PEALD。
在作為本發明的較佳實施形態之PEALD,藉由下述(i)至(ii)的沉積循環來將GaN進行製膜。沉積循環的一形態具有下述步驟:(i)為了將前驅物吸附於基板的表面上,而向反應室內送入氣相的前驅物之步驟;與(ii)向該反應室內送入藉由電漿生成有自由基物種之氮化氣體,與已吸附於表面的前驅物進行反應而形成GaN結晶層之步驟。然後,各循環反覆進行至形成的膜到達所期望的厚度為止。
在前述(i)中,對於設置有基板的反應室內,以氣相供給作為前驅物之一價的有機鎵錯合物(工序1)。基板溫度係設為室溫至350℃之範圍內的任意溫度,一價的有機鎵錯合物係以不會凝縮在基板上的方式,以低於基板溫度的溫度使之蒸發。
其次,在前述(ii),向反應室內供給氮化氣體(工序2),使在工序1已吸附於基板表面上的前驅物與氮化氣體進行反應而在前述基板上使結晶性的GaN薄膜成長。此時,GaN薄膜亦可為多晶,但較佳為單晶。單晶的情況,薄膜的N/Ga比成為1,而多晶的情況,較佳為緻密的膜,較佳為成為富含Ga之N/Ga比在1以下。前述GaN薄膜中,雖然幾乎不存在非晶質部分,但較佳為未達1體積%,更佳為未達0.01體積%,特佳為未達0.0001體積%。再者,前述GaN薄膜為高純度的薄膜,雜質中的碳較佳為5原子%以下,更佳為1原子%以下,進而較佳為0.01原子%以下,特佳為0.001原子%以下。同樣地,雜質中的氧較佳為5原子%以下,更佳為1原子%以下,進而較佳為0.01原子%以下,特佳為0.001原子%以下。
在工序2所供給的氮化氣體係包含氮氣之氣體,較佳為藉由電漿而產生自由基物種之氣體。作為氮化氣體,只要是能夠產生氮自由基之氣體則沒有特別限制,較佳為不含碳,更佳為氨/氫電漿氣體及氮電漿氣體,特佳為能夠簡便地使用之氮電漿氣體。另外,「氨/氫電漿氣體」係指氨氣及氫氣之混合氣體的電漿。
此處,本發明的前驅物係一價的有機鎵錯合物。一價的鎵錯合物為氯化鎵(I)或溴化鎵(I)等之無機錯合物的情況,有混入或腐蝕之虞而不佳。例如,GaCl的情況,有Cl的混入或副產物所造成的基板或腔室的腐蝕之疑慮。
作為一價的有機鎵錯合物,可列舉以下述通式(1)表示之環戊二烯基錯合物。
Figure 02_image001
通式(1)中,R1 至R5 係各自獨立為氫原子或碳原子數1至4的烷基。
前述通式(1)中,更佳為R1 至R5 之中有4個為甲基,剩下的1個為甲基、乙基、正丙基或異丙基。以通式(1)表示之前驅物,具體而言特佳為以下述結構式表示之η5 -五甲基環戊二烯基鎵(I)(以下亦記為「Cp* Ga」或「Ga(C5 (CH3 )5 )」)。
Figure 02_image003
作為用以使GaN成長的基板,可使用例如:矽基板、藍寶石基板、碳化矽基板及GaN基板等。這些基板之中,對於形成結晶性高的GaN膜,較合適為材質相同的GaN基板自不待言,不過就與GaN晶格常數相近這點而言藍寶石基板亦合適。
在本發明,對於形成結晶性高的GaN膜,能夠使用不含氮、鎵、及鋁之中任一種作為主成分的基板,作為這樣的基板,較合適為矽基板。矽基板亦可在大氣中自然氧化,而以非常薄的二氧化矽之膜被覆於其表面。
作為用以形成GaN膜的前處理,亦佳為對基板形成極薄的氧化鎵薄膜。此氧化鎵薄膜的膜厚,為了不對GaN膜的特性造成不良影響,較佳為5nm以下,更佳為2nm以下,特佳為1.5nm以下。作為形成氧化鎵薄膜之方法,較佳為原子層沉積法,從能夠連續成膜而言,較佳為使用與本發明相同的原料。作為氧化劑,只要能夠形成氧化鎵薄膜,能夠使用水、氧氣、臭氧、氧電漿、或者這些成分的組合等任意的氧化劑。此氧化鎵薄膜可為非晶質亦可為結晶性,較佳為形成容易的非晶質。再者,可為1原子層至5原子層,亦可為單原子層。
進行ALD時的溫度,需要設為比吸附於基板之一價的有機鎵錯合物會熱分解之溫度要低,且充分與氮化氣體進行反應程度的溫度,較佳為50℃至350℃,更佳為150℃至250℃。於前驅物使用五甲基環戊二烯基鎵(Cp* Ga,GaC5 (CH3 )5 )的情況,Cp* Ga不會熱分解的200℃可說是合適的溫度。另外,基板溫度與反應溫度為相同。
在工序1與工序2之間,亦可進而具有供給不含氧的還原氣體之工序3。還原氣體係具有自吸附於基板上的一價的有機鎵錯合物使Ga的相對離子或環戊二烯基脫離的效果。也就是說,還原氣體通常是在供給作為前驅物之一價的有機鎵錯合物並使之吸附於基板後,而在供給氮化氣體使之反應前,供給來用以使配位子脫離。
