TW202128795A - 氫化石油樹脂及其製備方法以及包括其之橡膠組成物及用於輪胎面的橡膠組成物 - Google Patents
氫化石油樹脂及其製備方法以及包括其之橡膠組成物及用於輪胎面的橡膠組成物 Download PDFInfo
- Publication number
- TW202128795A TW202128795A TW109144646A TW109144646A TW202128795A TW 202128795 A TW202128795 A TW 202128795A TW 109144646 A TW109144646 A TW 109144646A TW 109144646 A TW109144646 A TW 109144646A TW 202128795 A TW202128795 A TW 202128795A
- Authority
- TW
- Taiwan
- Prior art keywords
- petroleum resin
- hydrogenated petroleum
- weight
- equation
- rubber
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F240/00—Copolymers of hydrocarbons and mineral oils, e.g. petroleum resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/10—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/02—Hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/045—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated conjugated hydrocarbons other than butadiene or isoprene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/04—Reduction, e.g. hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L15/00—Compositions of rubber derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/06—Copolymers with styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/20—Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2296—Oxides; Hydroxides of metals of zinc
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Tires In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
本揭露是關於一種氫化石油樹脂以及一種包含其之橡膠組成物。根據本揭露的氫化石油樹脂不僅改良了含有其的橡膠的黏彈性質,而且亦具有與橡膠的極佳相容性,從而改良橡膠的總體物理性質。因此,由含有氫化石油樹脂的橡膠組成物製造的例如輪胎的橡膠模製品歸因於抓地力的增大而具有提高的抓地強度(濕/乾)且減少滾動阻力的增加,進而同時滿足作為輪胎所需的抓地力及滾動阻力的兩種性質,從而製造低燃料消耗且高效能的輪胎。
Description
本揭露是關於一種氫化石油樹脂以及一種包含其之橡膠組成物。
輪胎支撐車輛的負載,減輕對路面產生的影響,且向路面傳輸車輛引擎的功率、制動力或類似者以維持車輛的移動。車輛的輪胎需要各種特性,諸如耐久性、耐磨性、滾動阻力、燃料經濟性、轉向穩定性、乘坐舒適性、制動、振動以及噪音。
近來,隨著車輛已變得更加進階且安全性要求已增加,需要研發能夠在各種路面上及各種氣候下維持最佳效能的高效能的輪胎。根據此等需要,引入輪胎能量消耗效率評級系統。
在輪胎能量消耗效率評級系統中,對燃料經濟性(效率)及安全性兩者的效能進行分級且提供所述效能。在此情況下,評估得出,輪胎的滾動阻力愈小,燃料經濟性效能愈佳,且在濕路面上的制動力愈高,安全性愈佳。
燃料效率是基於滾動阻力(rolling resistance;RR)進行量測的,且是指在諸如輪胎的圓形物件在平面上以恆定速度沿直線移動時出現的阻力。
濕路面制動力(濕抓地性(wet grip))是指制動效能,所述制動效能是與安全性相關的輪胎效能。此處,極佳抓地性(grip)是指在轉彎及停止時歸因於輪胎與路表面之間的高黏附力的良好制動效能。近來,在車輛評估項目當中,車輛的制動距離正逐漸成為主要的評估項目。另外,由於車輛使用者常常遇到關於車輛事故的資訊,因而所述車輛使用者亦具有較高安全意識,且因此對車輛的制動效能非常感興趣。
如已提及的,抓地力是允許輪胎表面良好地黏附至路面的技術,且在輪胎具有極佳彈性的情況下是有利的。然而,考慮到抓地力及以滾動阻力,滾動阻力在與路面的黏附力減小時是有利的,且因此輪胎的滾動阻力及抓地力具有相反特性。
亦即,具有低滾動阻力的輪胎在燃料效率方面是有利的,但在道路潮濕時與道路的黏附力可為較弱的。因此,輪胎的最新發展正以嘗試控制滾動阻力及抓地力兩者的方式(而非以減小滾動阻力或增大抓地力的一維方法)持續進行。
先前技術文獻
[專利文獻]
(專利文獻1)韓國專利登記號10-0227566(1999年8月4日)
(專利文獻2)韓國專利登記號10-1572106(2015年11月20日)
(專利文獻3)韓國專利申請公開案第2016-0002044號(2016年1月7日)
[ 技術問題 ]
因此,本揭露要解決的技術問題是提供一種藉由提大抓地力且使滾動阻力的減小用於最小化而具有燃料效率及制動穩定性的輪胎的石油樹脂及一種使用其製造的輪胎面。
[ 技術解決方案 ]
本揭露的態樣是提供一種氫化石油樹脂,包含:重複單元(A),衍生自環狀戊二烯組分;及
重複單元(B),衍生自C9
餾份(fraction)。
[方程式1]
在方程式1中,
x是軟化點(℃),
y是芳氫含量(莫耳%),
z是溴值(bromine value),以及
a=25600,b=625,且c=2500。
本揭露的另一態樣是提供一種包含氫化石油樹脂的橡膠組成物。
本揭露的另一態樣是提供一種用於輪胎面的橡膠組成物,包含氫化石油樹脂。
[ 有利功效 ]
根據本揭露的氫化石油樹脂不僅改良了含有其的橡膠的黏彈性質,而且亦具有與橡膠的極佳相容性,從而改良橡膠的總體物理性質。
因此,由含有氫化石油樹脂的橡膠組成物製造的例如輪胎的橡膠模製品歸因於抓地力的增大而具有增大的抓地力(濕/乾(wet/dry))且減少了滾動阻力的增大,進而同時滿足了作為輪胎所需的抓地力及滾動阻力的兩種性質,從而製造了低燃料消耗且高效能的輪胎。
在下文中,將更詳細地描述本揭露的各個態樣及各種實施例。
說明書及申請專利範圍中所使用的術語或詞語不應被解釋為限制於其常見含義或辭典含義。基於可適當地定義術語的概念以便發明人以最佳方式描述其發明的原理,應將本發明解釋為與本揭露的技術想法一致的含義及概念。
本揭露中所使用的術語僅出於描述特定實施例的目的且並不意欲限制本揭露。除非內容另外明確指示,否則單數形式包含複數形式。應進一步理解,術語「包括」及/或「具有」在用於本揭露中時指定所陳述的特徵、整數、步驟、操作、元件及/或組分的存在,但不排除一或多個其他特徵、整數、步驟、操作、元件、組分及/或其群組的存在或添加。
本揭露中所使用的術語「抓地力」包含濕(wet)抓地力及乾(dry)抓地力兩者。在此情況下,濕(wet)抓地力是指在歸因於雪或雨而導致的濕路面狀態下的抓地效能,而乾(dry)抓地力是指在一般路面狀態下的抓地效能。極佳抓地力意謂輪胎與路面之間的黏附力較高,且因此制動效能在轉彎或停止期間是良好的。
本揭露中所使用的術語『滾動阻力』是指滾動阻力與施加至輪胎的負載的比率。在本揭露中,極佳滾動阻力特性意謂輪胎自身的能量損耗或輪胎與路面之間的能量損耗較小,或滾動阻力的增加較小。
本揭露中所使用的術語「芳氫(aromatic hydrogen)」是指直接連接至芳環的氫原子,可藉由1
H-核磁共振(1
H-nuclearmagneticresonance;1
H-NMR)進行量測且可用於判定樹脂的芳香性(aromaticity)。
構成輪胎的橡膠隨著其旋轉而與路面進行摩擦,且歸因於橡膠的彈性而週期性地重複橡膠的形變和復原。此時,在形變期間的能量歸因於橡膠的黏度而未完全復原,且能量的一部分以熱能形式被消耗(loss)。在此情況下,將所消耗的熱能稱作磁滯損耗(hysterisis loss),且將較大損耗表述為較高磁滯(hysterisis)。如已提及的,極佳抓地力意謂輪胎與路面之間的黏附力較高,因此制動效能在轉彎或制動期間是極佳的。然而,橡膠組成物具有較高磁滯,使得其吸收自外部接收到的形變能量且消耗大量熱能。隨著熱能的消耗,轉化成驅動力的轉化率下降,且滾動阻力增加。
