WO2021241281A1 - 結晶性の窒化ガリウム薄膜の製造方法 - Google Patents

結晶性の窒化ガリウム薄膜の製造方法 Download PDF

Info

Publication number
WO2021241281A1
WO2021241281A1 PCT/JP2021/018432 JP2021018432W WO2021241281A1 WO 2021241281 A1 WO2021241281 A1 WO 2021241281A1 JP 2021018432 W JP2021018432 W JP 2021018432W WO 2021241281 A1 WO2021241281 A1 WO 2021241281A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
gallium
gan
crystalline
substrate
Prior art date
Application number
PCT/JP2021/018432
Other languages
English (en)
French (fr)
Inventor
文一 水谷
慎太郎 東
伸尚 高橋
Original Assignee
株式会社高純度化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021079631A external-priority patent/JP2021188127A/ja
Application filed by 株式会社高純度化学研究所 filed Critical 株式会社高純度化学研究所
Priority to KR1020227037542A priority Critical patent/KR20220156952A/ko
Priority to US17/919,883 priority patent/US20230160051A1/en
Publication of WO2021241281A1 publication Critical patent/WO2021241281A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes

Definitions

  • the present invention relates to a method for forming a crystalline gallium nitride thin film by an atomic layer deposition (ALD) method.
  • ALD atomic layer deposition
  • Gallium nitride is an important semiconductor material used to emit blue to bluish purple light in light emitting diodes (LEDs) and blue lasers. It is highly desirable to grow a single crystal GaN layer on a silicon substrate, but due to the mismatch of the crystal lattice spacing between GaN and silicon, epitaxially grow crystalline GaN on a sapphire substrate with a lattice constant close to that of GaN. Is being done. However, since a single crystal sapphire substrate generally costs significantly more than a silicon substrate, a technique for growing a highly crystalline GaN film on a versatile and inexpensive substrate such as a silicon substrate is desired.
  • the chemical vapor deposition (CVD) method is generally used for GaN film formation.
  • ALD atomic layer deposition
  • raw materials are not deposited continuously, but are deposited layer by layer. Therefore, ultrathin films of several nanometers are deposited by a highly accurate and controlled method. Can be done.
  • Non-Patent Document 1 a method of forming a single crystal GaN thin film on a sapphire substrate at 450 to 900 ° C. using hydrogen as a carrier gas and using triethyl gallium (TEG) and ammonia has been reported (Non-Patent Document 1).
  • Sapphire can withstand high temperatures of 450 to 900 ° C. and has high heat resistance, which is also suitable for epitaxially growing GaN.
  • Patent Document 1 discloses, as a method for forming a GaN-ALD film, a method of forming a GaN device layer on a silicon substrate coated with an aluminum nitride (AlN) nucleation layer and crystallizing GaN by laser annealing. ..
  • TMG trimethylgallium
  • hydrogen radicals hydrogen radicals
  • ammonia ammonia
  • the GaN film obtained by this method has a large amount of carbon impurities of 10 to 35 at%.
  • Non-Patent Document 3 TMG, ammonia plasma, plasma of a mixed gas of nitrogen and hydrogen (hereinafter referred to as “nitrogen / hydrogen plasma”), or nitrogen plasma is referred to. It is used to form a crystalline thin film at 200 ° C. However, in the crystalline thin film, the N / Ga ratio is significantly N-rich, and the quality of the film is poor in nitrogen plasma without hydrogen. In Non-Patent Document 4, TEG and nitrogen / hydrogen plasma are used to form crystalline GaN thin films at 200 ° C, 285 ° C, and 350 ° C.
  • Non-Patent Document 5 TMG and a mixed plasma of nitrogen / hydrogen are used to perform ALD at 250 ° C. to form a crystalline film.
  • Non-Patent Document 5 even if plasma is used, ALD film formation cannot be performed at temperatures below 210 ° C., and the N / Ga ratio of the ALD film obtained at 250 ° C. is slightly Ga-rich, but contains about 9% of C impurities. ing. Crystallization using plasma is also exemplified in Patent Document 2.
  • Patent Document 2 uses TMG or TEG and nitrogen / hydrogen plasma to form a GaN thin film, and gallium halides such as GaCl 3 , GaCl, and GaI 3 are also exemplified.
  • TMG and TEG are widely used as Ga sources for forming a GaN film by the ALD method, but they are very unstable in the air and spontaneously ignite, so they are not easy to handle. Furthermore, in order to form a highly crystalline GaN thin film, it is necessary to perform ALD at high temperature, or to perform high temperature heat treatment at the same time as or immediately after ALD in combination with an annealing technique by laser or electron beam irradiation. rice field.
  • the GaN film formed on the substrate is a monovalent gallium compound. Therefore, if a trivalent gallium complex such as TMG or TEG is used as a raw material, there is a risk of C being mixed in because it is necessary to reduce gallium, and there is a problem that a GaN film having poor crystallinity is formed. rice field. Further, even if it is a monovalent gallium complex, in the case of an inorganic gallium complex, there is a possibility that an inorganic element may be mixed with GaN. Therefore, an object of the present invention is to provide a more efficient method for producing a GaN film by ALD, which comprises a method for producing a GaN film having extremely few impurities and high crystallinity.
  • ALD atomic layer deposition
  • a substrate having a lattice constant close to that of GaN such as GaN or GaN or AlN has been used, but in the present invention, nitrogen, which is a constituent element of GaN or sapphire, is used. It is also an object to obtain highly crystalline GaN even on a substrate containing neither gallium nitride nor aluminum as a main component.
