TW202125828A - 半導體裝置 - Google Patents

半導體裝置 Download PDF

Info

Publication number
TW202125828A
TW202125828A TW109121980A TW109121980A TW202125828A TW 202125828 A TW202125828 A TW 202125828A TW 109121980 A TW109121980 A TW 109121980A TW 109121980 A TW109121980 A TW 109121980A TW 202125828 A TW202125828 A TW 202125828A
Authority
TW
Taiwan
Prior art keywords
layer
gate
inner spacer
epitaxial
silicon
Prior art date
Application number
TW109121980A
Other languages
English (en)
Inventor
彭羽筠
顏甫庭
陳婷婷
林耕竹
彭辭修
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202125828A publication Critical patent/TW202125828A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7838Field effect transistors with field effect produced by an insulated gate without inversion channel, e.g. buried channel lateral MISFETs, normally-on lateral MISFETs, depletion-mode lateral MISFETs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66469Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with one- or zero-dimensional channel, e.g. quantum wire field-effect transistors, in-plane gate transistors [IPG], single electron transistors [SET], Coulomb blockade transistors, striped channel transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66484Unipolar field-effect transistors with an insulated gate, i.e. MISFET with multiple gate, at least one gate being an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66553Unipolar field-effect transistors with an insulated gate, i.e. MISFET using inside spacers, permanent or not
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823468MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