因此,輪胎藉由使在行駛期間的熱能損耗最小化而具有極佳燃料經濟性,且具有較低滾動阻力以抑制熱量產生,且由於與乾路面相比,車輛的速度在濕路面上增加,因而極大地減少了滑動阻力,使得出於制動效能及行駛穩定性的目的,輪胎必須具有影響動態性質(諸如較高抓地力)的極佳黏彈性質。然而,抓地力及滾動阻力是彼此相對的因素,且當抓地力增大時,滾動阻力亦增大,從而導致了增加燃料消耗的問題。亦即,控制抓地力及滾動阻力兩者是用於提高輪胎效能的任務。
因此,本揭露提供一種具有較低滾動阻力及較高抓地力的極佳氫化石油樹脂。
具體而言,本揭露的態樣提供一種氫化石油樹脂,包含:重複單元(A),衍生自環狀戊二烯組分;及
重複單元(B),衍生自C9
餾份,其中氫化石油樹脂滿足方程式1。
[方程式1]
在方程式1中,x是軟化點(℃),y是芳氫含量(莫耳%),z是溴值(bromine value),且a=25600,b=625,且c=2500。
在藉由如下式1中所繪示的共聚作用來將兩種類型的重複單元製備成共聚物之後,可通過氫化反應製備氫化石油樹脂。
[式1]
在式1中,A是衍生自環狀戊二烯組分的重複單元(A),
B是衍生自C9
餾份的重複單元(B),以及
m與n分別是重複單元的莫耳比,且滿足m+n=100。
此處,出於方便起見,共聚物的形式如上文所表述,但不受特別限制,且共聚物可具有各種形式,諸如無規共聚物(random copolymer)、交替共聚物(alternative copolymer)、嵌段共聚物(block copolymer)、接枝共聚物(graft copolymer)以及星型嵌段共聚物(starblock copolymer)。較佳地,共聚物可為無規共聚物。
除了上文所描述的重複單元之外,共聚物可更包含額外重複單元。
在下文中,將詳細地描述每一重複單元。
環狀戊二烯組分(其為自輕油裂解獲得的脂族環狀單體)包含在五邊形環結構的基本架構上為可聚合官能基的兩個或大於兩個烯系不飽和基團,且可包含由下述者中選出的至少一者:環戊二烯、二環戊二烯以及二甲基環戊二烯。
C9
餾份是指各自具有8個或大於8個碳原子的烴的混合物,且包含由在大氣壓下在100℃至300℃下沸騰的下述者中選出的至少一者:不飽和芳族C8
餾份、不飽和芳族C9
餾份以及不飽和芳族C10
餾份。C9
餾份與上文所描述的環狀戊二烯共聚合。
C9
餾份可包含苯乙烯(styrene)、乙烯基甲苯(vinyl toluene)、茚(indene)、α-甲基苯乙烯(α-methyl styrene)以及苯/甲苯/二甲苯(benzene/toluene/xylene;BTX)。此處,苯/甲苯/二甲苯(BTX)是苯、甲苯、鄰二甲苯、間二甲苯以及對二甲苯的混合物。舉例而言,以C9
餾份的總重量計,C9
餾份可包含10重量%至20重量%的苯乙烯、10重量%至20重量%的乙烯基甲苯、10重量%至20重量%的茚、1重量%至7重量%的α-甲基苯乙烯以及40重量%至60重量%的BTX。較佳地,C9
餾份可為混合餾份,以C9
餾份的總重量計,所述混合餾份包含10重量%至30重量%的苯乙烯、10重量%至20重量%的茚、1重量%至7重量%的α-甲基苯乙烯以及50重量%至80重量%的BTX。
當氫化石油樹脂包含重複單元A及重複單元B且諸如軟化點、芳氫含量以及溴值的物理性質滿足方程式1時,已發現,可適當地調整藉由將氫化石油樹脂引入至橡膠組成物中而獲得的橡膠的黏彈性質以使滾動阻力的增加連同總體改良效應最小化,同時維持在濕路面及正常路面上的抓地力的平衡,從而同時提高制動效能及燃料效率。
更具體而言,當氫化石油樹脂滿足以上方程式1時,已發現,尤其是在11赫茲的抓地力下量測的所製備橡膠組成物的損失係數當中,與濕路面制動力(濕抓地力(wet grip))相關的損耗係數tan δ(0℃)具有較大值,且與滾動阻力相關的損耗係數tan δ(70℃)的增加最小化。相比之下,當氫化石油樹脂在方程式1的範圍之外時,基於方程式1的範圍,tan δ(0℃)值(亦即,濕路面制動力)快速減小,且與滾動阻力相關的tan δ(70℃)值具有與屬於以上方程式1的範圍的石油樹脂的值類似的值。
另外,當氫化石油樹脂滿足以上方程式1時,tan δ(0℃)值亦傾向於與根據方程式1的計算值的增加成比例地增加,但當氫化石油樹脂在方程式1的範圍之外時,tan δ(0℃)值與根據方程式1的計算值的增加成反比例地減小。
根據較佳實施例,氫化石油樹脂可在滿足以上方程式1的同時滿足以下方程式2。
[方程式2]
在方程式2中,x是軟化點(℃),且y是芳氫含量(莫耳%)。
在氫化石油樹脂進一步滿足方程式2的情況下,可發現,與所製備橡膠組成物的與滾動阻力相關的損耗係數tan δ(70℃)值相比,所製備橡膠組成物的與濕路面制動力相關的損耗係數tan δ(0℃)具有110%或高於110%的值。
根據最佳實施例,氫化石油樹脂可在滿足以上方程式1及方程式2的同時滿足以下方程式1-1。
[方程式1-1]
在方程式1-1中,x是軟化點(℃),y是芳氫含量(莫耳%),z是溴值(bromine value),且a=25600,b=625且c=2500。
進一步滿足方程式1-1的氫化石油樹脂保留滿足以上方程式1及方程式2的氫化石油樹脂的特性,且具有與制動力的相關最佳損耗係數值,尤其是濕路面制動力。
軟化點是指氫化石油樹脂因受熱變形而軟化的溫度。在不考慮以上方程式1的情況下,軟化點可較佳地為100℃至150℃,更佳地為110℃至120℃。當軟化點小於以上範圍時,可存在石油樹脂自身在石油樹脂的儲存期間熔融的問題。相比之下,當軟化點大於以上範圍時,可存在使黏彈性質劣化的問題。
芳氫的比率可通過藉由1H-NMR量測獲得的峰分析進行評估,且是基於樹脂中所含有的氫的總莫耳數。
1H-NMR分析是觀測哪一原子鍵結至化合物中的氫原子、哪一官能基包含化合物中的氫原子或空間配置如同什麼的分析方法。此方法是用於化合物的識別及鑑定的方法,且可用於混合物的定量分析及分子結構的估計以及在鍵結狀態下的變化的量測。
在1
H-NMR頻譜中,在分子中具有相同關係的質子(H+
)呈現為一個峰,且若存在對另一些相鄰原子核的相互影響,則所述質子分裂且呈現為多個線。在此情況下,峰的化學位移(亦即,頻率間隔,ppm)的位置根據當前質子的類型而不同,且其強度亦以不同方式呈現。亦即,有可能提取關於通過化學位移資料而在分子中存在哪種質子、每一質子通過強度(整數)而存在的比例以及哪些質子通過偶合而彼此相鄰的資訊。
在本揭露中所提出的氫化石油樹脂包含重複單元(A)及(B),且在此情況下,衍生自環狀戊二烯組分的脂族環結構及衍生自C9
餾份的芳環結構同時存在。因此,有可能藉由識別直接鍵結至對應於衍生自C9
餾份的重複單元(B)的芳環結構(亦即,對應於芳氫的峰)的氫原子來指定石油樹脂。
假設本揭露的氫化石油樹脂的1
H-NMR頻譜經量測為0.0 ppm至9.0 ppm,以便確認在本揭露中所提出的氫化石油樹脂中存在衍生自C9
餾份的重複單元(B),分析在6.5 ppm至8.0 ppm的對應於芳氫的範圍內的峰是極為重要的。一般而言,將峰分析劃分成峰面積用作參數的情況及峰寬用作參數的情況。亦即,藉由分析與峰面積及峰的寬度相關的參數,定量分析及定性分析是可能的,使得可指定在本揭露中所提出的氫化石油樹脂。
本揭露的氫化石油樹脂可限制於在對應於芳氫的範圍內的峰面積的參數。具體而言,由於與芳氫相關的峰呈現在6.5 ppm至8.0 ppm的範圍內,因而可藉由量測在1H-NMR量測之後獲得的對應範圍內的峰的面積且計算對應範圍內的峰面積與總峰面積的比率來估計石油樹脂中的芳氫的含量。在此情況下,總峰面積是指石油樹脂中所含有的氫的總莫耳數。
以樹脂中的氫的總莫耳數計,氫化石油樹脂可包含較佳地6.0莫耳%至14.0莫耳%、更佳地8.0莫耳%至14.0莫耳%且最佳地8.0莫耳%至12.0莫耳%的量的芳氫。當芳氫的含量少於6.0莫耳%至14.0莫耳%的範圍時,不能保證與橡膠組成物的充分相容性,且因此無法獲得增大抓地力及滾動阻力的效應。相反,當芳氫的含量超過以上範圍時,相容性可歸因於增加的分子量而劣化,且可存在抓地力減小的問題。
溴值是指向100公克的樣品中的不飽和組分中添加的溴的公克數。此意謂溴值愈高,樣品中的不飽和組分愈高。可藉由以下操作來獲得溴值:使樣品溶解於四氯化碳中,添加乙酸,滴加溴化鉀-溴酸鉀的標準混合溶液以引起游離溴的充分加成反應,且接著添加碘化鉀溶液以用碘取代過量的溴,且在標準硫代硫酸鈉溶液中反滴定此碘。
較佳地,溴值可為1至50,更佳地為1至20,且最佳地為1至5。當溴值小於1時,因為不存在混合所需的最小不飽和基團,所以針對增大抓地力的效應可能存在問題。當溴值大於50時,可干擾橡膠組成物的混合及交聯以不利地影響滾動阻力性質。
當向用於製造輪胎的橡膠組成物應用氫化石油樹脂時,可能需要在每一重複單元的含量方面限制根據本揭露的包含上文所描述的重複單元的氫化石油樹脂,以便確保諸如滾動阻力、制動力以及耐磨性的輪胎效能特性的改良。此含量範圍是用於在維持石油樹脂本身的基本物理性質的同時使要通過引入衍生自C9