  • the method for producing a crystalline gallium nitride thin film of the present invention includes step 1 of supplying a monovalent organic gallium complex to a reaction chamber having a substrate temperature of 350 ° C. or lower by using an atomic layer deposition (ALD) method. It is characterized by including a step 2 of supplying a nitride gas to the reaction chamber.
  • the nitrided gas is preferably nitrogen plasma gas.
  • the organic gallium complex is preferably a cyclopentadienyl complex.
  • the surface of the substrate does not contain any of nitrogen, gallium, and aluminum as main components.
  • a highly crystalline GaN film can be formed from an organic gallium complex without performing high-temperature heat treatment such as laser annealing.
  • FIG. 1 shows a cross-sectional TEM image of a GaN film formed on a silicon wafer with a natural oxide film in Example 1.
  • FIG. 2 shows a cross-sectional TEM image of the GaN film formed in Example 2.
  • the method for producing a gallium nitride (GaN) thin film of the present invention includes step 1 of supplying a monovalent organic gallium complex to a reaction chamber having a substrate temperature of 350 ° C. or lower using ALD, and a nitride gas in the reaction chamber. Has step 2 and.
  • thermal ALD can form a uniform film along a high aspect ratio surface.
  • PEALD can be performed at a low temperature, although the film forming ability on a high aspect ratio surface may be inferior to that of thermal ALD.
  • PEALD is suitable for the purpose of the present invention of efficiently forming a highly crystalline GaN film by using a monovalent gallium species.
  • GaN is formed by the deposition cycles of (i) to (ii) below.
  • One form of the deposition cycle is (i) the step of feeding the gas phase precursor into the reaction chamber to adsorb the precursor on the surface of the substrate, and (ii) the generation of radical species by plasma in the reaction chamber. It has a step of sending the nitriding gas and reacting it with a precursor adsorbed on the surface to form a GaN crystal layer. Each cycle is then repeated until the film formed reaches the desired thickness.
  • a monovalent organic gallium complex as a precursor is supplied in a gas phase into the reaction chamber in which the substrate is installed (step 1).
  • the substrate temperature is any temperature within the range of room temperature to 350 ° C., and the monovalent organic gallium complex is evaporated at a temperature lower than the substrate temperature so as not to condense on the substrate.
  • a nitride gas is supplied into the reaction chamber (step 2), and the precursor adsorbed on the substrate surface in step 1 reacts with the nitride gas to form a crystalline GaN thin film on the substrate.
  • the GaN thin film may be polycrystalline, but is preferably single crystal.
  • the N / Ga ratio of the thin film is 1, but in the case of polycrystal, a dense film is preferable, and an N / Ga ratio of 1 or less, which is Ga-rich, is preferable.
  • the GaN thin film there is almost no amorphous portion, but less than 1% by volume is preferable, less than 0.01% by volume is more preferable, and less than 0.0001% by volume is particularly preferable.
  • the GaN thin film is a high-purity thin film, and the carbon in the impurities is preferably 5 atomic% or less, more preferably 1 atomic% or less, still more preferably 0.01 atomic% or less, and particularly preferably. , 0.001 atomic% or less.
  • the oxygen content in the impurities is preferably 5 atomic% or less, more preferably 1 atomic% or less, still more preferably 0.01 atomic% or less, and particularly preferably 0.001 atomic% or less.
  • the nitriding gas supplied in step 2 is a gas containing nitrogen, and a gas in which radical species are generated by plasma is preferable.
  • the nitriding gas is not particularly limited as long as it can generate nitrogen radicals, but it is preferable that it does not contain carbon, ammonia / hydrogen plasma gas and nitrogen plasma gas are more preferable, and nitrogen plasma that can be easily used. Gas is particularly preferred.
  • the "ammonia / hydrogen plasma gas” refers to a plasma of a mixed gas of ammonia and hydrogen.
  • the precursor of the present invention is a monovalent organic gallium complex.
  • the monovalent gallium complex is an inorganic complex such as gallium chloride (I) or gallium bromide (I)
  • inorganic complex such as gallium chloride (I) or gallium bromide (I)
  • gallium chloride (I) or gallium bromide (I) it is not preferable because there is a risk of contamination or corrosion.
  • GaCl there is a concern that Cl may be mixed in or the substrate or chamber may be corroded by by-products.
  • Examples of the monovalent organic gallium complex include a cyclopentadienyl complex represented by the following general formula (1).
  • R 1 to R 5 are each independently an alkyl group having a hydrogen atom or a carbon atom number of 1 to 4.
  • the precursor represented by the general formula (1) is ⁇ 5 -pentamethylcyclopentadienyl gallium (I) represented by the following structural formula (hereinafter referred to as “Cp * Ga” or “Ga (C)”. It is also described as 5 (CH 3 ) 5) ”).
  • the substrate for growing GaN for example, a silicon substrate, a sapphire substrate, a silicon carbide substrate, a GaN substrate, or the like is used.
