TW202145482A - 電路 - Google Patents

電路 Download PDF

Info

Publication number
TW202145482A
TW202145482A TW110115995A TW110115995A TW202145482A TW 202145482 A TW202145482 A TW 202145482A TW 110115995 A TW110115995 A TW 110115995A TW 110115995 A TW110115995 A TW 110115995A TW 202145482 A TW202145482 A TW 202145482A
Authority
TW
Taiwan
Prior art keywords
layer
metal
hybrid via
hybrid
barrier
Prior art date
Application number
TW110115995A
Other languages
English (en)
Inventor
鍾進龍
楊士億
李明翰
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202145482A publication Critical patent/TW202145482A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76805Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics the opening being a via or contact hole penetrating the underlying conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/7685Barrier, adhesion or liner layers the layer covering a conductive structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76885By forming conductive members before deposition of protective insulating material, e.g. pillars, studs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5283Cross-sectional geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76844Bottomless liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76849Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned on top of the main fill metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

混合通孔內連線結構包括第一阻障金屬層,圍繞第一金屬填充層的至少一部分;第二阻障金屬層,圍繞第二金屬填充層的至少一部分;以及混合通孔,形成於第一金屬填充層與第二金屬填充層之間。混合通孔提供第一金屬填充層與第二金屬填充層之間的電性連接,且其材料組成不同於第一金屬填充層、第二金屬填充層、第一阻障金屬層、與第二阻障金屬層。可在積體電路製作製程的後段製程部分時形成混合通孔內連線結構,以減少內連線電阻並改善製作難度。