餾份的芳族單體而獲得的效應(亦即,改良橡膠的黏彈性質的效應)最大化的範圍。當衍生自C9
餾份的重複單元的含量在本揭露所建議的範圍之外時,因為樹脂中的芳氫的分子量、聚合度、含量改變,所以無法充分確保上文提及的效應。
具體而言,以總重複單元的100重量%計,氫化石油樹脂可包含大於50重量%、更佳地52重量%至70重量%且最佳地55重量%至65重量%的量的衍生自環狀戊二烯組分的重複單元(A)。當重複單元(A)的含量少於50重量%時,重複單元(B)的含量相對地增加,降低軟化點,使得當氫化石油樹脂引入至橡膠組成物中時,不僅降低了橡膠的黏彈性質,而且亦極大地劣化了相容性。相反,當重複單元(A)的含量超過70重量%時,重複單元(B)的含量相對地減少,使得無法確保如上文所描述的所要效應,且因此在以上範圍內適當地使用重複單元(A)。
氫化石油樹脂可具有600公克/莫耳(g/mol)至1000公克/莫耳、較佳地750公克/莫耳至1000公克/莫耳的重量平均分子量,且可具有35℃至50℃、較佳地35℃至40℃的MMAP。分子量及MMAP是在將氫化石油樹脂引入至橡膠組成物中時直接影響相容性的參數,且可影響抓地力及滾動阻力,且可在其具有以上範圍的情況下確保最佳效應。
可藉由上文所描述的環狀戊二烯組分及C9
餾份的共聚作用來製備根據本揭露的氫化石油樹脂。在此情況下,共聚作用可作為在每一單體中存在的雙鍵之間的加成聚合反應而進行。
根據本揭露的實施例的氫化石油樹脂通過以下步驟來製備:
(S1)將環狀戊二烯組分與C9
餾份混合且執行混合物的熱聚合以製備石油樹脂;以及(S2)利用氫化催化劑執行石油樹脂的氫化反應以製備氫化石油樹脂。
在下文中,將詳細地描述每一步驟。
(S1)熱聚合反應步驟
首先,將環狀戊二烯組分與C9
餾份混合且熱聚合以製備石油樹脂。
在此情況下,可用環狀戊二烯組分及C9
餾份如上文所描述。
特定而言,在本揭露的石油樹脂中,通過熱聚合而非催化聚合進行環狀戊二烯組分與C9
餾份的聚合。
當將某一程度或多於某一程度的熱量施加至環狀戊二烯組分及C9
餾份時,所述環狀戊二烯組分及C9
餾份本身可形成自由基以引起起始反應,且可通過單體之間的連續聚合反應製備石油樹脂。由於此熱聚合不使用起始劑,因而有可能解決歸因於起始劑的使用及石油樹脂的純度而導致的成本的增加的問題。
在熱聚合期間,以環狀戊二烯組分的100重量份計,使用10重量份至90重量份、較佳地20重量份至80重量份的量的C9
餾份。C9
餾份的含量與最終獲得的石油樹脂的物理性質相關,且當其含量少於以上範圍時,無法藉由使用過少的C9
餾份來確保預期效應。相反,當C9
餾份的含量超過以上範圍時,環狀戊二烯組分的含量相對地減少且最終製備的石油樹脂的軟化點降低,使得石油樹脂的物理性質可劣化。
熱聚合在本揭露中不受特別限制,且可使用本體聚合及溶液聚合。較佳地,可使用溶液聚合。
針對溶液聚合,使用溶劑。當藉由溶液聚合執行此步驟時,使環狀戊二烯組分溶解於溶劑中以獲得含有環狀戊二烯組分的溶液,且向含有環狀戊二烯組分的所獲得溶液中添加C9
餾份,且執行熱聚合。
在此情況下,在本揭露中,溶劑不受限制,只要所述溶劑充分地溶解上文所描述的環狀戊二烯組分即可。舉例而言,溶劑可為由下述者中選出的至少一者:甲苯、二氯甲烷、己烷、二甲苯、三氯苯、烷基苯、乙腈、二甲基甲醯胺、N-甲基吡咯酮、二甲基乙醯胺、二甲基亞碸、γ-丁內酯、糠醛、丙酮以及其混合物。
溶劑的含量是可能的,只要其可充分地溶解環狀戊二烯組分即可。舉例而言,以1莫耳的環狀戊二烯組分計,使用2莫耳至10莫耳的量的溶劑。
在本揭露中,在可充分地發生環狀戊二烯組分與C9
餾份的起始及聚合反應的溫度下執行熱聚合,且可根據環狀戊二烯組分及C9餾份的種類來改變溫度。
較佳地,在250℃至300℃下,更佳地在270℃至290℃下,最佳地在277℃至288℃下執行熱聚合,且所述熱聚合的反應時間為0.5小時至4小時,較佳地為1小時至3小時。
溫度與起始及聚合反應直接相關。當溫度低於以上範圍時,起始不發生。相反,當溫度高於以上範圍時,發生作為原料的環狀戊二烯組分或C9
餾份的分解或凝膠的形成,且聚合速率不易控制。
另外,反應時間與產率相關。當反應時間少於以上範圍時,產率可降低。相反,當反應時間多於以上範圍時,即使在長時間內進行反應,亦不存在產率方面的顯著增加,此為不經濟的,因此在以上範圍內適當地使用反應時間。
特定而言,在本揭露中,由於環狀戊二烯組分與C9
餾份的熱聚合,可能不需要催化劑移除製程(其是作為習知石油樹脂方法的陽離子催化劑方法中的必要製程),且特定而言,與催化聚合相比,產率可提高至大於5%。
在熱聚合之後獲得的石油樹脂經歷濃縮製程。
濃縮製程是用於分離石油樹脂、未反應的產物以及作為副產物的寡聚物的製程,且在高溫下且(視需要)在高壓下進行。
濃縮製程與石油樹脂的產率及軟化點直接相關。隨著溫度增加,產率傾向於降低且軟化點傾向於升高。然而,當溫度過低時,難以移除未反應的產物及副產物,使得石油樹脂的純度極大地下降。因此,應在產率降低且軟化點沒有升高的條件下執行脫氣製程。
在本揭露中,較佳地,在220℃至260℃、較佳地230℃至250℃的溫度範圍下將濃縮製程執行1分鐘至10分鐘。當在低於如上文所提及的以上範圍的溫度下執行濃縮製程時,石油樹脂的純度降低。相反,當在高於以上範圍的溫度下執行濃縮製程時,產率降低且軟化點升高,使得最終獲得的石油樹脂的物理性質劣化。因此,在以上範圍內適當地使用石油樹脂。
(S2)氫化反應步驟
接下來,向所製備石油樹脂中添加氫化催化劑,且執行氫化反應以製備氫化石油樹脂。
氫化反應是向環狀戊二烯組分中所存在的雙鍵中添加氫以形成單鍵的反應。通過此氫化反應,製備構成根據上文所描述的步驟製備的石油樹脂的重複單元(A)中的雙鍵中的全部或一些消失的氫化石油樹脂。
在本揭露中,由於氫化反應藉由添加氫化催化劑而繼續進行且涉及高放熱製程,因而溫度控制要求是困難的且應維持高壓。較佳地,可在50巴(bar)至150巴的壓力下在150℃至300℃的溫度下將氫化反應執行0.5小時至4小時,且更佳地可在70巴至100巴的壓力下在200℃至300℃的溫度下將氫化反應執行1小時至3小時。
當溫度及壓力低於以上範圍時,氫化反應可以不充分地執行。相反,當溫度及壓力高於以上範圍時,分子結構可因惡劣的反應條件而被破壞,使得在以上範圍內適當地控制氫化催化劑的量。
在此情況下,所使用的氫化催化劑在本揭露中不受特別限制,且可使用任何已知氫化催化劑。舉例而言,氫化催化劑可為由下述者中選出的至少一者:鎳催化劑、鈀催化劑、鈷催化劑、鉑催化劑以及銠催化劑。較佳地,作為氫化催化劑,使用鈀催化劑。
以1莫耳的石油樹脂單體計,使用0.001至0.5、較佳地0.05至0.2的莫耳比的氫化催化劑。以1莫耳的石油樹脂單體計,當使用少於0.001莫耳的量的氫化催化劑時,反應性可為不充分的,且當使用多於0.5莫耳的量的氫化催化劑時,反應性歸因於大量催化劑的使用而為不經濟的。
本揭露的另一態樣提供包含氫化石油樹脂的橡膠組成物。
以生橡膠的100重量份計,可包含1重量份至20重量份、較佳地5重量份至15重量份、更佳地7重量份至12重量份的量的氫化石油樹脂。當氫化石油樹脂的含量少於以上範圍時,無法預期同時增大滾動阻力及抓地力的效應。相反,當氫化石油樹脂的含量多於以上範圍時,除了藉由降低橡膠組成物的黏度來重新設計製程條件的煩擾之外,可加工性可劣化且最終產物的諸如抗張強度及硬度的機械性質可劣化,因此在以上範圍內適當地使用氫化石油樹脂。
除了氫化石油樹脂之外,根據本揭露的橡膠組成物可更包含由下述者中選出的至少一者作為組成物:生橡膠、增強劑、矽烷偶合劑、硫化劑以及硫化促進劑。
生橡膠不受特別限制,只要其具有烯雙鍵(碳碳雙鍵)即可,且天然橡膠、合成橡膠或其混合物可用作生橡膠。舉例而言,較佳地,生橡膠是由下述者中選出的至少一者:天然橡膠、丁二烯橡膠、亞硝酸鹽橡膠、聚矽氧橡膠、異戊二烯橡膠、苯乙烯丁二烯橡膠(styrene-butadiene rubber;SBR)、異戊二烯丁二烯橡膠、苯乙烯異戊二烯丁二烯橡膠、丙烯腈丁二烯橡膠(acrylonitrile-butadiene rubber;NBR)、乙烯丙烯二烯橡膠、鹵化丁基橡膠、鹵化異戊二烯橡膠、鹵化異丁烯共聚物、氯丁二烯橡膠、丁基橡膠以及鹵化異丁烯對甲基苯乙烯橡膠。
碳黑及二氧化矽可用作增強劑。
碳黑提供諸如耐磨性的改良、滾動阻力特性的改良以及對歸因於紫外線的開裂的預防(對UV劣化的預防)的效應。在本揭露中可用的碳黑不受特別限制,且可使用在技術領域中常用的任何碳黑。舉例而言,作為碳黑,可使用諸如爐黑、乙炔黑、熱黑、槽黑或石墨的碳黑。另外,碳黑的諸如粒徑、孔隙體積以及比表面積的物理性質不受特別限制,且可適當地使用習知地用於橡膠行業中的各種碳黑,例如SAF、ISAF、HAF、FEF、GPF、SRF(全部為在美國分類為ASTM標準D-1765-82a的碳黑的縮寫)。