  • a GaN substrate of the same material is suitable for forming a GaN film having high crystallinity, but a sapphire substrate is also suitable in that the lattice constant is close to that of GaN.
  • a substrate containing neither nitrogen, gallium nor aluminum as a main component can be used to form a highly crystalline GaN film, and a silicon substrate is suitable as such a substrate. ..
  • the silicon substrate may be naturally oxidized in the atmosphere and its surface may be covered with a very thin film of silicon dioxide.
  • the film thickness of the gallium oxide thin film is preferably 5 nm or less, more preferably 2 nm or less, and particularly preferably 1.5 nm or less because it does not adversely affect the characteristics of the GaN film.
  • a method for forming the gallium oxide thin film an atomic layer deposition method is preferable, and since continuous film formation can be performed, it is preferable to use the same raw material as the present invention.
  • the oxidizing agent any oxidizing agent such as water, oxygen, ozone, oxygen plasma, or a combination thereof can be used as long as a gallium oxide thin film can be formed.
  • the gallium oxide thin film may be amorphous or crystalline, but is preferably amorphous, which is easy to form. Further, it may be a 1 to 5 atomic layer or a monatomic layer.
  • the temperature at the time of ALD is lower than the temperature at which the monovalent organic gallium complex adsorbed on the substrate is thermally decomposed and needs to be set to a temperature sufficient to sufficiently react with the nitride gas, preferably 50 to 350 ° C. More preferably, 150 to 250 ° C.
  • a temperature sufficient to sufficiently react with the nitride gas preferably 50 to 350 ° C. More preferably, 150 to 250 ° C.
  • pentamethylcyclopentadienyl gallium (Cp * Ga, GaC 5 (CH 3 ) 5 ) is used as the precursor, it can be said that 200 ° C. at which Cp * Ga does not thermally decompose is a suitable temperature.
  • the substrate temperature and the reaction temperature are the same.
  • a step 3 for supplying a reducing gas containing no oxygen may be further provided between the steps 1 and 2.
  • the reducing gas has the effect of desorbing the counterion of Ga and the cyclopentadienyl group from the monovalent organic gallium complex adsorbed on the substrate. That is, the reducing gas is usually supplied to supply a monovalent organic gallium complex as a precursor and adsorb it on the substrate, and then supply the reducing gas to desorb the ligand before supplying the nitride gas to react. do.
  • ammonia and / or hydrogen is preferable, and a gas introduced with nitrogen and / or an inert gas (for example, argon) at an appropriate ratio may be used. At this time, it is also preferable to generate radical species by plasma of these gases.
  • nitrogen and / or an inert gas for example, argon
  • an inert gas such as nitrogen or argon is usually introduced in order to purge the unreacted raw materials and by-products from the reaction space.
  • a precursor such as Cp * Ga, ammonia / hydrogen plasma gas, and nitrogen plasma gas are formed in this order.
  • the precursor is irradiated with ammonia / hydrogen plasma gas
  • the precursor adsorbed on the substrate reacts with the ammonia / hydrogen plasma gas and the ligand of the precursor is desorbed.
  • the NH groups remaining on the film formed on the substrate and H in the NH 2 groups are removed, and a crystalline GaN thin film is formed.
  • the nitriding gas is excited, dissociated, and ionized using a power of 400 W to generate plasma.
  • the electric power is not limited in size as long as it can generate plasma. Further, electric power may be applied directly to the vicinity of the substrate to generate plasma, or may be generated to a place slightly distant.
  • a highly crystalline GaN film can be formed from a monovalent organic gallium complex without performing high-temperature heat treatment such as laser annealing.
  • Example 1 (1) Cp * Ga Preparation Cp * Ga (pentamethylcyclopentadienyl gallium) is P. Jutzi et al., J. Organomet . Chem. 654, was synthesized according to the method described in 176 (2002). As a result of differential scanning calorimetry (DSC), an exothermic peak due to decomposition was observed at 250 ° C for Cp * Ga.
  • DSC differential scanning calorimetry
  • a silicon wafer with a natural oxide film is installed in an ALD device (FlexAL; manufactured by Oxford Instruments Co., Ltd.), and Cp * Ga is used as a precursor to reduce gas and nitride gas.
  • ALD film formation was performed using ammonia / hydrogen plasma gas and nitrogen plasma gas, respectively.
  • the temperature at which Cp * Ga was vaporized to the outside was set to 80 ° C, and the substrate temperature was set to 200 ° C. That is, in order to obtain a GaN film, ALD film formation was performed in the order of Cp * Ga ⁇ ammonia / hydrogen plasma ⁇ nitrogen plasma.
  • a silicon wafer with a natural oxide film is installed in an ALD device (FlexAL; manufactured by Oxford Instruments Co., Ltd.), Cp * Ga is used as a precursor, and water is used as an oxidizing agent. And oxygen plasma gas was used in this order to form a gallium oxide thin film having a thickness of 1.1 nm on a silicon wafer with a natural oxide film.
  • ALD film formation was performed using Cp * Ga and ammonia / hydrogen plasma gas and nitrogen plasma gas as the reducing gas and the nitride gas, respectively.
  • the temperature at which Cp * Ga was vaporized to the outside was set to 40 ° C., and Ar bubbling was performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

