TW202143439A - 高頻放大器 - Google Patents

高頻放大器 Download PDF

Info

Publication number
TW202143439A
TW202143439A TW110100760A TW110100760A TW202143439A TW 202143439 A TW202143439 A TW 202143439A TW 110100760 A TW110100760 A TW 110100760A TW 110100760 A TW110100760 A TW 110100760A TW 202143439 A TW202143439 A TW 202143439A
Authority
TW
Taiwan
Prior art keywords
amplifier
carrier
peak
input
substrate
Prior art date
Application number
TW110100760A
Other languages
English (en)
Inventor
橋長達也
森山豊
Original Assignee
日商住友電氣工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友電氣工業股份有限公司 filed Critical 日商住友電氣工業股份有限公司
Publication of TW202143439A publication Critical patent/TW202143439A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10015Non-printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/1003Non-printed inductor

Abstract

一種高頻放大器,包括:非對稱多厄悌放大器,包括載波放大器和峰值放大器,並且對輸入的波長為λ的高頻訊號進行放大,該峰值放大器在該載波放大器的輸出達到飽和區域的情況下開始進行放大操作,並且具有與該載波放大器不同的飽和輸出;驅動放大器,對該非對稱多厄悌放大器進行驅動;分支電路,將由該驅動放大器放大的高頻訊號分支至該峰值放大器側的輸入路徑和該載波放大器側的輸入路徑;相位調整電路,設置於該峰值放大器側的路徑或該載波放大器側的路徑中的任意一者,並且使該峰值放大器的輸入訊號的相位或該載波放大器的輸入訊號的相位中的任意一者延遲;第一基板,用於搭載該載波放大器和該峰值放大器;以及第二基板,用於搭載該驅動放大器、該分支電路、以及該相位調整電路,其中,在將該第二基板重疊地積層於該第一基板的情況下,該驅動放大器的輸入端子與該載波放大器的輸入端子位於彼此投影的位置,在n為0以上的整數的情況下,將從該驅動放大器的輸入端子到該載波放大器的輸出端子的電氣長度設定為(2n+1)×π的相位。