較佳地,以生橡膠的100重量份計,包含40重量份至80重量份、較佳地40重量份至65重量份的量的碳黑。碳黑是增強填料且是用於橡膠複配的必要元素。當碳黑的含量少於以上範圍時,增強效應降低。相反,當碳黑的含量多於以上範圍時,分散是困難的。
另外,用作橡膠的增強劑的二氧化矽可在無特別限制的情況下使用,且其實例可包含乾白碳、濕白碳、合成矽酸鹽白碳、膠態二氧化矽以及沈澱二氧化矽。二氧化矽的比表面積不受特別限制,但通常可在40平方公尺/公克至600平方公尺/公克、較佳地70平方公尺/公克至300平方公尺/公克的範圍內,且二氧化矽的初級粒徑可為10奈米至1000奈米。其可單獨使用或以兩種或多於兩種的組合形式使用。
較佳地,以生橡膠的100重量份計,包含40重量份至80重量份、較佳地40重量份至65重量份的量的二氧化矽。當二氧化矽的含量少於以上範圍時,滾動阻力較高且因此燃料效率降低。相反,當含量超過以上範圍時,可導致抓地力減小。因此,在以上範圍內適當地使用二氧化矽。
作為增強劑,除了碳黑及二氧化矽之外,可使用諸如黏土及滑石的礦石粉、諸如碳酸鎂及碳酸鈣的碳酸鹽以及諸如氫氧化鋁的氧化鋁水合物。
矽烷偶合劑用於摻混二氧化矽。
矽烷偶合劑的實例可包含乙烯基三氯矽烷(vinyltrichlorosilane)、乙烯基三乙氧基矽烷、乙烯基三(β-甲氧基-乙氧基)矽烷、β-(3,4-環氧基環己基)-乙基三甲氧基矽烷、3-氯丙基三甲氧基矽烷、3-氯丙基三乙氧基矽烷、3-巰基丙基三甲氧基矽烷、3-巰基丙基三乙氧基矽烷、二硫化雙(3-(三乙氧基矽基)丙基)、三硫化雙(3-三乙氧基矽基丙基)、四硫化雙(3-(三乙氧基矽基)丙基)、四硫化雙(2-三乙氧基矽基乙基)、四硫化雙(3-三甲氧基矽基丙基)、四硫化雙(2-三甲氧基矽基乙基)、3-巰基丙基三甲氧基矽烷、3-巰基丙基三乙氧基矽烷、2-巰基乙基三甲氧基矽烷、2-巰基乙基三乙氧基矽烷、四硫化3-三甲氧基矽基丙基-N,N-二甲基硫代胺甲醯基(3-trimethoxysilylpropyl-N,N-dimethylthiocarbamoylte trasulfide)、四硫化3-三乙氧基矽基丙基-N,N-二甲基硫代胺甲醯基、四硫化2-三乙氧基矽基乙基-N,N-二甲基硫代胺甲醯基、四硫化3-三甲氧基矽基丙基苯并噻唑基、四硫化3-三乙氧基矽基丙基苯并噁唑(3-triethoxysilylpropylbenzolyltetrasulfide)、一硫化甲基丙烯酸3-三乙氧基矽基丙酯(3-triethoxysilylpropylmethacrylate monosulfide)、一硫化甲基丙烯酸3-三甲氧基矽基丙酯、四硫化雙(3-二乙氧基甲基矽基丙基)、3-巰基丙基二甲氧基甲基矽烷、四硫化二甲氧基甲基矽基丙基-N,N-二甲基硫代胺甲醯基以及四硫化二甲氧基甲基矽基丙基苯并噻唑基。矽烷偶合劑單獨使用或以兩種或多於兩種的組合形式使用。較佳地,可使用四硫化雙(3-(三乙氧基矽基)丙基)。
矽烷偶合劑的含量取決於二氧化矽的含量而改變,且以生橡膠的100重量份計,可較佳地為5重量份至20重量份。當矽烷偶合劑的含量少於以上範圍時,難以均勻地混合二氧化矽,且因此存在橡膠的物理性質可劣化的問題。相反,當使用超出以上範圍的矽烷偶合劑時,橡膠的膠凝可發生。因此,可在以上範圍內適當地使用矽烷偶合劑。
交聯劑可在無特別限制的情況下使用,只要其通常用於橡膠的交聯即可,且可根據橡膠組分及異丁烯聚合物適當地選擇。
交聯劑的實例可包含:硫交聯劑,諸如硫、二硫嗎福啉(morpholine disulfide)以及二硫化烷基酚(alkylphenol disulfide);及有機過氧化物交聯劑,諸如過氧化環己酮、過氧化甲基乙醯乙酸酯(methylacetoacetate peroxide)、三級丁基過氧異丁酸酯、三級丁基過氧苯甲酸酯、過氧化苯甲醯基、過氧化月桂醯基、過氧化二異丙苯、過氧化二(三級丁基)以及1,3-雙(三級丁基過氧異丙基)苯。
以生橡膠的100重量份計,使用0.1重量份至5重量份的量的交聯劑。當交聯劑的含量少於以上範圍時,歸因於不充分交聯而難以製造具有所要物理性質(例如耐磨性)的輪胎。相反,當交聯劑的含量超過以上範圍時,輪胎的物理性質(例如彈性)歸因於過度交聯而劣化。因此,可在以上範圍內適當地使用交聯劑。
除了交聯劑之外,根據本揭露的用於輪胎面的橡膠組成物包含硫化促進劑或硫化助劑。硫化促進劑或硫化助劑不受特別限制,且可取決於橡膠組成物中所含有的橡膠組分、異丁烯聚合物以及交聯劑而適當地選擇及使用。「硫化」表示通過至少一個硫原子交聯。
硫化促進劑的實例可包含雙甲硫羰醯胺類促進劑,諸如一硫化三甲基雙甲硫羰醯胺(trimethyl thiuram monosulfide)、二硫化四甲基雙甲硫羰醯胺以及二硫化四乙基雙甲硫羰醯胺;噻唑類促進劑,諸如2-巰基苯并噻唑及二硫化二苯并噻唑基;次磺醯胺類促進劑,諸如N-環己-2-苯并噻唑次磺醯胺及N-氧基二伸乙基(oxydiethylene)-2-苯并噻唑次磺醯胺;醛胺類促進劑,諸如正丁醛苯胺縮合產物及丁醛單丁胺縮合產物;醛氨類促進劑,諸如六亞甲四胺;以及硫脲促進劑,諸如二苯硫脲(thiocarvanilide)。當摻混此等硫化促進劑時,此等硫化促進劑可單獨使用或可以兩種或多於兩種的組合形式使用。
自改良物理性質的觀點來看,以生橡膠的100重量份計,硫化促進劑的含量較佳地為0.1重量份至10重量份。
硫化助劑的實例可包含:金屬氧化物,諸如氧化鋅(鍍鋅(zincization))及氧化鎂;金屬氫氧化物,諸如氫氧化鈣;金屬碳酸鹽,諸如碳酸鋅及鹼式碳酸鋅;脂族酸,諸如硬脂酸及油酸;脂族金屬鹽,諸如硬脂酸鋅及硬脂酸鎂;胺,諸如正丁胺及二環己胺;以及乙二醇二甲基丙烯酸酯、鄰苯二甲酸二丙烯酯(diallylphthalate)、N,N-間伸苯基二順丁烯二醯亞胺、異氰尿酸三烯丙酯以及三羥甲基丙烷三甲基丙烯酸酯。當摻混此等硫化助劑時,此等硫化助劑可單獨使用或可以兩種或多於兩種的組合形式使用。
自改良物理性質的觀點來看,以生橡膠的100重量份計,硫化助劑的含量較佳地為0.1重量份至10重量份。
此外,根據本揭露的橡膠組成物可含有在橡膠行業領域中使用的一種或兩種或多於兩種添加劑,諸如抗老化劑、硫化減速劑、疏鬆劑、製程油以及塑化劑。以生橡膠的100重量份計,此等添加劑的摻混量較佳地為0.1重量份至10重量份。
此外,本揭露提供一種由橡膠組成物製造的橡膠模製品。
根據本揭露的實施例的橡膠模製品可為輪胎,較佳地為輪胎面。在此情況下,通過已知方法將包含上文所描述的組成物的橡膠組成物製造成輪胎。
作為實例,可藉由使用諸如石膏混煉機(plastomill)、班布里混合機(Banbury mixer)、軋輥或密閉混合機的捏合機捏合以上組分來製備根據本揭露的橡膠組成物。具體而言,較佳的是,在以上組分當中,捏合不同於交聯劑及硫化促進劑的組分,且接著向所獲得的捏合產物中添加交聯劑及硫化促進劑且進一步捏合。
藉由以上方法製備的橡膠組成物可用作構成接觸路面的胎面部分(及包含胎面部分的頂蓋部分)的材料。根據橡膠組成物的製備方法,橡膠組成物根據待形成的輪胎的形狀(具體而言,輪胎面形狀)進行擠製,且藉由習知方法在輪胎模製機上進行模製,從而製備用於輪胎的非交聯模製產物。在硫化機中對此用於輪胎的非交聯模製產物進行加熱且按壓所述非交聯模製產物以產生輪胎面,且此輪胎面與其他部分裝配在一起以製造所要輪胎。
以此方式製造的輪胎在作為輪胎必須擁有的機械性質(硬度、抗張強度、模數以及類似者)、晶片切割阻力以及黏附效能方面是極佳的。特定而言,此輪胎具有車輛的較高抓地力(濕/乾(wet/dry))、極佳行駛穩定性以及制動效能,且具有較低滾動阻力,從而實現車輛的較高燃料效率。
因此,本揭露的橡膠組成物適用作用於獲得輪胎(諸如低燃料消耗的輪胎及高效能的輪胎)的輪胎面的橡膠組成物。
在下文中,將參考實例更詳細地描述本揭露。此等實例僅用於更詳細地描述本揭露,且對於所屬領域中具通常知識者而言將顯而易見的是本揭露的範疇不限於此等實例。
實例
1
至實例
11
:
製備石油樹脂
實例1
在1公升的高壓釜中使27重量%的二環戊二烯(dicyclopentadiene;DCPD,科隆工業股份有限公司(Kolon IndustriesCo., Ltd),純度80.21%)溶解於作為溶劑的甲苯中以製作混合物,且向混合物中添加23重量%的C9
餾份(苯乙烯20重量%、茚18重量%、乙烯基甲苯16重量%以及α-甲基苯乙烯5重量%),將反應器連接至高壓釜,且接著執行熱聚合1小時,同時將反應溫度維持在279℃下,且反應終止。
在反應完成之後,將所得產物放入四頸釜中且在室溫下真空靜置。將真空度維持在10托處,且在攪拌下將產物加熱至260℃。在達到260℃後,對濃縮時間進行計數且將濃縮時間維持10分鐘。當濃縮完成時,在彼狀態下釋放真空以獲得熔化的石油樹脂。
添加為所獲得的石油樹脂的1.5倍的作為氫化溶劑的甲苯以便完全溶解,且將所述甲苯引入至1公升的高壓釜中。
向其中添加0.2莫耳(mol)的鈀催化劑,將反應器連接至1公升的高壓釜,且接著在80巴的氫壓下且在275℃的溫度下執行部分氫化反應歷時90分鐘。在反應完成之後,在10托(torr)的真空狀態下將反應產物在260℃下蒸餾10分鐘以製備部分氫化的石油樹脂。