Description

電路
本發明實施例一般關於半導體裝置與形成含半導體裝置的電路之方法,更特別關於在積體電路製作製程時形成的內連線結構。
半導體裝置用於多種電子單元中,且通常需要考慮半導體裝置的產能與效能。隨著這些裝置的尺寸持續減少,在產生高效能與可行的內連線結構時面臨挑戰。
本發明的一實施方式為電路。電路包括第一阻障金屬層,圍繞第一金屬填充層的至少一部分;第二阻障金屬層,圍繞第二金屬填充層的至少一部分;以及混合通孔,形成於第一金屬填充層與第二金屬填充層之間。混合通孔提供第一金屬填充層與第二金屬填充層之間的電性連接。
本發明另一實施方式為電路的製作方法。方法包括:形成絕緣層於第一內連線結構上;形成溝槽於絕緣層中;形成混合通孔於溝槽中;以及形成第二內連線結構於混合通孔上,使混合通孔提供第一內連線結構與第二內連線結構之間的電性連接。
本發明又一實施方式為電路。電路包括第一阻障金屬層,圍繞金屬填充層的至少一部分;第二阻障金屬層,圍繞金屬層的至少一部分;以及混合通孔,形成於金屬填充層與金屬層之間。混合通孔提供金屬填充層與金屬層之間的電性連接。
下述詳細描述可搭配圖式說明,以利理解本發明的各方面。值得注意的是,各種結構僅用於說明目的而未按比例繪製,如本業常態。實際上為了清楚說明,可任意增加或減少各種結構的尺寸。
下述內容提供的不同實施例或例子可實施本發明實施例的不同結構。特定構件與排列的實施例係用以簡化本揭露而非侷限本發明。舉例來說,形成第一構件於第二構件上的敘述包含兩者直接接觸,或兩者之間隔有其他額外構件而非直接接觸。此外,本發明之多種實例可重複採用相同標號以求簡潔,但多種實施例及/或設置中具有相同標號的元件並不必然具有相同的對應關係。
此外,空間性的相對用語如「下方」、「其下」、「下側」、「上方」、「上側」、或類似用語可用於簡化說明某一元件與另一元件在圖示中的相對關係。空間性的相對用語可延伸至以其他方向使用之元件,而非侷限於圖示方向。元件亦可轉動90°或其他角度,因此方向性用語僅用以說明圖示中的方向。
本發明提供混合通孔內連線結構的多種實施例,其可用於改善積體電路中的內連線結構。混合通孔內連線結構包括混合通孔,其通常提供電性連接於兩個金屬如兩個銅內連線之間。混合通孔的組成可為多種材料,包括金屬、合金、或其他導電材料。混合通孔內連線結構的形成方法可採用單鑲嵌製程、雙鑲嵌製程、反應性離子蝕刻製程、或其他合適製程。混合通孔內連線結構有利於減少接點電阻與內連線電阻,並改善製作的難度與效率。
圖1至10係多種實施例中,採用單鑲嵌製程所形成的混合通孔內連線結構100之剖視圖。混合通孔內連線結構100的形成方法,一般為積體電路製作製程的後段製程部分。積體電路製程的後段製程部分,通常在積體電路製程的前段製程部分之後。在前段製程部分中,可形成個別的半導體裝置(如電晶體、電容器、電阻、或類似物)於晶圓(如基體矽基板)上,並由隔離結構(如淺溝槽隔離結構)分成多個裝置區。在後段製程部分中,可形成晶圓上的個別裝置與線路之間的內連線。舉例來說,後段製程部分可包含形成多種接點、金屬層、絕緣層、與接合位點。
一些習知形成內連線結構的方法為積體電路製作製程的後段製程部分,其具有高接點電阻。舉例來說,在形成銅內連線時,採用阻障金屬層以化學隔離銅填充層與周圍的矽材料的作法,會導致高接點電阻。此現象會導入傳播延遲、增加能耗、並造成其他不想要的效應。此外,隨著半導體裝置的結構尺寸縮小,且對更小晶片的需求逐漸增加,形成傳統銅內連線與其他類似內連線結構面臨挑戰。舉例來說,形成銅內連線所採用的填充製程中的難處,會造成空洞與其他不想要的效應。在採用多種製作技術如單鑲嵌技術、雙鑲嵌技術、反應性離子蝕刻技術、或其他類似技術時,會產生這些問題。
如圖1所示,混合通孔內連線結構100包括以混合通孔110電性連接的金屬填充層122與金屬填充層124。阻障金屬層132與蓋層160圍繞金屬填充層122。阻障金屬層134圍繞金屬填充層124。阻障金屬層132與蓋層160的組合可完全圍繞金屬填充層122。阻障金屬層134可完全圍繞金屬填充層124 (但圖1未圖示此結構)。這些層與蝕刻停止層150所分開的絕緣層142及絕緣層144相鄰。
在一些實施例中,金屬填充層122與金屬填充層124為銅內連線。然而金屬填充層122與金屬填充層124的組成可為其他合適材料(如鋁或類似物)。阻障金屬層132與阻障金屬層134可使金屬填充層122與金屬填充層124分別與周圍材料如矽或其他材料化學隔離。舉例來說,阻障金屬層132可避免金屬填充層122擴散至絕緣層142。阻障金屬層132與阻障金屬層134的材料組成可為鉭、鈷、釕、或其他合適材料。阻障金屬層132與阻障金屬層134的材料組成通常有效地化學隔離金屬填充層122與金屬填充層124,亦可為有效導電體。
絕緣層142與絕緣層144可為低導電性的一般介電材料。舉例來說,絕緣層142與絕緣層144的材料可包含氮化矽、氧化矽、或其他較高介電常數的合適材料(如高介電常數的材料)。蝕刻停止層150一般可避免過蝕刻,因此在蝕刻蝕刻停止層150上的結構時,可避免損傷蝕刻停止層150之下的結構(比如絕緣層142、蓋層160、或類似物)。此外,蝕刻停止層150有利於改善多種蝕刻製程時的精準度。舉例來說,可採用第一蝕刻製程直到露出蝕刻停止層150,接著採用第二蝕刻製程移除第一蝕刻製程所露出的蝕刻停止層150的一部分。蝕刻停止層150的組成可為氮化矽、碳化矽、碳氮化矽、或其他合適材料。一般可包含蓋層160以減少混合通孔內連線結構100中的電遷移。蓋層160的組成可為多種材料如碳氮化矽、氮化矽、磷化鈷鎢、銅合金、其他合適材料、或上述之組合。
混合通孔110本身的組成可為多種材料,包含金屬(如鋁、銅、鈷、鎳、鎢、釕、鉬、鉑、鈀、或類似物)、合金(如銅鋅合金、鐵鈷合金、鉬鉭合金、或類似物)、其他導電材料(如富勒烯、奈米碳管、二硫化鉬、或類似物)、多種其他合適材料、或上述之組合,端視預定應用而定。混合通孔110的材料通常與金屬填充層122、金屬填充層124、阻障金屬層132、與阻障金屬層134的材料不同。混合通孔110所用的材料不同,除了其他可能優點外,可實施進階節點所用的金屬化,且可降低與整體混合通孔內連線結構100相關的接點電阻。
由於多種因素,混合通孔內連線結構100一般可減少接點電阻與內連線電阻。舉例來說,特別是圖7至10所示的包覆通孔結構(其中金屬填充層122接觸與包覆混合通孔110的一部分)可降低接點電阻,因為混合通孔110與金屬填充層122之間的接點面積較大。此外,隨著更進階的半導體節點發展,可更容易及/或更有效率地依據預定應用產生混合通孔內連線結構100的多種實施例。
圖11A係形成混合通孔內連線結構100的製程10之流程圖。圖11B至11J顯示製程10的多種步驟。製程10所形成的混合通孔內連線結構100可具有較低的接點電阻與內連線電阻,進而改善效能(與一些習知方法相較)。此外,製程10有利於使不同應用中的內連線結構製作製程更容易且更有效率(與一些習知方法相較)。製程10通常為單鑲嵌製程,其關於形成混合通孔110以電性連接金屬填充層122與金屬填充層124。混合通孔110的材料通常不同於金屬填充層122與金屬填充層124的材料。可實施製程10的多種適用方法,如搭配圖2至10說明的內容。
在步驟11,形成第一內連線結構(圖11B)。步驟11形成的第一內連線結構包括金屬填充層122、阻障金屬層132、絕緣層142、蝕刻停止層150、與蓋層160。第一內連線結構可形成於接點頂部上,比如在積體電路製作製程的中段製程時所形成的接點頂部上。舉例來說,第一內連線結構可形成於閘極接點上。步驟11可包含沉積絕緣層142於接點表面上,採用微影與蝕刻技術以形成溝槽於絕緣層142中,沉積阻障金屬層132於溝槽中,形成金屬填充層122的晶種層於阻障金屬層132上(比如採用物理氣相沉積製程),將額外金屬填充材料填入溝槽,其形成於晶種層上以形成金屬填充層122,採用化學機械平坦化以自金屬填充層122與阻障金屬層132移除多餘材料,形成蓋層160於金屬填充層122與阻障金屬層132上,以及形成蝕刻停止層150於絕緣層142與蓋層160上。步驟11中形成金屬填充層122的步驟通常視作單鑲嵌製程,其中金屬填充層122填入單一溝槽。
在步驟12中,形成絕緣層於第一內連線結構上(圖11C)。步驟12中形成的絕緣層可為絕緣層144。如圖11C所示,絕緣層144形成於蝕刻停止層150上。步驟12中形成絕緣層144的方法可為沉積高介電常數的材料如氧化矽或氮化矽。
在步驟13時,形成第一溝槽於絕緣層中(見圖11D)。如圖11D所示,形成溝槽172於絕緣層144中。溝槽172的形成方法可為圖案化與移除技術,比如合適的微影與蝕刻技術。舉例來說,可採用第一蝕刻製程移除絕緣層144的一部分,直到露出蝕刻停止層150。接著採用第二蝕刻製程移除蝕刻停止層150,直到露出蓋層160。如搭配圖2至10說明的下述內容,溝槽172亦可延伸至蓋層160中並穿過蓋層160,甚至延伸至金屬填充層122中。溝槽172可提供開口以填入材料,其可轉變為混合通孔110。
在步驟14中,形成混合通孔於溝槽中(圖11E)。將材料如金屬、合金、及/或其他導電材料填入溝槽172,以形成混合通孔110於溝槽172中。如圖11E所示,混合通孔110的上表面與絕緣層144的上表面齊平或近似齊平。然而如搭配圖2至10說明如下的內容,混合通孔110亦可延伸超出絕緣層144的上表面。混合通孔110的形成製程可為物理氣相沉積、化學氣相沉積、原子層沉積、電化學沉積、或其他合適製程。在一些實施例中,形成混合通孔110的製程溫度可為約20℃至1000℃,然而亦可實施此範圍之外的製程溫度。此外,一些實施例中的混合通孔110之高度為約5 Å至100微米,然而亦可實施此範圍之外的高度。
在步驟15中,形成額外絕緣材料於絕緣層與混合通孔上(圖11F)。步驟15中形成的額外絕緣材料,為絕緣層144的部分。由於製程10為單鑲嵌製程,在形成混合通孔110之後沉積額外絕緣材料,其可圖案化以填入材料,進而形成第二內連線結構,如下詳述。步驟15中形成額外絕緣材料的方法可包含沉積高介電常數的材料,比如氧化矽或氮化矽。
在步驟16中,形成第二溝槽於額外絕緣材料中(圖11G)。如圖11G所示,形成溝槽174於額外絕緣材料(如步驟15中的絕緣層144之部分)中。溝槽174的形成方法採用圖案化與移除技術,比如合適的微影與蝕刻技術。溝槽174提供的開口所填的材料將轉變成金屬填充層124與阻障金屬層134,如下詳述。
在步驟17中,阻障金屬層與金屬填充層的晶種層可形成於第二溝槽中(圖11H)。首先,阻障金屬層可沉積於溝槽174中。阻障金屬層134的材料組成可為鉭、鈷、釕、或其他合適材料,其可有效化學隔離金屬填充層124,亦可為有效電性導體。接著形成金屬填充層(如銅材料)的晶種層於阻障金屬層134上。金屬填充層的晶種層可改善金屬填充層124本身的形成方法。舉例來說,晶種層可避免形成小氣孔,其可形成於未採用晶種層的阻障金屬層134與金屬填充層124之間。阻障金屬層134與金屬填充層的晶種層形成於溝槽174中的方法,可採用多種合適的沉積製程。
在步驟18中,可形成額外的金屬填充材料於金屬填充層的晶種層上(圖11I)。因此形成金屬填充層124所用的材料(如銅)沉積於溝槽174之中與金屬填充層的晶種層之上。如圖11I所示,可超填額外金屬填充材料,使其完全填入溝槽174,並保留多餘材料於阻障金屬層134與絕緣層144上。額外金屬填充材料的過填充可避免因金屬材料的填充不完整所造成的氣孔與其他不想要的效應。
在步驟19中,移除多餘的金屬填充材料與多餘的阻障金屬材料(圖11J)。在一些實施例中,多餘金屬填充材料與多餘阻障金屬材料的移除方法,可採用化學機械平坦化製程,但亦可實施其他合適移除製程。如圖11J所示,移除多餘金屬填充材料與多餘阻障金屬材料,會造成結構中的絕緣層144、阻障金屬層134、與金屬填充層124的上表面彼此齊平或近似齊平,使混合通孔內連線結構100的頂部平坦化近似平坦。在步驟19之後,通常完成混合通孔內連線結構100。混合通孔內連線結構100的多種其他實施例將搭配圖2至10詳述於下。
