TW202135334A - 光檢測元件及影像感測器 - Google Patents

光檢測元件及影像感測器 Download PDF

Info

Publication number
TW202135334A
TW202135334A TW110104316A TW110104316A TW202135334A TW 202135334 A TW202135334 A TW 202135334A TW 110104316 A TW110104316 A TW 110104316A TW 110104316 A TW110104316 A TW 110104316A TW 202135334 A TW202135334 A TW 202135334A
Authority
TW
Taiwan
Prior art keywords
group
formula
atoms
electrode layer
substituent
Prior art date
Application number
TW110104316A
Other languages
English (en)
Inventor
小野雅司
佐藤寛敬
伊勢俊大
Original Assignee
日商富士軟片股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商富士軟片股份有限公司 filed Critical 日商富士軟片股份有限公司
Publication of TW202135334A publication Critical patent/TW202135334A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/661Chalcogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14875Infrared CCD or CID imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Light Receiving Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本發明提供一種光檢測元件,其具有第1電極層、第2電極層、設置於第1電極層與第2電極層之間的光電轉換層、設置於第1電極層與光電轉換層之間的電子傳輸層及設置於光電轉換層與第2電極層之間的電洞傳輸層,光電轉換層包含含有金屬原子之半導體量子點的集合體及與半導體量子點配位之配位體,電洞傳輸層包含有機半導體,第2電極層由包含選自Au、Pt、Ir、Pd、Cu、Pb、Sn、Zn、Ti、W、Mo、Ta、Ge、Ni、Cr及In中之至少一種金屬原子之金屬材料構成。本發明亦提供一種包含光檢測元件之影像感測器。