實例2至實例14
如下表1中所描述,除了二環戊二烯、C9餾份以及甲苯的含量改變且在熱聚合期間的反應溫度及在氫化期間的反應溫度改變之外,以與實例1中相同的方式製備部分氫化的石油樹脂。
[表1]
實例1 | 實例2 | 實例3 | 實例4 | 實例5 | 實例6 | 實例7 | 實例8 | 實例9 | 實例10 | 實例11 | 實例12 | 實例13 | 實例14 | ||
摻混比率 | DCPD (%) | 27 | 34 | 27 | 34 | 30.5 | 30.5 | 27 | 27 | 27 | 30.5 | 30.5 | 27 | 27 | 30.5 |
C9(%) | 23 | 16 | 23 | 16 | 19.5 | 19.5 | 23 | 23 | 23 | 19.5 | 19.5 | 23 | 23 | 19.5 | |
溶劑 (%) | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | |
總計 (%) | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | |
聚合條件 | 溫度(℃) | 277 | 277 | 279 | 277 | 278 | 278 | 279 | 281 | 281 | 284 | 286 | 282 | 278 | 284 |
時間(小時) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
氫化條件 | 溫度(℃) | 275 | 270 | 270 | 265 | 275 | 270 | 275 | 270 | 275 | 275 | 280 | 220 | 275 | 280 |
時間(小時) | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
比較例1至比較例12:製備石油樹脂
如下表2中所描述,除了二環戊二烯、C9餾份以及甲苯的含量改變且在熱聚合期間的反應溫度及在氫化期間的反應溫度改變之外,以與實例1中相同的方式製備部分氫化的石油樹脂。
[表2]
比較例1 | 比較例2 | 比較例3 | 比較例4 | 比較例5 | 比較例6 | 比較例7 | 比較例8 | 比較例9 | 比較例10 | 比較例11 | 比較例12 | ||
摻混比率 | DCPD(%) | 34 | 34 | 44.5 | 30.5 | 34 | 34 | 44.5 | 27 | 27 | 46 | 50 | 0 |
C9(%) | 16 | 16 | 5.5 | 19.5 | 16 | 16 | 5.5 | 23 | 23 | 4 | 0 | 50 | |
溶劑(%) | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | |
總計(%) | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 100 | |
聚合條件 | 溫度(℃) | 265 | 265 | 261 | 267 | 268 | 272 | 261 | 269 | 269 | 262 | 265 | 295 |
時間(小時) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
氫化條件 | 溫度(℃) | 275 | 275 | 275 | 275 | 275 | 275 | 255 | 275 | 275 | 285 | 290 | 250 |
時間(小時) | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
實驗實例
1
:
樹脂性質的評估方法
量測根據實例及比較例的石油樹脂的分子量、軟化點、芳族含量、MMAP以及溴值。實例1至實例14的石油樹脂的物理性質的量測結果顯示於下表3中,且比較例1至比較例12的石油樹脂的物理性質的量測結果顯示於下表4中。物理性質的評估方法如下。
(1)分子量
就聚苯乙烯而言的重量平均分子量(Mw)、數目平均分子量(Mn)以及Z平均分子量(Mz)藉由凝膠滲透層析法(由惠普公司(Hewlett-Packard)製造,模型名稱HP-1100)來判定。使用於量測的聚合物溶解於濃度為4000 ppm的四氫呋喃中,且將100微升(µl)的溶液注入GPC中。以1.0毫升/分鐘的流動速率運用四氫呋喃引入GPC的流化相,且在30℃下執行分析。作為管柱,安捷倫公司(Agilent Corporation)的三個PIgel(1,000埃+500埃+100埃(Å))串聯連接。作為偵測器,RI偵測器(HP-1047A,由惠普公司製造)用於在30℃下量測分子量。
(2)量測軟化點(℃)
使用環球式軟化方法(Ring and ball softening method)(ASTM E 28)來量測軟化點。使樹脂溶解且將其引入環形框架中,將環形框架放入含有丙三醇的燒杯中,且接著以5℃/分鐘的溫度升高速率對填充有樹脂的環形框架進行加熱以在樹脂熔融且球落下時量測溫度(軟化點)。
(3)量測混合甲基環己烷苯胺點(mixed methylcyclohexane-aniline point;MMAP,℃)
將2公克的在實例及比較例中製備的樹脂中的每一者放入試管中。使用移液管將甲基環己烷溶液放入試管中且將其加熱溶解。在確認樹脂熔融之後,添加4公克的苯胺溶液且在溶液變得渾濁時量測濁點(cloud point)。
(4)量測溴值(bromine value)(溴(bromine)公克/100公克)
在使0.5公克(g)的在實例及比較例中製備的樹脂中的每一者溶解於40毫升的環己烷中之後,添加50毫升的乙酸,滴定溴化鉀-溴酸鉀的標準混合溶液以在游離溴中引起加成反應。在充分反應之後,添加5毫升的碘化鉀溶液以運用碘取代過量的溴,且運用標準硫代硫酸鈉溶液反滴定此碘以量測溴值。
亦即,溴值是指與雙鍵反應的溴的量。在樹脂中的雙鍵的數目增加時,反應的溴的量增加,且因此溴值增大。
(5)分析芳氫含量(莫耳%)
根據通過核磁共振譜法的1H-NMR頻譜結果(布魯克公司(Bruker Corporation)的500 NMR,14.1特斯拉(telsa)),藉由以下方程式計算在實例及比較例中製備的氫化石油樹脂中的每一者中的芳氫含量。
芳氫含量(莫耳%)=1
H-NMR頻譜中的6.5 ppm至8.0 ppm的峰面積/1
H-NMR中的總面積*100
[表3]
樹脂性質 | 實例1 | 實例2 | 實例3 | 實例4 | 實例5 | 實例6 | 實例7 | 實例8 | 實例9 | 實例10 | 實例11 | 實例12 | 實例13 | 實例14 |
軟化點 | 100 | 115 | 100 | 115 | 115 | 115 | 115 | 115 | 120 | 140 | 145 | 125 | 110 | 140 |
芳氫含量 | 12 | 8 | 12 | 8 | 10 | 10 | 12 | 12 | 12 | 10 | 10 | 12 | 12 | 10 |
溴值 | 1.5 | 3.0 | 3.0 | 4.5 | 1.5 | 3.0 | 1.5 | 3 | 1.5 | 3 | 1.5 | 20 | 1.5 | 1.5 |
MMAP | 37 | 41.0 | 37.0 | 43 | 41 | 41.0 | 37 | 40 | 39 | 49 | 41 | 41 | 36 | 49 |
Mn | 414 | 424 | 447 | 351 | 405 | 438 | 458 | 440 | 462 | 513 | 565 | 485 | 430 | 512 |
Mw | 699 | 697 | 749 | 679 | 706 | 708 | 787 | 780 | 794 | 840 | 958 | 833 | 765 | 838 |
Mz | 1312 | 1728 | 1544 | 1293 | 1416 | 1254 | 1747 | 1627 | 1763 | 2015 | 2153 | 1851 | 1648 | 2010 |
方程式1 | 0.622 | 0.623 | 0.625 | 0.627 | 0.678 | 0.680 | 0.748 | 0.751 | 0.794 | 0.929 | 0.982 | 1.001 | 0.704 | 0.927 |
方程式2 | 136 | 139 | 136 | 139 | 145 | 145 | 151 | 151 | 156 | 170 | 175 | 161 | 146 | 170 |
[表4]
樹脂性質 | 比較例1 | 比較例2 | 比較例3 | 比較例4 | 比較例5 | 比較例6 | 比較例7 | 比較例8 | 比較例9 | 比較例10 | 比較例11 | 比較例12 |
軟化點 | 85 | 85 | 100 | 85 | 100 | 100 | 100 | 85 | 85 | 125 | 160 | 115 |