如圖2所示,混合通孔內連線結構100的另一實施例包括間隙形成於阻障金屬層134中,使混合通孔110接觸金屬填充層124。為了形成圖2所示的結構,製程10適於在步驟16及17之間選擇性沉積阻擋層於混合通孔110上,並在步驟17之後移除阻擋層。阻擋層將詳述於下。依據應用,圖2所示的混合通孔內連線結構100可改善製作難度並減少接點電阻。
如圖3所示,混合通孔內連線結構100的另一實施例包括間隙形成於蓋層160中,使混合通孔110接觸金屬填充層122。為了形成圖3所示的結構,製程10適於使步驟13形成的溝槽172延伸至蓋層160中並穿過蓋層160。依據應用,圖3所示的混合通孔內連線結構100的實施例可改善製作難度並減少接點電阻。
如圖4所示,混合通孔內連線結構100的另一實施例包括間隙形成於阻障金屬層134中以使混合通孔110接觸金屬填充層124,以及間隙形成於蓋層160中以使混合通孔110接觸金屬填充層122。為了形成間隙於阻障金屬層134中,製程10適於在步驟16及17之間選擇性沉積阻擋層於混合通孔110上,並在形成阻障金屬層134之後的步驟17移除阻擋層。為了形成間隙於蓋層160中,製程10適於在步驟13中形成溝槽172,使溝槽172延伸至蓋層160中並穿過蓋層160。依據應用,圖4所示的混合通孔內連線結構100的實施例可改善製作難度並減少接點電阻。
如圖5所示,混合通孔內連線結構100的另一實施例不含蓋層160。在此結構中,蝕刻停止層150與混合通孔110接觸金屬填充層122,並提供阻障(而非蓋層160)於金屬填充層122的上表面上。依據應用,圖5所示的混合通孔內連線結構100的實施例可改善製作難度並減少接點電阻。
如圖6所示,混合通孔內連線結構100的另一實施例不含蓋層160,但包含間隙形成於阻障金屬層134中,使混合通孔110接觸金屬填充層124。為了形成阻障金屬層134中的間隙,製程10適於在步驟16及17之間選擇性沉積阻擋層於混合通孔110上,並在形成阻障金屬層134之後的步驟17移除阻擋層。依據應用,圖6所示的混合通孔內連線結構100的實施例可改善製作難度並減少接點電阻。
如圖7所示,混合通孔內連線結構100的另一實施例包含間隙形成於蓋層160中,且混合通孔110延伸至金屬填充層122中。製程10適於使步驟13形成的溝槽172延伸至蓋層160中並穿過蓋層160且延伸至金屬填充層122中,以形成凹陷於金屬填充層122中。
如圖8所示,混合通孔內連線結構100的另一實施例包括間隙形成於阻障金屬層134中以使混合通孔110接觸金屬填充層124,間隙形成於蓋層160中,以及混合通孔110延伸至金屬填充層122中。為了形成阻障金屬層134中的間隙,製程10適於在步驟16及17之間選擇性沉積阻擋層於混合通孔110上,並在形成阻障金屬層134之後的步驟17移除阻擋層。此外,製程10適於使步驟13形成的溝槽172延伸至蓋層160中並穿過蓋層160且延伸至金屬填充層122中,以形成凹陷於金屬填充層122中。依據應用,圖8所示的混合通孔內連線結構100的實施例可改善製作難度並減少接點電阻。
如圖9所示,混合通孔結構的另一實施例不含蓋層160,但包括混合通孔110延伸至金屬填充層122。製程10適於使步驟13形成的溝槽172延伸至金屬填充層122中,以形成凹陷於金屬填充層122中。依據應用,圖9所示的混合通孔內連線結構100的實施例可改善製作難度並減少接點電阻。
如圖10所示,混合通孔內連線結構100的另一實施例不含蓋層160,但包含間隙於阻障金屬層134中以使混合通孔110接觸金屬填充層124,且混合通孔110延伸至金屬填充層122中。為了形成阻障金屬層134中的間隙,製程10適於在步驟16及17之間選擇性沉積阻擋層於混合通孔110上,並在形成阻障金屬層134之後的步驟17移除阻擋層。此外,製程10適於使步驟13中的微影與蝕刻造成溝槽172延伸至金屬填充層122中,以形成凹陷於金屬填充層122中。依據應用,圖10所示的混合通孔內連線結構100的實施例可改善製作難度並減少接點電阻。亦可採用雙鑲嵌製程形成與混合通孔內連線結構100類似的結構,如搭配圖12至48F詳細說明的下述內容。
圖12至47顯示多種實施例中,採用雙鑲嵌製程所形成的混合通孔內連線結構200之剖視圖。混合通孔內連線結構200通常形成於積體電路製作製程的後段製程部分中。如圖12所示,混合通孔內連線結構200包括以混合通孔210電性連接的金屬填充層222與金屬填充層224。阻障金屬層232與蓋層260圍繞金屬填充層222。阻障金屬層234圍繞金屬填充層224。阻障金屬層232與蓋層260的組合可完全圍繞金屬填充層222。阻障金屬層234可部分圍繞金屬填充層224,或完全圍繞金屬填充層224 (此未圖示於圖12)。這些層狀物與隔有蝕刻停止層250的絕緣層242及244相鄰。
在一些實施例中,金屬填充層222與金屬填充層224均為銅內連線。然而金屬填充層222與金屬填充層224的組成可為其他合適材料如鋁或類似物。阻障金屬層232與阻障金屬層234分別化學隔離金屬填充層222與金屬填充層224以及周圍材料如矽或其他材料,舉例來說,阻障金屬層232可避免金屬填充層222擴散至絕緣層242中。阻障金屬層232與阻障金屬層234的材料組成可為鉭、鈷、釕、或其他合適材料。阻障金屬層232與阻障金屬層234的材料組成通常可有效化學隔離金屬填充層222與金屬填充層224,亦可為有效電性導體。
絕緣層242與絕緣層244為低導電性的一般介電材料。舉例來說,絕緣層242與絕緣層244的材料組成可為氮化矽、氧化矽、或其他較高介電常數的合適材料(如高介電常數材料)。蝕刻停止層250通常可避免過蝕刻,因此蝕刻蝕刻停止層250之上的結構時不損傷蝕刻停止層250 之下的結構(如絕緣層242、蓋層260、與類似物)。此外,蝕刻停止層250在多種蝕刻製程時有利於改善精準度。舉例來說,可採用第一蝕刻製程直到露出蝕刻停止層250,接著採用第二蝕刻製程移除第一蝕刻製程所露出的蝕刻停止層250的一部分。蝕刻停止層250的材料組成可為氮化矽、碳化矽、碳氮化矽、或其他合適材料。一般可包含蓋層260以減少混合通孔內連線結構200中的電遷移。蓋層260的組成可採用多種材料如碳氮化矽、氮化矽、磷化鈷鎢、銅合金、其他合適材料、或上述之組合。
混合通孔210本身的組成可為多種材料,包含金屬(如鋁、銅、鈷、鎳、鎢、釕、鉬、鉑、鈀、或類似物)、合金(如銅鋅合金、鐵鈷合金、鉬鉭合金、或類似物)、其他導電材料(如富勒烯、奈米碳管、二硫化鉬、或類似物)、多種其他合適材料、或上述之組合。混合通孔210的材料通常與金屬填充層222、金屬填充層224、阻障金屬層232、與阻障金屬層234的材料不同。混合通孔210所用的材料不同,可實施進階節點所用的金屬化,且可降低與整體混合通孔內連線結構200相關的接點電阻。
由於多種因素,混合通孔內連線結構200一般可降低接點電阻與內連線電阻。舉例來說,特別是圖18至21、23、25、27至31、36至39、41、及43至47所示的包覆通孔結構可減少接點電阻(其中金屬填充層222及/或金屬填充層224接觸並包覆混合通孔110的部分),因為混合通孔210與金屬填充層222及/或金屬填充層224之間的接點面積較大。此外,隨著更進階的半導體節點發展,可更容易及/或更有效率地產生混合通孔內連線結構200的多種實施例。
圖48A係形成混合通孔內連線結構200的製程20之流程圖。圖48B至48F顯示製程20的多種步驟。採用製程20所形成的混合通孔內連線結構200,可具有較低的接點電阻與內連線電阻,進而改善效能(與一些習知方法相較)。此外,製程20有利於更容易及/或更有效率地製作不同應用中的內連線結構(與一些習知方法相較)。製程20通常為雙鑲嵌製程,其關於形成混合通孔210以電性連接金屬填充層222與金屬填充層224。混合通孔210的材料通常不同於金屬填充層222與金屬填充層224的材料。可實施製程20的多種適用方法,如搭配圖13至47說明的內容。
在步驟21中,形成第一溝槽與第二溝槽於第一內連線結構上的絕緣層中(圖48B)。如圖48B所示,形成溝槽272與溝槽274於絕緣層244中。當製程20為雙鑲嵌製程時,可在形成混合通孔210之前形成溝槽272與溝槽274。其與製程10不同,因製程10先形成溝槽172,再形成混合通孔110,接著形成溝槽174。第一內連線結構包括金屬填充層222、阻障金屬層232、絕緣層242、蝕刻停止層250、與蓋層260。第一內連線結構可形成接點頂部上,比如積體電路製作製程的中段製程部分所形成的接點頂部上。舉例來說,第一內連線結構可形成於閘極接點上。第一內連線結構的形成方法可為沉積絕緣材料242於接點表面上,形成溝槽於絕緣層242中,形成阻障金屬層於溝槽中,形成金屬填充層的晶種層於阻障金屬層232上,形成額外的金屬填充材料於晶種層上以形成金屬填充層222,自金屬填充層222與阻障金屬層232移除多餘材料,形成蓋層260於金屬填充層222與阻障金屬層232上,以及形成蝕刻停止層250於絕緣層242與蓋層260上。
在步驟22中,形成混合通孔於第一溝槽中(圖48C)。如圖48C所示,將材料如金屬、合金、及/或其他導電材料填入溝槽272中,以形成混合通孔210於溝槽272中。如圖48C所示,混合通孔210的上表面與溝槽274的下表面齊平或近似齊平。然而如搭配圖13至47說明的下述內容,混合通孔210亦可延伸至溝槽274中。混合通孔210的形成製程可採用物理氣相沉積、化學氣相沉積、原子層沉積、電化學沉積、其他合適製程、或上述之組合。在一些實施例中,形成混合通孔210的製程溫度可為約20℃至1000℃,然而亦可實施此範圍之外的製程溫度。此外,一些實施例的混合通孔210之高度可為約5 Å至100微米,然而亦可實施此範圍之外的高度。
在步驟23中,形成阻障金屬層與金屬填充層的晶種層於第二溝槽中(見圖48D)。首先,沉積阻障金屬層234於溝槽274中。阻障金屬層234的材料組成可為鉭、鈷、釕、或其他合適材料,其可有效化學隔離金屬填充層224,亦可為有效的電性導體。接著可形成金屬填充層(如銅材料)的晶種層於阻障金屬層234上。金屬填充層的晶種層可改善金屬填充層224本身的形成方法。舉例來說,晶種層可避免形成小氣孔,其可能形成於未採用晶種層的阻障金屬層234與金屬填充層224之間。阻障金屬層234與金屬填充層的晶種層形成於溝槽274中的方法可採用多種合適的沉積製程。
在步驟24中,形成額外的金屬填充材料於金屬填充層的晶種層上(圖48E)。金屬填充層224所用的材料(如銅)沉積於溝槽274之中與金屬填充層的晶種層之上。如圖48E所示,可超填額外金屬填充材料以完全填入溝槽274,並保留多餘材料於金屬層234與絕緣層244上。超填額外金屬填充材料,可避免不完全填充所造成的氣孔與其他不想要的效應。
在步驟25,移除多餘的金屬填充材料與多餘的阻障金屬材料(見圖48F)。在一些實施例中,多餘的金屬填充材料與多餘的阻障金屬材料之移除方法,可採用化學機械平坦化製程。如圖48F所示,移除多餘金屬填充材料與多餘阻障金屬材料,會造成結構中的絕緣層244、阻障金屬層234、與金屬填充層224的上表面彼此齊平或近似齊平,使混合通孔內連線結構200的頂部平坦或近似平坦。在步驟25之後,通常完成混合通孔內連線結構200。混合通孔內連線結構200的多種不同實施例將搭配圖13至47詳述於下。
如圖13所示,混合通孔內連線結構200的另一實施例包括間隙形成於阻障金屬層234中,使混合通孔210接觸金屬填充層224。為了形成圖13所示的結構,製程20適於在步驟22及23之間選擇性沉積阻擋層於混合通孔210上,且在步驟23形成阻障金屬層234之後移除阻擋層。阻擋層將詳述於下。依據應用,圖13所示的混合通孔內連線結構200之實施例可改善製作難度並減少接點電阻。