Description

光檢測元件及影像感測器
本發明係有關一種具有包含半導體量子點之光電轉換層之光檢測元件及影像感測器。
近年來,在智慧手機和監視攝像機、行車記錄器等領域中,能夠檢測紅外區域的光之光檢測元件備受矚目。
以往,在用於影像感測器等之光檢測元件中,使用將矽晶圓用作光電轉換層的原材料之矽光二極體。然而,矽光二極體在波長900nm以上的紅外區域中的靈敏度較低。
又,在習知為近紅外光的受光元件之InGaAs系半導體材料中,存在為了實現高量子效率而需要磊晶生長等需要成本非常高的製程之問題,因此尚未得到普及。
又,近年來,一直對半導體量子點進行研究。在非專利文獻1中記載有一種光二極體,其中作為陰極電極使用了氧化銦錫,作為電子傳輸層使用了ZnO,作為光電轉換層使用了PbS量子點,作為電洞傳輸層使用了1,1-雙[(二-4-甲苯基胺基)苯基]環己烷,作為電洞注入層使用了MoO3 ,作為陽極電極使用了Ag。
[非專利文獻1]Jae Woong Lee,Do Young Kim and Franky So,“Unraveling the Gain Mechanism in high Performance Solution-Processed PbS Infrared PIN Photodiodes”,Advanced Functional Materials 25,1233-1238(2015)
近年來,隨著對影像感測器等要求提高性能,對用於該等中之光檢測元件序所需的各種特性亦要求進一步提高。例如,需要進一步減少光檢測元件的暗電流。藉由減少光檢測元件的暗電流,在影像感測器中,能夠獲得更高的訊號雜訊比(SN比)。
根據本發明人的研究,發現關於具有用半導體量子點形成之光電轉換層之光檢測元件,存在暗電流相對高的傾向,因此尚有減少暗電流的餘地。
又,本發明人對記載於非專利文獻1中之光二極體進行研究之結果,發現暗電流高。另外,暗電流係指不照射光時流動的電流。
因此,本發明的目的在於提供一種外部量子效率高且暗電流減少之光檢測元件及影像感測器。
本發明人對具有包含半導體量子點之光電轉換層之光檢測元件進行深入研究之結果,發現作為光電轉換層使用包含含有金屬原子之半導體量子點的集合體及與半導體量子點配位之配位體者,在光電轉換層上積層包含有機半導體材料之電洞傳輸層,作為電洞傳輸層側的電極使用由包含選自Au、Pt、Ir、Pd、Cu、Pb、Sn、Zn、Ti、W、Mo、Ta、Ge、Ni、Cr及In中之至少一種金屬原子之金屬材料構成者,藉此能夠獲得外部量子效率高且暗電流減少之光檢測元件,以至完成了本發明。 <1>一種光檢測元件,其具有: 第1電極層; 第2電極層; 設置於第1電極層與第2電極層之間的光電轉換層; 設置於上述第1電極層與上述光電轉換層之間的電子傳輸層;及 設置於上述光電轉換層與上述第2電極層之間的電洞傳輸層, 上述光電轉換層包含含有金屬原子之半導體量子點的集合體及與上述半導體量子點配位之配位體, 上述電洞傳輸層包含有機半導體, 上述第2電極層由包含選自Au、Pt、Ir、Pd、Cu、Pb、Sn、Zn、Ti、W、Mo、Ta、Ge、Ni、Cr及In中之至少一種金屬原子之金屬材料構成。 <2>如<1>所述之光檢測元件,其中 在上述第2電極層中,Ag原子的含量係98質量%以下。 <3>如<1>或<2>所述之光檢測元件,其中 上述第2電極層由包含選自Au、Pd、Ir及Pt中之至少一種金屬原子之金屬材料構成。 <4>如<1>至<3>之任一項所述之光檢測元件,其中 上述第2電極層的功函數係4.6eV以上。 <5>如<1>至<4>之任一項所述之光檢測元件,其中 上述電洞傳輸層中包含之有機半導體係由下述式1-1~式1-6中的任一個表示之化合物; [化學式1]
Figure 02_image001
式1-1中,Ar1 ~Ar3 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基; 式1-2中,Ar4 表示包含可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基之2價連結基,Ar5 ~Ar8 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基; 式1-3中,Ar9 ~Ar15 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基; 式1-4中,Ar16 ~Ar24 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基,n1表示0~10的整數; 式1-5中,Ar25 ~Ar33 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基; 式1-6中,Ar34 ~Ar42 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基。 <6>如<5>所述之光檢測元件,其中 上述式1-1的Ar1 ~Ar3 中的至少一個具有推電子基團, 上述式1-2的Ar4 ~Ar8 中的至少一個具有推電子基團, 上述式1-3的Ar9 ~Ar15 中的至少一個具有推電子基團, 上述式1-4的Ar16 ~Ar24 中的至少一個具有推電子基團, 上述式1-5的Ar25 ~Ar33 中的至少一個具有推電子基團, 上述式1-6的Ar34 ~Ar42 中的至少一個具有推電子基團。 <7>如<6>所述之光檢測元件,其中 上述推電子基團係烷基、烯基、炔基、芳基、雜環基、烷氧基、芳氧基、烷硫基、胺基、羥基或矽基。 <8>如<1>至<7>之任一項所述之光檢測元件,其中 上述電洞傳輸層中包含之有機半導體係由下述式3-1或式3-2表示之化合物; [化學式2]
Figure 02_image003
式3-1中,Ar43 ~Ar46 分別獨立地表示可以具有取代基之芳香族雜環基、由式3-a表示之基團或由式3-b表示之基團, Rd 及Re 分別獨立地表示取代基, m4及m5分別獨立地表示0~4的數字, l1 及l2 分別獨立地表示1或2, L表示單鍵或2價連結基; 式3-2中,Ar47 ~Ar52 分別獨立地表示可以具有取代基之芳香族雜環基、由式3-a表示之基團或由式3-b表示之基團, Rf ~Rh 分別獨立地表示取代基, m6~m8分別獨立地表示0~4的數字; [化學式3]
Figure 02_image005
式3-a中,Ri ~Ro 分別表示氫原子或取代基,l3 表示0或1,*表示連接鍵; 式3-b中,Rp ~Rv 分別表示氫原子或取代基,l4 表示0或1,*表示連接鍵。 <9>如<8>所述之光檢測元件,其中 式3-1的Ar43 ~Ar46 中的至少一個具有推電子基團, 式3-2的Ar47 ~Ar52 中的至少一個具有推電子基團。 <10>如<1>至<9>之任一項所述之光檢測元件,其中 上述半導體量子點含有Pb原子。 <11>如<1>至<10>之任一項所述之光檢測元件,其中 上述半導體量子點含有PbS。 <12>如<1>至<11>之任一項所述之光檢測元件,其中 上述配位體包含選自含有鹵素原子之配位體及包含2個以上配位部之多牙配位體中之至少一種。 <13>如<12>所述之光檢測元件,其中 上述含有鹵素原子之配位體係無機鹵化物。 <14>如<13>所述之光檢測元件,其中 上述無機鹵化物含有Zn原子。 <15>如<1>至<14>之任一項所述之光檢測元件,其係光二極體型光檢測元件。 <16>一種影像感測器,其係包含<1>至<15>之任一項所述之光檢測元件。 <17>如<16>所述之影像感測器,其係紅外線影像感測器。 [發明效果]
根據本發明,能夠提供一種外部量子效率高且暗電流減少之光檢測元件及影像感測器。
以下,對本發明的內容進行詳細說明。 本說明書中,“~”是以將其前後所記載之數值作為下限值及上限值而包括之含義來使用。 本說明書中之基團(原子團)的標記中,未標有經取代及未經取代之標記包括不具有取代基之基團(原子團),亦包括具有取代基之基團(原子團)。例如,“烷基”不僅包括不具有取代基之烷基(未經取代之烷基),亦包括具有取代基之烷基(經取代之烷基)。
<光檢測元件> 本發明的光檢測元件的特徵為,其具有: 第1電極層; 第2電極層; 設置於第1電極層與第2電極層之間的光電轉換層; 設置於第1電極層與光電轉換層之間的電子傳輸層;及 設置於光電轉換層與第2電極層之間的電洞傳輸層, 光電轉換層包含含有金屬原子之半導體量子點的集合體及與半導體量子點配位之配位體, 電洞傳輸層包含有機半導體, 第2電極層由包含選自Au、Pt、Ir、Pd、Cu、Pb、Sn、Zn、Ti、W、Mo、Ta、Ge、Ni、Cr及In中之至少一種金屬原子之金屬材料構成。
根據本發明,能夠獲得外部量子效率高且暗電流低的光檢測元件。
作為光電轉換層中的半導體量子點,使用含有Pb原子之半導體量子點時,光電轉換層中,1價以下的Pb原子的個數與2價Pb原子的個數之比(1價以下的Pb原子的個數/2價Pb原子的個數)為0.20以下為較佳,0.10以下為更佳,0.05以下為進一步較佳。根據該態樣,能夠獲得暗電流更進一步減少之光檢測元件。
獲得此類效果之詳細理由尚不明確,但推測如下。作為2價Pb原子,可舉出與配位體鍵結(配位)之Pb原子、與硫族元素(chalcogen)原子鍵結之Pb原子、與鹵素原子鍵結之Pb原子等。作為1價以下的Pb原子,可舉出金屬性Pb原子、懸鍵的Pb原子等。其中,認為光電轉換層中的自由電子量與暗電流相關,推測藉由減少自由電子量能夠減少暗電流。認為在光電轉換層中,1價以下的Pb原子起到電子供體的作用,推測藉由減少1價以下的Pb原子的比率,能夠減少光電轉換層中的自由電子量。出於此類理由,推測能夠進一步減少光檢測元件的暗電流。
本說明書中,關於光電轉換層之1價以下的Pb原子的個數與2價Pb原子的個數之比的值係藉由利用XPS(X-ray Photoelectron Spectroscopy:X射線光電子光譜法)裝置之X射線光電子光譜法測定之值。具體而言,關於光電轉換層的Pb4f(7/2)軌道的XPS光譜,藉由最小二乘法進行曲線擬合,藉此進行了強度峰存在於鍵結能137.8~138.2eV範圍內之波形W1和強度峰存在於鍵結能136.5~137eV範圍內之波形W2的波形分離。而且,算出波形W2的峰面積S2與波形W1的峰面積S1之比,將該值作為關於光電轉換層之1價以下的Pb原子的個數與2價Pb原子的個數之比。其中,在基於X射線光電子光譜法之測定中,根據成為基準之樣品,存在上述強度峰的鍵結能稍微波動的情況。本發明中的半導體量子點中存在Pb原子和(與其成對的)陰離子原子X的2價鍵Pb-X。因此,將源自Pb-X或者在與Pb-X相同的鍵結能位置具有強度峰之鍵的貢獻組合作為上述峰面積S1。而且,將源自在鍵結能比其低的位置具有強度峰的鍵的貢獻作為上述峰面積S2。例如,關於光電轉換層之1價以下的Pb原子的個數與2價Pb原子的個數之比,能夠使用作為波形W1使用強度峰存在於鍵結能138eV之波形且作為波形W2使用強度峰存在於鍵結能136.8eV之波形而算出之值。
作為將關於光電轉換層之1價以下的Pb原子的個數與2價Pb原子的個數之比設為0.20以下的方法,可舉出在製造半導體膜時使其接觸非質子性溶劑而進行沖洗或在含氧氣體環境下進行乾燥的方法等。
以下,參閱圖1對本發明的光檢測元件的詳細內容進行說明。圖1係表示光二極體型光檢測元件的一實施形態之圖。另外,圖中的箭頭表示入射到光檢測元件之光。圖1所示之光檢測元件1包含第2電極層12、與第2電極層12相對向之第1電極層11、設置於第2電極層12與第1電極層11之間的光電轉換層13、設置於第1電極層11與光電轉換層13之間的電子傳輸層21、設置於第2電極層12與光電轉換層13之間的電洞傳輸層22。圖1所示之光檢測元件1以從上部電極11的上方入射光的方式使用。另外,雖未圖示,可以在第1電極層11的光入射側的表面配置透明基板。作為透明基板的種類,可舉出玻璃基板、樹脂基板、陶瓷基板等。
(第1電極層) 第1電極層11係由相對於藉由光檢測元件檢測之目標光的波長實質上透明的導電材料形成之透明電極為較佳。另外,本發明中,“實質上透明”係指透光率為50%以上,60%以上為較佳,80%以上為特佳。作為第1電極層11的材料,可舉出導電性金屬氧化物等。作為具體例,可舉出氧化錫、氧化鋅、氧化銦、氧化銦鎢、氧化銦鋅(indium zinc oxide:IZO)、氧化銦錫(indium tin oxide:ITO)、摻氟氧化錫(fluorine-doped tin oxide:FTO)等。