芳氫含量 | 8 | 8 | 2 | 10 | 8 | 8 | 2 | 12 | 12 | 0 | 0 | 45 |
溴值 | 1.5 | 3.0 | 1.8 | 3 | 1.5 | 3 | 16 | 3.0 | 4.5 | 0.3 | 3 | 1.8 |
MMAP | 40 | 40.0 | 56 | 39 | 43 | 41 | 54 | 37.0 | 37 | 74 | 81 | 0 |
Mn | 307 | 310 | 280 | 354 | 342 | 337 | 285 | 448 | 452 | 240 | 320 | 728 |
Mw | 564 | 569 | 540 | 686 | 654 | 604 | 541 | 748 | 755 | 500 | 550 | 1821 |
Mz | 1184 | 1195 | 910 | 1560 | 1052 | 1188 | 915 | 1381 | 1394 | 950 | 1040 | 4268 |
方程式1 | 0.386 | 0.388 | 0.398 | 0.446 | 0.494 | 0.497 | 0.499 | 0.516 | 0.521 | 0.610 | 1.004 | 3.758 |
方程式2 | 109 | 109 | 106 | 115 | 124 | 124 | 106 | 121 | 121 | 125 | 160 | 250 |
如在表3及表4中所給出,在根據實例1至實例14製備的氫化石油樹脂的情況下,滿足以下方程式1。
[方程式1]
在方程式1中,x是軟化點(℃),y是芳氫含量(莫耳%),z是溴值(bromine value),且a=25600,b=625,且c=2500。
在根據實例1至實例14製備的氫化石油樹脂的情況下,已發現,軟化點是100℃至150℃,芳氫含量是8.0莫耳%至14.0莫耳%,溴值是1至20。此外,在根據實例1至實例14製備的氫化石油樹脂的情況下,已發現,重量平均分子量是600公克/莫耳至1000公克/莫耳,且MMAP是35℃至50℃。
另一方面,在根據比較例1至比較例12製備的氫化石油樹脂的情況下,不滿足是以上方程式1。在比較例1至比較例9中,根據方程式1的計算值是0.610或小於0.610,且在比較例11至比較例12中,根據方程式1的計算值是1.004或大於1.004。
同時,不同於實例1至實例6及實例13以及比較例1至比較例12,在實例7至實例12及實例14的情況下,滿足以上方程式1及方程式2兩者。
[方程式2]
在方程式2中,x是軟化點(℃),且y是芳氫含量(莫耳%)。
另外,不同於實例1至實例9及實例13以及比較例1至比較例12,在實例10至實例12及實例14的情況下,滿足以上方程式1及方程式2兩者,且滿足方程式1-1。
[方程式1-1]
在方程式1-1中,x是軟化點(℃),y是芳氫含量(莫耳%),z是溴值(bromine value),且a=25600,b=625,且c=2500。
實驗實例
2
:
量測輪胎的物理性質
製備輪胎面
向藉由將苯乙烯丁二烯橡膠(產品名稱:SSBR-3323,錦湖石油化學(Kumho Petrochemical))與丁二烯橡膠(產品名稱:BR-01,錦湖石油化學)以11:2的比率混合獲得的100重量份的橡膠中添加2重量份的分散劑(產品名稱:40 MS,彤程(STRUKTOL))、25重量份的碳黑、25重量份的二氧化矽、5重量份的矽烷偶合劑、2重量份的硬脂酸、3重量份的氧化鋅、2重量份的硫、1.5重量份的正環己基苯并噻唑基-2-硫化物(TBBS,美源化學(Miwon chem.))、1重量份的DPG以及10重量份的實例及比較例的氫化石油樹脂中的每一者,且在班布里混合機中執行化合物加工。
接著,使用開煉機製備化合物片材。在160℃下在20分鐘內使化合物片材硫化以製備用於測試的橡膠標本。
量測輪胎的物理性質
使用動態機械分析(Dynamic Mechanical Analysis)(模型:TA-DMA Q800)來量測包含實例及比較例的氫化石油樹脂中的每一者的橡膠標本的與在11赫茲下的抓地力(濕抓地(wet grip,W/G))及滾動阻力(rolling resistance,R/R)相關的損耗係數(Tan δ),且其結果在下表5及表6中給出。在此情況下,此意謂tan δ(0℃)值愈高,抓地力愈佳,且tan δ(70℃)值愈低,滾動阻力特性愈佳。
將比較例1中的0.5855的tan δ(0℃)值及0.06905的tan δ(70℃)值中的每一者設置為100。基於設置值,計算實例1至實例12以及比較例2至比較例12的tan δ值。舉例而言,實例1的tan δ(0℃)值是0.5855×101%=0.5914,且實例1的tan δ(70℃)值是0.06905×96%=0.06629。
[表5]
輪胎性質 | 實例1 | 實例2 | 實例3 | 實例4 | 實例5 | 實例6 | 實例7 | 實例8 | 實例9 | 實例10 | 實例11 | 實例12 | 實例13 | 實例14 |
W/G | 101 | 102 | 103 | 103 | 104 | 105 | 109 | 112 | 114 | 117 | 119 | 121 | 108 | 117 |
R/R | 96 | 96 | 102 | 97 | 103 | 102 | 99 | 100 | 102 | 103 | 103 | 105 | 100 | 105 |
抓地力/滾動阻力 | 1.05 | 1.06 | 1.01 | 1.06 | 1.01 | 1.03 | 1.10 | 1.12 | 1.12 | 1.14 | 1.15 | 1.16 | 1.08 | 1.11 |
[表6]
輪胎性質 | 比較例1 | 比較例2 | 比較例3 | 比較例4 | 比較例5 | 比較例6 | 比較例7 | 比較例8 | 比較例9 | 比較例10 | 比較例11 | 比較例12 |
W/G | 100 | 99 | 99 | 97 | 97 | 96 | 95 | 93 | 92 | 90 | 97 | 95 |
R/R | 100 | 99 | 105 | 97 | 92 | 95 | 93 | 97 | 110 | 99 | 123 | 99 |
抓地力/滾動阻力 | 1 | 1 | 0.94 | 1 | 0.96 | 1.05 | 1.01 | 1.02 | 0.96 | 0.84 | 0.91 | 0.79 |
一般而言,抓地力與剎車制動有關且藉由利用動態黏彈性測試在約0℃及25℃下在10赫茲至100赫茲的頻率下量測的損耗係數(tan δ)來表述,且損耗係數愈大,剎車制動效能愈佳。乾(dry)抓地力極佳的意思意謂利用橡膠組成物的動態黏彈性測試在10赫茲至100赫茲的頻率及約25℃下量測的損耗係數(tan δ)較大,且濕(wet)抓地力極佳的意思意謂利用橡膠組成物的動態黏彈性測試在10赫茲至100赫茲的頻率及約0℃下量測的損耗係數(tan δ)較大。
滾動阻力(rolling resistance,R/R)藉由利用橡膠組成物的動態黏彈性測試在約70℃下在10赫茲至100赫茲的頻率下量測的損耗係數(tan δ)來表述,且損耗係數愈小,滾動阻力愈佳。亦即,滾動阻力極佳的意思意謂利用橡膠組成物的動態黏彈性測試在10赫茲至100赫茲的頻率及約70℃下量測的損耗係數(tan δ)較小。
在此情況下,tan δ(0℃)、tan δ(25℃)以及tan δ(70℃)是以相同趨勢移動的值。較佳地,在將軟化點維持在相同或類似程度下的階段中,應增大滾動阻力(R/R,tan δ(70℃))或濕(wet)抓地力(tan δ(0℃))。理想地,較佳的是,滾動阻力減小,且增大濕(wet)抓地力。然而,由於滾動阻力及濕(wet)抓地力呈互補關係,因而不易改良兩種物理性質。因此,在實質上維持滾動阻力或將滾動阻力減小至最小值的同時增加濕抓地性可為最理想的。
如上表5及表6中所顯示,檢查實例1至實例14的抓地力,特定而言,作為與濕(wet)抓地力相關的損耗係數的tan δ(0℃)值,可發現,實例1至實例14的抓地力高於比較例的抓地力,且因此可在橡膠組成物包含本揭露的氫化石油樹脂時增大橡膠組成物的抓地力。特定而言,已確認,對應於最佳實施例的實例8至實例12的tan δ(0℃)值具有超過110的極佳值,且除此等實例之外的所有其他實例的tan δ(0℃)值亦超過100。
同時,在作為與滾動阻力相關的損耗係數的tan δ(70℃)的值的情況下,實例1至實例14的橡膠組成物中的每一者的tan δ(70℃)值根據抓地力的增大而略微增加,此為與當前行業中常用且通用的橡膠類似的程度。因此,可發現,歸因於使用本揭露的氫化石油樹脂而引起的抓地力的增大,有可能有效地降低滾動阻力的增大率。
另一方面,在比較例1至比較例12的情況下,可發現,作為與抓地力相關的損耗係數的tan δ(0℃)的大多數值具有小於100的值,且作為與滾動阻力相關的損耗係數的tan δ(70℃)的大多數值具有等於或高於實例的值的值。