如圖14所示,混合通孔內連線結構200的另一實施例包括間隙形成於蓋層260中,使混合通孔210接觸金屬填充層222。為了形成圖14所示的結構,製程20適於使步驟21形成的溝槽272延伸至蓋層260中並穿過蓋層260。依據應用,圖14所示之混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖15所示,混合通孔內連線結構200的另一實施例包含間隙形成於阻障金屬層234中以使混合通孔210接觸金屬填充層224,並包含間隙形成於蓋層260中以使混合通孔210接觸金屬填充層222。為了形成阻障金屬層234中的間隙,製程20適於在步驟22及23之間選擇性沉積阻擋層於混合通孔210上,並在形成阻障金屬層234之後的步驟23移除阻擋層。為了形成間隙於蓋層260中,製程20適於在步驟21中形成溝槽272,使溝槽272延伸至蓋層260中並穿過蓋層260。依據應用,圖15所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖16所示,混合通孔內連線結構200的另一實施例不包括蓋層260。在此結構中,蝕刻停止層250與混合通孔210均接觸金屬填充層222而非蓋層260。依據應用,圖16所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖17所示,混合通孔內連線結構200的另一實施例不含蓋層260,但包括間隙形成於阻障金屬層234中,使混合通孔210接觸金屬填充層224。在此結構中,混合通孔210接觸金屬填充層222與金屬填充層224。為了形成阻障金屬層234中的間隙,製程20適於在步驟22及23之間選擇性沉積阻擋層於混合通孔210上,並在形成阻障金屬層234之後的步驟23移除阻擋層。依據應用,圖17所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖18所示,混合通孔內連線結構200的另一實施例包括間隙形成於蓋層260中,且混合通孔210延伸至金屬填充層222中。製程20適於使步驟21形成的溝槽272延伸至蓋層260中並穿過蓋層260且延伸至金屬填充層222中,以形成凹陷於金屬填充層222中。步驟22接著可形成混合通孔210於凹陷中,使金屬填充層222接觸並包覆混合通孔210的一部分。依據應用,圖18所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖19所示,混合通孔內連線結構200的另一實施例包括間隙形成於阻障金屬層234中,使混合通孔210接觸金屬填充層224,間隙形成於蓋層260中,且混合通孔210延伸至金屬填充層222中。為了形成阻障金屬層234中的間隙,製程20適於在步驟22及23之間選擇性沉積阻擋層於混合通孔210上,並在形成阻障金屬層234之後的步驟23移除阻擋層。此外,製程20適於使步驟21所形成的溝槽272延伸至蓋層260中並穿過蓋層260且延伸至金屬填充層222中,以形成凹陷於金屬填充層222中。步驟22接著可形成混合通孔210於凹陷中,使金屬填充層222接觸並包覆混合通孔210的一部分。依據應用,圖19所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖20所示,混合通孔內連線結構200的另一實施例不含蓋層260,但包括混合通孔210延伸至金屬填充層222中。製程20適於使步驟21形成的溝槽272延伸至金屬填充層222中,以形成凹陷於金屬填充層222中。步驟22接著可形成混合通孔210於凹陷中,使金屬填充層222接觸並包覆混合通孔210的一部分。依據應用,圖20所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖21所示,混合通孔內連線結構200的另一實施例不含蓋層260,但包括間隙形成於阻障金屬層234中,使混合通孔210接觸金屬填充層224,而混合通孔210延伸至金屬填充層222中。為了形成阻障金屬層234中的間隙,製程20適於在步驟22及23之間選擇性沉積阻擋層於混合通孔210上,並在形成阻障金屬層234之後的步驟23移除阻擋層。此外,製程20適於使步驟21形成的溝槽272延伸至金屬填充層222中,以形成凹陷於金屬填充層222中。步驟22接著可形成混合通孔210於凹陷中,使金屬填充層222接觸並包覆混合通孔210的一部分。依據應用,圖21所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖22所示,混合通孔內連線結構200的另一實施例包含混合通孔210延伸至金屬填充層224中,其中阻障金屬層234圍繞混合通孔210延伸至金屬填充層224的部分,使混合通孔210不接觸金屬填充層224。為了形成圖22所示的結構,製程20適於使步驟22形成的混合通孔210不只填入溝槽272,亦延伸至溝槽274中。依據應用,圖22所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖23所示,混合通孔內連線結構200的另一實施例包含混合通孔210延伸至金屬填充層224中,其中阻障金屬層234不圍繞混合通孔210延伸至金屬填充層224中的部分(無阻障層),且金屬填充層224接觸與包覆混合通孔210的一部分。在此結構中,混合通孔210填入金屬填充層224中的凹陷。為了形成此結構,製程20適於使步驟22中的混合通孔210不只填入溝槽272,但亦延伸至溝槽274中。此外,可在步驟22及23之間選擇性沉積阻擋層於混合通孔210上,並在形成阻障金屬層234之後的步驟23移除阻擋層。依據應用,圖23所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖24所示,混合通孔內連線結構200的另一實施例包含間隙形成於蓋層260中,使混合通孔210接觸金屬填充層222,且混合通孔210延伸至金屬填充層224中,其中阻障金屬層234圍繞混合通孔210延伸至金屬填充層224中的部分,使混合通孔210不接觸金屬填充層224。為了形成間隙於蓋層260中,製程20適於使步驟21形成的溝槽272延伸至蓋層260中並穿過蓋層260。此外,製程20適於在步驟22中形成不只填充溝槽272且亦延伸至溝槽274中的混合通孔210。依據應用,圖24所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖25所示,混合通孔內連線結構200的另一實施例包含間隙形成於蓋層260中,且混合通孔210延伸至金屬填充層224中,其中阻障金屬層234不圍繞混合通孔210延伸至金屬填充層224中的部分(無阻障層),且金屬填充層224接觸並包覆混合通孔210的一部分。位形成間隙於蓋層260中,製程20適於使步驟21形成的溝槽延伸至蓋層260中並穿過蓋層260。此外,製程20適於在步驟22中形成不只填入溝槽272且亦延伸至溝槽274中的混合通孔210,在步驟22及23之間選擇性沉積阻擋層於混合通孔210上,並在形成阻障金屬層234之後的步驟23移除阻擋層。依據應用,圖25所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖26所示,混合通孔內連線結構200的另一實施例不含蓋層260,但包含混合通孔210延伸至金屬填充層224中,其中阻障金屬層234圍繞混合通孔210延伸至金屬填充層224中的部分,使混合通孔210不接觸金屬填充層224。若無蓋層260,混合通孔210與蝕刻停止層250均接觸金屬填充層222。製程20適於使步驟22的混合通孔210不只填入溝槽272,亦延伸至溝槽274中。依據應用,圖26所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖27所示,混合通孔內連線結構200的另一實施例不含蓋層260,但包含混合通孔210延伸至金屬填充層224中,其中阻障金屬層234不圍繞混合通孔210延伸至金屬填充層224中的部分(無阻障層),而金屬填充層224接觸並包覆混合通孔210的一部分。製程20適於使步驟22中的混合通孔210不只填入溝槽272,亦延伸至溝槽274中。此外,可在步驟22及23之間選擇性沉積阻擋層於混合通孔210上。依據應用,圖27所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖28所示,混合通孔內連線結構200的另一實施例包括間隙形成於蓋層260中,混合通孔210延伸至金屬填充層222中,且混合通孔210延伸至金屬填充層224中,其中阻障金屬層234圍繞混合通孔210延伸至金屬填充層224中的部分,使混合通孔210不接觸金屬填充層224。製程20適於使步驟21形成的溝槽272延伸至蓋層260中並穿過蓋層260且延伸至金屬填充層222中,以形成凹陷於金屬填充層222中。此外,製程20適於使步驟22中的混合通孔210不只填入溝槽272,亦延伸至溝槽274中。依據應用,圖28所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖29所示,混合通孔內連線結構200的另一實施例包括間隙形成於蓋層260中,混合通孔210延伸至金屬填充層222中,且混合通孔210延伸至金屬填充層224中,其中阻障金屬層234不圍繞混合通孔210延伸至金屬填充層224中的部分(無阻障層),而金屬填充層224接觸並包覆混合通孔210的一部分。製程20適於使步驟21形成的溝槽272延伸至蓋層260中並穿過蓋層260且延伸至金屬填充層222中,以形成凹陷於金屬填充層222中。此外,製程20適於在步驟22中形成不只填入溝槽272且亦延伸至溝槽274中的混合通孔210,在步驟22及23之間選擇性沉積阻擋層於混合通孔210上,並在形成阻障金屬層234之後的步驟23移除阻擋層。依據應用,圖29所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖30所示,混合通孔內連線結構200的另一實施例不含蓋層,但包含混合通孔210延伸至金屬填充層222,且混合通孔210延伸至金屬填充層224中,其中阻障金屬層234圍繞混合通孔210延伸至金屬填充層224中的部分,使混合通孔210不接觸金屬填充層224。製程20適於使步驟21形成的溝槽272延伸至金屬填充層222中,以形成凹陷於金屬填充層222中。此外,製程20適於在步驟22中形成不只填入溝槽272且亦延伸至溝槽274中的混合通孔210。依據應用,圖30所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖31所示,混合通孔內連線結構200的另一實施例不含蓋層260,但包括混合通孔210延伸至金屬填充層222中,且混合通孔210延伸至金屬填充層224中,其中阻障金屬層234不圍繞混合通孔210延伸至金屬填充層224中的部分(無阻障層),而金屬填充層224接觸並包覆混合通孔210的一部分。製程20適於使步驟21形成的溝槽272延伸至金屬填充層222,以形成凹陷於金屬填充層222中。此外,製程20適於在步驟22中形成不只填入溝槽272且亦延伸至溝槽274中的混合通孔210,在步驟22及23之間選擇性沉積阻擋層於混合通孔210上,並在形成阻障金屬層234之後的步驟23移除阻擋層(若形成)。依據應用,圖31所示的混合通孔內連線結構200可改善製作難度並減少接點電阻。