Description

高頻放大器
本公開係關於一種高頻放大器,詳細而言,係關於一種包括對輸入的高頻訊號進行放大的驅動放大器和對由驅動放大器輸出的訊號進一步進行放大的多厄悌放大器的高頻放大器。
本申請係主張基於2020年1月10日申請的日本專利申請案第2020-002882號的優先權,該日本專利申請案中記載的全部記載內容係藉由參照而併入本申請中。
近年來,在可攜式電話等行動通訊系統中,寬帶化正在取得進展。因此,對於在系統的基地台裝置等中使用的功率放大器,期望在寬頻帶上的功率效率的高效率化等。作為用於實現該功率效率的高效率化的功率放大器,已知具有載波放大器(亦稱為主放大器)和峰值放大器的多厄悌放大器(Doherty amplifier)。例如,專利文獻1公開了一種多厄悌放大器(多厄悌型放大器)的結構。需要說明的是,多厄悌放大器通常藉由與驅動放大器的後段連接來使用。  <先前技術文獻> <專利文獻>
專利文獻1:國際公開第2005/093948號
根據本公開的一個方面,提供一種高頻放大器,包括:非對稱多厄悌放大器,包括載波放大器和峰值放大器,並且對輸入的波長為λ的高頻訊號進行放大,該峰值放大器在該載波放大器的輸出達到飽和區域的情況下開始進行放大操作,並且具有與該載波放大器不同的飽和輸出;驅動放大器,對該非對稱多厄悌放大器進行驅動;分支電路,將由該驅動放大器放大的高頻訊號分支至該峰值放大器側的輸入路徑和該載波放大器側的輸入路徑;相位調整電路,設置於該峰值放大器側的路徑或該載波放大器側的路徑中的任意一者,並且使該峰值放大器的輸入訊號的相位或該載波放大器的輸入訊號的相位中的任意一者延遲;第一基板,用於搭載該載波放大器和該峰值放大器;以及第二基板,用於搭載該驅動放大器、該分支電路、以及該相位調整電路,其中,在將該第二基板重疊地積層於該第一基板的情況下,該驅動放大器的輸入端子與該載波放大器的輸入端子位於彼此投影的位置,在n為0以上的整數的情況下,將從該驅動放大器的輸入端子到該載波放大器的輸出端子的電氣長度設定為(2n+1)×π的相位。
<發明欲解決之問題>
然而,在將驅動放大器和多厄悌放大器搭載於印刷基板的情況下,若將驅動放大器、載波放大器、峰值放大器安裝在同一平面上,則需要較大尺寸的印刷基板,因此存在難以對放大器進行小型化的問題。在此情況下,考慮將驅動放大器和多厄悌放大器三維地安裝。然而,若將放大器設成例如兩層結構,將驅動放大器配置於上段,並將載波放大器和峰值放大器配置於下段,則驅動放大器與載波放大器有時會在上下方向上接近。在此情況下,存在驅動放大器有時會變得不穩定的問題。
鑑於上述情況,本公開的目的在於提供一種穩定的高頻放大器。  <發明之功效>
藉由本公開,能夠提供一種穩定的高頻放大器。  [本公開的實施方式的說明]  首先,列舉本公開的實施方式的內容進行說明。
(1)根據本公開的高頻放大器包括:非對稱多厄悌放大器,包括載波放大器和峰值放大器,並且對輸入的波長為λ的高頻訊號進行放大,該峰值放大器在該載波放大器的輸出達到飽和區域的情況下開始進行放大操作,並且具有與該載波放大器不同的飽和輸出;驅動放大器,對該非對稱多厄悌放大器進行驅動;分支電路,將由該驅動放大器放大的高頻訊號分支至該峰值放大器側的輸入路徑和該載波放大器側的輸入路徑;相位調整電路,設置於該峰值放大器側的路徑或該載波放大器側的路徑中的任意一者,並且使該峰值放大器的輸入訊號的相位或該載波放大器的輸入訊號的相位中的任意一者延遲;第一基板,用於搭載該載波放大器和該峰值放大器;以及第二基板,用於搭載該驅動放大器、該分支電路、以及該相位調整電路,其中,在將該第二基板重疊地積層於該第一基板的情況下,該驅動放大器的輸入端子與該載波放大器的輸入端子位於彼此投影的位置,在n為0以上的整數的情況下,將從該驅動放大器的輸入端子到該載波放大器的輸出端子的電氣長度設定為(2n+1)×π的相位。
因此,即使在施加了訊號反饋(將輸出訊號的一部分從載波放大器的輸出返回至驅動放大器的輸入)的情況下,亦會變成驅動放大器不會產生不穩定性的範圍(負反饋區域),而不會變成正反饋區域。由此,即使採用兩層結構,亦能夠使放大器穩定。  (2)根據本公開的高頻放大器的一個方面,該載波放大器的輸出端子處的高頻訊號與該峰值放大器的輸出端子處的高頻訊號之間的相位差在π/2~3π/2的範圍內。
由於載波放大器與該峰值放大器的輸出訊號的相位差在π/2~3π/2的範圍內,因此能夠將從載波放大器和峰值放大器發射至外部的電磁波抑制成最小。  (3)根據本公開的高頻放大器的一個方面,在該第一基板與該第二基板之間配置接地的金屬層。
接地的金屬層能夠阻斷電磁波。由此,第一基板不易受到在第二基板側產生的電磁波的影響,並且第二基板不易受到在第一基板側產生的電磁波的影響。  (4)根據本公開的高頻放大器的一個方面,該第一基板具有投影於該第二基板的平面形狀。