此處提供半導體裝置與其形成方法。本發明實施例的半導體裝置包括第一半導體通道膜,與第二半導體通道膜位於第一半導體通道膜上;以及含矽與氮的多孔介電結構。多孔介電結構夾設於第一半導體通道膜與第二半導體通道膜之間,且多孔介電結構的密度小於氮化矽的密度。

Description

半導體裝置
本發明實施例一般關於多閘極電晶體與其製作方法,更特別關於在製作全繞式閘極電晶體時形成內側間隔物的方法。
半導體積體電路產業已經歷指數成長。積體電路材料與設計的技術進展,使每一代的積體電路比前一代的積體電路具有更小且更複雜的電路。在積體電路演進中,功能密度(比如單位晶片面積的內連線裝置數目)通常隨著幾何尺寸(比如採用的製作製程所能產生的最小構件或線路)縮小而增加。尺寸縮小的製程通常有利於增加產能並降低相關成本。尺寸縮小亦增加處理與形成積體電路的複雜度。
舉例來說,積體電路技術朝更小的技術節點演進,導入多閘極裝置可增加閘極-通道耦合、減少關閉狀態的電流、並減少短通道效應以改善閘極控制。多閘極裝置通常指的是具有閘極結構或其部分位於通道區的多側上的裝置。鰭狀場效電晶體與全繞式閘極電晶體(均視作非平面電晶體)為多閘極裝置的例子,其已成為高性能與低漏電流應用的泛用及有力候選。鰭狀場效電晶體具有隆起的通道,且閘極包覆通道的多側(比如閘極包覆自基板延伸的半導體材料之鰭狀物的頂部與側壁)。與平面電晶體相較,此設置可較佳地控制通道並大幅降低短通道效應(特別藉由減少次臨界漏電流如關閉狀態下的鰭狀場效電晶體之源極與汲極之間的耦合)。全繞式閘極電晶體的閘極結構可部分或完全延伸包覆通道區,以自兩側或更多側控制通道區。全繞式閘極電晶體的通道區可由奈米線、奈米片、其他奈米結構、及/或其他合適結構所形成。在一些實施方式中,此通道區包括多個垂直堆疊的奈米結構(其水平延伸以提供水平配向的通道)。此全繞式閘極電晶體可視作垂直堆疊的水平全繞式閘極電晶體。
在全繞式閘極裝置中,內側間隔物用於減少閘極結構與源極/汲極結構之間的電容與漏電流。雖然具有內側間隔物的習知全繞式閘極裝置適用於其發展目的,但不符合所有方面的需求。
在本發明一例示性的實施例中,半導體裝置包括第一半導體通道膜,與第二半導體通道膜位於第一半導體通道膜上;以及含矽與氮的多孔介電結構。多孔介電結構夾設於第一半導體通道膜與第二半導體通道膜之間,且多孔介電結構的密度小於氮化矽的密度。
在本發明另一例示性的實施例中,半導體裝置的製作方法包括提供鰭狀單元,其包括交錯的多個第一半導體層與多個第二半導體層;形成虛置閘極結構於鰭狀單元的通道區上;蝕刻鰭狀單元的源極/汲極區以露出第一半導體層的側壁與第二半導體層的側壁;使第二半導體層的露出側壁選擇性且部分地凹陷,以形成多個凹陷;採用有機矽烷前驅物與含氮氣體沉積內側間隔物層於凹陷上;處理內側間隔物層;以及回蝕刻內側間隔物層。
在本發明又一例示性的實施例中,半導體裝置的製作方法包括提供鰭狀單元,其包括交錯的多個第一半導體層與多個第二半導體層;形成虛置閘極結構於鰭狀單元的通道區上;蝕刻鰭狀單元的源極/汲極區,以露出第一半導體層的側壁與第二半導體層的側壁;使第二半導體層的露出側壁選擇性且部分地凹陷,以形成多個凹陷;沉積含矽與氮的內側間隔物層;處理內側間隔物層;以及回蝕刻內側間隔物層,以形成多孔的氮化矽層,且氮化矽比多孔的氮化矽層緻密。
下述內容提供的不同實施例或實例可實施本發明的不同結構。下述特定構件與排列的實施例係用以簡化本發明內容而非侷限本發明。舉例來說,形成第一構件於第二構件上的敘述包含兩者直接接觸的實施例,或兩者之間隔有其他額外構件而非直接接觸的實施例。此外,本發明之多個實例可重複採用相同標號以求簡潔,但多種實施例及/或設置中具有相同標號的元件並不必然具有相同的對應關係。
此外,空間性的相對用語如「下方」、「其下」、「較下方」、「上方」、「較上方」、或類似用語可用於簡化說明某一元件與另一元件在圖示中的相對關係。空間性的相對用語可延伸至以其他方向使用之元件,而非侷限於圖示方向。元件亦可轉動90°或其他角度,因此方向性用語僅用以說明圖示中的方向。此外,當數值或數值範圍的描述有「約」、「近似」、或類似用語時,除非特別說明否則其包含所述數值的+/-10%。舉例來說,用語「約5 nm」包含的尺寸範圍介於4.5 nm至5.5 nm之間。