第1電極層11的膜厚並無特別限定,0.01~100μm為較佳,0.01~10μm為進一步較佳,0.01~1μm為特佳。另外,本發明中,各層的膜厚能夠藉由使用掃描式電子顯微鏡(scanning electron microscope:SEM)等觀察光檢測元件1的截面來進行測定。
(電子傳輸層) 如圖1所示,電子傳輸層21設置於第1電極層11與光電轉換層13之間。電子傳輸層21係具有將在光電轉換層13中產生之電子傳輸到電極層之功能之層。電子傳輸層亦稱為電洞阻擋層。電子傳輸層由能夠發揮該作用之電子傳輸材料形成。作為電子傳輸材料,可舉出[6,6]-Phenyl-C61-Butyric Acid Methyl Ester(苯基-C61-丁酸甲酯)(PC61 BM)等富勒烯化合物、苝四羧二醯亞胺等苝化合物、四氰基對醌二甲烷、氧化鈦、氧化錫、氧化鋅、氧化銦、氧化銦鎢、氧化銦鋅、氧化銦錫、摻氟氧化錫等。電子傳輸層可以為單層膜,亦可以為兩層以上的積層膜。電子傳輸層的厚度係10~1000nm為較佳。上限係800nm以下為較佳。下限係20nm以上為較佳,50nm以上為更佳。又,電子傳輸層的厚度為光電轉換層13的厚度的0.05~10倍為較佳,0.1~5倍為更佳,0.2~2倍為進一步較佳。
(光電轉換層) 光電轉換層13包含含有金屬原子之半導體量子點的集合體及與半導體量子點配位之配位體。亦即,光電轉換層13由包含含有金屬原子之半導體量子點的集合體及與半導體量子點配位之配位體之半導體膜構成。另外,半導體量子點的集合體係指複數個(例如,每1μm2 為100個以上)半導體量子點彼此接近而配置之形態。又,本發明中的“半導體”係指比電阻值為10-2 Ωcm以上且108 Ωcm以下之物質。
半導體量子點係具有金屬原子之半導體粒子。另外,本發明中,金屬原子中亦包含以Si原子為代表之半金屬原子。作為構成半導體量子點之半導體量子點材料,例如可舉出通常的半導體結晶〔a)IV族半導體、b)IV-IV族、III-V族或II-VI族的化合物半導體、c)由II族、III族、IV族、V族及VI族元素中的3個以上的組合構成之化合物半導體〕的奈米粒子(0.5nm以上且小於100nm的大小的粒子)。
半導體量子點係含有選自Pb原子、In原子、Ge原子、Si原子、Cd原子、Zn原子、Hg原子、Al原子、Sn原子及Ga原子中之至少一種金屬原子為較佳,含有選自Pb原子、In原子、Ge原子及Si原子中之至少一種金屬原子為更佳,從更容易顯著地獲得本發明的效果之理由考慮,含有Pb原子為進一步較佳。
作為構成半導體量子點之半導體量子點材料的具體例,可舉出PbS、PbSe、PbTe、InN、InAs、Ge、InGaAs、CuInS、CuInSe、CuInGaSe、InSb、HgTe、HgCdTe、Ag2 S、Ag2 Se、Ag2 Te、SnS、SnSe、SnTe、Si、InP等能帶隙相對窄的半導體材料。其中,從容易將紅外區域的光(較佳為波長700~2500nm的光)高效率地轉換成電子之理由考慮,半導體量子點含有PbS或PbSe為較佳,含有PbS為更佳。
半導體量子點可以為將半導體量子點材料作為核(core)並且由包覆化合物覆蓋半導體量子點材料而成之核殼(core shell)結構的原材料。作為包覆化合物,可舉出ZnS、ZnSe、ZnTe、ZnCdS、CdS、GaP等。
半導體量子點的能帶隙Eg1係0.5~2.0eV為較佳。若半導體量子點的能帶隙Eg1在上述範圍內,則能夠作為能夠根據用途檢測各種波長的光之光檢測元件。例如,能夠將其作為能夠檢測紅外區域的光之光檢測元件。半導體量子點的能帶隙Eg1的上限係1.9eV以下為較佳,1.8eV以下為更佳,1.5eV以下為進一步較佳。半導體量子點的能帶隙Eg1的下限係0.6eV以上為較佳,0.7eV以上為更佳。
半導體量子點的平均粒徑係2nm~15nm為較佳。另外,半導體量子點的平均粒徑係10個任意選擇之半導體量子點粒徑的平均值。測定半導體量子點的粒徑時使用穿透式電子顯微鏡即可。
通常半導體量子點包括幾nm~幾十nm的各種大小的粒子。若在半導體量子點中將半導體量子點的平均粒徑減小到所內在之電子的波耳半徑以下的大小,則會產生因量子尺寸效應而半導體量子點的能帶隙發生變化之現象。若半導體量子點的平均粒徑為15nm以下,則容易進行基於量子尺寸效應之能帶隙控制。
本發明的光檢測元件的光電轉換層13包含與半導體量子點配位之配位體。作為配位體,可舉出含有鹵素原子之配位體及包含2個以上配位部之多牙配位體。光電轉換層13可以僅包含一種配位體,亦可以包含兩種以上。其中,光電轉換層13包含含有鹵素原子之配位體及多牙配位體為較佳。根據該態樣,能夠作為暗電流低且導電率、光電流值、外部量子效率、外部量子效率的面內均勻性等性能優異之光檢測元件。獲得此類效果之理由可推測為如下。推測為多牙配位體與半導體量子點進行螯合配位,並且可推測為能夠更有效地抑制配位體從半導體量子點的剝離等。又,推測為能夠藉由進行螯合配位來抑制半導體量子點彼此的立體效應。因此,認為半導體量子點之間的立體效應變小,並且緻密地排列半導體量子點而能夠增強半導體量子點之間的波函數的疊加。而且,推測為在作為與半導體量子點配位之配位體進一步包含含有鹵素原子之配位體之情況下,含有鹵素原子之配位體與未配位多牙配位體的間隙配位,並且推測為能夠減少半導體量子點的表面缺陷。因此,推測能夠作為暗電流低且導電率、光電流值、外部量子效率、外部量子效率的面內均勻性等性能優異之光檢測元件。
首先,對含有鹵素原子之配位體進行說明。作為配位體中所含有之鹵素原子,可舉出氟原子、氯原子、溴原子及碘原子,從配位力的觀點考慮,碘原子為較佳。
含有鹵素原子之配位體可以為有機鹵化物,亦可以為無機鹵化物。其中,從容易與半導體量子點的陽離子位點及陰離子位點這兩者配位之理由考慮,無機鹵化物為較佳。又,無機鹵化物係含有選自Zn原子、In原子及Cd原子中之金屬原子之化合物為較佳,含有Zn原子之化合物為更佳。從進行離子化而容易與半導體量子點配位之理由考慮,無機鹵化物係金屬原子與鹵素原子的鹽為較佳。
作為含有鹵素原子之配位體的具體例,可舉出碘化鋅、溴化鋅、氯化鋅、碘化銦、溴化銦、氯化銦、碘化鎘、溴化鎘、氯化鎘、碘化鎵、溴化鎵、氯化鎵、四丁基碘化銨、四甲基碘化銨等,碘化鋅為特佳。
另外,在含有鹵素原子之配位體中,亦存在鹵素離子從含有鹵素原子之配位體解離而鹵素離子在半導體量子點的表面上配位之情況。又,關於含有鹵素原子之配位體的鹵素以外的部位,亦存在在半導體量子點的表面上配位之情況。若舉出具體例來進行說明,則在碘化鋅的情況下,既存在碘化鋅在半導體量子點的表面上配位之情況,亦存在碘離子或鋅離子在半導體量子點的表面上配位之情況。
接著,對多牙配位體進行說明。作為多牙配位體中包含之配位部,可舉出硫醇基、胺基、羥基、羧基、磺酸基、磷酸基、膦酸基。從容易與半導體量子點的表面牢固地配位之理由考慮,多牙配位體係包含硫醇基之化合物為較佳。
作為多牙配位體,可舉出由式(D)~(F)中的任一個表示之配位體。 [化學式4]
Figure 02_image007
式(D)中,XD1 及XD2 分別獨立地表示硫醇基、胺基、羥基、羧基、磺酸基、磷酸基或膦酸基, LD1 表示烴基。
式(E)中,XE1 及XE2 分別獨立地表示硫醇基、胺基、羥基、羧基、磺酸基、磷酸基或膦酸基, XE3 表示S、O或NH, LE1 及LE2 分別獨立地表示烴基。
式(F)中,XF1 ~XF3 分別獨立地表示硫醇基、胺基、羥基、羧基、磺酸基、磷酸基或膦酸基, XF4 表示N, LF1 ~LF3 分別獨立地表示烴基。
XD1 、XD2 、XE1 、XE2 、XF1 、XF2 及XF3 所表示之胺基並不限定於-NH2 ,亦可以包含取代胺基及環狀胺基。作為取代胺基,可舉出單烷基胺基、二烷基胺基、單芳胺基、二芳胺基、烷基芳胺基等。作為該等基團所表示之胺基,-NH2 、單烷基胺基、二烷基胺基為較佳,-NH2 為更佳。
作為LD1 、LE1 、LE2 、LF1 、LF2 及LF3 所表示之烴基,脂肪族烴基為較佳。脂肪族烴基可以為飽和脂肪族烴基,亦可以為不飽和脂肪族烴基。烴基的碳數係1~20為較佳。碳數的上限係10以下為較佳,6以下為更佳,3以下為進一步較佳。作為烴基的具體例,可舉出伸烷基、伸烯基、伸炔基。
伸烷基可舉出直鏈伸烷基、支鏈伸烷基及環狀伸烷基,直鏈伸烷基或支鏈伸烷基為較佳,直鏈伸烷基為更佳。伸烯基可舉出直鏈伸烯基、支鏈伸烯基及環狀伸烯基,直鏈伸烯基或支鏈伸烯基為較佳,直鏈伸烯基為更佳。伸炔基可舉出直鏈伸炔基及支鏈伸炔基,直鏈伸炔基為較佳。伸烷基、伸烯基及伸炔基可以進一步具有取代基。取代基係碳數1以上且10以下的基團為較佳。作為碳數1以上且10以下的基團的較佳之具體例,可舉出碳數1~3的烷基〔甲基、乙基、丙基及異丙基〕、碳數2~3的烯基〔乙烯基及丙烯基〕、碳數2~4的炔基〔乙炔基、丙炔基等〕、環丙基、碳數1~2的烷氧基〔甲氧基及乙氧基〕、碳數2~3的醯基〔乙醯基及丙醯基〕、碳數2~3的烷氧基羰基〔甲氧羰基及乙氧羰基〕、碳數2的醯氧基〔乙醯氧基〕、碳數2的醯胺基〔乙醯胺基〕、碳數1~3的羥烷基〔羥甲基、羥乙基、羥丙基〕、醛基、羥基、羧基、磺酸基、磷酸基、胺甲醯基、氰基、異氰酸酯基、硫醇基、硝基、硝氧基、異硫氰酸酯基、氰酸酯基、硫氰酸酯基、乙醯氧基、乙醯胺基、甲醯基、甲醯氧基、甲醯胺基、磺酸胺基、亞磺酸基、胺磺醯基、膦醯基、乙醯基、鹵素原子、鹼金屬原子等。
式(D)中,XD1 與XD2 藉由LD1 相隔1~10個原子為較佳,相隔1~6個原子為更佳,相隔1~4個原子為進一步較佳,相隔1~3個原子為更進一步較佳,相隔1或2個原子為特佳。
式(E)中,XE1 與XE3 藉由LE1 相隔1~10個原子為較佳,相隔1~6個原子為更佳,相隔1~4個原子為進一步較佳,相隔1~3個原子為更進一步較佳,相隔1或2個原子為特佳。又,XE2 與XE3 藉由LE2 相隔1~10個原子為較佳,相隔1~6個原子為更佳,相隔1~4個原子為進一步較佳,相隔1~3個原子為更進一步較佳,相隔1或2個原子為特佳。
式(F)中,XF1 與XF4 藉由LF1 相隔1~10個原子為較佳,相隔1~6個原子為更佳,相隔1~4個原子為進一步較佳,相隔1~3個原子為更進一步較佳,相隔1或2個原子為特佳。又,XF2 與XF4 藉由LF2 相隔1~10個原子為較佳,相隔1~6個原子為更佳,相隔1~4個原子為進一步較佳,相隔1~3個原子為更進一步較佳,相隔1或2個原子為特佳。又,XF3 與XF4 藉由LF3 相隔1~10個原子為較佳,相隔1~6個原子為更佳,相隔1~4個原子為進一步較佳,相隔1~3個原子為更進一步較佳,相隔1或2個原子為特佳。
另外,XD1 與XD2 藉由LD1 相隔1~10個原子係指構成連接XD1 與XD2 之最短距離的分子鏈之原子數為1~10個。例如,下述式(D1)的情況下,XD1 與XD2 相隔2個原子,下述式(D2)及式(D3)的情況下,XD1 與XD2 相隔3個原子。標註於以下結構式之數字表示構成連接XD1 與XD2 之最短距離的分子鏈之原子的排列順序。 [化學式5]
Figure 02_image009
若舉出具體的化合物來進行說明,則3-巰基丙酸係相當於XD1 之部位為羧基、相當於XD2 之部位為硫醇基、相當於LD1 之部位為伸乙基之結構的化合物(下述結構的化合物)。3-巰基丙酸中,XD1 (羧基)與XD2 (硫醇基)藉由LD1 (伸乙基)相隔2個原子。 [化學式6]
Figure 02_image011
關於XE1 與XE3 藉由LE1 相隔1~10個原子,XE2 與XE3 藉由LE2 相隔1~10個原子、XF1 與XF4 藉由LF1 相隔1~10個原子、XF2 與XF4 藉由LF2 相隔1~10個原子、XF3 與XF4 藉由LF3 相隔1~10個原子的含義,亦與上述相同。
作為多牙配位體的具體例,可舉出乙二硫醇、3-巰基丙酸、硫乙醇酸、2-胺基乙醇、2-胺基乙硫醇、2-巰基乙醇、乙醇酸、二伸乙三胺、三(2-胺基乙基)胺、4-巰基丁酸、3-胺基丙醇、3-巰基丙醇、N-(3-胺基丙基)-1,3-丙烷二胺、3-(雙(3-胺基丙基)胺基)丙烷-1-醇、1-硫甘油、二硫甘油、1-巰基-2-丁醇、1-巰基-2-戊醇、3-巰基-1-丙醇、2,3-二巰基-1-丙醇、二乙醇胺、2-(2-胺基乙基)胺基乙醇、二亞甲基三胺、1,1-氧基雙甲基胺、1,1-硫代雙甲基胺、2-[(2-胺基乙基)胺基]乙硫醇、雙(2-巰基乙基)胺、2-胺基乙烷-1-硫醇、1-胺基-2-丁醇、1-胺基-2-戊醇、L-半胱胺酸、D-半胱胺酸、3-胺基-1-丙醇、L-高絲胺酸、D-高絲胺酸、胺基羥基乙酸、L-乳酸、D-乳酸、L-蘋果酸、D-蘋果酸、甘油酸、2-羥基酪酸、L-酒石酸、D-酒石酸、羥丙二酸及該等的衍生物,從容易獲得暗電流低且外部量子效率高的半導體膜之理由考慮,硫乙醇酸、2-胺基乙醇、2-胺基乙硫醇、2-巰基乙醇、乙醇酸、二伸乙三胺、三(2-胺基乙基)胺、1-硫甘油、二硫甘油、乙二胺、乙二醇、胺基磺酸、甘胺酸、(胺基甲基)膦酸、胍、二乙醇胺、2-(2-胺基乙基)胺基乙醇、高絲胺酸、半胱胺酸、硫代蘋果酸、蘋果酸及酒石酸為較佳,硫乙醇酸、2-胺基乙醇、2-巰基乙醇及2-胺基乙硫醇為更佳,硫乙醇酸為進一步較佳。