能夠實現高頻放大器的小型化。  (5)根據本公開的高頻放大器的一個方面,該峰值放大器被構成為具有比該載波放大器大的飽和輸出。
在峰值放大器中,用於獲得最佳匹配的相位偏移量大於載波放大器中的相位偏移量。  [本公開的實施方式的詳細內容]  以下,參照所附圖式對根據本公開的高頻放大器的具體示例進行說明。圖1是示意性地示出根據本公開的一個方面的高頻放大器的剖面圖。
高頻放大器1搭載於行動通訊系統的基地台裝置等通訊裝置,並且例如用於對發送訊號進行放大。高頻放大器1具有基座構件La4。基座構件La4是兼具散熱和外部端子的功能的金屬(例如銅)製的板,並且配置在通訊裝置的印刷基板100上。
在基座構件La4上搭載有下段10、上段20、蓋材25。下段10相當於本公開的第一多層基板,上段20相當於本公開的第二多層基板。
下段10被配置成被夾在基座構件La4與上段20之間。下段10由第一介電質層11(例如厚度為0.25~0.35 mm)、第3佈線層La3(例如厚度為18~35 μm)、第二介電質層12(例如厚度為0.8~1.0 mm)構成。第一介電質層11設置在基座構件La4(例如厚度為0.25 mm)上,在第3佈線層La3上形成有以構成GND面的基座構件La4作為基準電壓的高頻線路圖案,並且安裝有載波放大器54和峰值放大器64等有源構件、以及電感器L或電容器C。
載波放大器54和峰值放大器64分別具有形成有預定電路的正面54a、64a、以及位於正面54a、64a的相反側且例如未形成電路的背面54b、64b。載波放大器54和峰值放大器64被嵌入至第一介電質層11中,並且以正面54a、64a均朝向上方的方式安裝於第3佈線層La3。背面54b、64b均以與基座構件La4接觸的方式朝向下方配置,並且被固著於塗佈有燒結系銀膠或燒結系銅膠的基座構件La4。
上段20重疊地積層在下段10上。上段20由第三介電質層23(例如厚度為0.25~0.35 mm)、第1佈線層La1(例如厚度為18~35μm)、第四介電質層24(例如厚度為0.25~0.35 mm)構成。在第三介電質層23與下段10(第二介電質層12)之間配置有第2佈線層La2。第2佈線層La2(例如厚度為35μm)例如是銅製的完整面,並且起到相對於第1佈線層La1的GND面、以及用於屏蔽在上段20與下段10之間所產生的電磁波的作用。第2佈線層La2相當於本公開的接地的金屬層。
在第1佈線層La1上形成有高頻線路圖案,並且安裝有驅動放大器40等有源構件、以及電感器L或電容器C。
驅動放大器40具有形成有預定電路的正面40a、以及位於正面40a的相反側且例如未形成電路的背面40b。驅動放大器40被嵌入至第四介電質層24中,並且以正面40a與下段10相對的方式安裝於第1佈線層La1。背面40b以遠離下段10的方式朝向上方配置。
上段20被金屬製的蓋材25覆蓋。由於驅動放大器40以覆晶(面朝下:Face down)的方式安裝,因此從熱管理的角度出發,將驅動放大器40的背面40b以與蓋材25的散熱部(第0佈線層La0)接觸的方式朝向上方配置。與其他佈線層同樣,散熱部(第0佈線層La0)由訊號佈線用的較薄的金屬薄膜層形成。並且,散熱部(第0佈線層La0)與鄰近的GND導通孔(例如φ300 μm)(散熱導通孔15d、15c、15b、15a)接觸。因此,形成了從驅動放大器40到基座構件La4的散熱路徑(以下,稱其為第一散熱路徑)。
需要說明的是,對於上段20的第1佈線層La1與下段10的第3佈線層La3之間的電氣路徑,使用訊號導通孔14b、14a來確保。另外,對於第1佈線層La1與第2佈線層La2之間的電氣路徑,使用訊號導通孔17a。此外,對於第1佈線層La1與基座構件La4之間的電氣路徑,使用訊號導通孔13c、13b、13a來確保各個路徑。對於第3佈線層La3與基座構件La4之間的電氣路徑,使用訊號導通孔16a來確保。
如此一來,由於將上段20重疊地積層在下段10上,並且三維地安裝驅動放大器40、載波放大器54以及峰值放大器64,因此能夠實現諸如最外部形狀為6 mm見方且厚度為2.2 mm的模組尺寸的高頻放大器1的小型化。
另外,在該高頻放大器1中,無需引線搭接連接。由此,能夠將例如大約500 mm見方的較大的面板用於製造工序,由於由該面板能夠獲得例如6000片的6 mm見方的面板,因此能夠實現因加工費和材料費的降低帶來的成本的大幅降低。
在此,在將圖3中說明的上段20重疊在圖4中說明的下段10上的情況下,驅動放大器40的輸入端子與載波放大器54的輸入端子在上下方向上相對,驅動放大器40的輸入端子與載波放大器54的輸入端子之間的距離在上下方向例如為1 mm以下,與將驅動放大器40和載波放大器54配置在同一平面上的情況相比有時會格外地縮短。在該物理配置中,若兩個輸入訊號之間的相位差在±π/2的範圍內,則由於在兩個輸入訊號之間會發生干擾,因此會使驅動放大器40的工作變得不穩定。詳細而言,有可能將驅動放大器40的輸出訊號反饋至輸入,而使驅動放大器40振盪。