作為還原氣體,較佳為氨氣及/或氫氣,亦可使用進而在這些還原氣體以適當比例導入有氮氣及/或惰性氣體(例如氬氣)而成的氣體。此時,亦較佳為藉由這些氣體的電漿來產生自由基物種。
另外,在前述工序1、工序2及工序3之後,為了將未反應原料及副產物自反應空間清除,通常會導入如氮氣或氬氣般的惰性氣體。
在本發明的結晶性之氮化鎵薄膜之製造方法的較佳形態,是依序以Cp* Ga等之前驅物、氨/氫電漿氣體、及氮電漿氣體的循環來成膜。若對前驅物照射氨/氫電漿氣體,則吸附於基板上的前驅物與氨/氫電漿氣體會進行反應,而前驅物的配位子會脫離。其次,藉由照射氮電漿,在形成於基板上的膜所殘留的NH基或NH2 基中的H被去除,形成了結晶性的GaN薄膜。在此氮化反應,一邊於真空下導入0.1mTorr至1000mTorr的含氮氣體,一邊使用例如400W的電力使氮化氣體激發、解離、電離來使產生電漿。此時,電力只要是能夠產生電漿的電力則大小沒有限制。再者,可在基板附近直接施加電力來產生電漿,亦可在稍微遠離基板之處施加來產生電漿。
如同以上所述,根據本發明的ALD法,即便不進行雷射退火等之高溫熱處理,仍能夠由一價的有機鎵錯合物形成結晶性高的GaN膜。 [實施例] 以下係基於實施例進一步具體地說明本發明,但本發明並不因下述實施例而受到限制。
[實施例1] (1)Cp* Ga之製備 Cp* Ga(五甲基環戊二烯基鎵)係依照P. Jutzi et al., J. Organomet. Chem. 654, 176 (2002)所記載之方法來合成。 差示掃描量熱法(Differential scanning calorimetry;DSC)的結果,Cp* Ga在250℃觀測到因分解所導致的放熱峰。
(2)藉由ALD之GaN膜的形成 在ALD裝置(FlexAL;Oxford Instruments股份有限公司製造)內設置附自然氧化膜之矽晶圓,使用Cp* Ga作為前驅物,使用氨/氫電漿氣體及氮電漿氣體分別作為還原氣體及氮化氣體,進行ALD成膜。此時,在外部將Cp* Ga進行氣化的溫度設為80℃,基板溫度設為200℃。 亦即,對於獲得GaN膜,是依序以Cp* Ga→氨/氫電漿→氮電漿的循環來進行ALD成膜。
將以此方法進行300循環而成膜的GaN膜藉由穿透式電子顯微鏡(TEM)觀察剖面後,已有結晶化。將此結果(XTEM(cross-sectional transmission electron microscope;橫截面穿透式電子顯微鏡)影像)顯示於圖1。 再者,將此樣品的GaN膜部分利用高解析RBS(Rutherford backscattering spectrometry;拉塞福背向散射光譜法)分析裝置(HRBS500;神戸製鋼所股份有限公司製造)進行了組成分析的結果,C、O雜質在檢測極限(C:4原子%左右,O:3原子%左右)以下,N/Ga比為0.9。 如此般根據本發明的方法,能夠製造雜質極少且結晶性高的GaN膜。
[實施例2] (1)Cp* Ga之製備 與實施例1同樣地進行製備而成。
(2)藉由ALD之GaN膜的形成 在ALD裝置(FlexAL;Oxford Instruments股份有限公司製造)內設置附自然氧化膜之矽晶圓,使用Cp* Ga作為前驅物,依序使用水及氧電漿氣體作為氧化劑,於附自然氧化膜之矽晶圓上形成了厚度1.1nm的氧化鎵薄膜。其次,使用Cp* Ga,以及分別使用氨/氫電漿氣體及氮電漿氣體作為還原氣體及氮化氣體,進行ALD成膜。此時,在外部將Cp* Ga進行氣化的溫度設為40℃,進行Ar鼓泡(Argon bubbling)。此時的基板溫度設為200℃。 亦即,對於獲得GaN膜,是依序以氧化鎵→Cp* Ga→氨/氫電漿→氮電漿的循環來進行ALD成膜。將以此方法進行500循環而成膜的GaN膜藉由穿透式電子顯微鏡(TEM)觀察剖面後,已有結晶化。將此結果(XTEM影像)顯示於圖2。
[圖1]係表示在實施例1,於附自然氧化膜之矽晶圓上所形成之GaN膜的剖面TEM(transmission electron microscope;穿透式電子顯微鏡)影像。 [圖2]係表示在實施例2所成膜之GaN膜的剖面TEM影像。