相對於半導體量子點中包含之金屬原子之多牙配位體的錯合物穩定常數K1係6以上為較佳,8以上為更佳,9以上為進一步較佳。若上述錯合物穩定常數K1係6以上,則能夠提高半導體量子點與多牙配位體的鍵結強度。因此,能夠抑制多牙配位體從半導體量子點的剝離等,其結果,能夠進一步提高驅動耐久性等。
錯合物穩定常數K1係指由配位體與成為配位鍵結的對象之金屬原子的關係確定之常數,並且由下述式(b)表示。
錯合物穩定常數K1=[ML]/([M]・[L])……(b) 式(b)中,[ML]表示配位體與金屬原子鍵結而成之錯合物的莫耳濃度,[M]表示有助於配位鍵結之金屬原子的莫耳濃度,[L]表示配位體的莫耳濃度。
實際上,有時亦會在複數個配位體與一個金屬原子配位,但是在本發明中,將一個配位體分子與一個金屬原子配位時的由式(b)表示之錯合物穩定常數K1定義為配位鍵結強度的指標。
作為配位體與金屬原子之間的錯合物穩定常數K1的求法,有光譜法、磁共振光譜法、電位測定法、溶解度測定、層析法、量熱法、凝固點測定、蒸氣壓測定、鬆弛測定、黏度測定、表面張力測定等。在本發明中,藉由使用總結了各種方法和來自研究機構的結果之Sc-Databese ver.5.85(Academic Software)(2010)來確定了錯合物穩定常數K1。在Sc-Databese ver.5.85中沒有錯合物穩定常數K1時,使用A.E.Martell及R.M.Smith著,Critical Stability Constants中記載之值。當Critical Stability Constants中亦未記載有錯合物穩定常數K1時,使用既述測定方法或使用計算錯合物穩定常數K1之程式PKAS法(A.E.Martell等著,The Determination and Use of Stability Constants,VCH(1988))來計算錯合物穩定常數K1。
本發明中,作為半導體量子點使用含有Pb原子者(更佳為使用PbS),相對於Pb原子之多牙配位體的錯合物穩定常數K1係6以上為較佳,8以上為更佳,9以上為進一步較佳。作為相對於Pb原子之錯合物穩定常數K1係6以上之化合物,可舉出硫乙醇酸(相對於Pb原子之錯合物穩定常數K1=8.5)、2-巰基乙醇(相對於Pb原子之錯合物穩定常數K1=6.7)等。
光電轉換層的厚度係10~600nm為較佳,50~600nm為更佳,100~600nm為進一步較佳,150~600nm為更進一步較佳。厚度的上限係550nm以下為較佳,500nm以下為更佳,450nm以下為進一步較佳。
藉由光檢測元件檢測之相對於目標波長的光之光電轉換層的折射率係2.0~3.0為較佳,2.1~2.8為更佳,2.2~2.7為進一步較佳。根據該態樣,將光檢測元件設為光二極體的結構時,容易實現高光吸收率,亦即高外部量子效率。
光電轉換層能夠經由如下步驟(半導體量子點集合體形成步驟)來形成:將包含半導體量子點、與半導體量子點配位之配位體及溶劑之半導體量子點分散液賦予到基板上,形成半導體量子點的集合體的膜。將半導體量子點分散液賦予到基板上之方法並無特別限定。可舉出旋塗法、浸漬法、噴墨法、點膠機法、網板印刷法、凸版印刷法、凹版印刷法、噴塗法等塗佈方法。
又,在形成半導體量子點的集合體的膜之後,進而進行配位體交換步驟為將與半導體量子點配位之配位體交換成另一配位體。在配位體交換步驟中,對藉由半導體量子點集合體形成步驟形成之半導體量子點的集合體的膜賦予包含配位體A及溶劑之配位體溶液而將與半導體量子點配位之配位體交換成配位體A。配位體A可以包含兩種以上的配位體,並且配位體溶液可以同時使用兩種。
另一方面,亦可以在半導體量子點的表面預先賦予所期望的配位體,之後將半導體量子點分散液塗佈於基板上而形成光電轉換層。
半導體量子點分散液中的半導體量子點的含量係1~500mg/mL為較佳,10~200mg/mL為更佳,20~100mg/mL為進一步較佳。
作為半導體量子點分散液或配位體溶液中包含之溶劑,可舉出酯系溶劑、酮系溶劑、醇系溶劑、醯胺系溶劑、醚系溶劑、烴系溶劑等。關於該等的詳細內容,能夠參閱國際公開第2015/166779號的0223段,該內容編入本說明書中。又,亦能夠使用環狀烷基被取代之酯系溶劑、環狀烷基被取代之酮系溶劑。溶劑的金屬雜質少為較佳,金屬含量例如為10質量ppb(parts per billion,十億分率)以下。可以根據需要使用質量ppt(parts per trillion,兆分率)級別的溶劑,此類溶劑例如由Toyo Gosei Co.,Ltd.提供(化學工業日報,2015年11月13日)。作為從溶劑中去除金屬等雜質之方法,例如,能夠舉出蒸餾(分子蒸餾或薄膜蒸餾等)或使用過濾器之過濾。作為用於過濾之過濾器的過濾器孔徑,10μm以下為較佳,5μm以下為更佳,3μm以下為進一步較佳。過濾器的材質為聚四氟乙烯、聚乙烯或尼龍為較佳。溶劑中可以含有異構物(原子數相同但結構不同之化合物)。又,異構物可以僅包含一種,亦可以包含複數種。
(電洞傳輸層) 如圖1所示,電洞傳輸層22可以設置於第2電極層12與光電轉換層13之間。電洞傳輸層係指具有將在光電轉換層中產生之電洞傳輸到電極層之功能之層。電洞傳輸層亦稱為電子阻擋層(electron blocking layer)。在本發明的光檢測元件中,在光電轉換層13的表面配置有電洞傳輸層22為較佳。
在本發明的光檢測元件中,電洞傳輸層22可以包含有機半導體。電洞傳輸層22係由有機半導體構成之半導體膜為較佳。作為構成電洞傳輸層22之有機半導體,可舉出由下述式1-1~式1-6中之任一個表示之化合物等。 [化學式7]
Figure 02_image013
式1-1中,Ar1 ~Ar3 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基; 式1-2中,Ar4 表示包含可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基之2價連結基,Ar5 ~Ar8 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基; 式1-3中,Ar9 ~Ar15 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基; 式1-4中,Ar16 ~Ar24 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基,n1表示0~10的整數; 式1-5中,Ar25 ~Ar33 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基; 式1-6中,Ar34 ~Ar42 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基。
式1-1的Ar1 ~Ar3 、式1-2的Ar5 ~Ar8 、式1-3的Ar9 ~Ar15 、式1-4的Ar16 ~Ar24 、式1-5的Ar25 ~Ar33 、式1-6的Ar34 ~Ar42 所表示之芳香族烴基的碳數係6~50為較佳,6~30為更佳,6~12為進一步較佳。上述芳香族烴基可以為單環,亦可以為2環以上縮環而成之基團。較佳為單環。作為芳香族烴基的具體例,可舉出苯環基、聯苯環基、三苯環基、聯伸三苯環基、萘環基、蒽環基、菲環基、萉環基、茀環基、芘環基、䓛環基、苝環基、薁環基等,苯環基為較佳。
構成式1-1的Ar1 ~Ar3 、式1-2的Ar5 ~Ar8 、式1-3的Ar9 ~Ar15 、式1-4的Ar16 ~Ar24 、式1-5的Ar25 ~Ar33 、式1-6的Ar34 ~Ar42 所表示之芳香族雜環基的環之雜原子數係1~3為較佳。構成芳香族雜環基的環之雜原子係氮原子、氧原子或硫原子為較佳。構成芳香族雜環基的環之碳原子數係1~20為較佳,1~15為更佳,1~12為進一步較佳。芳香族雜環基可以為單環,亦可以為2環以上縮環而成之基團。作為芳香族雜環基的具體例,可舉出二苯并噻吩環基、二苯并呋喃環基、二苯并硒吩環基、呋喃環基、噻吩環基、苯并呋喃環基、苯并噻吩環基、苯并硒吩環基、咔唑環基、吲哚并咔唑環基、吡啶基吲哚環基、吡咯并二吡啶環基、吡唑環基、咪唑環基、三唑環基、㗁唑環基、噻唑環基、㗁二唑環基、㗁三唑環基、二㗁唑環基、噻二唑環基、吡啶環基、嗒𠯤環基、嘧啶環基、吡𠯤環基、三𠯤環基、㗁𠯤環基、㗁噻𠯤環基、㗁二𠯤環基、吲哚環基、苯并咪唑環基、吲唑環基、吲哚基㗁𠯤環基、苯并㗁唑環基、苯并異㗁唑環基、苯并噻唑環基、喹啉環基、異喹啉環基、噌啉環基、喹唑啉環基、喹㗁啉環基、萘啶環基、呔𠯤環基、喋啶環基、口山口星環基、吖啶環基、啡𠯤環基、啡噻𠯤環基、啡㗁𠯤環基、苯并氟吡啶環基、氟二吡啶環基、苯并噻吡啶環基、噻二吡啶環基、苯并硒吩吡啶環基及硒吩二吡啶環基。
式1-2的Ar4 表示包含可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基之2價連結基。作為Ar4 所表示之2價連結基,可舉出芳香族烴基、芳香族雜環基及由下述式X-1表示之基團。作為芳香族烴基、芳香族雜環基,可舉出上述基團。 [化學式8]
Figure 02_image015
式X-1中,ArX1 及ArX2 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基,LX1 表示單鍵、烴基或包含選自氧原子、氮原子、硫原子、矽原子、磷原子及硼原子中之至少一種原子之基團,X表示1~10的整數。
LX1 係單鍵或烴基為較佳,烴基為更佳,脂肪族烴基為進一步較佳。 LX1 係由-CRx1 CRX2 -表示之基團為較佳。Rx1 及RX2 分別獨立地表示烷基,Rx1 與RX2 可以鍵結而形成環。Rx1 與RX2 鍵結而形成環為較佳。所形成之環係5員環或6員環的脂肪族環為較佳。作為LX1 的較佳具體例,可舉出以下所示之基團。RX3 表示取代基,X1表示0~4的整數,*表示鍵結鍵。作為RX3 所表示之取代基,可舉出後述Ar1 ~Ar42 所表示之基團可以具有之取代基。
[化學式9]
Figure 02_image017
式1-4的n1表示0~10的整數,0~5為較佳,0~3為更佳,0或1為進一步較佳。
作為Ar1 ~Ar42 所表示之基團可以具有之取代基,可舉出氘、烷基、烯基、炔基、芳基、雜環基、烷氧基、芳氧基、烷硫基、胺基、醯基、烷氧基羰基、芳氧基羰基、醯胺基、磺醯胺基、胺甲醯基、胺磺醯基、鹵素原子、腈基、異腈基、羥基、烷基亞磺醯基、芳基亞磺醯基、烷基磺醯基、芳基磺醯基、膦基、矽基及羧基。
烷基的碳數為1~20為較佳,1~15為更佳,1~10為進一步較佳。烷基可以為直鏈、支鏈及環狀中的任一種。
烯基的碳數係2~20為較佳,2~15為更佳,2~10為特佳。烯基可以為直鏈、支鏈及環狀中的任一種。
炔基的碳數為2~20為較佳,2~15為更佳,2~10為特佳。炔基可以為直鏈及支鏈中的任一種。
芳基的碳數為6~50為較佳,6~30為更佳,6~12為進一步較佳。芳基可以為單環,亦可以為2環以上縮環而成之基團。
構成雜環基的環之雜原子數係1~3為較佳。構成雜環基的環之雜原子係氮原子、氧原子或硫原子為較佳。構成雜環基的環之碳原子數係1~20為較佳,1~15為更佳,1~12為更佳。雜環基可以為單環,亦可以為2環以上縮環而成之基團。雜環基可以為非芳香族雜環,亦可以為芳香族雜環。
烷氧基的碳數係1~20為較佳,1~15為更佳,1~10為進一步較佳。烷氧基可以為直鏈及支鏈中的任一種。
芳氧基的碳數係6~50為較佳,6~30為更佳,6~12為進一步較佳。芳氧基的芳基部位可以為單環,亦可以為2環以上縮環而成之基團。
烷硫基的碳數為1~20為較佳,1~15為更佳,1~10為進一步較佳。烷硫基可以為直鏈及支鏈中的任一種。
作為胺基,-Nh2 、單或二烷基胺基、單芳基胺基或烷基芳基胺基為較佳。單或二烷基胺基、胺基芳基胺基中的烷基的碳數係1~20為較佳,1~15為更佳,1~10為進一步較佳。烷基可以為直鏈、支鏈及環狀中的任一種。單芳基胺基及烷基芳基胺基中的芳基的碳數係6~50為較佳,6~30為更佳,6~12為進一步較佳。芳基可以為單環,亦可以為2環以上縮環而成之基團。
醯基的碳數為2~50為較佳,2~30為更佳,2~12為進一步較佳。