因此,在高頻放大器1中,將從驅動放大器40的輸入端子到載波放大器54的輸出端子的電氣長度,即,將晶片零件成分加到佈線長度而得到的電氣長度、或從驅動放大器40的輸入端子到載波放大器54的輸出端子的包括中途的晶片零件的波長為λ的輸入訊號傳播的延遲時間換算成波長為λ的輸入訊號的相位,並且以使端子間的相位為(2n+1)×π的方式進行設定。n是0以上的整數。
為了實現此目的,在從驅動放大器40的汲極輸出到分支電路51的路徑中,例如,如圖3中的曲線圖案49所示,使從上段20的中央到右半部的路徑大幅度地迂迴,或者如圖3中的曲線圖案52所示,將從分支電路51的輸出到導通孔52a的路徑並非形成為直線,而是有意地形成為曲線。
如此一來,將從驅動放大器40的輸入端子到載波放大器54的輸出端子的電氣長度設定為(2n+1)×π的相位。因此,即使在施加了訊號反饋,即,將輸出訊號的一部分從載波放大器54的輸出返回至驅動放大器40的輸入的反饋的情況下,亦會變成驅動放大器40不會產生不穩定性的範圍,即,負反饋區域,而不會變成2nπ,即,會產生不穩定性的正反饋區域。由此,即使採用兩層結構,亦能夠使放大器1穩定。
此外,在一般的多厄悌放大器中,將載波放大器與峰值放大器之間的相位差設定為π/2,但是在高頻放大器1中,將該相位差有意地設定為π。換言之,將載波放大器54的輸出端子處的RF訊號與峰值放大器64的輸出端子處的RF訊號之間的相位差設為π/2~3π/2的範圍。
由此,由於從載波放大器54發射的電磁波和從峰值放大器64發射的電磁波在鄰近處相互抵消,因此能夠將發射至高頻放大器1外部的電磁波抑制得較小。
需要說明的是,對於該載波放大器54的相位和峰值放大器64的相位,藉由在圖3中說明的相位調整電路61、在圖7和圖8中說明的輸入匹配電路53、63、輸出匹配電路55、65、傳輸線TRL1(在圖4中說明的90°傳輸線路56a)使其在輸出端子RFout同步。
圖2是用於對圖1的高頻放大器進行說明的方塊圖。另外,圖3是圖1的上段的平面圖,圖4是圖1的下段的平面圖。
高頻放大器1具有驅動放大器40、以及設置在驅動放大器40的後段的多厄悌放大器50,並且被構成為能夠對例如5GHz~6GHz的頻帶的訊號進行放大。
驅動放大器40將輸入至輸入端子RFin的由波長λ規定的RF(Radio Frequency:射頻)訊號放大至能夠由多厄悌放大器50將其放大至預定的發射功率的程度。
多厄悌放大器50包括分支電路51、相位調整電路61、載波放大器54、峰值放大器64、以及多厄悌網路56、66,並且將由驅動放大器40所放大的RF訊號進一步放大並從輸出端子RFout將其輸出。
驅動放大器40、載波放大器54、峰值放大器64是使用例如GaN-HEMT(High Electron Mobility Transistor:高電子移動率晶體電晶體)作為放大元件的放大器。在驅動放大器40、載波放大器54、峰值放大器64中,均將閘極焊盤設置在矩形形狀的一個邊上,並將汲極焊盤設置在與閘極焊盤相對的邊上。
需要說明的是,驅動放大器40、載波放大器54、峰值放大器64在閘極焊盤的兩側設置有源極焊盤。然而,關於驅動放大器40,兩個源極焊盤與在上段20形成的GND連接。另一方面,關於載波放大器54、峰值放大器64,源極焊槃經由在圖1中說明的背面54b、64b而與基座構件La4連接。由此,確保了GND,並且形成了從載波放大器54、峰值放大器64到基座構件La4的散熱路徑(以下,稱其為第二散熱路徑)。
認為與第一散熱路徑相比,第二散熱路徑在散熱性方面更優異。在第二散熱路徑中,載波放大器54和峰值放大器64各自的源極焊盤經由背面54b、64b而與基座構件La4連接。基座構件La4是金屬(例如銅)製的板,並且散熱性優異。另一方面,在第一散熱路徑中,驅動放大器40的源極焊槃經由背面40b而與散熱部(第0佈線層La0)連接,並且經由鄰近的GND導通孔而與基座構件La4連接。由於第0佈線層La0是訊號佈線用的金屬薄膜,因此從散熱效率的觀點來看,第0佈線層La0不及作為金屬(例如銅)製的板的基座構件La4。因此,由於該散熱部(第0佈線層La0)會對熱傳導的速率進行限制,因此認為第二散熱路徑的散熱性優於第一散熱路徑。
關於第一散熱路徑,考慮藉由進一步加寬散熱導通孔15a、15b、15c、15b的直徑,或者在用於連接散熱部(第0佈線層La0)與基座構件La4的散熱路徑中進一步設置與現有的散熱路徑(第一散熱路徑)並列的散熱導通孔,從而能夠改善第一散熱路徑的散熱效率。
圖3所示的上段20和圖4所示的下段10具有大致相似形狀的平面,並且兩者均形成為例如6 mm見方。