如圖32所示,混合通孔內連線結構200的另一實施例不含蓋層260,使阻障金屬層234延伸至混合通孔210周圍,使混合通孔210不接觸金屬填充層222、蝕刻停止層250、或絕緣層244,但接觸金屬填充層224。為了形成此結構,製程20適於使步驟23在步驟22之前。因此在形成混合通孔210之前,阻障層234可形成於溝槽272與溝槽274中。此外,在形成混合通孔210之後與步驟24中形成額外金屬填充材料之前,可形成金屬填充層的晶種層於仍暴露在溝槽274中的混合通孔210與阻障金屬層234的部分上。依據應用,圖32所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖33所示,混合通孔內連線結構200的另一實施例不包含蓋層260,但包含阻障金屬層234延伸於混合通孔210的周圍,使混合通孔210不接觸絕緣層244,但接觸金屬填充層222與金屬填充層224。為了形成此結構,製程20適於在步驟21之後選擇性沉積阻擋層於溝槽272之中與金屬填充層222之上,因此步驟23在步驟22之前。在形成混合通孔210之前,可形成阻障金屬層234於溝槽272及274中。此外,在形成混合通孔210之後與步驟24中形成額外金屬填充材料之前,可形成金屬填充層的晶種層於仍暴露在溝槽274中的混合通孔210與阻障金屬層234的部分上。依據應用,圖33所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖34所示,混合通孔內連線結構200的另一實施例包含蓋層260,並包含阻障金屬層234延伸於混合通孔210周圍,使混合通孔210不接觸蓋層260、蝕刻停止層250、或絕緣層244,但接觸金屬填充層224。為了形成此結構,製程20適於使步驟23在步驟22之前。因此在形成混合通孔210之前,可形成阻障金屬層234於溝槽272與溝槽274中。此外,在形成混合通孔210之後與步驟24中形成額外金屬填充材料之前,可形成金屬填充層的晶種層於仍暴露在溝槽274中的混合通孔210與阻障金屬層234的部分上。依據應用,圖34所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖35所示,混合通孔內連線結構200的另一實施例包含蓋層260,並包含阻障金屬層234延伸於混合通孔210的周圍,使混合通孔210不接觸絕緣層244或蝕刻停止層250,但接觸金屬填充層224與蓋層260。製程20適於在步驟21之後選擇性沉積阻擋層於溝槽272之中與蓋層260之上,因此步驟23在步驟22之前。在形成混合通孔210之前,可形成阻障金屬層234於溝槽272及274中。此外,在形成混合通孔210之後與步驟24形成額外金屬填充材料之前,可形成金屬填充層的晶種層於仍暴露在溝槽274中的混合通孔210與阻障金屬層234的部分上。依據應用,圖35所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖36所示,混合通孔內連線結構200的另一實施例不含蓋層260,但包括阻障金屬層234延伸於混合通孔210周圍,使混合通孔210不接觸金屬填充層222、蝕刻停止層250、或絕緣層244,且混合通孔210延伸至金屬填充層224。製程20適於使步驟23在步驟22之前。因此在形成混合通孔210之前,可形成阻障金屬層234於溝槽272中與溝槽274中。此外,混合通孔210不只填入溝槽272,但亦延伸至溝槽274中,且在形成混合通孔210之後與步驟24中形成額外金屬填充材料之前,可形成金屬填充層的晶種層於仍暴露在溝槽274中的混合通孔210與阻障金屬層234的部分上。依據應用,圖36所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖37所示,混合通孔內連線結構200的另一實施例不包含蓋層260,但包含阻障金屬層234延伸於混合通孔210周圍,使混合通孔210不接觸絕緣層244或蝕刻停止層250,且混合通孔210延伸至金屬填充層224中。製程20適於在步驟21之後選擇性沉積阻擋層於溝槽272之中,因此步驟23在步驟22之前。在形成混合通孔210之前,可形成阻障金屬層234於溝槽272及274中。此外,混合通孔210不只填入溝槽272,但亦延伸至溝槽274中,且在形成混合通孔210之後與步驟24中形成額外金屬填充材料之前,可形成金屬填充層的晶種層於仍暴露在溝槽274中的混合通孔210與阻障金屬層234的部分上。依據應用,圖37所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖38所示,通孔內連線結構200的另一實施例包含蓋層260,且阻障金屬層234延伸於混合通孔210周圍,使混合通孔210不接觸蓋層260、蝕刻停止層250、或絕緣層244,且混合通孔210延伸至金屬填充層224中。製程適於使步驟23在步驟22之前。因此可在形成混合通孔210之前,形成阻障金屬層234於溝槽272與溝槽274中。此外,混合通孔210不只填入溝槽272,但亦延伸至溝槽274中,且在形成混合通孔210之後與步驟24中形成額外金屬填充材料之前,可形成金屬填充層的晶種層於仍暴露在溝槽274中的混合通孔210與阻障金屬層234的部分上。依據應用,圖38所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖39所示,混合通孔內連線結構200的另一實施例包括蓋層260,且阻障金屬層234延伸於混合通孔210周圍,使混合通孔210不接觸絕緣層244或蝕刻停止層250,且混合通孔延伸至金屬填充層224中。製程20適於在步驟21之後選擇性沉積阻擋層於溝槽272之中與蓋層260之上,因此步驟23在步驟22之前。在形成混合通孔210之前,可形成阻障金屬層234於溝槽272及274中。此外,混合通孔210不只填入溝槽272,但亦延伸至溝槽274中,且在形成混合通孔210之後與步驟24中形成額外金屬填充材料之前,可形成金屬填充層的晶種層於仍暴露在溝槽274中的混合通孔210與阻障金屬層234的部分上。依據應用,圖39所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖40所示,混合通孔內連線結構200的另一實施例不含蓋層260,但混合通孔210延伸至金屬填充層222中,且阻障金屬層234延伸於混合通孔210周圍,使混合通孔210不接觸絕緣層244、蝕刻停止層250、或金屬填充層222。為了形成此結構,製程20適於使步驟21形成的溝槽272延伸至金屬填充層222中,且步驟23在步驟22之前。因此在形成混合通孔210之前,可形成阻障金屬層234於溝槽272與溝槽274中。此外,在形成混合通孔210之後與步驟24中形成額外金屬填充材料之前,可形成金屬填充層的晶種層於仍暴露在溝槽274中的混合通孔210與阻障金屬層234的部分上。依據應用,圖40所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖41所示,混合通孔內連線結構200的另一實施例不含蓋層260,但包含混合通孔210延伸至金屬填充層222中,且阻障金屬層234延伸於混合通孔210周圍,使混合通孔210不接觸絕緣層244或蝕刻停止層250。製程20適於在步驟21中形成的溝槽272延伸至金屬填充層222中以形成凹陷於金屬填充層222中,在步驟21之後選擇性沉積阻擋層於金屬填充層222中的凹陷中,因此步驟23在步驟22之前。在形成混合通孔210之前,可形成阻障金屬層234於溝槽272及274中。此外,在形成混合通孔210之後與步驟24形成額外金屬填充材料之前,可形成金屬填充層的晶種層於仍暴露在溝槽274中的混合通孔210與阻障金屬層234的部分上。依據應用,圖41所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖42所示,混合通孔內連線結構200的另一實施例包括蓋層260、混合通孔210延伸至金屬填充層222中、以及阻障金屬層234延伸於混合通孔210周圍,使混合通孔210不接觸絕緣層244、蓋層260、蝕刻停止層250、或金屬填充層222。為了形成此結構,製程20適於使步驟21形成的溝槽272延伸至蓋層260中並穿過蓋層260且延伸至金屬填充層222中,以形成凹陷於金屬填充層222中。因此步驟23在步驟22之前。在形成混合通孔210之前,可形成阻障金屬層234於溝槽272與溝槽274中。此外,在形成混合通孔210之後與步驟24形成額外金屬填充材料之前,可形成金屬填充層的晶種層於仍暴露在溝槽274中的混合通孔210與阻障金屬層234的部分上。依據應用,圖42所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖43所示,混合通孔內連線結構200的另一實施例包括蓋層260,混合通孔210延伸至金屬填充層222中、以及阻障金屬層234延伸至混合通孔210周圍,使混合通孔210不接觸絕緣層244或蝕刻停止層250。為了形成此結構,製程20適於使步驟21形成的溝槽272延伸至蓋層260中並穿過蓋層260且延伸至金屬填充層222中,以形成凹陷於金屬填充層222中。在步驟21之後選擇性沉積阻擋層於金屬填充層222中的凹陷中,因此步驟23在步驟22之前。在形成混合通孔210之前,可形成阻障金屬層234於溝槽272及274中。此外,在形成混合通孔210之後與步驟24形成額外金屬填充材料之前,可形成金屬填充層的晶種層於仍暴露在溝槽274中的混合通孔210與阻障金屬層234的部分上。依據應用,圖43所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖44所示,混合通孔內連線結構200的另一實施例不含蓋層260,但包含混合通孔210延伸至金屬填充層222中,混合通孔210延伸至金屬填充層224中,且阻障金屬層234延伸於混合通孔210周圍,使混合通孔210不接觸金屬填充層222、絕緣層244、或蝕刻停止層250。製程20適於使步驟21形成的溝槽272延伸至金屬填充層222中,以形成凹陷於金屬填充層222中,因此步驟23在步驟22之前。在形成混合通孔210之前,可形成阻障金屬層234於溝槽272及274中。此外,混合通孔210不只填入溝槽272亦可延伸至溝槽274中。在形成混合通孔210之後與步驟24形成額外金屬填充材料之前,可形成金屬填充層的晶種層於仍暴露在溝槽274中的混合通孔210與阻障金屬層234的部分上。依據應用,圖44所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖45所示,混合通孔內連線結構200的另一實施例不含蓋層260,但包括混合通孔210延伸至金屬填充層222中,混合通孔210延伸至金屬填充層224中,且阻障金屬層234延伸於混合通孔210周圍,使混合通孔210不接觸絕緣層244或蝕刻停止層250。製程20適於使步驟21形成的溝槽272延伸至金屬填充層222中,以形成凹陷於金屬填充層222中,在步驟21之後選擇性沉積阻擋層於金屬填充層222中的凹陷中,且步驟23在步驟22之前。在形成混合通孔210之前,可形成阻障金屬層234於溝槽272及274中。此外,混合通孔210不只填入溝槽272,但亦延伸至溝槽274中,且在形成混合通孔210之後與步驟24中形成額外金屬填充材料之前,可形成金屬填充層的晶種層於仍暴露在溝槽274中的混合通孔210與阻障金屬層234的部分上。依據應用,圖45所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖46所示,混合通孔內連線結構200的另一實施例包含蓋層260、混合通孔210延伸至金屬填充層222中、混合通孔210延伸至金屬填充層224中、與阻障金屬層234延伸於混合通孔210周圍,使混合通孔210不接觸金屬填充層222、絕緣層244、蝕刻停止層250、或蓋層260。製程20適於使步驟21形成的溝槽272延伸至蓋層260中並穿過蓋層260且延伸至金屬填充層222中,以形成凹陷於金屬填充層222中,因此步驟23在步驟22之前。在形成混合通孔210之前,可形成阻障金屬層234於溝槽272及274中。此外,混合通孔210不只填入溝槽272,但亦延伸至溝槽274中,且在形成混合通孔210之後與步驟24中形成額外金屬填充材料之前,可形成金屬填充層的晶種層於仍暴露在溝槽274中的混合通孔210與阻障金屬層234的部分上。依據應用,圖46所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。