本發明實施例一般關於多閘極電晶體與其製作方法,更特別關於在製作全繞式閘極電晶體時形成內側間隔物的方法。
多閘極電晶體包括的電晶體其閘極結構形成於通道區的至少兩側上。多閘極裝置可包含p型金氧半裝置或n型金氧半裝置。多閘極電晶體的例子包含鰭狀場效電晶體(其名稱來自於鰭狀結構)與全繞式閘極裝置。全繞式閘極裝置可包含閘極結構或其部分,其形成於通道區的四側上(圍繞通道區的一部分)。本發明實施例可具有通道區位於奈米線通道、棒狀通道、奈米片通道、奈米結構通道、柱狀通道、及/或其他合適的通道設置中。本發明實施例的裝置可具有與單一的連續閘極結構相關的一或多個通道區(如奈米線、奈米片、或奈米結構)。然而本技術領中具有通常知識者應理解,本發明的技術可用於單一通道(如單一奈米線、單一奈米片、或單一奈米結構)或任何數目的通道。本技術領域中具有通常知識者應理解半導體裝置的其他例子亦可受益於本發明實施例。
隨著鰭狀場效電晶體中的鰭狀物寬度縮小,通道寬度的變數可能造成不想要的變數與遷移率損失。研究全繞式閘極電晶體以取代鰭狀場效電晶體。在全繞式閘極電晶體中,電晶體的閘極完全圍繞通道,因此通道被閘極圍繞。此電晶體的優點為改善閘極對通道的靜態電控制,其亦減少漏電流。全繞式閘極電晶體包括多種間隔物,比如內側間隔物與閘及間隔物(又稱作多晶矽間隔物、外側間隔物、頂間隔物、或主要間隔物)。內側間隔物可用於降低閘極結構與源極/汲極結構之間的電容,並避免閘極結構與源極/汲極結構之間的漏電流。全繞式閘極電晶體中的內側間隔物之完整性仍具挑戰。對裝置效能而言,內側間隔物需要低介電常數的介電材料如氧化矽而非高介電常數的介電材料如氮化矽,因為低介電常數的內側間隔物可降低寄生電容。就製程整合而言,內側間隔物層的組成通常不只有氧化矽,因為形成氧化矽層的方法關於氧化製程,其亦可氧化磊晶堆疊中的矽與鍺並造成缺陷。就蝕刻選擇性而言,當內側間隔物層的組成為氮化矽時,拉回內側間隔物層的製程可選擇性地移除氮畫矽的內側間隔物,且實質上不損傷虛置閘極結構上的閘極間隔物層。本發明實施例的內側間隔物結構之形成方法,可為採用有機矽烷前區物與含氮氣體的原子層沉積方法沉積內側間隔物層、處理內側間隔物層、接著回蝕刻處理後的內側間隔物層。由本發明實施例的方法所形成的內側間隔物結構,可包含多孔氮化矽材料。多孔氮化矽材料的介電常數低於氮化矽,其形成製程不會損傷磊晶堆疊,且多孔氮化矽材料與閘極間隔物之間具有蝕刻選擇性。因此本發明實施例的內側間隔物結構之組成與結構可鎵大內側間隔物形成製程的製程容許範圍,並改善裝置效能。
圖1顯示形成半導體裝置如多閘極裝置的方法100。此處所述的用語「多閘極裝置」指的是裝置(如半導體裝置)具有至少一些閘極材料位於裝置的至少一通道之多側上。在一些例子中,多閘極裝置可視作具有閘極材料位於裝置的至少一通道之至少四側上的全繞式閘極裝置。通道區可視作奈米線、奈米片、奈米結構、通道膜、或半導體通道膜,其可包含多種形狀(如圓柱狀、棒狀、或片狀)與多種尺寸的通道區。
與此處所述的其他方法與例示性裝置的實施例一樣,應理解圖2A、2B、3至6、7A、7B、7C、與8至12所示的工件200之部分的製作方法可為互補式金氧半技術製程流程,因此僅簡述一些製程於此。在完成製作製程後,工件200將轉為半導體裝置。在此意義上,工件200與半導體裝置可交替使用。此外,例示性的半導體裝置可包含多種其他裝置與結構,比如其他種類的裝置如額外電晶體、雙極接面電晶體、電阻、電容、電感、二極體、熔絲、靜態隨機存取記憶體、及/或其他邏輯電路、或類似物,但簡化相關說明以利理解本發明實施例的發明概念。在一些實施例中,例示性裝置包含多個半導體裝置如電晶體,其包含n型全繞式閘極電晶體、p型全繞式閘極電晶體、p型場效電晶體、n型場效電晶體、或類似物,且半導體裝置可內連線。此外值得注意的是,方法100的製程步驟包含圖2A、2B、3至6、7A、7B、7C、與8-12所示的任何步驟,以及本發明實施例提供的例示性圖式與其餘方法,僅用於舉例說明而非侷限本發明實施例至申請專利範圍未實際記載處。