如圖1所示經由設置在通訊設備的印刷基板100上的訊號佈線101a而輸入至輸入端子RFin(訊號導通孔13a)的RF訊號通過從在圖1中說明的基座構件La4貫穿下段10的圖1所示的訊號導通孔13a、13b、13c,並且以未與下段10的任意部位連接的方式被輸入至當在圖3中觀察時的上段20的左下的角落部分。驅動放大器40被安裝在上段20的左下附近,並且由驅動放大器40所放大的RF訊號如圖3中的曲線圖案49所示大幅度地迴轉。詳細而言,當在圖3中觀察時在到達上段20的上邊之後,右轉並沿該上邊向左行進,進一步右轉並到達上段20的下邊,並且到達與驅動放大器40同樣地設置在上段20上的分支電路51。
分支電路51例如是威爾金森(Wilkinson)型分配器,並且將由驅動放大器40所放大的RF訊號等分至峰值放大器側的輸入路徑和載波放大器側的輸入路徑。
由分支電路51分配的RF訊號中的一個(載波放大器側的輸入路徑)經由預定的曲線圖案52,當在圖3中觀察時從在上段20的下邊附近形成的導通孔52a到達下段10。其例如通過與通過圖1所示的訊號導通孔14a、14b的訊號路徑同樣的路徑。與此相對,由分支電路51分配的RF訊號中的另一個(峰值放大器側的輸入路徑)到達與驅動放大器40同樣地設置在上段20的相位調整電路61。
相位調整電路61使峰值放大器64的輸入訊號的相位延遲預定的分佈常數份數。例如,延遲90°。經過了相位調整電路61的RF訊號從當在圖3中觀察時在上段20的下邊附近形成的導通孔61a到達下段10。其亦通過與通過圖1所示的訊號導通孔14a、14b的訊號路徑同樣的路徑。
需要說明的是,在本實施方式中,舉出了未將相位調整電路61配置在分支電路51與載波放大器54之間,而是將其配置在分支電路51與峰值放大器64之間的示例進行了說明。然而,本公開不限於該示例。例如,藉由未將相位調整電路配置在分支電路51與峰值放大器64之間,而是將其配置在分支電路51與載波放大器54之間,亦能夠使載波放大器54的輸入訊號的相位延遲。
本實施方式的多厄悌放大器50是非對稱多厄悌放大器,並且峰值放大器64和載波放大器54相對於所輸入的RF訊號顯示出各自不同的最大輸出強度。例如,峰值放大器64具有相對於載波放大器54為大約2倍大的飽和輸出(尺寸),並且在載波放大器54的輸出達到飽和區域的情況下,峰值放大器64開始進行放大操作。具體而言,載波放大器54以AB類或B類進行工作。峰值放大器64以C類進行工作。當瞬時功率較小時,由於載波放大器54工作而峰值放大器64未工作,因此功率效率得到提高。當瞬時功率較大時,由於載波放大器54和峰值放大器64雙方均工作,因此能夠在保持較高的功率效率的同時增大飽和功率。
作為一個示例,對驅動放大器40、載波放大器54、峰值放大器64的輸出示例進行記述。分別使用驅動放大器40的輸出為10 W、載波放大器54的輸出為15 W、峰值放大器64的輸出為30 W的放大器。在此,10 W的輸出專門代表FET的尺寸,並非總是輸出10 W,而是指具有足以輸出10 W的尺寸。
由載波放大器54放大的RF訊號到達設置在下段10的載波放大器側的多厄悌網路56。在該多厄悌網路56中,設置有90°傳輸線路(亦稱為λ/4線路)56a。因此,由載波放大器54放大的RF訊號經由90°傳輸線路56a,當在圖4中觀察時從設置在下段10的右上的角落部分的輸出端子RFout與後述的峰值放大器64的輸出訊號合成後而被輸出。
另一方面,由峰值放大器64放大的RF訊號到達設置在下段10的峰值放大器側的多厄悌網路66,與載波放大器54的輸出訊號合成,經由通過圖1所示的訊號導通孔16a的訊號路徑,從輸出端子RFout被輸出。從輸出端子RFout輸出的訊號如圖1所示經由設置在通訊裝置的印刷基板100上的訊號佈線101b,從高頻放大器1被傳播至外部。需要說明的是,載波放大器側的多厄悌網路56和峰值放大器側的多厄悌網路66相當於本公開的多厄悌網路。
圖5是圖1的驅動放大器的電路圖,圖6是用於對與圖5的電路圖相對應的上段進行說明的圖。另外,圖7是圖1的多厄悌放大器的電路圖,圖8是用於對與圖7的電路圖相對應的下段進行說明的圖。
從圖5所示的輸入端子RFin輸入的RF訊號經由輸入匹配電路30(電感器L1、電容器C1~C4的共計5個)輸入至驅動放大器40的閘極。閘極偏壓(bias)經由電感器L2從電源Vg供給。電容器C5是電源Vg的旁路電容器,電阻R1是調整用的電阻。
驅動放大器40的汲極輸出經由輸出匹配電路41(電感器L4、L5、電容器C7~C9)被提供給分支電路51。汲極偏壓經由電感器L3從電源Vd供給。電容器C6是電源Vd的旁路電容器。
接著,如圖7所示,在分支電路51中,來自驅動放大器40的RF訊號被等分至由L11和C24構成的匹配電路、以及由C23、L12以及C29構成的匹配電路。
相位被由L11和C24構成的匹配電路進行了調整的RF訊號經由在圖3中說明的曲線圖案52和導通孔52a到達下段10,並到達載波放大器54。
該到達下段10的RF訊號經由輸入匹配電路53(電容器C31、C11~14)被輸入至載波放大器54的閘極。閘極偏壓經由電感器L6從電源Vg供給。電容器C15是電源Vg的旁路電容器,電阻R4是調整用的電阻。