如圖47所示,混合通孔內連線結構200的另一實施例包括蓋層260、混合通孔210延伸至金屬填充層222中、混合通孔210延伸至金屬填充層224中、以及阻障金屬層234延伸至混合通孔210周圍,使混合通孔不接觸絕緣層244或蝕刻停止層250。製程20適於使步驟21形成的溝槽272延伸至蓋層260中並穿過蓋層260且延伸至金屬填充層222中,以形成凹陷於金屬填充層222中。在步驟21之後選擇性沉積阻擋層於金屬填充層222中的凹陷中,且步驟23在步驟22之前。在形成混合通孔210之前,可形成阻障金屬層234於溝槽272及274中。此外,混合通孔210不只填入溝槽272,但亦延伸至溝槽274中,且在形成混合通孔210之後與步驟24中形成額外金屬填充材料之前,可形成金屬填充層的晶種層於仍暴露在溝槽274中的混合通孔210與阻障金屬層234的部分上。依據應用,圖47所示的混合通孔內連線結構200的實施例可改善製作難度並減少接點電阻。與混合通孔內連線結構100與混合通孔內連線結構200類似的結構,可由反應性離子蝕刻製程形成,如搭配圖12至48F詳細說明的下述內容。
圖49至64係多種實施例中,採用反應性離子蝕刻製程所形成的混合通孔內連線結構300之剖視圖。混合通孔內連線結構300通常形成於積體電路製作製程的後段製程部分。如圖49所示,混合通孔內連線結構300包括由混合通孔310電性相連的金屬填充層322與金屬層380。阻障金屬層332圍繞金屬填充層322。阻障金屬層334圍繞金屬層380。阻障金屬層332、蝕刻停止層352、與混合通孔310的組合可完全圍繞金屬填充層322。阻障金屬層334可部分圍繞金屬層380,或完全圍繞金屬層380 (但未圖示於圖49)。這些層狀物與隔有蝕刻停止層352與蝕刻停止層354的絕緣層342、絕緣層344、與絕緣層346相鄰。
在一些實施例中,金屬填充層322為銅內連線。然而金屬填充層322的組成可為其他合適材料(如鋁)。金屬層380的組成一般為適於進行反應性離子蝕刻製程的金屬材料。金屬層380一般為反應性離子蝕刻金屬如鋁、鉻、鈦、其他合適金屬、或上述之組合。為了圖案化金屬層380,可施加光阻層於金屬層380的一部分上,且可採用朝金屬層380加速的化學反應性離子如氯為主離子與其他種類的離子,以圖案化金屬層380的暴露部分。如此一來,將向下移除不在光阻下的金屬層380之露出部分,直到蝕刻停止層354。阻障金屬層332與阻障金屬層334可使金屬填充層322與金屬層380分別與周圍材料如矽或其他材料化學隔離。舉例來說,阻障金屬層332可避免金屬填充層322擴散至絕緣層342。阻障金屬層332與阻障金屬層334的材料組成可為鉭、鈷、釕、或其他合適材料。阻障金屬層332與阻障金屬層334的材料組成一般有效電性隔離金屬填充層322與金屬層380,亦可為有效電性導體。
絕緣層342、絕緣層344、與絕緣層346為低導電性的一般介電材料。舉例來說,絕緣層342、絕緣層344、與絕緣層346的材料組成可為氮化矽、氧化矽、或較高介電常數的其他材料(如高介電常數材料)。蝕刻停止層352與蝕刻停止層354一般可避免過蝕刻,使蝕刻停止層352與蝕刻停止層354之下的結構不受損傷。舉例來說,可採用第一蝕刻製程直到露出蝕刻停止層352,接著可採用第二蝕刻製程移除第一蝕刻製程所露出的蝕刻停止層352的一部分。蝕刻停止層352與蝕刻停止層354的材料組成可為氮化矽、碳化矽、碳氮化矽、或其他類似材料。
混合通孔310本身的組成可為多種材料,包含金屬(如鋁、銅、鈷、鎳、鎢、釕、鉬、鉑、鈀、或類似物)、合金(如銅鋅合金、鐵鈷合金、鉬鉭合金、或類似物)、其他導電材料(如富勒烯、奈米碳管、二硫化鉬、或類似物)、多種其他合適材料、或上述之組合。混合通孔310的材料通常與金屬填充層322、金屬層380、阻障金屬層332、與阻障金屬層334的材料不同。混合通孔310所用的材料不同,可實施進階節點所用的金屬化,且可降低與整體混合通孔內連線結構300相關的接點電阻。
由於多種因素,混合通孔內連線結構300一般可降低接點電阻與內連線電阻。舉例來說,特別是圖54及56至64所示的包覆通孔結構(其中金屬填充層322及/或金屬層380可接觸混合通孔310的包覆部分),由於混合通孔310與金屬填充層322及/或金屬層380的接觸面積較大,因此可降低接點電阻。此外,隨著更進階的半導體節點發展,可更容易及/或更有效率地依據預定應用產生混合通孔內連線結構300的多種實施例。
圖65A係形成混合通孔內連線結構300所用的製程30之流程圖。圖65B至65I顯示製程30的多種步驟。製程30一般用於形成混合通孔內連線結構300,其可具有較低的接點電阻,進而改善效能(與一些習知方法相較)。此外,製程30有利於使不同應用中的製作更容易(與一些習知方法相較)。製程30一般為反應性離子蝕刻製程,其關於形成混合通孔310以電性連接金屬填充層322與金屬層380。混合通孔310的材料通常不同於金屬填充層322、金屬層380、與阻障金屬層332及334的材料。可實施製程30的多種適用方法,如搭配圖50至64說明的內容。
在步驟31中,形成溝槽於第一內連線結構上的絕緣層中(圖65B)。如圖65B所示,形成溝槽370於絕緣層344中。第一內連線結構包括金屬填充層322、阻障金屬層332、絕緣層342、與蝕刻停止層352。第一內連線結構可形成於接點頂部上,比如積體電路製作製程的中段製程部分所形成的接點頂部上。舉例來說,第一內連線結構可形成於閘極接點上。第一內連線結構的形成方法可為沉積絕緣層342於接點表面上,採用微影與蝕刻技術形成溝槽於絕緣層342中,沉積阻障金屬層332於溝槽中,形成金屬填充層的晶種層於阻障金屬層332上,沉積額外的金屬填充材料於晶種層上以形成金屬填充層322,採用化學機械平坦化製程自金屬填充層322與阻障金屬層332移除多餘材料,並沉積蝕刻停止層352於絕緣層342、阻障金屬層332、與金屬填充層322上。接著形成絕緣層344於蝕刻停止層352上,並採用微影與蝕刻技術形成溝槽370於絕緣層344中。
在步驟32中,形成混合通孔於溝槽中(見圖65C)。如圖65C所示,將材料如金屬、合金、及/或其他導電材料填入溝槽370,以形成混合通孔310。如圖65C所示,混合通孔310的上表面與絕緣層344的上表面齊平或近似齊平。然而如搭配圖50至64說明的下述內容,混合通孔310亦可延伸高於絕緣層344的上表面。混合通孔310的形成製程可採用物理氣相沉積、化學氣相沉積、原子層沉積、電化學沉積、或其他合適製程。在一些實施例中,形成混合通孔310的製程溫度為約20℃至1000℃,然而亦可實施此範圍之外的製程溫度。此外,一些實施例的混合通孔310之高度為約5 Å至約100微米,然而亦可實施此範圍之外的高度。
在步驟33中,形成蝕刻停止層於絕緣層與混合通孔上(圖65D)。如圖65D所示,步驟33包括形成蝕刻停止層354。蝕刻停止層354沉積於絕緣層344與混合通孔310上,且其材料可為氮化係、碳化矽、碳氮化矽、或其他合適材料。
在步驟34中,形成金屬層於蝕刻停止層上(見圖65E)。步驟34中形成的金屬層可為金屬層380。金屬層380的形成方法可為沉積材料如鋁、鉻、鈦、或其他合適金屬於蝕刻停止層354上。金屬層380的材料組成一般適於以反應性離子蝕刻製程圖案化,如下所述。
在步驟35中,採用反應性離子蝕刻製程移除金屬層的一部分(見圖65F)。如圖65F所示,步驟35移除金屬層380的一部分。步驟35通常關於施加強電磁場(如射頻場)至混合通孔內連線結構300,以低壓如真空產生的化學反應離子攻擊金屬層380,可施加光阻材料層至金屬層380的一些區域以遮罩這些區域,使其免於化學反應離子的攻擊。然而化學反應離子會攻擊並向下移除不在光阻材料之下的金屬層380之區域,直到露出蝕刻停止層354,如圖65F所示。
在步驟36中,形成阻障金屬層於金屬層上(圖65G)。步驟36中形成的阻障金屬層為阻障金屬層334。如圖65G所示,阻障金屬層334可沉積於金屬層380的所有露出表面上與蝕刻停止層354上。阻障金屬層334可使金屬層380與絕緣材料中的周圍材料如矽化學隔離。步驟36可採用多種合適製程以形成阻障金屬層334。
在步驟37中,形成絕緣層於阻障金屬層上(圖65H)。步驟37中形成的絕緣層為絕緣層346。如圖65H所示,絕緣層346沉積於阻障金屬層334上。步驟37中形成絕緣層346的方法可包含沉積高介電常數的材料如氧化矽、氮化矽、或其他合適材料。步驟37中可採用多種合適製程形成絕緣層346。
在步驟38中,移除多餘絕緣材料與多餘阻障金屬材料(圖65I)。在一些實施例中,採用化學機械平坦化製程移除多餘絕緣材料與多餘阻障金屬材料。如圖65I所示,移除多餘絕緣材料與多餘阻障金屬材料的步驟,會造成結構中的絕緣層346、阻障金屬層334、與金屬層380的上表面彼此齊平或近似齊平,使混合通孔內連線結構300的上表面平坦或近似平坦。在步驟38之後,通常完成混合通孔內連線結構300。混合通孔內連線結構300的多種不同實施例將搭配圖50至64詳述如下。
如圖50所示,混合通孔內連線結構300的另一實施例包括間隙形成於蝕刻停止層354中,使混合通孔310接觸金屬層380。為了形成此結構,製程30適於在步驟32及33之間選擇性沉積阻擋材料層於混合通孔310上,並在步驟33之後移除阻擋材料層。依據應用,圖50所示的混合通孔內連線結構300的實施例可改善製作難度並減少接點電阻。
如圖51所示,混合通孔內連線結構300的另一實施例可包含蓋層360。為了形成此結構,可在製程30的步驟31之前形成第一內連線結構時,形成蓋層360。一般可包含蓋層360以減少混合通孔內連線結構300中的電遷移。蓋層360的組成可為多種材料如碳氮化矽、氮化矽、磷化鈷鎢、銅合金、其他合適材料、或上述之組合。依據應用,圖51所示的混合通孔內連線結構300的實施例可改善製作難度並減少接點電阻。
如圖52所示,混合通孔內連線結構300的另一實施例可包含蓋層360與間隙形成於蝕刻停止層354中,使混合通孔310接觸金屬層380。製程30適於在步驟32及33之間選擇性沉積阻擋層於混合通孔310上,並在步驟33之後移除阻擋層。此外,在製程30的步驟31之前形成第一內連線結構時,可包含蓋層360。依據應用,圖52所示的混合通孔內連線結構300的實施例可改善製作難度並減少接點電阻。
如圖53所示,混合通孔內連線結構300的另一實施例包括混合通孔310延伸至金屬層380中,以及蝕刻停止層354的延伸物,使混合通孔310不接觸金屬層380。為了形成此結構,製程30適於使步驟32中形成的混合通孔310延伸高於絕緣層344。因此混合通孔310所用的材料可超填出溝槽370之外。步驟33接著形成蝕刻停止層354於混合通孔310與絕緣層344上。依據應用,圖53所示的混合通孔內連線結構300的實施例可改善製作難度並減少接點電阻。
如圖54所示,混合通孔內連線結構300的另一實施例包括混合通孔310延伸至金屬層380中,並形成間隙於蝕刻停止層354中,使混合通孔310接觸金屬層380。在此結構中,混合通孔310填入金屬層380中的凹陷。為了形成此結構,製程30適於使步驟32中的混合通孔310延伸高於絕緣層344。混合通孔310所用的材料可超填出溝槽370之外。接著可在步驟32及33之間選擇性沉積阻擋層於混合通孔310上,並在步驟33之後移除阻擋層。依據應用,圖54所示的混合通孔內連線結構300的實施例可改善製作難度並減少接點電阻。
如圖55所示,混合通孔內連線結構300的另一實施例包含蓋層360,混合通孔310延伸至金屬層380中,與蝕刻停止層354的延伸物,使混合通孔310不接觸金屬層380。製程30適於使步驟32中形成的混合通孔310延伸高於絕緣層344。因此混合通孔310所用的材料可超填出溝槽370之外。步驟33接著可形成蝕刻停止層354於混合通孔310與絕緣層344上。依據應用,圖55所示的混合通孔內連線結構300的實施例可改善製作難度並減少接點電阻。
如圖56所示,混合通孔內連線結構300的另一實施例包括蓋層360、混合通孔310延伸至金屬層380中、以及間隙形成於蝕刻停止層354中,使混合通孔310接觸金屬層380。製程30適於使步驟32中形成的混合通孔310延伸高於絕緣層344。混合通孔310所用的材料可超填出溝槽370之外。接著可在步驟32與33之間選擇性沉積阻擋層於混合通孔310上,並在步驟33之後移除阻擋層。依據應用,圖56所示的混合通孔內連線結構300的實施例可改善製作難度並減少接點電阻。