如圖1、2A、與2B所示,方法100包含的步驟102圖案化基板202上的磊晶堆疊204,以形成鰭狀單元210。圖2A顯示工件200沿著X方向(鰭狀單元210的長度方向)的部分剖視圖,圖2B顯示工件200沿著Y方向(越過鰭狀單元210的方向)的部分剖視圖。在一些實施例中,工件200的基板202可為半導體基板如矽基板。基板202可包含多種層狀物(包含導電或絕緣層)形成於半導體基板上。基板202可包含多種摻雜設置,端視本技術領域已知的設計需求而定。舉例來說,可在基板202上的區域中形成不同的摻雜輪廓(如n型井或p型井),且區域設計為用於不同裝置型態(如n型全繞式閘極電晶體或p型全繞式閘極電晶體)。合適的摻雜方法可包含離子佈植摻質及/或擴散製程。基板202可具有隔離結構夾設於不同裝置型態的區域之間。基板202亦可包含其他半導體如鍺、碳化矽、矽鍺、或鑽石。在其他實施例中,基板202可包含半導體化合物及/或半導體合金。此外,基板202可視情況包括磊晶層、可具有應力以增進效能、可包含絕緣層上矽結構、及/或可具有其他合適的增進結構。在方法100的一實施例中,可進行抗擊穿佈植。舉例來說,可在裝置的通道區下進行抗擊穿佈植,以避免擊穿或不想要的擴散。
在一些實施例中,形成於基板202上的磊晶堆疊204包含第一組成的磊晶層206夾設於第二組成的磊晶層208之間。第一組成與第二組成可不同。在一實施例中,磊晶層206為矽鍺而磊晶層208為矽。然而其他可能的實施例包含的第一組成與第二組成具有不同的氧化速率及/或蝕刻選擇性。在一些實施例中,磊晶層206包括矽鍺,而磊晶層208包括矽。在這些實施例中,磊晶層206中的鍺含量可介於約15%至約40%之間。
值得注意的是,圖2顯示三個磊晶層206與三個磊晶層208交錯配置,但此僅用於說明目的而非侷限本發明實施例至申請專利範圍未實際記載處。可以理解的是,可形成任何數目的磊晶層於磊晶堆疊204中。磊晶層的數目取決於工件200所用的通道膜所需的數目。在一些實施例中,磊晶層208的數目介於2至10之間。
在一些實施例中,每一磊晶層206的厚度為約2 nm至約6 nm,比如具體例子中的3 nm。磊晶層206可具有實質上一致的厚度。在一些實施例中,每一磊晶層208的厚度為約6 nm至約12 nm,比如具體例子中的9 nm。在一些實施例中,磊晶堆疊204的磊晶層208具有實質上一致的厚度。如下詳述,磊晶層208或其部分可作為後續形成的多閘極裝置所用的通道膜,且磊晶層208的厚度取決於裝置效能考量。通道區中的磊晶層206最後將被移除,以定義後續形成的多閘極裝置所用的相鄰通道區之間的垂直距離,且磊晶層206的厚度取決於裝置效能考量。綜上所述,磊晶層206亦可視作犧牲層,而磊晶層208可視作通道層。
舉例來說,磊晶成長磊晶堆疊204的層狀物之方法可為分子束磊晶製程、有機金屬化學氣相沉積製程、及/或其他合適的磊晶成長製程。在一些實施例中,磊晶成長的層狀物如磊晶層208可與基板202包含相同材料。在一些實施例中,磊晶成長的磊晶層206及208可與基板202包含不同材料。如上所述,至少一些實施例的磊晶層206包含磊晶成長的矽鍺層,而磊晶層208包含磊晶成長的矽層。在一些其他實施例中,磊晶層206與208可包含其他材料如鍺、半導體化合物(如碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦、及/或銻化銦)、半導體合金(如矽鍺、磷砷化鎵、砷化鋁銦、砷化鋁鎵、砷化鎵銦、磷化鎵銦、及/或磷砷化鎵銦)、或上述之組合。如上述說明,磊晶層206與208的材料選擇,基於提供不同氧化特性與蝕刻選擇性的需求。在一些實施例中,磊晶層206與208實質上不含摻質(比如外質摻質濃度為約0 cm-3 至約1x1017 cm-3 ),比如在磊晶成長製程時不刻意進行摻雜。