載波放大器54的汲極輸出經由DC阻斷用的電容器C26被提供至載波放大器側的多厄悌網路56。汲極偏壓經由電感器L9從電源Vd供給。電容器C21是電源Vd的旁路電容器。
載波放大器側的多厄悌網路56包括由傳輸線TRL2和電容器C25構成的輸出匹配電路55、以及用於對載波放大器54的輸出和峰值放大器64的輸出進行合成的傳輸線TRL1(包括在圖4中說明的90°傳輸線路56a)。
另一方面,被分支電路51等分、並且相位被由C23和L12和C29構成的匹配電路進行了調整的RF訊號被相位調整電路61(電感器L15、L16,電容器C32)進一步調整相位,經由導通孔61a到達下段10,並到達峰值放大器64。
該到達下段10的RF訊號經由輸入匹配電路63(電感器L7、電容器C16~19)被輸入至峰值放大器64的閘極。閘極偏壓經由電感器L8從電源Vg供給。電容器C20是電源Vg的旁路電容器,電阻R5是調整用的電阻。
峰值放大器64的汲極輸出經由DC阻斷用的電容器C28被提供至峰值放大器側的多厄悌網路66。汲極偏壓經由電感器L10從電源Vd供給。電容器C22是電源Vd的旁路電容器。
峰值放大器側的多厄悌網路66包括由電容器C27和電容器C10的兩段結構、傳輸線TRL3構成的輸出匹配電路65、以及傳輸線TRL4。
若比較上述的放大器的輸出,則認為各自的消耗電流或消耗功率、以及由此產生的熱量的大小按照驅動放大器40、載波放大器54、峰值放大器64的順序變大。在本實施方式的高頻放大器1中,構成為利用散熱效率較佳的第二散熱路徑來應對發熱量較大的峰值放大器64和載波放大器54,並利用第一散熱路徑來應對發熱量與其相比較小的驅動放大器40。藉由如此來構成,使得高頻放大器1能夠提供小型且散熱性良好的高頻放大器。
在高頻放大器1中,由於利用第二散熱路徑來應對峰值放大器64和載波放大器54,並利用第一散熱路徑來應對驅動放大器40,因此,如圖1所示,輸入至輸入端子RFin(訊號導通孔13a)的RF訊號通過從基座構件La4貫穿下段10的圖1所示的訊號導通孔13a、13b、13c,以未與下段10的任何部位連接的方式被輸入至當在圖3中觀察時的上段20的左下的角落部分。另外,由於由分支電路51分配的RF訊號被輸入至設置在下段10中的峰值放大器64和載波放大器54,因此通過與通過圖1所示的訊號導通孔14a和14b的訊號路徑同樣的路徑。藉由通過該些訊號路徑,使得高頻放大器1能夠提供小型且散熱性良好的高頻放大器。
應當認為本次公開的實施方式在所有方面均為示例性的實施方式,而非限制性的實施方式。本發明不限於上述含義,而是由申請專利範圍所示,並且意圖包括與申請專利範圍等同的含義及範圍內的所有改變。
1:高頻放大器10:下段11:第一介電質層12:第二介電質層13a,13b,13c,14a,14b,16a,17a:訊號導通孔15a,15b,15c,15d:散熱導通孔20:上段23:第三介電質層24:第四介電質層25:蓋材30:輸入匹配電路40:驅動放大器40a:正面40b:背面41:輸出匹配電路49:曲線圖案50:多厄悌放大器51:分支電路52:曲線圖案52a:導通孔53:輸入匹配電路54:載波放大器54a:正面54b:背面55:輸出匹配電路56,66:多厄悌網路56a:90°傳輸線路61:相位調整電路61a:導通孔63:輸入匹配電路64:峰值放大器64a:正面64b:背面65:輸出匹配電路100:印刷基板101a,101b:印刷基板上的佈線C,C1~C29,C31,C32:電容器L,L1~L12,L15,L16:電感器La0:第0佈線層(散熱部)La1:第1佈線層La2:第2佈線層La3:第3佈線層La4:基座構件RFin:輸入端子RFout:輸出端子R1,R3~R5:電阻TRL1~TRL4:傳輸線Vd,Vg:電源
圖1是示意性地示出根據本公開的一個方面的高頻放大器的剖面圖。  圖2是用於對圖1的高頻放大器進行說明的方塊圖。  圖3是圖1的上段的平面圖。  圖4是圖1的下段的平面圖。  圖5是圖1的驅動放大器的電路圖。  圖6是用於對與圖5的電路圖相對應的上段進行說明的圖。  圖7是圖1的多厄悌放大器的電路圖。  圖8是用於對與圖7的電路圖相對應的下段進行說明的圖。
1:高頻放大器
10:下段
11:第一介電質層
12:第二介電質層
13a,13b,13c,14a,14b,16a,17a:訊號導通孔
15a,15b,15c,15d:散熱導通孔
20:上段
23:第三介電質層
24:第四介電質層
25:蓋材
40:驅動放大器
40a:正面
40b:背面
54:載波放大器
54a:正面
54b:背面
64:峰值放大器
64a:正面
64b:背面
100:印刷基板
101a,101b:印刷基板上的佈線
C:電容器
La0:第0佈線層(散熱部)
La1:第1佈線層
La2:第2佈線層
La3:第3佈線層
La4:基座構件
L:電感器