Claims (6)

  1. 一種結晶性之氮化鎵薄膜之製造方法,係使用了原子層沉積法,前述結晶性之氮化鎵薄膜之製造方法包含下述工序: 工序1,係將一價的有機鎵錯合物供給至已將基板溫度設為350℃以下之反應室內;與 工序2,係向前述反應室內供給氮化氣體。
  2. 如請求項1所記載之結晶性之氮化鎵薄膜之製造方法,其中前述氮化氣體為氮電漿氣體。
  3. 如請求項1或2所記載之結晶性之氮化鎵薄膜之製造方法,其中前述有機鎵錯合物為環戊二烯基系錯合物。
  4. 如請求項1或2所記載之結晶性之氮化鎵薄膜之製造方法,其中在前述工序1與工序2之間進而包含工序3,前述工序3係供給不含氧的還原氣體。
  5. 如請求項1或2所記載之結晶性之氮化鎵薄膜之製造方法,其中前述基板的表面不含氮、鎵、及鋁之中任一種作為主成分。
  6. 如請求項1或2所記載之結晶性之氮化鎵薄膜之製造方法,其中在前述工序1之前,包含沉積工序,前述沉積工序係作為基板的前處理,使用前述原料與氧化劑來沉積5nm以下的氧化鎵。
TW110118944A 2020-05-26 2021-05-26 結晶性之氮化鎵薄膜之製造方法 TWI768927B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-091235 2020-05-26
JP2020091235 2020-05-26
JP2021-079631 2021-05-10
JP2021079631A JP2021188127A (ja) 2020-05-26 2021-05-10 結晶性の窒化ガリウム薄膜の製造方法