原子層堆積(ALD)による、より効率的なGaN膜の製造方法であって、レーザーアニールなどの高温熱処理を行わずに、一価のガリウム化合物を用いて、不純物が極めて少なく結晶性の高いGaN膜を製造する方法を提供する。 一価の有機ガリウム錯体を、基板温度を350℃以下とした反応室内に供給する工程1と、該反応室内に窒化ガスを供給する工程2とを含む、ALDを用いた結晶性の窒化ガリウム薄膜の製造方法。

Description

結晶性の窒化ガリウム薄膜の製造方法
 本発明は、原子層堆積(ALD)法による結晶性の窒化ガリウム薄膜の形成方法に関する。
 窒化ガリウム(GaN)は、発光ダイオード(LED)および青色レーザーにおいて青~青紫光を放出するのに使用される重要な半導体材料である。シリコン基板の上に単結晶GaN層を成長させることが非常に望ましいが、GaNとシリコンとの結晶格子面間隔の不整合のため、GaNと格子定数の近いサファイア基板に結晶性のGaNをエピタキシャル成長させることが行われている。しかしながら、単結晶サファイア基板は一般にシリコン基板に比べて著しくコストがかかるため、シリコン基板のように汎用性で廉価な基板に結晶性の高いGaN膜を成長させる技術が望まれている。
 GaNの製膜には、一般に化学気相成長(CVD)法が用いられる。CVD法の一種である、原子層堆積(ALD)法では、原料を連続的に堆積させず、一層ずつ堆積させるため、数ナノメータ単位の超薄膜を、高精度に制御された方法で堆積することができる。
 そこで、ALDを用いた結晶性GaNの成膜方法が検討されている。例えば、水素をキャリアガスにして、トリエチルガリウム(TEG)およびアンモニアを用いて、450~900℃で、サファイア基板上に単結晶GaN薄膜を形成する方法が報告されている(非特許文献1)。サファイアは450~900℃の高温に耐え、耐熱性が高い点でも、GaNをエピタキシャル成長させるのに好適である。
 特許文献1では、GaN-ALD膜の形成方法として、窒化アルミニウム(AlN)核生成層を塗布したシリコン基板上にGaNデバイス層を形成し、レーザーアニールによってGaNを結晶化させる方法が開示されている。
 レーザーアニール以外の結晶化の方法として、トリメチルガリウム(TMG)、水素ラジカル、およびアンモニアをこの順に導入して、100℃でALDを実施する際に、水素ラジカル導入の後、及びアンモニア導入の後に電子線を照射して、水素を脱離させることによって結晶性のGaN膜を形成する方法もある(非特許文献2)。ただし、この方法で得られたGaN膜は炭素不純物が10~35at%と多い。
 また、プラズマを用いて結晶化する例として、非特許文献3では、TMGと、アンモニアプラズマ、窒素および水素の混合ガスのプラズマ(以下「窒素/水素プラズマ」と記す。)、または窒素プラズマとを使用して、200℃で結晶性薄膜を形成している。ただし、前記結晶性薄膜において、N/Ga比は有意にNリッチであり、水素なしの窒素プラズマでは膜の品質が不良である。非特許文献4では、TEGおよび窒素/水素プラズマを使用して、200℃、285℃、および350℃で、結晶性GaN薄膜を形成している。前記結晶性薄膜について、Si(100)面への成膜では、シリコン基板との界面から18nm程のアモルファス層がある。いずれの膜も、N/Ga比は、大幅にNリッチである。非特許文献5では、TMGおよび窒素/水素の混合プラズマ使用して、250℃でALDを行い、結晶性膜を形成している。
 非特許文献5では、プラズマを用いても、210℃未満ではALD成膜できず、250℃で得られたALD膜のN/Ga比はややGaリッチであるがC不純物が約9%含まれている。プラズマを用いる結晶化については、特許文献2にも例示されている。特許文献2では、TMGあるいはTEGと窒素/水素プラズマを使用してGaN薄膜を形成していて、GaCl、GaCl、GaI等のハロゲン化ガリウムも例示されている。
特表2016-533645号公報 US8,846,502公報
「Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition」、M. Asif Khan et al., Appl. Phys. Lett. 60,1366 (1992) 「Electron enhanced growth of crystalline gallium nitride thin films at room temperature and 100 °C using sequential surface reactions」、Jaclyn K. Sprenger et al., Chem. Mater. 2016, 28, 15, 5282-5294 「Hollow cathode plasma-assisted atomic layer deposition of crystalline AlN, GaN and AlxGa1-xNthin films at low temperatures」、Cagla Ozgit-Akgun et al., J. Mater. Chem. C, 2014, 2, 2123 「PEALD-deposited crystalline GaN films on Si (100) substrates with sharp interfaces」、San-JieLiu et al., Chin. Phys. B Vol. 28, No. 2 (2019) 026801 「Low temperature depositions of GaN thin films by plasma-enhanced atomic layer deposition」、Tang Wen-Hui et al., Acta Physica Sinica, 66, 098101 (2017)
 GaN膜をALD法によって形成するためのGa源は、TMGやTEGが広く用いられているが、これらは空気中で非常に不安定で自然発火するため、取り扱いが容易とはいえない。さらに、結晶性の高いGaN薄膜を形成させるには、高温でALDを行うか、またはALDと同時もしくは直後に、高温熱処理をレーザー、または電子線の照射によるアニール技術とを組み合わせて行う必要があった。