烷氧基羰基的碳數係2~20為較佳,2~15為更佳,2~10為進一步較佳。烷氧基羰基可以為直鏈及支鏈中的任一種。
芳氧基羰基的碳數係7~50為較佳,7~30為更佳,7~12為進一步較佳。芳氧基羰基的芳基部位可以為單環,亦可以為2環以上縮環而成之基團。
醯胺基的碳數係2~50為較佳,2~30為更佳,2~12為進一步較佳。
磺醯胺基的碳數係1~50為較佳,1~30為更佳,1~12為進一步較佳。
胺甲醯基的碳數係1~50為較佳,1~30為更佳,1~12為進一步較佳。
胺磺醯基的碳數係1~50為較佳,1~30為更佳,1~12為進一步較佳。
作為鹵素原子,可舉出氯原子、溴原子、碘原子、氟原子。
烷基亞磺醯基的碳數係1~20為較佳,1~15為更佳,1~10為進一步較佳。
芳基亞磺醯基的碳數係6~50為較佳,6~30為更佳,6~12為進一步較佳。
烷基磺醯基的碳數係1~20為較佳,1~15為更佳,1~10為進一步較佳。
芳基磺醯基的碳數係6~50為較佳,6~30為更佳,6~12為進一步較佳。
膦基的碳數係0~30為較佳。作為膦基的具體例,可舉出二甲基膦基、二苯基膦基、甲基苯氧基膦基等。
作為矽基,由-SiRsi1 Rsi2 Rsi3 表示之基團為較佳。Rsi1 ~Rsi3 分別獨立地表示烷基或芳基,烷基為較佳。烷基的碳數為1~10為較佳,1~5為更佳,1~3為進一步較佳。烷基可以為直鏈、支鏈及環狀中的任一個,直鏈或支鏈為較佳,直鏈為更佳。芳基的碳數為6~50為較佳,6~30為更佳,6~12為進一步較佳。芳基可以為單環,亦可以為2環以上縮環而成之基團。作為矽基的具體例,可舉出三甲基矽基、三級丁基二甲基矽基、苯基二甲基矽基等。
Ar1 ~Ar42 所表示之基團可以具有之取代基係推電子基團亦較佳。亦即,式1-1的Ar1 ~Ar3 中的至少一個具有推電子基團,式1-2的Ar4 ~Ar8 中的至少一個具有推電子基團,式1-3的Ar9 ~Ar15 中的至少一個具有推電子基團,式1-4的Ar16 ~Ar24 中的至少一個具有推電子基團,式1-5的Ar25 ~Ar33 中的至少一個具有推電子基團,式1-6的Ar34 ~Ar42 中的至少一個具有推電子基團為較佳。Ar1 ~Ar42 所表示之基團具有推電子基團作為取代基時,藉由能階變低而阻擋效果變高,能夠期待暗電流的減少。
其中,推電子基團係指在有機電子理論中,藉由誘導效應、共振效應,對經取代之原子團供應電子之原子團。作為推電子基團,可舉出取負值作為哈米特方程的取代基常數(σp(對))者。哈米特方程的取代基常數(σp(對))能夠引用自化學便覽基礎編改訂5版(II-380頁)。作為推電子基團的具體例,可舉出烷基、烯基、炔基、芳基、雜環基、烷氧基、芳氧基、烷硫基、胺基、羥基及矽基,烷基、烷氧基、芳氧基、烷硫基、胺基或矽基為較佳,從容易進一步顯著地獲得上述效果的理由考慮,三級烷基或矽基為更佳。
電洞傳輸層22中包含之有機半導體係由下述式3-1或式3-2表示之化合物為較佳。根據該態樣,能夠獲得外部量子效率更高且暗電流進一步減少之光檢測元件。 [化學式10]
Figure 02_image019
式3-1中,Ar43 ~Ar46 分別獨立地表示可以具有取代基之芳香族雜環基、由式3-a表示之基團或由式3-b表示之基團, Rd 及Re 分別獨立地表示取代基 m4及m5分別獨立地表示0~4的數字, l1 及l2 分別獨立地表示1或2, L表示單鍵或2價連結基; 式3-2中,Ar47 ~Ar52 分別獨立地表示可以具有取代基之芳香族雜環基、由式3-a表示之基團或由式3-b表示之基團, Rf ~Rh 分別獨立地表示取代基, m6~m8分別獨立地表示0~4的數字; [化學式11]
Figure 02_image005
式3-a中,Ri ~Ro 分別表示氫原子或取代基,l3 表示0或1,*表示連接鍵; 式3-b中,Rp ~Rv 分別表示氫原子或取代基,l4 表示0或1,*表示連接鍵;
作為式3-1的Ar43 ~Ar46 所表示之芳香族雜環基、Ar47 ~Ar52 所表示之芳香族雜環基,與式1-1的Ar1 ~Ar3 、式1-2的Ar5 ~Ar8 、式1-3的Ar9 ~Ar15 、式1-4的Ar16 ~Ar24 、式1-5的Ar25 ~Ar33 、式1-6的Ar34 ~Ar42 所表示之芳香族雜環基的含義相同,較佳範圍亦相同。
作為式3-1的Ar43 ~Ar46 所表示之芳香族雜環基可以具有之取代基、Ar47 ~Ar52 所表示之芳香族雜環基可以具有之取代基、式3-1的Rd 及Re 所表示之取代基、式3-2的Rf ~Rh 所表示之取代基、式3-a的Ri ~Ro 所表示之取代基、式3-b的Rp ~Rv 所表示之取代基,可舉出作為上述Ar1 ~Ar42 所表示之基團可以具有之取代基而說明的取代基,推電子基團為較佳,烷基、烯基、炔基、芳基、雜環基、烷氧基、芳氧基、烷硫基、胺基、羥基或矽基為更佳,烷基、烷氧基、芳氧基、烷硫基、胺基或矽基為進一步較佳,從容易進一步顯著地獲得上述效果的理由考慮,三級烷基或矽基為特佳。
式3-1的l1 及l2 分別獨立地表示1或2,係1為較佳。
式3-1的L表示單鍵或2價連結基,係2價連結基為較佳。作為2價連結基,可舉出烴基或包含選自氧原子、氮原子、硫原子、矽原子、磷原子及硼原子中之至少一種原子之基團。
L所表示之2價連結基係烴基為較佳,由-CRx1 CRX2 -表示之基團為更佳。Rx1 及RX2 分別獨立地表示烷基,Rx1 與RX2 可以鍵結而形成環。Rx1 與RX2 鍵結而形成環為較佳。所形成之環係5員環或6員環的脂肪族環為較佳。作為L所表示之2價連結基的較佳之具體例,可舉出以下所示之基團。RX3 表示取代基,X1表示0~4的整數,*表示鍵結鍵。作為RX3 所表示之取代基,可舉出上述Ar1 ~Ar42 所表示之基團可以具有之取代基。
[化學式12]
Figure 02_image022
式3-1的m4及m5分別獨立地表示0~4的數字,0~3為較佳,0~2為更佳,0或1為進一步較佳,0為特佳。式3-2的m6~m8分別獨立地表示0~4的數字,0~3為較佳,0~2為更佳,0或1為進一步較佳,0為特佳。
式3-a的l3 表示0或1,係0為較佳。式3-b的l4 表示0或1,係0為較佳。
在式3-1中,Ar43 ~Ar46 係由式3-b表示之基團為較佳。又,在式3-2中,Ar47 ~Ar52 係由式3-b表示之基團為較佳。 在由式3-b表示之基團中,l4 係0且Rs 係推電子基團為較佳,烷基、烯基、炔基、芳基、雜環基、烷氧基、芳氧基、烷硫基、胺基、羥基或矽基為更佳,烷基、烷氧基、芳氧基、烷硫基、胺基或矽基為進一步較佳,三級烷基或矽基為特佳。 又,在由式3-b表示之基團中,l4 係0且Rs 、Ru 及Rp 分別獨立地為取代基亦較佳,Rs 、Ru 及Rp 分別獨立地為推電子基團亦較佳,Rs 、Ru 及Rp 分別獨立地為烷基、烯基、炔基、芳基、雜環基、烷氧基、芳氧基、烷硫基、胺基、羥基或矽基亦較佳,係烷基、烷氧基、芳氧基、烷硫基、胺基或矽基為進一步較佳,係甲基亦較佳。
作為電洞傳輸層22中使用之有機半導體的具體例,可舉出以下所示之結構的化合物、日本特開2019-163239號公報的0116段中記載之化合物。
[化學式13]
Figure 02_image024
[化學式14]
Figure 02_image026
[化學式15]
Figure 02_image028
本發明的光檢測元件可以進一步具有由與有機半導體不同之電洞傳輸材料構成之另一電洞傳輸層。作為構成另一電洞傳輸層之電洞傳輸材料,可舉出PEDOT:PSS(聚(3,4-伸乙二氧基噻吩):聚(4-苯乙烯磺酸))、MoO3 等。又,亦能夠使用日本特開2001-291534號公報的0209~0212段中記載之有機電洞傳輸材料等。又,電洞傳輸材料亦能夠使用半導體量子點。作為構成半導體量子點之半導體量子點材料,例如可舉出通常的半導體結晶〔a)IV族半導體、b)IV-IV族、III-V族或II-VI族的化合物半導體、c)由II族、III族、IV族、V族及VI族元素中的3個以上的組合構成之化合物半導體〕的奈米粒子(0.5nm以上且小於100nm的大小的粒子)。具體而言,可舉出PbS、PbSe、PbSeS、InN、InAs、Ge、InAs、InGaAs、CuInS、CuInSe、CuInGaSe、InSb、HgTe、HgCdTe、Ag2S、Ag2Se、Ag2Te、SnS、SnSe、SnTe、Si、InP等能帶隙相對窄的半導體材料。配位體可以在半導體量子點的表面上配位。
本發明的光檢測元件包含其他電洞傳輸層時,包含有機半導體之電洞傳輸層配置於光電轉換層側為較佳。
電洞傳輸層的厚度係5~100nm為較佳。下限係10nm以上為較佳。上限係50nm以下為較佳,30nm以下為進一步較佳。
(第2電極層) 第2電極層12由包含選自Au、Pt、Ir、Pd、Cu、Pb、Sn、Zn、Ti、W、Mo、Ta、Ge、Ni、Cr及In中之至少一種金屬原子之金屬材料構成。藉由第2電極層12由此類金屬材料構成,能夠獲得外部量子效率高且暗電流低的光檢測元件。
第2電極層12由包含選自Au、Cu、Mo、Ni、Pd、W、Ir、Pt及Ta中之至少一種金屬原子之金屬材料構成為較佳,從功函數大且容易抑制遷移的理由考慮,由包含選自Au、Pd、Ir及Pt中之至少一種金屬原子之金屬材料構成為更佳。
在第2電極層12中,Ag原子的含量係98質量%以下為較佳,95質量%以下為更佳,90質量%以下為進一步較佳。又,第2電極層12實質上不包含Ag原子亦較佳。第2電極層12實質上不包含Ag原子係指第2電極層12中的Ag原子的含量係1質量%以下,0.1質量%以下為較佳,不含有Ag原子為更佳。
從提高基於電洞傳輸層之電子阻擋性且容易收集在元件中產生之電洞的理由考慮,第2電極層12的功函數係4.6eV以上為較佳,4.8~5.7eV為更佳,4.9~5.3eV為進一步較佳。
第2電極層12的膜厚並無特別限定,0.01~100μm為較佳,0.01~10μm為進一步較佳,0.01~1μm為特佳。
(阻擋層) 雖未圖示,本發明的光檢測元件可以在第1電極層11與電子傳輸層21之間具有阻擋層。阻擋層係具有防止反向電流之功能之層。阻擋層亦稱為防短路層。形成阻擋層之材料例如可舉出氧化矽、氧化鎂、氧化鋁、碳酸鈣、碳酸銫、聚乙烯醇、聚胺酯、氧化鈦、氧化錫、氧化鋅、氧化鈮、氧化鎢等。阻擋層可以為單層膜,亦可以為兩層以上的積層膜。
(光檢測元件的特性) 又,在本發明的光檢測元件中,藉由光檢測元件檢測之目標光的波長λ與從第2電極層12的光電轉換層13側的表面到光電轉換層13的第1電極層11側的表面為止的上述波長λ的光的光徑長度Lλ 滿足下述式(1-1)的關係為較佳,滿足下述式(1-2)的關係為更佳。在波長λ與光徑長度Lλ 滿足此類關係之情況下,光電轉換層13中能夠使從第1電極層11側入射之光(入射光)與在第2電極層12的表面反射之光(反射光)的相位一致,其結果,光藉由光學干涉效應而互相增強,並且能夠獲得更高外部量子效率。
0.05+m/2≦Lλ /λ≦0.35+m/2……(1-1) 0.10+m/2≦Lλ /λ≦0.30+m/2……(1-2)
上述式中,λ係藉由光檢測元件檢測之目標光的波長, Lλ 係第2電極層12的光電轉換層13側的表面到光電轉換層13的第1電極層11側的表面為止的波長λ的光的光徑長度, m係0以上的整數。
m係0~4的整數為較佳,0~3的整數為更佳,0~2的整數為進一步較佳。根據該態樣,電洞或電子等電荷的傳輸特性良好,並且能夠進一步提高光檢測元件的外部量子效率。
其中,光徑長度係指光所透過之物質的物理厚度乘以折射率而得者。若以光電轉換層13為例進行說明,則將光電轉換層的厚度設為d1 ,將光電轉換層相對於波長λ1 之折射率設為N1 時,透過光電轉換層13之波長λ1 的光的光徑長度係N1 ×d1 。在光電轉換層13或電洞傳輸層22由兩層以上的積層膜構成之情況或在電洞傳輸層22與第2電極層12之間存在中間層之情況下,各層的光徑長度的累計值係上述光徑長度Lλ
本發明的光檢測元件可較佳地用作檢測紅外區域的波長的光者。亦即,本發明的光檢測元件係紅外光檢測元件為較佳。又,藉由上述光檢測元件檢測之目標光係紅外區域的波長的光為較佳。又,紅外區域的波長的光係大於波長700nm之波長的光為較佳,波長800nm以上的光為更佳,波長900nm以上的光為進一步較佳。又,紅外區域的波長的光係波長2000nm以下的光為較佳,波長1800nm以下的光為更佳,波長1600nm以下的光為進一步較佳。
又,本發明的光檢測元件可以同時檢測紅外區域的波長的光及可見區域的波長的光(較佳為波長400~700nm的範圍的光)。
<影像感測器> 本發明的影像感測器包含上述本發明的光檢測元件。作為影像感測器的結構,只要為具備本發明的光檢測元件並且作為影像感測器而發揮作用之結構,則並無特別限定。