如圖57所示,混合通孔內連線結構300的另一實施例包括混合通孔310延伸至金屬填充層322中。為了形成此結構,製程30適於在步驟31中形成溝槽370,使溝槽370延伸至金屬填充層322中,因此形成凹陷於金屬填充層322中。接著將混合通孔310所用的材料填入溝槽370,因此形成凹陷於金屬填充層322中。依據應用,圖57所示的混合通孔內連線結構300的實施例可改善製作難度並減少接點電阻。
如圖58所示,混合通孔內連線結構300的另一實施例可包含間隙形成於蝕刻停止層354中,使混合通孔310接觸金屬層380,且混合通孔310延伸至金屬填充層322中。製程30適於在步驟32及33之間選擇性沉積阻擋層於混合通孔310上,並在步驟33之後移除阻擋層。此外,步驟30適於使步驟31形成的溝槽370延伸至金屬填充層322中,以形成凹陷於金屬填充層322中。接著可將混合通孔310所用的材料填入溝槽370,進而填入金屬填充層322中的凹陷。依據應用,圖58所示的混合通孔內連線結構300的實施例可改善製作難度並減少接點電阻。
如圖59所示,混合通孔內連線結構300的另一實施例包括蓋層360,與混合通孔310延伸至金屬填充層322中。製程30適於在步驟31中形成溝槽370,使溝槽370延伸至蓋層360中並穿過蓋層360且延伸至金屬填充層322中,因此形成凹陷於金屬填充層322中。接著可將混合通孔310所用的材料填入溝槽370,使金屬填充層322形成於凹陷中。依據應用,圖59所示的混合通孔內連線結構300的實施例可改善製作難度並減少接點電阻。
如圖60所示,混合通孔內連線結構300的另一實施例包含蓋層360以及間隙形成於蝕刻停止層354中,使混合通孔310接觸金屬層380,且混合通孔310延伸至金屬填充層322中。製程30適於在步驟32及33之間選擇性沉積阻擋層於混合通孔310上,並在步驟33之後移除阻擋層。此外,製程30適於使步驟31形成的溝槽370延伸至蓋層360中並穿過蓋層360且延伸至金屬填充層322中,以形成凹陷於金屬填充層322中。接著可將混合通孔310所用的材料填入溝槽370,進而填入金屬填充層322中的凹陷。依據應用,圖60所示的混合通孔內連線結構300的實施例可改善製作難度並減少接點電阻。
如圖61所示,混合通孔內連線結構300的另一實施例包括混合通孔310延伸至金屬填充層322中,混合通孔310延伸至金屬層380中,以及蝕刻停止層354的延伸物,使混合通孔310不接觸金屬層380。製程30適於使步驟31形成的溝槽370延伸至金屬填充層322中,以形成凹陷於金屬填充層322中。接著可將混合通孔310所用的材料填入溝槽370,進而填入金屬填充層322中的溝槽。此外,製程30適於使步驟32中形成的混合通孔310延伸高於絕緣層344。因此形成混合通孔310所用的材料可超填出溝槽370之外。步驟33接著可形成蝕刻停止層354於混合通孔310與絕緣層344上。依據應用,圖61所示的混合通孔內連線結構300的實施例可改善製作難度並減少接點電阻。
如圖62所示,混合通孔內連線結構300的另一實施例包括混合通孔310延伸至金屬填充層322中,使混合通孔310接觸金屬填充層322,而混合通孔310延伸至金屬層380中使混合通孔310接觸金屬層380,並形成間隙於蝕刻停止層354中。製程30適於在步驟31中形成溝槽370,造成溝槽370延伸至金屬填充層322,使凹陷形成於金屬填充層322中。接著形成混合通孔310所用的材料可填入溝槽370,並填入金屬填充層322中的凹陷。此外,製程30適於使步驟32中形成的混合通孔310延伸高於絕緣層344。形成獲和通孔310的材料可超填出溝槽370之外。接著可在步驟32及33之間選擇性沉積阻擋層於混合通孔310上,並在步驟33之後移除阻擋層。依據應用,圖62所示的混合通孔內連線結構300的實施例可改善製作難度並減少接點電阻。
如圖63所示,混合通孔內連線結構300的另一實施例包括蓋層360,混合通孔310延伸至金屬填充層322中,混合通孔310延伸至金屬層380中,以及蝕刻停止層354的延伸物,使混合通孔310不接觸金屬層380。製程30適於使步驟31形成的溝槽370延伸至蓋層360中並穿過蓋層360且延伸至金屬填充層322中,以形成凹陷於金屬填充層322中。因此形成混合通孔310所用的材料可填入溝槽370,進而填入金屬填充層322中的凹陷。此外,製程30適於使步驟32形成的混合通孔310延伸高於絕緣層344。因此形成混合通孔310所用的材料可超填出溝槽370之外。步驟33接著可形成蝕刻停止層354於混合通孔310與絕緣層344上。依據應用,圖63所示的混合通孔內連線結構300的實施例可改善製作難度並減少接點電阻。
如圖64所示,混合通孔內連線結構300的另一實施例包括蓋層360,混合通孔310延伸至金屬填充層322中,使混合通孔310接觸金屬填充層322,混合通孔310延伸至金屬層380中,使混合通孔310接觸金屬層380,以及氣隙形成於蝕刻停止層354中。製程30適於在步驟31中形成溝槽370,使溝槽370延伸至蓋層360中並穿過蓋層360且延伸至金屬填充層322中,因此形成凹陷於金屬填充層322中。接著可將混合通孔310所用的材料填入溝槽370,以形成金屬填充層322於凹陷中。此外,製程30適於使步驟32中形成的混合通孔310延伸高於絕緣層344。混合通孔310所用的材料可超填出溝槽370之外。接著可在步驟32及33之間選擇性沉積阻擋層於混合通孔310上,並在步驟33之後移除阻擋層。依據應用,圖64所示的混合通孔內連線結構300的實施例可改善製作難度並減少接點電阻。
此處所述的阻擋層的選擇性沉積方法,可採用化學氣相沉積製程、原子層沉積製程、旋轉塗佈製程、浸入製程、刮刀塗佈製程、沉浸製程、其他合適製程、或上述之組合。此外,此處所述的阻擋層之材料組成可包含小分子、聚合物、有機金屬化合物、或其他合適材料。濕式塗佈此處所述的阻擋層所用的溶液可包含質子溶劑或非質子溶劑。在一些實施例中,此處所述的阻擋層厚度為約2 Å至100微米,然而亦可實施此範圍之外的其他厚度。此處所述的阻擋層之移除方法,可採用移除製程如熱移除、光微影、化學處理、其他合適製程、或上述之組合。
如上所述,此處所述的混合通孔內連線結構的多種實施例,可用於改善積體電路中的內連線結構。混合通孔內連線結構包括的混合通孔,通常可提供兩個金屬如兩個銅內連線之間的電性連接。混合通孔的組成可為多種材料,包括金屬、合金、或其他導電材料。舉例來說,混合通孔內連線結構的形成方法可採用單鑲嵌製程、雙鑲嵌製程、或反應性離子蝕刻製程。混合通孔內連線結構有利於減少接點電阻與內連線電阻,並改善製作效率。
本發明的一實施方式為電路。電路包括第一阻障金屬層,圍繞第一金屬填充層的至少一部分;第二阻障金屬層,圍繞第二金屬填充層的至少一部分;以及混合通孔,形成於第一金屬填充層與第二金屬填充層之間。混合通孔提供第一金屬填充層與第二金屬填充層之間的電性連接。
在一些實施例中,混合通孔的組成採用第一材料;第一金屬填充層與第二金屬填充層的組成採用第二材料;以及第一阻障金屬層與第二阻障金屬層的組成採用第三材料;其中第一材料、第二材料、與第三材料為不同材料。
在一些實施例中,混合通孔接觸第一金屬填充層或第二金屬填充層。
在一些實施例中,電路更包括蓋層接觸第一阻障金屬層與第一金屬填充層,其中蓋層與第一阻障金屬層完全圍繞第一金屬填充層。
在一些實施例中,電路更包括蓋層接觸第一阻障金屬層與第一金屬填充層,其中蓋層包括間隙,且混合通孔延伸至間隙中,使混合通孔接觸第一金屬填充層,且蓋層、第一阻障金屬層、與混合通孔完全圍繞第一金屬填充層。
在一些實施例中,電路更包括:第一凹陷形成於第一金屬填充層中,其中混合通孔延伸至第一凹陷中;或者第二凹陷形成於第二金屬填充層中,其中混合通孔延伸至第二凹陷中。
在一些實施例中,電路更包括:第一間隙形成於第一阻障金屬層中,其中混合通孔延伸至第一間隙中以接觸第一金屬填充層;或者第二間隙形成於第二阻障金屬層中,其中混合通孔延伸至第二間隙中以接觸第二金屬填充層。
在一些實施例中,混合通孔的高度為5℃至100微米,且其中混合通孔的組成為金屬材料或合金材料。
本發明另一實施方式為電路的製作方法。方法包括:形成絕緣層於第一內連線結構上;形成溝槽於絕緣層中;形成混合通孔於溝槽中;以及形成第二內連線結構於混合通孔上,使混合通孔提供第一內連線結構與第二內連線結構之間的電性連接。
在一些實施例中,第二內連線結構包括阻障金屬層,且方法更包括:在形成混合通孔之前,形成阻擋層於溝槽中;在形成阻擋層之後,形成阻障金屬層於溝槽中;以及在形成混合通孔之前,移除阻擋層。
在一些實施例中,溝槽包括第一溝槽,第二內連線結構包括阻障金屬層形成於第二溝槽中,且方法更包括:形成阻擋層於混合通孔上與第二溝槽中;在形成阻擋層之後,形成阻障金屬層於第二溝槽中;以及在形成第二內連線結構的其餘部分之前,移除阻擋層。
在一些實施例中,方法更包括:在形成第二內連線結構之前,形成阻擋層於混合通孔上;在形成阻擋層之後,形成蝕刻停止層於絕緣層上;以及在形成第二內連線結構之前,移除阻擋層。
在一些實施例中,溝槽包括第一溝槽,且形成第二內連線結構的步驟包括:形成額外絕緣材料於絕緣層上與混合通孔上;形成第二溝槽於額外絕緣材料中;形成阻障金屬層於第二溝槽中;形成晶種層於阻障金屬層上;以及形成金屬填充層於第二溝槽中與晶種層上。
在一些實施例中,形成溝槽的步驟包括形成第一溝槽與第二溝槽;形成混合通孔於溝槽中的步驟包括形成混合通孔於第一溝槽中;以及形成第二內連線結構的步驟包括:形成阻障金屬層於第二溝槽中;形成晶種層於阻障金屬層上;以及形成金屬填充層於第二溝槽中與晶種層上。
在一些實施例中,形成第二內連線結構的步驟包括:形成蝕刻停止層於絕緣層上;形成金屬層於蝕刻停止層上與混合通孔上;以及採用反應性離子蝕刻製程移除金屬層的一部分。
在一些實施例中,形成溝槽的步驟包括形成凹陷於第一內連線結構中。
在一些實施例中,形成混合通孔的步驟包括形成混合通孔,使其延伸高於絕緣層的上表面。
在一些實施例中,形成混合通孔的步驟採用的製程包括物理氣相沉積、化學氣相沉積、原子層沉積製程、或電化學沉積製程。
本發明又一實施方式為電路。電路包括第一阻障金屬層,圍繞金屬填充層的至少一部分;第二阻障金屬層,圍繞金屬層的至少一部分;以及混合通孔,形成於金屬填充層與金屬層之間。混合通孔提供金屬填充層與金屬層之間的電性連接。
在一些實施例中,金屬層採用的材料適用於反應性離子蝕刻製程。
上述實施例之特徵有利於本技術領域中具有通常知識者理解本發明。本技術領域中具有通常知識者應理解可採用本發明作基礎,設計並變化其他製程與結構以完成上述實施例之相同目的及/或相同優點。本技術領域中具有通常知識者亦應理解,這些等效置換並未脫離本發明精神與範疇,並可在未脫離本發明之精神與範疇的前提下進行改變、替換、或更動。
10,20,30:製程 11,12,13,14,15,16,17,18,19,21,22,23,24,25,31,32,33, 34,35,36,37,38:步驟 100,200,300:混合通孔內連線結構 110,210,310:混合通孔 122,124,222,224,322:金屬填充層 132,134,232,234,332,334:阻障金屬層 142,144,242,244,342,344,346:絕緣層 150,250,352,354:蝕刻停止層 160,260,360:蓋層 172,174,272,274,370:溝槽 380:金屬層
圖1至10係多種實施例中,採用單鑲嵌製程所形成的混合通孔內連線結構之剖視圖。 圖11A係一些實施例中,形成圖1至10的混合通孔內連線結構所用的製程之流程圖。 圖11B至11J係一些實施例中,圖11A的製程之多種步驟。 圖12至47係多種實施例中,採用雙鑲嵌製程所形成的混合通孔內連線結構之剖視圖。 圖48A係一些實施例中,形成圖12至47的混合通孔內連線結構所用的製程之流程圖。 圖48B至48F係一些實施例中,圖48A的製程之多種步驟。 圖49至64係多種實施例中,採用反應性離子蝕刻製程所形成的混合通孔內連線結構之剖視圖。 圖65A係一些實施例中,形成圖49至64的混合通孔內連線結構所用的製程之流程圖。 圖65B至65I係一些實施例中,圖65A的製程之多種步驟。
10:製程
11,12,13,14,15,16,17,18,19:步驟