 基板上に形成されるGaN膜は一価のガリウム化合物である。そのため、原料にTMGやTEGなどの三価のガリウム錯体を用いれば、ガリウムを還元する必要があるためCの混入のおそれがあり、ひいては結晶性の良くないGaN膜になってしまうという問題があった。また、一価のガリウム錯体であっても、無機ガリウム錯体の場合、無機元素がGaNに混入するおそれがあった。そこで、本発明では、より効率の良いALDによるGaN膜の製造方法であって、不純物が極めて少なく、結晶性の高いGaN膜を製造する方法を提供することを目的とする。
 また、従来は、GaN薄膜の結晶性を高めるために、GaN、あるいはサファイアやAlNなどのGaNと格子定数の近い基板を用いていたが、本発明では、GaNやサファイアの構成元素である、窒素、ガリウム、およびアルミニウムのいずれも主成分として含まない基板上であっても、結晶性の高いGaNが得られることも目的とする。
 本発明の結晶性の窒化ガリウム薄膜の製造方法は、原子層堆積(ALD)法を用いて、一価の有機ガリウム錯体を、基板温度を350℃以下とした反応室内に供給する工程1と、該反応室内に窒化ガスを供給する工程2とを含むことを特徴とする。
 前記窒化ガスは窒素プラズマガスであることが好ましい。
 前記有機ガリウム錯体はシクロペンタジエニル系錯体であることが好ましい。
 前記工程1と工程2との間に、さらに、酸素を含まない還元ガスを供給する工程3を含むことが好ましい。
 本発明の好ましい実施形態では、前記基板の表面は、窒素、ガリウム、およびアルミニウムのいずれも主成分として含まない。
 前記工程1の前に、基板の前処理として、前記原料と酸化剤を用いて、5nm以下の酸化ガリウムを堆積する工程を含むことが好ましい。
 本発明のALD法によれば、レーザーアニールなどの高温熱処理を行わなくても、有機ガリウム錯体から結晶性の高いGaN膜を形成させることができる。
図1は、実施例1で、自然酸化膜付きのシリコンウエハ上に形成したGaN膜の断面TEM像を表す。 図2は、実施例2で成膜したGaN膜の断面TEM像を表す。
 以下、本発明について詳細に説明する。
 本発明の窒化ガリウム(GaN)薄膜の製造方法は、ALDを用いて、一価の有機ガリウム錯体を、基板温度を350℃以下とした反応室内に供給する工程1と、該反応室内に窒化ガスを供給する工程2とを有する。
 ALDには、熱ALDおよびプラズマALD(PEALD)の2つがある。熱ALDでは高アスペクト比表面に沿って均一な膜を形成することができる。一方、PEALDは、高アスペクト比表面への膜形成能は熱ALDより劣る場合もあるが、低温で行うことができる。本発明ではどちらの方法を用いることもできるが、一価のガリウム化学種を用いて、効率良く結晶性の高いGaN膜を形成するという本発明の目的からすると、PEALDが好適である。
 本発明の好ましい実施形態であるPEALDでは、下記(i)~(ii)の堆積サイクルによってGaNを製膜する。堆積サイクルの一形態は、(i)基板の表面上に、前駆体を吸着するために、反応室内に気相の前駆体を送り込むステップと、(ii)該反応室内にプラズマによりラジカル種を生成させた窒化ガスを送り込み、表面に吸着した前駆体と反応させてGaN結晶層を形成するステップとを有する。そして、各サイクルは、形成される膜が所望の厚さに達するまで、繰り返される。
 前記(i)において、基板が設置された反応室内に、前駆体である一価の有機ガリウム錯体を気相で供給する(工程1)。基板温度は、室温~350℃の範囲内の任意の温度とし、一価の有機ガリウム錯体は、基板上で凝縮しないように、基板温度よりも低い温度で蒸発させる。
 次いで、前記(ii)では、反応室内に窒化ガスを供給して(工程2)、工程1で基板表面上に吸着した前駆体と窒化ガスを反応させて前記基板上に結晶性のGaN薄膜を成長させる。このとき、GaN薄膜は多結晶であっても良いが、単結晶であることが好ましい。単結晶の場合、薄膜のN/Ga比は1となるが、多結晶の場合、緻密な膜が好ましく、GaリッチとなるN/Ga比1以下が好ましい。前記GaN薄膜において、アモルファス部分はほとんど存在しないが、1体積%未満が好ましく、0.01体積%未満がより好ましく、0.0001体積%未満が特に好ましい。また、前記GaN薄膜は高純度の薄膜であり、不純物中の炭素は、好ましくは、5原子%以下、より好ましくは、1原子%以下、さらに好ましくは、0.01原子%以下、特に好ましくは、0.001原子%以下である。同様に、不純物中の酸素は、好ましくは、5原子%以下、より好ましくは、1原子%以下、さらに好ましくは、0.01原子%以下、特に好ましくは、0.001原子%以下である。
 工程2で供給する窒化ガスは、窒素を含むガスであって、プラズマによってラジカル種を発生させたガスが好ましい。窒化ガスとしては、窒素ラジカルが発生できるガスであれば特に制限はないが、炭素を含まないことが好ましく、アンモニア/水素プラズマガス、および窒素プラズマガスがより好ましく、簡便に用いることのできる窒素プラズマガスであることが特に好ましい。なお、「アンモニア/水素プラズマガス」は、アンモニアおよび水素の混合ガスのプラズマをいう。
 ここで、本発明の前駆体は一価の有機ガリウム錯体である。一価のガリウム錯体が、塩化ガリウム(I)や臭化ガリウム(I)などの無機錯体であった場合、混入や腐食のおそれがあり好ましくない。例えば、GaClの場合は、Clの混入や副生成物による基板やチャンバーの腐食の懸念がある。
 一価の有機ガリウム錯体としては、下記一般式(1)で表されるシクロペンタジエニル錯体が挙げられる。
Figure JPOXMLDOC01-appb-I000001
 一般式(1)中、R1~R5は、それぞれ独立に、水素原子又は炭素原子数1~4のアルキル基である。
 前記一般式(1)において、R1~R5のうち4つはメチル基であり、残りの1つはメチル基、エチル基、ノルマルプロピル基又はイソプロピル基であることがより好ましい。一般式(1)で表される前駆体は、具体的には、下記構造式で表されるη5-ペンタメチルシクロペンタジエニルガリウム(I)(以下「Cp*Ga」又は「Ga(C5(CH35)」とも記す。)であることが特に好ましい。
Figure JPOXMLDOC01-appb-I000002
 GaNを成長させるための基板としては、例えば、シリコン基板、サファイア基板、炭化ケイ素基板およびGaN基板などが用いられる。これらのうち、結晶性の高いGaN膜を形成するのに、材質が同一であるGaN基板が好適であることは言うまでもないが、GaNと格子定数が近い点でサファイア基板も好適である。