本發明的影像感測器可以包含紅外線透過濾波器層。作為紅外線透過濾波器層,可見區域的波長帶的光的透過性低為較佳,波長400~650nm的範圍的光的平均透過率係10%以下為更佳,7.5%以下為進一步較佳,5%以下為特佳。
作為紅外線透過濾波器層,可舉出由包含色材之樹脂膜構成者等。作為色材,可舉出紅色色材、綠色色材、藍色色材、黃色色材、紫色色材、橙色色材等彩色色材、黑色色材。紅外線透過濾波器層中包含之色材由兩種以上的彩色色材的組合形成黑色或包含黑色色材為較佳。作為由兩種以上的彩色色材的組合形成黑色時的彩色色材的組合,例如可舉出以下(C1)~(C7)的態樣。 (C1)含有紅色色材及藍色色材之態樣。 (C2)含有紅色色材、藍色色材及黃色色材之態樣。 (C3)含有紅色色材、藍色色材、黃色色材及紫色色材之態樣。 (C4)含有紅色色材、藍色色材、黃色色材、紫色色材及綠色色材之態樣。 (C5)含有紅色色材、藍色色材、黃色色材及綠色色材之態樣。 (C6)含有紅色色材、藍色色材及綠色色材之態樣。 (C7)含有黃色色材及紫色色材之態樣。
上述彩色色材可以為顏料,亦可以為染料。亦可以包含顏料及染料。黑色色材係有機黑色色材為較佳。例如,作為有機黑色色材,可舉出雙苯并呋喃酮化合物、甲亞胺化合物、苝化合物、偶氮化合物等。
紅外線透過濾波器層可以進一步含有紅外線吸收劑。藉由在紅外線透過濾波器層含有紅外線吸收劑,能夠使所透過之光的波長位移到更長波長側。作為紅外線吸收劑,可舉出吡咯并吡咯化合物、花青化合物、方酸菁化合物、酞青化合物、萘酞青化合物、夸特銳烯(quaterrylene)化合物、部花青化合物、克酮鎓化合物、氧雜菁化合物、亞銨化合物、二硫醇化合物、三芳基甲烷化合物、吡咯亞甲基化合物、甲亞胺化合物、蒽醌化合物、二苯并呋喃酮化合物、二硫代烯金屬錯合物、金屬氧化物、金屬硼化物等。
關於紅外線透過濾波器層的分光特性,能夠根據影像感測器的用途適當選擇。例如可舉出滿足以下(1)~(5)中的任一個分光特性之濾波器層等。 (1):膜的厚度方向上的透光率在波長400~750nm範圍內的最大值係20%以下(較佳為15%以下,更佳為10%以下)且膜的厚度方向上的透光率在波長900~1500nm範圍內的最小值係70%以上(較佳為75%以上,更佳為80%以上)之濾波器層。 (2):膜的厚度方向上的透光率在波長400~830nm範圍內的最大值係20%以下(較佳為15%以下,更佳為10%以下)且膜的厚度方向上的透光率在波長1000~1500nm範圍內的最小值係70%以上(較佳為75%以上,更佳為80%以上)之濾波器層。 (3):膜的厚度方向上的透光率在波長400~950nm範圍內的最大值係20%以下(較佳為15%以下,更佳為10%以下)且膜的厚度方向上的透光率在波長1100~1500nm範圍內的最小值係70%以上(較佳為75%以上,更佳為80%以上)之濾波器層。 (4):膜的厚度方向上的透光率在波長400~1100nm範圍內的最大值係20%以下(較佳為15%以下,更佳為10%以下)且波長1400~1500nm範圍內的最小值係70%以上(較佳為75%以上,更佳為80%以上)之濾波器層。 (5):膜的厚度方向上的透光率在波長400~1300nm範圍內的最大值係20%以下(較佳為15%以下,更佳為10%以下)且波長1600~2000nm範圍內的最小值係70%以上(較佳為75%以上,更佳為80%以上)之濾波器層。
又,作為紅外線透過濾波器,能夠使用日本特開2013-077009號公報、日本特開2014-130173號公報、日本特開2014-130338號公報、國際公開第2015/166779號、國際公開第2016/178346號、國際公開第2016/190162號、國際公開第2018/016232號、日本特開2016-177079號公報、日本特開2014-130332號公報、國際公開第2016/027798號中記載之膜。又,紅外線透過濾波器可以組合使用兩個以上的濾波器,亦可以使用藉由一個濾波器透過特定的兩個以上波長區域之雙帶通濾波器。
以提高減少雜訊等各種性能為目的,本發明的影像感測器可以包含紅外線遮蔽濾波器。作為紅外線遮蔽濾波器的具體例,例如可舉出國際公開第2016/186050號、國際公開第2016/035695號、日本專利第6248945號公報、國際公開第2019/021767號、日本特開2017-067963號公報、日本專利第6506529號公報中記載之濾波器。
本發明的影像感測器可以包含介電體多層膜。作為介電體多層膜,可舉出將複數層高折射率的介電體薄膜(高折射率材料層)與低折射率的介電體薄膜(低折射率材料層)交替積層而成者。介電體多層膜中的介電體薄膜的積層數並無特別限定,2~100層為較佳,4~60層為更佳,6~40層為進一步較佳。作為用於形成高折射率材料層之材料,折射率係1.7~2.5的材料為較佳。作為具體例,可舉出Sb2 O3 、Sb2 S3 、Bi2 O3 、CeO2 、CeF3 、HfO2 、La2 O3 、Nd2 O3 、Pr6 O11 、Sc2 O3 、SiO、Ta2 O5 、TiO2 、TlCl、Y2 O3 、ZnSe、ZnS、ZrO2 等。作為用於形成低折射率材料層之材料,折射率係1.2~1.6的材料為較佳。作為具體例,可舉出Al2 O3 、BiF3 、CaF2 、LaF3 、PbCl2 、PbF2 、LiF、MgF2 、MgO、NdF3 、SiO2 、Si2 O3 、NaF、ThO2 、ThF4 、Na3 AlF6 等。作為介電體多層膜的形成方法,並無特別限制,例如可舉出離子鍍、離子束等真空蒸鍍法、濺射等物理氣相沉積法(PVD法)、化學氣相沉積法(CVD法)等。欲阻斷之光的波長係λ(nm)時,高折射率材料層及低折射率材料層的各層的厚度係0.1λ~0.5λ的厚度為較佳。作為介電體多層膜的具體例,例如可舉出日本特開2014-130344號公報、日本特開2018-010296號公報中記載之介電體多層膜。
介電體多層膜在紅外區域(較佳為大於波長700nm之波長區域,更佳為大於波長800nm之波長區域,進一步較佳為大於波長900nm之波長區域)存在透過波長帶為較佳。透過波長帶中的最大透過率係70%以上為較佳,80%以上為更佳,90%以上為進一步較佳。又,遮光波長帶中的最大透過率係20%以下為較佳,10%以下為更佳,5%以下為進一步較佳。又,透過波長帶中的平均透過率係60%以上為較佳,70%以上為更佳,80%以上為進一步較佳。又,將顯示最大透過率之波長設為中心波長λt1 時,透過波長帶的波長範圍係中心波長λt1 ±100nm為較佳,中心波長λt1 ±75nm為更佳,中心波長λt1 ±50nm為進一步較佳。
介電體多層膜可以僅具有1種透過波長帶(較佳為最大透過率係90%以上的透過波長帶),亦可以具有複數個。
本發明的影像感測器可以包含分色濾波器層。作為分色濾波器層,可舉出包含著色像素之濾波器層。作為著色像素的種類,可舉出紅色像素、綠色像素、藍色像素、黃色像素、青色像素及品紅色像素等。分色濾波器層可以包含兩種顏色以上的著色像素,亦可以僅為一種顏色。能夠根據用途或目的適當選擇。作為分色濾波器層,例如能夠使用國際公開第2019/039172號中記載之濾波器。
又,分色層包含兩種顏色以上的著色像素之情況下,各種顏色的著色像素彼此可以相鄰,亦可以在各著色像素之間設置間隔壁。作為間隔壁的材質,並無特別限定。例如可舉出矽氧烷樹脂、氟樹脂等有機材料、二氧化矽粒子等無機粒子。又,間隔壁可以由鎢、鋁等金屬構成。
另外,本發明的影像感測器包含紅外線透過濾波器層及分色層之情況下,分色層設置於與紅外線透過濾波器層不同的光徑上為較佳。又,紅外線透過濾波器層及分色層以二維配置亦較佳。另外,紅外線透過濾波器層及分色層以二維配置係指兩者中的至少一部分存在於同一平面上。
本發明的影像感測器可以包含平坦化層、基底層、密接層等中間層、防反射膜、透鏡。作為防反射膜,例如能夠使用由國際公開第2019/017280號中記載之組成物製作之膜。作為透鏡,例如能夠使用國際公開第2018/092600號中記載之結構體。
本發明的光檢測元件對紅外區域的波長的光具有優異之靈敏度。因此,本發明的影像感測器能夠較佳地用作紅外線影像感測器。又,本發明的影像感測器能夠較佳地用於感測波長900~2000nm的光,能夠更佳地用於感測波長900~1600nm的光。 [實施例]
以下,舉出實施例對本發明進行進一步具體的說明。以下實施例所示之材料、使用量、比例、處理內容、處理步驟等,只要不脫離本發明的主旨,則能夠適當變更。因此,本發明的範圍並不限定於以下所示之具體例。
<PbS量子點的分散液的製備> (PbS量子點的分散液) 在燒瓶中稱取1.3mL的油酸、2mmol的氧化鉛及19mL的十八烯,在110℃下真空加熱90分鐘,藉此獲得了前驅物溶液。之後,將溶液的溫度調整為95℃,接著,將體系設為氮氣流狀態。接著,將1mmol的六甲基二矽硫烷與5mL的十八烯一同注入。注入後立即自然冷卻燒瓶,在達到30℃的段階添加己烷12mL,並且回收了溶液。向溶液加入過量的乙醇,以10000rpm進行10分鐘的離心分離,使沉澱物分散於辛烷中,藉此獲得了40mg/mL的PbS量子點分散液。根據PbS量子點分散液的吸收測定而估算之能帶隙約為1.33eV。
(光檢測元件的製作) [實施例1~4] 在附氧化銦錫膜(第1電極層)之石英玻璃基板上,藉由20nm濺射形成了氧化鈦膜。接著,將上述PbS量子點的分散液滴加到形成於上述基板之氧化鈦膜上,以2500rpm進行旋塗,藉此形成了PbS量子點集合體膜(步驟1)。接著,作為配位體溶液,在該PbS量子點集合體膜上滴加碘化鋅25mmol/L的甲醇溶液及硫乙醇酸0.01體積%的甲醇溶液之後,靜置10秒,以2500rpm進行了20秒旋轉乾燥。接著,將乙腈滴加到PbS量子點集合體膜上,以2500rpm進行20秒旋轉乾燥,將與PbS量子點配位之配位體從油酸交換成硫乙醇酸及碘化鋅(步驟2)。將以步驟1及步驟2為1個循環之操作重複進行10個循環之後,在氮氣環境中乾燥10個小時,藉此以220nm厚度形成了配位體從油酸交換成硫乙醇酸及碘化鋅之PbS量子點集合體膜亦即光電轉換層。 接著,對表1所示之有機半導體進行真空蒸鍍以使膜厚成為80nm,藉此形成了電洞傳輸層。 接著,在電洞傳輸層上真空蒸鍍MoO3 以使膜厚成為10nm。接著,在MoO3 膜上真空蒸鍍Au以使膜厚成為100nm,藉此形成了第2電極層。
[比較例1~3] 使用表1所示之有機半導體,進行真空蒸鍍以使膜厚成為80nm而形成了電洞傳輸層,並真空蒸鍍Ag以使膜厚成為100nm,藉此形成了第2電極層,除此以外,進行與實施例1相同的操作來製造了光檢測元件。
[表1]
Figure 02_image030
化合物A:下述結構的化合物 [化學式16]
Figure 02_image031
化合物B:下述結構的化合物 [化學式17]
Figure 02_image033
化合物C:下述結構的化合物 [化學式18]
Figure 02_image035
化合物D:下述結構的化合物 [化學式19]
Figure 02_image037
化合物E:下述結構的化合物 [化學式20]
Figure 02_image039
<外部量子效率、暗電流的評價> 利用半導體參數分析儀(C4156,Agilent公司製),分別測定了所製造之光檢測元件的外部量子效率(EQE)及暗電流。 首先,在未照射光的狀態下,將電壓從0V掃描至-2V的同時測定電流-電壓特性(I-V特性),並將-1V下的電流值作為暗電流進行了評價。 接著,在照射了940nm的單色光的狀態下,將電壓從0V掃描至-2V的同時測定了I-V特性。根據施加了-1V的狀態下的光電流值,算出了外部量子效率(EQE)。
[表2]
Figure 02_image041
如表2所示,相較於比較例,實施例的光檢測元件的外部量子效率更高且暗電流更低。
使用在上述實施例中獲得之光檢測元件,與按照國際公開第2016/186050號及國際公開第2016/190162號中記載之方法製作之濾光器一同藉由公知的方法製作影像感測器,並將其組裝於固體攝像元件,藉此能夠獲得具有良好的可見-紅外攝像性能之影像感測器。
各實施例中,即使將光電轉換層的半導體量子點變更為PbSe量子點,亦可獲得相同的效果。
在各實施例中,即使在代替Au使用Pd形成第2電極層的情況下,亦獲得了相同的效果。
1:光檢測元件 11:第1電極層 12:第2電極層 13:光電轉換層 21:電子傳輸層 22:電洞傳輸層
圖1係表示光檢測元件的一實施形態之圖。
1:光檢測元件
11:第1電極層
12:第2電極層
13:光電轉換層
21:電子傳輸層
22:電洞傳輸層