在步驟102中,圖案化基板202上的磊晶堆疊204,以形成自基板202延伸並沿著X方向橫越的鰭狀單元210。值得注意的是,圖2A以及圖3至6、7A、7B、7C、與8至12只顯示部分剖視圖,而不必顯示鰭狀單元210的完整長度。如圖2B所示的一些實施例,圖案化步驟亦蝕刻至基板202中,使每一鰭狀單元210包含由基板202形成的下側部分210a,以及由磊晶堆疊204形成的上側部分210b。上側部分210b包括含有磊晶層206與208的磊晶堆疊204之每一磊晶層。鰭狀單元210的製作方法可採用合適製程,其包含雙重圖案化或多重圖案化製程。一般而言,雙重圖案化或多重圖案化至成結合光微影與自對準製程,其產生的圖案間距小於採用單一的直接光微影製程所得的圖案間距。舉例來說,一實施例形成犧牲層於基板上,並採用光微影製程圖案化犧牲層。採用自對準製程,以沿著圖案化的犧牲層側部形成間隔物。接著移除犧牲層,而保留的間隔物或芯之後可用於圖案化鰭狀單元210,且圖案化方法可為蝕刻磊晶堆疊204。蝕刻製程可包含乾蝕刻、濕蝕刻、反應性離子蝕刻、及/或其他合適製程。
如圖2所示,方法100的步驟102形成淺溝槽隔離結構203於相鄰的鰭狀單元210之間。舉例來說,一些實施例先沉積介電層於基板202上,以將介電材料填入溝槽205。在一些實施例中,介電層可包含氧化矽、氮化矽、氮氧化矽、摻雜氟的矽酸鹽玻璃、低介電常數的介電層、上述之組合、及/或其他合適材料。在多種例子中,介電層的沉積方法可為化學氣相沉積製程、次壓化學氣相沉積製程、可流動的化學氣相沉積製程、原子層沉積製程、物理氣相沉積製程、及/或其他合適製程。接著薄化與平坦化沉積的介電材料,比如進行化學機械研磨製程。以乾蝕刻製程、濕蝕刻製程、及/或上述之組合使平坦化的介電層進一步凹陷,以形成淺溝槽隔離結構203。鰭狀單元210隆起高於淺溝槽隔離結構203。在一些實施例中,介電層(與後續形成的淺溝槽隔離結構203)可包含多層結構,比如具有一或多個襯墊層。
雖然未圖示,一些實施例的方法100之步驟102可形成介電鰭狀物。這些實施例在沉積介電材料形成介電層之後,圖案化介電層以形成狹縫,且狹縫的延伸方向平行於鰭狀單元210。接著沉積介電鰭狀物所用的材料於工件200上以填入狹縫。介電鰭狀物所用的材料,與形成淺溝槽隔離結構203的介電材料不同。這可在使淺溝槽隔離結構203所用的介電層凹陷時選擇性蝕刻介電層,並使保留的介電鰭狀物隆起高於淺溝槽隔離結構203。在一些實施例中,介電鰭狀物所用的材料可包含氮化矽、碳氮化矽、碳化矽、氧化鋁、氧化鋯、或其他合適材料。介電鰭狀物夾設於鰭狀單元210之間,且可用於分隔相鄰裝置的源極/汲極結構。介電鰭狀物亦可視作虛置鰭狀物或混合鰭狀物。在一些其他實施例中,在閘極切割製程時可移除介電鰭狀物的上側部分,並置換為介電材料,且介電材料與介電鰭狀物可不同或類似。
如圖1與3所示,方法100包含的步驟104形成虛置閘極堆疊212於鰭狀單元210的通道區1000上。在一些實施例中,採用閘極置換或閘極後製製程,且虛置閘極堆疊212作為高介電常數的閘極介電層與金屬閘極的堆疊之占位物,之後將移除並置換為高介電常數的閘極介電層與金屬閘極的堆疊。亦可採用其他製程與設置。在一些實施例中,虛置閘極堆疊212形成於基板202上,且至少部分地位於鰭狀單元210上。位於虛置閘極堆疊212之下的鰭狀單元210之部分為通道區1000。虛置閘極堆疊212亦可定義與通道區1000相鄰並位於通道區1000的兩側上之源極/汲極區2000。