 本発明では、結晶性の高いGaN膜を形成するのに、窒素、ガリウム、およびアルミニウムのいずれも主成分として含まない基板を用いることができ、このような基板としては、シリコン基板が好適である。シリコン基板は、大気中で自然酸化して、非常に薄い二酸化ケイ素の膜でその表面が被覆されていてもよい。
 基板に対して、GaN膜を形成するための前処理として、ごく薄い酸化ガリウム薄膜を形成することも好ましい。この酸化ガリウム薄膜の膜厚は、GaN膜の特性に悪影響を与えないため5nm以下が好ましく、2nm以下がより好ましく、1.5nm以下が特に好ましい。酸化ガリウム薄膜を形成する方法としては、原子層堆積法が好ましく、連続して成膜できることから、本発明と同一の原料を用いることが好ましい。酸化剤としては酸化ガリウム薄膜を形成することができれば、水、酸素、オゾン、酸素プラズマ、あるいはそれらの組み合わせなど、任意の酸化剤が使用できる。この酸化ガリウム薄膜は、アモルファスでも結晶性でも良いが、形成の容易なアモルファスであることが好ましい。また、1~5原子層であっても、単原子層であっても良い。
 ALDを行うときの温度は、基板に吸着した一価の有機ガリウム錯体が熱分解する温度よりも低く、窒化ガスと十分に反応する程度の温度にする必要があり、50~350℃が好ましく、150~250℃がより好ましい。前駆体にペンタメチルシクロペンタジエニルガリウム(Cp*Ga、GaC5(CH35)を用いる場合は、Cp*Gaが熱分解しない200℃が好適な温度といえる。なお、基板温度と反応温度は同一になる。
 工程1と工程2との間に、さらに、酸素を含まない還元ガスを供給する工程3を有してもよい。還元ガスは、基板上に吸着した一価の有機ガリウム錯体からGaの対イオンやシクロペンタジエニル基を脱離させる効果を有する。つまり、還元ガスは、通常、前駆体である一価の有機ガリウム錯体を供給して基板に吸着させた後、窒化ガスを供給して反応させる前に、配位子を脱離させるために供給する。
 還元ガスとしては、アンモニアおよび/または水素が好ましく、さらにこれらに窒素および/または不活性ガス(例えば、アルゴン)を適当な比率で導入したガスを用いてもよい。このとき、これらのガスのプラズマによってラジカル種を発生させることも好ましい。
 なお、前記工程1、工程2および工程3の後には、未反応原料および副生成物を反応空間からパージするため、通常、窒素やアルゴンのような不活性ガスを導入する。
 本発明の結晶性の窒化ガリウム薄膜の製造方法の好ましい形態では、Cp*Ga等の前駆体、アンモニア/水素プラズマガス、および窒素プラズマガスの順のサイクルで成膜する。前駆体にアンモニア/水素プラズマガスを照射すると、基板上に吸着した前駆体とアンモニア/水素プラズマガスとが反応して前駆体の配位子が脱離する。次いで、窒素プラズマを照射することで、基板上に形成された膜に残留するNH基やNH2基中のHが除去されて、結晶性のGaN薄膜が形成される。この窒化反応では、真空下に0.1~1000mTorrの窒素を含むガスを導入しながら、例えば、400Wの電力を用いて窒化ガスを励起・解離・電離させてプラズマを発生させる。このとき、電力はプラズマが発生できる電力であれば大きさに制限はない。また、電力を基板付近に直接かけてプラズマを発生させても、少し離れたところにかけて発生させても良い。
 以上のとおり、本発明のALD法によれば、レーザーアニールなどの高温熱処理を行わなくても、一価の有機ガリウム錯体から結晶性の高いGaN膜を形成することができる。
 以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。
 [実施例1]
(1)Cp*Gaの調製
 Cp*Ga(ペンタメチルシクロペンタジエニルガリウム)はP. Jutzi et al., J. Organomet. Chem. 654, 176 (2002)に記載された方法に従って合成した。
 示差走査熱量測定(DSC)の結果、Cp*Gaは250℃に分解による発熱ピークが観測された。
(2)ALDによるGaN膜の形成
 ALD装置(FlexAL;オックスフォード・インストゥルメンツ(株)製)内に自然酸化膜付きシリコンウエハを設置し、前駆体としてCp*Gaを用い、還元ガスおよび窒化ガスとして、それぞれ、アンモニア/水素プラズマガスおよび窒素プラズマガスを用いてALD成膜を行った。このとき、Cp*Gaを外部で気化する温度は80℃とし、基板温度は200℃とした。
 すなわち、GaN膜を得るのに、Cp*Ga→アンモニア/水素プラズマ→窒素プラズマの順のサイクルでALD成膜を行った。
 この方法で300サイクル成膜したGaN膜を透過電子顕微鏡(TEM)によって断面を観察したところ、結晶化していた。この結果(XTEM像)を図1に示す。
 また、このサンプルのGaN膜部分を高分解能RBS分析装置(HRBS500;(株)神戸製鋼所製)で組成分析を行った結果、C、O不純物は検出限界(C;4原子%程度、O;3原子%程度)以下であり、N/Ga比は0.9であった。
 このように本発明の方法によれば、不純物が極めて少なく、結晶性の高いGaN膜が製造できる。
 [実施例2]
(1)Cp*Gaの調製
 実施例1と同様にして調製した。
(2)ALDによるGaN膜の形成
 ALD装置(FlexAL;オックスフォード・インストゥルメンツ(株)製)内に自然酸化膜付きシリコンウエハを設置し、前駆体としてCp*Gaを用い、酸化剤として、水および酸素プラズマガスをこの順に用いて、自然酸化膜付きシリコンウエハ上に厚さ1.1nmの酸化ガリウム薄膜を形成した。次いで、Cp*Gaならびに、還元ガスおよび窒化ガスとして、それぞれ、アンモニア/水素プラズマガスおよび窒素プラズマガスを用いてALD成膜を行った。このとき、Cp*Gaを外部で気化する温度は40℃とし、Arバブリングを行った。このときの基板温度は200℃とした。
 すなわち、GaN膜を得るのに、酸化ガリウム→Cp*Ga→アンモニア/水素プラズマ→窒素プラズマの順のサイクルでALD成膜を行った。この方法で500サイクル成膜したGaN膜を透過電子顕微鏡(TEM)によって断面を観察したところ、結晶化していた。この結果(XTEM像)を図2に示す。