Claims (17)

  1. 一種光檢測元件,其具有: 第1電極層; 第2電極層; 設置於第1電極層與第2電極層之間的光電轉換層; 設置於前述第1電極層與前述光電轉換層之間的電子傳輸層;及 設置於前述光電轉換層與前述第2電極層之間的電洞傳輸層, 前述光電轉換層包含含有金屬原子之半導體量子點的集合體及與前述半導體量子點配位之配位體, 前述電洞傳輸層包含有機半導體, 前述第2電極層由包含選自Au、Pt、Ir、Pd、Cu、Pb、Sn、Zn、Ti、W、Mo、Ta、Ge、Ni、Cr及In中之至少一種金屬原子之金屬材料構成。
  2. 如請求項1所述之光檢測元件,其中 在前述第2電極層中,Ag原子的含量係98質量%以下。
  3. 如請求項1或請求項2所述之光檢測元件,其中 前述第2電極層由包含選自Au、Pd、Ir及Pt中之至少一種金屬原子之金屬材料構成。
  4. 如請求項1或請求項2所述之光檢測元件,其中 前述第2電極層的功函數係4.6eV以上。
  5. 如請求項1或請求項2所述之光檢測元件,其中 前述電洞傳輸層中包含之有機半導體係由下述式1-1~式1-6中的任一個表示之化合物,
    Figure 03_image042
    式1-1中,Ar1 ~Ar3 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基; 式1-2中,Ar4 表示包含可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基之2價連結基,Ar5 ~Ar8 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基; 式1-3中,Ar9 ~Ar15 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基; 式1-4中,Ar16 ~Ar24 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基,n1表示0~10的整數; 式1-5中,Ar25 ~Ar33 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基; 式1-6中,Ar34 ~Ar42 分別獨立地表示可以具有取代基之芳香族烴基或可以具有取代基之芳香族雜環基。
  6. 如請求項5所述之光檢測元件,其中 前述式1-1的Ar1 ~Ar3 中的至少一個具有推電子基團, 前述式1-2的Ar4 ~Ar8 中的至少一個具有推電子基團, 前述式1-3的Ar9 ~Ar15 中的至少一個具有推電子基團, 前述式1-4的Ar16 ~Ar24 中的至少一個具有推電子基團, 前述式1-5的Ar25 ~Ar33 中的至少一個具有推電子基團, 前述式1-6的Ar34 ~Ar42 中的至少一個具有推電子基團。
  7. 如請求項6所述之光檢測元件,其中 前述推電子基團係烷基、烯基、炔基、芳基、雜環基、烷氧基、芳氧基、烷硫基、胺基、羥基或矽基。
  8. 如請求項1或請求項2所述之光檢測元件,其中 前述電洞傳輸層中包含之有機半導體係由下述式3-1或式3-2表示之化合物;
    Figure 03_image003
    式3-1中,Ar43 ~Ar46 分別獨立地表示可以具有取代基之芳香族雜環基、由式3-a表示之基團或由式3-b表示之基團, Rd 及Re 分別獨立地表示取代基, m4及m5分別獨立地表示0~4的數字, l1 及l2 分別獨立地表示1或2, L表示單鍵或2價連結基; 式3-2中,Ar47 ~Ar52 分別獨立地表示可以具有取代基之芳香族雜環基、由式3-a表示之基團或由式3-b表示之基團, Rf ~Rh 分別獨立地表示取代基, m6~m8分別獨立地表示0~4的數字;
    Figure 03_image005
    式3-a中,Ri ~Ro 分別表示氫原子或取代基,l3 表示0或1,*表示連接鍵; 式3-b中,Rp ~Rv 分別表示氫原子或取代基,l4 表示0或1,*表示連接鍵。
  9. 如請求項8所述之光檢測元件,其中 式3-1的Ar43 ~Ar46 中的至少一個具有推電子基團, 式3-2的Ar47 ~Ar52 中的至少一個具有推電子基團。
  10. 如請求項1或請求項2所述之光檢測元件,其中 前述半導體量子點含有Pb原子。
  11. 如請求項1或請求項2所述之光檢測元件,其中 前述半導體量子點含有PbS。
  12. 如請求項1或請求項2所述之光檢測元件,其中 前述配位體包含選自含有鹵素原子之配位體及包含2個以上配位部之多牙配位體中之至少一種。
  13. 如請求項12所述之光檢測元件,其中 前述含有鹵素原子之配位體係無機鹵化物。
  14. 如請求項13所述之光檢測元件,其中 前述無機鹵化物含有Zn原子。
  15. 如請求項1或請求項2所述之光檢測元件,其係光二極體型光檢測元件。
  16. 一種影像感測器,其包含請求項1至請求項15之任一項所述之光檢測元件。
  17. 如請求項16所述之影像感測器,其係紅外線影像感測器。
TW110104316A 2020-02-13 2021-02-04 光檢測元件及影像感測器 TW202135334A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-022577 2020-02-13
JP2020022577 2020-02-13