在所述實施例中,步驟104先形成虛置介電層211於鰭狀單元210上。在一些實施例中,虛置介電層211可包含氧化矽、氮化矽、高介電常數的介電材料、及/或其他合適材料。在多種例子中,虛置介電層211的沉積方法可為化學氣相沉積製程、次壓化學氣相沉積製程、可流動的化學氣相沉積製程、原子層沉積製程、物理氣相沉積製程、或其他合適製程。舉例來說,虛置介電層211在後續製程中(如後續形成虛置閘極堆疊的製程),可用於避免損傷鰭狀單元210。步驟104之後形成虛置閘極堆疊212的其他部分如虛置電極層214與硬遮罩220,且硬遮罩220可包含多個層狀物如氧化物層216與氮化物層218。在一些實施例中,虛置閘極堆疊212的形成方法為多種製程步驟,比如層狀物的沉積、圖案化、蝕刻、以及其他合適的製程步驟。例示性的層狀物沉積製程包含化學氣相沉積(包含低壓化學氣相沉積與電漿輔助化學氣相沉積)、物理氣相沉積、原子層沉積、熱氧化、電子束蒸鍍、其他合適的沉積技術、或上述之組合。舉例來說,圖案化製程可包含微影製程(如光微影或電子束微影),其可進一步包含塗佈光阻(如旋轉塗佈)、軟烘烤、對準光罩、曝光、曝光後烘烤、顯影光阻、沖洗、乾燥(如旋乾及/或硬烘烤)、其他合適的微影技術、及/或上述之組合。在一些實施例中,蝕刻製程可包含乾蝕刻(如反應性離子蝕刻)、濕蝕刻、及/或其他蝕刻法。在一些實施例中,虛置電極層214可包含多晶矽。在一些實施例中,硬遮罩220包含氧化物層216如墊氧化物層,其可包含氧化矽。在一些實施例中,硬遮罩220包含氮化物層218如墊氮化物層,其可包含氮化矽及/或氮氧化矽。在一些實施例中,氮化物層218可改為碳化矽。
如圖3所示的一些實施例,在形成虛置閘極堆疊212之後,自鰭狀單元210的源極/汲極區2000移除虛置介電層211,即移除虛置電極層214未覆蓋的虛置介電層211。移除製程可包含濕蝕刻、乾蝕刻、及/或上述之組合。蝕刻製程擇以選擇性蝕刻虛置介電層211,且實質上不蝕刻鰭狀單元210、硬遮罩220、與虛置電極層214。
如圖1與3所示,方法100包含的步驟106形成閘極間隔物222於虛置閘極堆疊212的側壁上。在一些實施例中,閘極間隔物所用的間隔物材料可順應性地沉積於工件200上,包含沉積於虛置閘極堆疊212的上表面與側壁上,以形成間隔物材料層。此處可採用用語「順應性」,以說明在不同區域上的厚度實質上一致的層狀物。間隔物材料可包括介電材料如氧化矽、氮化矽、碳化矽、氮氧化矽、碳氮化矽、碳氧化矽、碳氮氧化矽、及/或上述之組合。在一些實施例中,間隔物材料層包括多個層狀物,比如主要間隔物牆、襯墊層、與類似物。間隔物材料沉積於虛置閘極堆疊212上的製程,可採用化學氣相沉積製程、次壓化學氣相沉積製程、可流動的化學氣相沉積製程、原子層沉積製程、物理氣相沉積製程、或其他合適製程。接著在非等向蝕刻製程中回蝕刻間隔物材料層以形成閘極間隔物222。等向蝕刻製程露出與虛置閘極堆疊212相鄰但虛置閘極堆疊212未覆蓋的鰭狀單元210的部分(比如在源極/汲極區中)。此等向蝕刻製程可完全移除直接位於虛置閘極堆疊212上的間隔物材料層的部分,並保留閘極間隔物222於虛置閘極堆疊212的側壁上。在一些實施方式中,當閘極間隔物222的組成為氮化矽或碳氮化矽時,閘極間隔物222的密度大於2.8 g/cm3
如圖1與4所示,方法100包含的步驟108使鰭狀單元210的源極/汲極區2000凹陷。在一些實施例中,蝕刻閘極間隔物222與虛置閘極堆疊212未覆蓋的鰭狀單元210的部分,以形成源極/汲極溝槽224,且蝕刻方法可為乾蝕刻或合適的蝕刻製程。舉例來說,乾蝕刻製程可採用含氧氣體、含氟氣體(如四氟化碳、六氟化硫、二氟甲烷、氟仿、及/或六氟乙烷)、含氯氣體(如氯氣、氯仿、四氯化碳、及/或三氯化硼)、含溴氣體(如溴化氫及/或溴仿)、含碘氣體、其他合適氣體及/或電漿、及/或上述之組合。如圖4所示的一些實施例,使鰭狀單元210的上側部分210b凹陷以露出犧牲層如磊晶層206與通道層如磊晶層208。在一些實施方式中,亦使鰭狀單元210的下側部分210a的至少一部分凹陷。因此源極/汲極溝槽224可延伸於最底側的犧牲層如磊晶層206之下。