同時,在實例1至實例14的情況下,隨著方程式1的結果值增大,tan δ(0℃)的值成比例增大。然而,與實例的情況相反,在方程式1的結果值是0.610或小於0.610的比較例1至比較例10的情況下,隨著方程式1的結果值增大,tan δ(0℃)的值成反比減小。另外,與實例的情況相反,即使在方程式1的計算值是1.004或大於1.004的比較例11及比較例12的情況下,隨著方程式1的計算值增大,tan δ(0℃)的值成反比例減小。另外,可發現,tan δ(0℃)的值基於方程式1的範圍而快速減小。
同時,在實例7至實例12滿足方程式1及方程式2的情況下,可發現,與同滾動阻力相關的損耗係數tan δ(70℃)相比,與抓地力相關的損耗係數tan δ(0℃)具有大於110%的值。
在實例10至實例12滿足方程式1、方程式1-1以及方程式2中的全部的情況下,可發現,tan δ(0℃)不僅具有tan δ(70℃)的114%或大於114%的值,而且亦具有極高的值,且因此展現極佳抓地力及較低滾動阻力。
根據此等結果,可發現,包含根據本揭露的氫化石油樹脂的橡膠組成物具有同時滿足極佳抓地力及滾動阻力的效應。
因此,根據本揭露的氫化石油樹脂不僅改良了含有其的橡膠的黏彈性質,而且亦具有與橡膠的極佳相容性,從而改良橡膠的總體物理性質。因此,由含有氫化石油樹脂的橡膠組成物製造的橡膠模製品(諸如輪胎)可同時滿足燃料效率效能、制動效能以及耐久性效能,從而提昇作為高效能的輪胎的產品競爭力。
上文所描述的實例及比較例是用於解釋本揭露的實例,且本揭露不限於此。由於所屬領域中具通常知識者將能夠藉由通過本揭露得到的各種修改來實施本揭露,因而本揭露的技術保護範疇應由所附申請專利範圍限定。
無
無
Claims (21)
- 如請求項1所述的氫化石油樹脂,其中所述環狀戊二烯組分包含由下述者中選出的至少一者:環戊二烯、二環戊二烯以及二甲基環戊二烯。
- 如請求項1所述的氫化石油樹脂,其中所述C9 餾份包含由下述者中選出的在大氣壓下具有100℃至300℃的沸點範圍的至少一者:不飽和芳族C8 餾份、不飽和芳族C9 餾份以及不飽和芳族C10 餾份。
- 如請求項1所述的氫化石油樹脂,其中所述C9 餾份包含由下述者中選出的至少一者:苯乙烯、乙烯基甲苯、茚、α-甲基苯乙烯以及苯/甲苯/二甲苯。
- 如請求項1所述的氫化石油樹脂,其中所述氫化石油樹脂的所述軟化點是100℃至150℃。
- 如請求項1所述的氫化石油樹脂,其中以所述樹脂中的氫的總莫耳數計,所述氫化石油樹脂包含6.0莫耳%至14.0莫耳%的芳氫。
- 如請求項1所述的氫化石油樹脂,其中所述氫化石油樹脂的所述溴值是1至50。
- 如請求項1所述的氫化石油樹脂,其中以總重複單元的100重量%計,所述氫化石油樹脂包含大於50重量%的量的衍生自所述環狀戊二烯組分的所述重複單元(A)。
- 如請求項1所述的氫化石油樹脂,其中 所述氫化石油樹脂具有600公克/莫耳至1000公克/莫耳的重量平均分子量(Mw),且 具有35℃至50℃的混合甲基環己烷苯胺點(MMAP)。
- 一種製備如請求項1至請求項11中任一項所述的氫化石油樹脂的方法,所述方法包括: (S1)將環狀戊二烯組分與C9 餾份混合且執行熱聚合以製備石油樹脂;以及 (S2)運用氫化催化劑執行所述石油樹脂的氫化反應以製備氫化石油樹脂。
- 如請求項12所述的製備方法,其中所述C9 餾份包含由下述者中選出的至少一者:苯乙烯、乙烯基甲苯、α-甲基苯乙烯以及苯/甲苯/二甲苯。
- 如請求項12所述的製備方法,其中在所述步驟(S1)中,將10重量份至90重量份的所述C9 餾份與100重量份的所述環狀戊二烯組分混合。
- 如請求項12所述的製備方法,其中在250℃至300℃的溫度下執行所述步驟(S1)歷時0.5小時至4小時。
- 如請求項12所述的製備方法,其中在50巴至150巴的壓力下在150℃至300℃的溫度下執行所述步驟(S1)。
- 如請求項12所述的製備方法,其中所述氫化催化劑是由下述者中選出的至少一者:鎳催化劑、鈀催化劑、鈷催化劑、鉑催化劑以及銠催化劑。
- 一種橡膠組成物,包括:如請求項1至請求項11中任一項所述的氫化石油樹脂。
- 一種用於輪胎面的橡膠組成物,包括:如請求項1至請求項11中任一項所述的氫化石油樹脂;以及生橡膠。
- 如請求項19所述的用於輪胎面的橡膠組成物,更包括: 由下述者中選出的至少一者:增強劑、矽烷偶合劑、硫化劑以及硫化促進劑。
- 如請求項19所述的用於輪胎面的橡膠組成物,其中以所述生橡膠的100重量份計,包含1重量份至20重量份的量的所述氫化石油樹脂。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190168439A KR102155698B1 (ko) | 2019-12-17 | 2019-12-17 | 수소첨가 석유수지 및 이를 포함하는 고무 조성물 |
KR10-2019-0168439 | 2019-12-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202128795A true TW202128795A (zh) | 2021-08-01 |
TWI763190B TWI763190B (zh) | 2022-05-01 |
Family
ID=72471398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109144646A TWI763190B (zh) | 2019-12-17 | 2020-12-17 | 氫化石油樹脂及其製備方法以及包括其之橡膠組成物及用於輪胎面的橡膠組成物 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220220243A1 (zh) |
EP (1) | EP4001330B1 (zh) |
JP (1) | JP7436642B2 (zh) |
KR (2) | KR102155698B1 (zh) |
CN (2) | CN114341212B (zh) |
TW (1) | TWI763190B (zh) |
WO (1) | WO2021125837A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102155698B1 (ko) * | 2019-12-17 | 2020-09-14 | 코오롱인더스트리 주식회사 | 수소첨가 석유수지 및 이를 포함하는 고무 조성물 |
KR102563213B1 (ko) * | 2020-11-20 | 2023-08-04 | 코오롱인더스트리 주식회사 | 수지 조성물, 이의 제조방법, 상기 수지 조성물을 포함하는 고무 조성물, 이를 포함하는 가스 배리어 필름, 및 상기 가스 배리어 필름을 포함한 타이어 |
KR102640216B1 (ko) * | 2020-11-20 | 2024-02-27 | 코오롱인더스트리 주식회사 | 수지 조성물, 이의 제조방법, 및 이를 포함하는 고무 조성물 |
KR20240024500A (ko) * | 2022-08-17 | 2024-02-26 | 한화솔루션 주식회사 | 수첨 석유수지 및 이를 포함하는 타이어 트레드용 고무 조성물 |
CN115894799B (zh) * | 2022-12-04 | 2024-05-03 | 新疆力铭鑫通石油化工有限公司 | 一种改性氢化树脂的制备方法 |
WO2024176978A1 (ja) * | 2023-02-20 | 2024-08-29 | 株式会社Eneosマテリアル | 共重合体、ゴム用添加剤、ゴム組成物およびタイヤ製品 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5171793A (en) * | 1990-02-22 | 1992-12-15 | Exxon Chemical Patents Inc. | Hydrogenated resins, adhesive formulations and process for production of resins |
JP3464042B2 (ja) * | 1994-06-02 | 2003-11-05 | 出光石油化学株式会社 | ゴム組成物 |
US5502140A (en) * | 1994-10-19 | 1996-03-26 | Hercules Incorporated | Thermally polymerized dicyclopentadiene/vinyl aromatic resins |
JP3885841B2 (ja) * | 1996-11-27 | 2007-02-28 | 出光興産株式会社 | 共重合体の製造方法 |
KR100227566B1 (ko) | 1997-07-29 | 1999-11-01 | 홍건희 | 타이어 트레드용 고무 조성물 |