Publications (1)

Publication Number Publication Date
TW202135334A true TW202135334A (zh) 2021-09-16

Family

ID=77292250

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110104316A TW202135334A (zh) 2020-02-13 2021-02-04 光檢測元件及影像感測器

Country Status (6)

Country Link
US (1) US20220406850A1 (zh)
JP (1) JP7472258B2 (zh)
KR (1) KR20220124746A (zh)
CN (1) CN115088085A (zh)
TW (1) TW202135334A (zh)
WO (1) WO2021161941A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213851A (ja) 2000-01-31 2001-08-07 Hodogaya Chem Co Ltd トリフェニルアミン化合物
JP2001316336A (ja) 2000-02-25 2001-11-13 Hodogaya Chem Co Ltd 電子製品材料の製造方法
JP2004087130A (ja) 2002-06-24 2004-03-18 Victor Co Of Japan Ltd 有機電界発光素子及びその製造方法
AU2012275060A1 (en) 2011-06-30 2014-01-30 Nanoholdings, Llc A method and apparatus for detecting infrared radiation with gain
CN107636431A (zh) * 2015-06-11 2018-01-26 佛罗里达大学研究基金会有限公司 单分散ir 吸收纳米颗粒以及相关方法和装置
CN108110144B (zh) * 2016-11-25 2021-11-26 三星电子株式会社 包括量子点的发光器件和显示器件

Also Published As

Publication number Publication date
KR20220124746A (ko) 2022-09-14
JP7472258B2 (ja) 2024-04-22
US20220406850A1 (en) 2022-12-22
CN115088085A (zh) 2022-09-20
JPWO2021161941A1 (zh) 2021-08-19
WO2021161941A1 (ja) 2021-08-19

Similar Documents

Publication Publication Date Title
WO2021002104A1 (ja) 光検出素子、光検出素子の製造方法、イメージセンサ、分散液および半導体膜
WO2021002112A1 (ja) 光検出素子およびイメージセンサ
US20220384753A1 (en) Photodetector element and image sensor
US20230040906A1 (en) Photoelectric conversion film, dispersion liquid, photodetector element, and image sensor
WO2021002106A1 (ja) 光検出素子、光検出素子の製造方法、イメージセンサ、分散液および半導体膜
TW202135334A (zh) 光檢測元件及影像感測器
KR102642657B1 (ko) 광검출 소자, 광검출 소자의 제조 방법 및 이미지 센서
JP7454688B2 (ja) 光検出素子およびイメージセンサ
WO2021161940A1 (ja) 半導体膜、光検出素子、イメージセンサおよび半導体膜の製造方法
WO2022264872A1 (ja) 光検出素子およびイメージセンサ
WO2023008353A1 (ja) 光検出素子およびイメージセンサ
TW202213808A (zh) 半導體膜、半導體膜的製造方法、光檢測元件及影像感測器
WO2021002131A1 (ja) 半導体膜、光電変換素子、イメージセンサおよび半導体膜の製造方法
WO2021002134A1 (ja) 半導体膜、光電変換素子、イメージセンサおよび半導体膜の製造方法
TW202337834A (zh) 分散液、量子點膜之製造方法、光檢測元件之製造方法及影像感測器之製造方法
TW202337818A (zh) 半導體膜、光檢測元件、影像感測器、分散液及半導體膜之製造方法
TW202404114A (zh) 半導體膜、光檢測元件、影像感測器及半導體量子點之製造方法
TW202323197A (zh) 半導體膜、半導體膜之製造方法、光檢測元件及影像感測器