Publications (2)

Publication Number Publication Date
TW202204666A true TW202204666A (zh) 2022-02-01
TWI768927B TWI768927B (zh) 2022-06-21

Family

ID=78744562

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110118944A TWI768927B (zh) 2020-05-26 2021-05-26 結晶性之氮化鎵薄膜之製造方法

Country Status (4)

Country Link
US (1) US20230160051A1 (zh)
KR (1) KR20220156952A (zh)
TW (1) TWI768927B (zh)
WO (1) WO2021241281A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707082B2 (en) * 2011-07-06 2020-07-07 Asm International N.V. Methods for depositing thin films comprising indium nitride by atomic layer deposition
DE112014004343B4 (de) 2013-09-23 2019-01-31 Ultratech, Inc. Verfahren und Vorrichtung zum Ausbilden von Galliumnitridschichten mit Bauelementqualität auf Siliziumsubstraten
EP3347504B1 (en) * 2015-09-11 2024-09-25 Versum Materials US, LLC Methods for depositing a conformal metal or metalloid silicon nitride film and resultant films
US11139308B2 (en) * 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
JP7032781B2 (ja) * 2017-09-20 2022-03-09 株式会社高純度化学研究所 ガリウムを含有する薄膜の原子層堆積方法
CN111886368B (zh) * 2018-03-29 2022-07-26 日本碍子株式会社 13族元素氮化物层、自立基板、功能元件以及13族元素氮化物层的制造方法

Also Published As

Publication number Publication date
US20230160051A1 (en) 2023-05-25
TWI768927B (zh) 2022-06-21
KR20220156952A (ko) 2022-11-28
WO2021241281A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
JP2822536B2 (ja) 立方晶窒化ホウ素薄膜の形成方法
TWI524552B (zh) 具有AlzGa-zN層的半導體晶圓及其製造方法
US8377803B2 (en) Methods and systems for forming thin films
US8138069B2 (en) Substrate pretreatment for subsequent high temperature group III depositions
US8722526B2 (en) Growing of gallium-nitrade layer on silicon substrate
JP2005529484A (ja) ガリウムリッチな窒化ガリウム膜の製造プロセス
JP2008056499A (ja) 窒化物半導体薄膜を有するSi基板の製造方法。
TWI768927B (zh) 結晶性之氮化鎵薄膜之製造方法
JP7117732B2 (ja) Iii族窒化物基板およびiii族窒化物結晶の製造方法
TW200849341A (en) Zinc oxide semiconductor manufacturing method and zinc oxide semiconductor manufacturing apparatus
JP2021188127A (ja) 結晶性の窒化ガリウム薄膜の製造方法
JP7120598B2 (ja) 窒化アルミニウム単結晶膜及び半導体素子の製造方法
KR100594626B1 (ko) 원자층 증착법을 이용한 질화막의 형성 방법
US6846754B2 (en) Boron phosphide-based semiconductor layer and vapor phase growth method thereof
US11837635B2 (en) Method of forming graphene on a silicon substrate
WO2021161613A1 (ja) 窒化ガリウムの気相成長装置および製造方法
US20210249331A1 (en) Low-Temperature Deposition of High-Quality Aluminum Nitride Films for Heat Spreading Applications
JPH11268996A (ja) 化合物半導体混晶の成長方法
US20220205085A1 (en) Deposition process using additional chloride-based precursors
JP3479041B2 (ja) Iii族金属窒化物薄膜の製造方法
Gordon et al. Low Temperature Preparation of Gallium Nitride Thin Films
Wang et al. Metalorganic chemical vapour deposition of GaN layers on ZnO substrates using α-Al2O3 as a transition layer
JPH0878728A (ja) 青色発光窒化ガリウムのヘテロエピタキシャル成長方法
Song et al. MOCVD of GaN films on Si substrates using a new single precursor
CN114381710A (zh) 一种GaN薄膜的制备方法、GaN薄膜及其应用