Claims (1)

  1. 一種電路,包括: 一第一阻障金屬層,圍繞一第一金屬填充層的至少一部分; 一第二阻障金屬層,圍繞一第二金屬填充層的至少一部分;以及 一混合通孔,形成於該第一金屬填充層與該第二金屬填充層之間,其中該混合通孔提供該第一金屬填充層與該第二金屬填充層之間的電性連接。
TW110115995A 2020-05-19 2021-05-04 電路 TW202145482A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/878,043 US12051643B2 (en) 2020-05-19 2020-05-19 Hybrid via interconnect structure
US16/878,043 2020-05-19

Publications (1)

Publication Number Publication Date
TW202145482A true TW202145482A (zh) 2021-12-01

Family

ID=77711976

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110115995A TW202145482A (zh) 2020-05-19 2021-05-04 電路

Country Status (3)

Country Link
US (2) US12051643B2 (zh)
CN (1) CN113421850A (zh)
TW (1) TW202145482A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11652171B2 (en) 2021-02-22 2023-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. Contact for semiconductor device and method of forming thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416596B1 (ko) * 2001-05-10 2004-02-05 삼성전자주식회사 반도체 소자의 연결 배선 형성 방법
US7452804B2 (en) 2005-08-16 2008-11-18 Infineon Technologies Ag Single damascene with disposable stencil and method therefore
US8669176B1 (en) 2012-08-28 2014-03-11 Globalfoundries Inc. BEOL integration scheme for copper CMP to prevent dendrite formation
US10714436B2 (en) * 2012-12-12 2020-07-14 Lam Research Corporation Systems and methods for achieving uniformity across a redistribution layer
US9397045B2 (en) * 2014-10-16 2016-07-19 Taiwan Semiconductor Manufacturing Co., Ltd Structure and formation method of damascene structure
US10727122B2 (en) * 2014-12-08 2020-07-28 International Business Machines Corporation Self-aligned via interconnect structures
US10026687B1 (en) * 2017-02-20 2018-07-17 Globalfoundries Inc. Metal interconnects for super (skip) via integration
US10181421B1 (en) * 2017-07-12 2019-01-15 Globalfoundries Inc. Liner recess for fully aligned via
KR102344320B1 (ko) * 2017-08-11 2021-12-28 삼성전자주식회사 더미 콘택을 갖는 반도체 소자
US10541199B2 (en) * 2017-11-29 2020-01-21 International Business Machines Corporation BEOL integration with advanced interconnects
US10879107B2 (en) * 2018-11-05 2020-12-29 International Business Machines Corporation Method of forming barrier free contact for metal interconnects
KR102674584B1 (ko) * 2019-01-04 2024-06-11 삼성전자주식회사 반도체 장치
US10998263B2 (en) * 2019-06-13 2021-05-04 International Business Machines Corporation Back end of line (BEOL) time dependent dielectric breakdown (TDDB) mitigation within a vertical interconnect access (VIA) level of an integrated circuit (IC) device
CN112838048A (zh) * 2019-11-22 2021-05-25 联华电子股份有限公司 互连结构以及其制作方法
US11152257B2 (en) * 2020-01-16 2021-10-19 International Business Machines Corporation Barrier-less prefilled via formation
US11415538B2 (en) * 2020-03-06 2022-08-16 Applied Materials, Inc. Capacitive sensor housing for chamber condition monitoring
US11183455B2 (en) * 2020-04-15 2021-11-23 International Business Machines Corporation Interconnects with enlarged contact area

Also Published As

Publication number Publication date
US20210366822A1 (en) 2021-11-25
CN113421850A (zh) 2021-09-21
US12051643B2 (en) 2024-07-30
US20220367345A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
US10861742B2 (en) Interconnect structure having an etch stop layer over conductive lines
US8629560B2 (en) Self aligned air-gap in interconnect structures
US9484257B2 (en) Semiconductor devices and methods of manufacture thereof
US11594419B2 (en) Reduction of line wiggling
KR910006370B1 (ko) 반도체소자의 접속구멍형성방법
TWI686880B (zh) 半導體裝置和其製造方法
US10923392B2 (en) Interconnect structure and method of forming the same
CN106941092B (zh) 集成电路结构及其形成方法
KR20130121651A (ko) 자가정렬된 상호접속 및 블록킹 부분을 갖는 반도체 디바이스
KR19990063359A (ko) 접합 패드를 가진 이중 다마스크식 공정
US7781892B2 (en) Interconnect structure and method of fabricating same
CN111916391A (zh) 半导体结构及其形成方法
TW202145482A (zh) 電路
KR100419021B1 (ko) 반도체소자의 구리 배선 제조방법
US7160799B2 (en) Define via in dual damascene process
TWI821725B (zh) 半導體結構與其形成方法
US6563221B1 (en) Connection structures for integrated circuits and processes for their formation
TWI769503B (zh) 電容裝置及電容結構與其形成方法
CN117497513A (zh) 半导体器件及其形成方法
KR100755112B1 (ko) 반도체 소자의 인덕터 제조 방법
KR100744239B1 (ko) 반도체 소자의 금속 배선 형성 방법
CN117059565A (zh) 封装方法
TW457682B (en) Method for forming copper damascene structure on semiconductor substrate
KR20050006502A (ko) 반도체소자의 제조방법