JP3379448B2 (ja) * | 1998-09-30 | 2003-02-24 | 荒川化学工業株式会社 | 水素化c9系石油樹脂の製造方法および当該製造方法により得られた水素化c9系石油樹脂 |
JP2004189764A (ja) * | 2002-12-06 | 2004-07-08 | Idemitsu Petrochem Co Ltd | 石油樹脂及び水素添加石油樹脂の製造方法 |
US20060223948A1 (en) * | 2002-12-20 | 2006-10-05 | Hideki Yamane | Process for the production of hydrogenated petroleum resin |
JP5787624B2 (ja) * | 2011-06-01 | 2015-09-30 | 出光興産株式会社 | 水添石油樹脂ペレットの製造方法 |
CN103319660B (zh) | 2012-03-23 | 2015-07-01 | 天津鲁华化工有限公司 | 加氢多元共聚石油树脂及其制备方法 |
KR101572106B1 (ko) | 2013-08-20 | 2015-11-26 | 한국타이어 주식회사 | 타이어 트레드용 고무 조성물 및 이를 이용하여 제조한 타이어 |
US9994650B2 (en) * | 2014-03-26 | 2018-06-12 | Maruzen Petrochemical Co., Ltd. | Method for producing hydrogenated petroleum resin |
KR101614131B1 (ko) | 2014-06-30 | 2016-04-20 | 한국타이어 주식회사 | 타이어 트레드용 고무 조성물 및 이를 이용하여 제조한 타이어 |
KR101805892B1 (ko) * | 2015-06-30 | 2017-12-07 | 코오롱인더스트리 주식회사 | 수소첨가 석유수지, 이의 제조방법 및 용도 |
KR20170003367A (ko) * | 2015-06-30 | 2017-01-09 | 코오롱인더스트리 주식회사 | 석유수지, 석유수지의 제조방법 및 접착제 조성물 |
CN106268725B (zh) | 2015-08-10 | 2018-08-21 | 中国石油化工股份有限公司 | 乙烯裂解碳9中双环戊二烯热聚的dcpd树脂的氢化催化剂及制备方法和应用 |
KR102309410B1 (ko) * | 2015-09-30 | 2021-10-06 | 코오롱인더스트리 주식회사 | 석유수지 및 그 제조방법 |
CN106967197B (zh) * | 2016-06-28 | 2019-06-11 | 彤程化学(中国)有限公司 | 一种碳氢树脂在橡胶中的应用、橡胶组合物以及轮胎 |
JP2019006880A (ja) * | 2017-06-22 | 2019-01-17 | 株式会社ブリヂストン | ゴム組成物及びタイヤ |
KR102427747B1 (ko) * | 2017-08-10 | 2022-08-01 | 코오롱인더스트리 주식회사 | 수소첨가 석유수지, 이의 제조방법 및 용도 |
CN107778389B (zh) | 2017-09-30 | 2020-05-29 | 王金书 | 一种苯乙烯改性双环戊二烯加氢树脂的合成方法 |
JP7317807B2 (ja) * | 2018-04-24 | 2023-07-31 | Eneos株式会社 | ゴム用添加剤、未架橋ゴム組成物、架橋ゴム及びタイヤ |
KR102155698B1 (ko) * | 2019-12-17 | 2020-09-14 | 코오롱인더스트리 주식회사 | 수소첨가 석유수지 및 이를 포함하는 고무 조성물 |
-
2019
- 2019-12-17 KR KR1020190168439A patent/KR102155698B1/ko active IP Right Grant
-
2020
- 2020-07-29 KR KR1020200094691A patent/KR20210077581A/ko unknown
- 2020-12-17 CN CN202080061235.5A patent/CN114341212B/zh active Active
- 2020-12-17 JP JP2022519209A patent/JP7436642B2/ja active Active
- 2020-12-17 TW TW109144646A patent/TWI763190B/zh active
- 2020-12-17 US US17/635,028 patent/US20220220243A1/en active Pending
- 2020-12-17 WO PCT/KR2020/018566 patent/WO2021125837A1/ko unknown
- 2020-12-17 EP EP20903715.9A patent/EP4001330B1/en active Active
- 2020-12-17 CN CN202310023206.5A patent/CN116041622A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2021125837A1 (ko) | 2021-06-24 |
KR102155698B1 (ko) | 2020-09-14 |
EP4001330A4 (en) | 2023-08-09 |
US20220220243A1 (en) | 2022-07-14 |
KR20210077581A (ko) | 2021-06-25 |
JP7436642B2 (ja) | 2024-02-21 |
CN114341212A (zh) | 2022-04-12 |
TWI763190B (zh) | 2022-05-01 |
CN114341212B (zh) | 2023-01-06 |
EP4001330A1 (en) | 2022-05-25 |
EP4001330B1 (en) | 2024-10-09 |
CN116041622A (zh) | 2023-05-02 |
JP2022550081A (ja) | 2022-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI763190B (zh) | 氫化石油樹脂及其製備方法以及包括其之橡膠組成物及用於輪胎面的橡膠組成物 | |
JP6352748B2 (ja) | タイヤ | |
JP6173078B2 (ja) | タイヤ用ゴム組成物及び空気入りタイヤ | |
CN110050025B (zh) | 轮胎用橡胶组合物及使用了该轮胎用橡胶组合物的充气轮胎 | |
JP7119330B2 (ja) | タイヤ用ゴム組成物 | |
WO2016039008A1 (ja) | 空気入りタイヤ | |
JP6300490B2 (ja) | ゴム組成物および空気入りタイヤ | |
JP7119329B2 (ja) | タイヤ用ゴム組成物 | |
WO2019117266A1 (ja) | ゴム組成物及びタイヤ | |
KR101995924B1 (ko) | 타이어 트레드용 고무 조성물 | |
KR102477254B1 (ko) | 고무 조성물 | |
WO2019117093A1 (ja) | ゴム組成物及びタイヤ | |
KR101376349B1 (ko) | 스티렌-부타디엔 공중합체, 그의 제조방법 및 고성능 타이어 | |
CN107011552B (zh) | 硫化橡胶组合物和使用有该硫化橡胶组合物的轮胎 | |
WO2022249637A1 (ja) | タイヤ用ゴム組成物、トレッドゴム及びタイヤ | |
JP2023535700A (ja) | 樹脂組成物、その製造方法、及びそれを含むゴム組成物 | |
JP6305796B2 (ja) | アルコキシ変性ジエン系ゴムの製造方法及びそれを用いたゴム組成物 | |
JP6488331B2 (ja) | ゴム組成物および空気入りタイヤ | |
JP2009040943A (ja) | ゴム組成物 | |
JP2015013975A (ja) | タイヤ用ゴム組成物及び空気入りタイヤ | |
JP2014009265A (ja) | 高性能ウェットタイヤトレッド用ゴム組成物及び高性能ウェットタイヤ | |
TW202413458A (zh) | 氫化石油樹脂與包含該樹脂之輪胎胎面橡膠組成物 | |
JP2023156265A (ja) | ゴム組成物およびタイヤ | |
WO2022249765A1 (ja) | タイヤ用ゴム組成物、トレッドゴム及びタイヤ | |
JP2020094110A (ja) | 重荷重用タイヤ用ゴム組成物及び重荷重用タイヤ |