Claims (6)

  1.  一価の有機ガリウム錯体を、基板温度を350℃以下とした反応室内に供給する工程1と、該反応室内に窒化ガスを供給する工程2とを含む、原子層堆積(ALD)法を用いた結晶性の窒化ガリウム薄膜の製造方法。
  2.  前記窒化ガスが窒素プラズマガスである、請求項1に記載の結晶性の窒化ガリウム薄膜の製造方法。
  3.  前記有機ガリウム錯体がシクロペンタジエニル系錯体である、請求項1または2に記載の結晶性の窒化ガリウム薄膜の製造方法。
  4.  前記工程1と工程2との間に、さらに、酸素を含まない還元ガスを供給する工程3を含む、請求項1~3のいずれか一項に記載の結晶性の窒化ガリウム薄膜の製造方法。
  5.  前記基板の表面が、窒素、ガリウム、およびアルミニウムのいずれも主成分として含まない、請求項1~4のいずれか一項に記載の結晶性の窒化ガリウム薄膜の製造方法。
  6.  前記工程1の前に、基板の前処理として、前記原料と酸化剤を用いて、5nm以下の酸化ガリウムを堆積する工程を含む請求項1~5のいずれか一項に記載の結晶性の窒化ガリウム薄膜の製造方法。
PCT/JP2021/018432 2020-05-26 2021-05-14 結晶性の窒化ガリウム薄膜の製造方法 WO2021241281A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227037542A KR20220156952A (ko) 2020-05-26 2021-05-14 결정성의 질화갈륨 박막의 제조 방법
US17/919,883 US20230160051A1 (en) 2020-05-26 2021-05-14 Method for manufacturing crystalline gallium nitride thin film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020091235 2020-05-26
JP2020-091235 2020-05-26
JP2021-079631 2021-05-10
JP2021079631A JP2021188127A (ja) 2020-05-26 2021-05-10 結晶性の窒化ガリウム薄膜の製造方法