Claims (5)

  1. 一種高頻放大器,包括:  非對稱多厄悌放大器,包括載波放大器和峰值放大器,並且對輸入的波長為λ的高頻訊號進行放大,該峰值放大器在該載波放大器的輸出達到飽和區域的情況下開始進行放大操作,並且具有與該載波放大器不同的飽和輸出;  驅動放大器,對該非對稱多厄悌放大器進行驅動;  分支電路,將由該驅動放大器放大的高頻訊號分支至該峰值放大器側的輸入路徑和該載波放大器側的輸入路徑;  相位調整電路,設置於該峰值放大器側的路徑或該載波放大器側的路徑中的任意一者,並且使該峰值放大器的輸入訊號的相位或該載波放大器的輸入訊號的相位中的任意一者延遲;  第一基板,用於搭載該載波放大器和該峰值放大器;以及  第二基板,用於搭載該驅動放大器、該分支電路、以及該相位調整電路,  其中,在將該第二基板重疊地積層於該第一基板的情況下,該驅動放大器的輸入端子與該載波放大器的輸入端子位於彼此投影的位置,  在n為0以上的整數的情況下,將從該驅動放大器的輸入端子到該載波放大器的輸出端子的電氣長度設定為(2n+1)×π的相位。
  2. 如請求項1之高頻放大器,其中,  該載波放大器的輸出端子處的高頻訊號與該峰值放大器的輸出端子處的高頻訊號之間的相位差在π/2~3π/2的範圍內。
  3. 如請求項1之高頻放大器,其中,  在該第一基板與該第二基板之間配置接地的金屬層。
  4. 如請求項1之高頻放大器,其中,  該第一基板具有投影於該第二基板的平面形狀。
  5. 如請求項1至4中任一項之高頻放大器,其中,  該峰值放大器被構成為具有比該載波放大器大的飽和輸出。
TW110100760A 2020-01-10 2021-01-08 高頻放大器 TW202143439A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-002882 2020-01-10
JP2020002882 2020-01-10