Publications (1)

Publication Number Publication Date
WO2021241281A1 true WO2021241281A1 (ja) 2021-12-02

Family

ID=78744562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018432 WO2021241281A1 (ja) 2020-05-26 2021-05-14 結晶性の窒化ガリウム薄膜の製造方法

Country Status (4)

Country Link
US (1) US20230160051A1 (ja)
KR (1) KR20220156952A (ja)
TW (1) TWI768927B (ja)
WO (1) WO2021241281A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130012003A1 (en) * 2011-07-06 2013-01-10 Suvi Haukka Methods for depositing thin films comprising gallium nitride by atomic layer deposition
JP2018528615A (ja) * 2015-09-11 2018-09-27 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー コンフォーマルな金属又はメタロイド窒化ケイ素膜を堆積するための方法及びその結果として得られる膜
JP2019056133A (ja) * 2017-09-20 2019-04-11 株式会社高純度化学研究所 金属薄膜の原子層堆積方法
WO2019187737A1 (ja) * 2018-03-29 2019-10-03 日本碍子株式会社 13族元素窒化物層、自立基板、機能素子および13族元素窒化物層の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014004343B4 (de) 2013-09-23 2019-01-31 Ultratech, Inc. Verfahren und Vorrichtung zum Ausbilden von Galliumnitridschichten mit Bauelementqualität auf Siliziumsubstraten
US11139308B2 (en) * 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130012003A1 (en) * 2011-07-06 2013-01-10 Suvi Haukka Methods for depositing thin films comprising gallium nitride by atomic layer deposition
JP2018528615A (ja) * 2015-09-11 2018-09-27 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー コンフォーマルな金属又はメタロイド窒化ケイ素膜を堆積するための方法及びその結果として得られる膜
JP2019056133A (ja) * 2017-09-20 2019-04-11 株式会社高純度化学研究所 金属薄膜の原子層堆積方法
WO2019187737A1 (ja) * 2018-03-29 2019-10-03 日本碍子株式会社 13族元素窒化物層、自立基板、機能素子および13族元素窒化物層の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPRENGER, JACLYN K. ET AL.: "Electron Enhanced Growth of Crystalline Gallium Nitride Thin Films at Room Temperature and 100°C Using Sequential Surface Reactions", CHEMISTRY OF MATERIAL, vol. 28, 1 July 2016 (2016-07-01), pages 5282 - 5294, XP055879563 *

Also Published As

Publication number Publication date
KR20220156952A (ko) 2022-11-28
TWI768927B (zh) 2022-06-21
US20230160051A1 (en) 2023-05-25
TW202204666A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
US20200335342A1 (en) Methods for depositing thin films comprising indium nitride by atomic layer deposition
JP2822536B2 (ja) 立方晶窒化ホウ素薄膜の形成方法
Koleske et al. Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN
TW202142723A (zh) 使用預處理沉積氮化矽層之方法、使用該方法所形成之結構及用於進行該方法之系統
TWI524552B (zh) 具有AlzGa-zN層的半導體晶圓及其製造方法
JP2005529484A (ja) ガリウムリッチな窒化ガリウム膜の製造プロセス
US8722526B2 (en) Growing of gallium-nitrade layer on silicon substrate
Zhang et al. Highly c-axis oriented GaN films grown on free-standing diamond substrates for high-power devices
WO2021241281A1 (ja) 結晶性の窒化ガリウム薄膜の製造方法
JPH09251957A (ja) 3−5族化合物半導体の製造方法
JP7117732B2 (ja) Iii族窒化物基板およびiii族窒化物結晶の製造方法
JP2021188127A (ja) 結晶性の窒化ガリウム薄膜の製造方法
TW200849341A (en) Zinc oxide semiconductor manufacturing method and zinc oxide semiconductor manufacturing apparatus
KR100594626B1 (ko) 원자층 증착법을 이용한 질화막의 형성 방법
JP2019151523A (ja) 窒化アルミニウム単結晶膜、該膜付き基板及び半導体素子並びに製造方法及び製造装置
Popov et al. Laser‐induced chemical vapor deposition of aluminum from trimethylamine alane
WO2004051718A1 (ja) 3−5族化合物半導体およびその製造方法
JPH11268996A (ja) 化合物半導体混晶の成長方法
WO2021161613A1 (ja) 窒化ガリウムの気相成長装置および製造方法
US20210249331A1 (en) Low-Temperature Deposition of High-Quality Aluminum Nitride Films for Heat Spreading Applications
Biyikli et al. Low-Temperature Self-Limiting Growth of III-Nitride Thin Films by Plasma-Enhanced Atomic Layer Deposition
JP3479041B2 (ja) Iii族金属窒化物薄膜の製造方法
Gordon et al. Low Temperature Preparation of Gallium Nitride Thin Films
JPH0878728A (ja) 青色発光窒化ガリウムのヘテロエピタキシャル成長方法
SE2150544A1 (en) Method for producing a film of a ternary or quaternary compound by ALD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227037542

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813220

Country of ref document: EP

Kind code of ref document: A1