Publications (1)

Publication Number Publication Date
TW202143439A true TW202143439A (zh) 2021-11-16

Family

ID=76787932

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110100760A TW202143439A (zh) 2020-01-10 2021-01-08 高頻放大器

Country Status (5)

Country Link
US (1) US20220376658A1 (zh)
JP (1) JPWO2021141030A1 (zh)
CN (1) CN114902558A (zh)
TW (1) TW202143439A (zh)
WO (1) WO2021141030A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273117A (ja) * 2009-05-21 2010-12-02 Nec Corp 増幅器
US9407214B2 (en) * 2013-06-28 2016-08-02 Cree, Inc. MMIC power amplifier
US10284146B2 (en) * 2016-12-01 2019-05-07 Nxp Usa, Inc. Amplifier die with elongated side pads, and amplifier modules that incorporate such amplifier die
US10594266B2 (en) * 2017-12-04 2020-03-17 Nxp Usa, Inc. Multiple-path amplifier with series component along inverter between amplifier outputs
US10673386B2 (en) * 2017-12-05 2020-06-02 Nxp Usa, Inc. Wideband power amplifiers with harmonic traps

Also Published As

Publication number Publication date
JPWO2021141030A1 (zh) 2021-07-15
WO2021141030A1 (ja) 2021-07-15
US20220376658A1 (en) 2022-11-24
CN114902558A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
JP2009239882A (ja) 高周波電力増幅器
US20240154575A1 (en) High frequency amplifier
JP2019092009A (ja) 半導体増幅素子及び半導体増幅装置
JP7302925B2 (ja) 高周波増幅器
WO2021140975A1 (ja) 高周波増幅器
CN107769740B (zh) 高频放大器模块
JP3515854B2 (ja) 高周波電力増幅回路装置
TW202143439A (zh) 高頻放大器
US11296662B2 (en) High-frequency power amplifier
JP3216626B2 (ja) 増幅装置
JP2018032916A (ja) 高周波増幅器モジュール
JP4054456B2 (ja) 高周波増幅器
JP2006148268A (ja) 電力増幅モジュール
WO1999054935A1 (fr) Dispositif portable de telecommunications
JP7371340B2 (ja) 電力増幅装置及び電磁波放射装置
WO2023105662A1 (ja) 電力増幅器
JP2001156556A (ja) 高周波用電力増幅器
JP2013197655A (ja) 高周波電力増幅器
KR20180016052A (ko) 내부 정합 회로를 포함하는 고출력 증폭기용 GaN 반도체 패키지의 내부 정합 회로 정합 방법 및 그 보정 방법
JP2007043451A (ja) 高周波電力増幅用電子部品
JPH05167218A (ja) 電力増幅器の実装構造
JP2004193685A (ja) 半導体チップおよび高周波増幅器
JP2022010090A (ja) 半導体増幅素子及び半導体増幅装置
JP2001068615A (ja) 電力増幅モジュール
JP2019134361A (ja) 増幅装置及び電磁波照射装置