如圖1與5所示,方法100包含的步驟110使鰭狀單元210中的犧牲層如磊晶層206凹陷。在圖5所示的一些實施例中,使源極/汲極溝槽224中露出的犧牲層如磊晶層206選擇性且部分地凹陷,以形成內側間隔物凹陷226,且實質上不蝕刻露出的通道層如磊晶層208。在一實施例中,通道層如磊晶層208實質上由矽組成,而犧牲層如磊晶層206實質上由矽鍺組成,且使犧牲層如磊晶層206選擇性凹陷的製程可包含矽鍺氧化製程,接著移除矽鍺氧化物。在這些實施例中,矽鍺氧化製程可採用臭氧。在一些實施例中,選擇性凹陷步驟可為選擇性等向蝕刻製程(比如選擇性乾蝕刻製程或選擇性濕蝕刻製程),且犧牲層如磊晶層206的凹陷量可由蝕刻製程時間控制。在一些實施例中,選擇性濕蝕刻製程可包含氫氟酸或氫氧化銨的蝕刻劑。如圖5所示,內側間隔物凹陷226自源極/汲極溝槽224橫向地向內延伸至鰭狀單元210中。
如圖1與6所示,方法100包含的步驟112沉積內側間隔物層228於工件200上,包括沉積於內側間隔物凹陷226中。順應性沉積內側間隔物層228的方法可為化學氣相沉積、電漿輔助化學氣相沉積、低壓化學氣相沉積、原子層沉積、或其他合適方法。在一些實施例中,內側間隔物層228為多孔氮化矽為主的介電層,其沉積方法為在爐、單晶圓腔室、或旋轉設備中進行的原子層沉積製程。在一些實施方式中,原子層沉積製程可包含採用一或多種有機矽烷前驅物,其包括矽與烷基。在本發明實施例中,一或多種有機矽烷前驅物可包含交聯前驅物與致孔前驅物。為了達到本發明實施例的目的,交聯前驅物包含矽-碳-矽鏈,其中碳原子共價鍵結至兩個矽原子;而致孔前驅物包含矽、氮、與鍵結至矽原子與碳原子的末端烷基。致孔前驅物不含任何矽-碳-矽鏈。
交聯前驅物可或可不包含鹵基。在一些例子中,交聯前驅物包含鹵基,且交聯前驅物的分子的化學式可為Si(CH2 )SiRx Cly ,其中R可為氫原子或烷基如甲基,x大於0,y大於1,且x+y=6。交聯前驅物的一例為二氯四甲基乙矽烷(SiCH2 Si(CH3 )4 Cl2 )之結構如下:
Figure 02_image001
在另一例中,含鹵的交聯前驅物亦可包含化學式如Si(CH2 )2 SiRx Cly ,其中R可為氫原子或烷基如甲基,x大於或等於 0,y大於1,且x+y=4。交聯前驅物的一例為二氯四甲基乙矽烷(Si(CH2 )2 SiCl4 )之結構如下:
Figure 02_image004
在另一例中,含鹵的交聯前驅物可具有化學式如Si(CH3 )x Cly ,其中x大於1且x+y=4。交聯前驅物的一例為二甲基二氯矽烷(Si(CH3 )2 Cl2 )如下。
Figure 02_image006
在一些實施例中,交聯前驅物可不含任何鹵基。在這些實施例中,交聯前驅物的化學式為Si(CH2 )Si(CH3 )x Hy ,其中x大於0,y大於2,且x+y=6。交聯前驅物的例子包含二矽烷基甲烷(SiCH2 SiH6 )與四甲基乙矽烷(SiCH2 Si(CH3 )4 H2 )如下。
Figure 02_image008
Figure 02_image010
在一些其他例子中,致孔前驅物的化學式為SiHx (R1)y (R2)z ,其中R1可為烷基如甲基,R2可為胺基如甲基胺基(NH(CH3 ))或二甲基胺基(N(CH3 )2 ),x大於0,y大於1,z大於1,且x+y+z=4。值得注意的是,R1與R2包含末端烷基(如甲基),其易於增加碳含量與孔隙率,但不易交聯不同前驅物。致孔劑的例子可包含雙(二甲基胺基)二甲基矽烷(Si(CH3 )2 (N(CH3 )2 )2 )與二甲基胺基二甲基矽烷(Si(CH3 )2 (N(CH3 )2 )2 ),其結構如下。
Figure 02_image012
除了一或多個有機矽烷前驅物,反應物氣體與載氣可用於原子層沉積製程。反應物氣體的例子可包括含氮氣體如氨、氮氣、氫氣、或上述之組合。載氣的例子可包含氮氣、氦氣、或氬氣。在一些實施例中,原子層沉積製程為熱原子層沉積製程,且沉積溫度介於約150℃至約650℃之間。在一些實施例中,內側間隔物層228的特性為階梯覆蓋率大於95%,且實質上填入內側間隔物凹陷226。
交聯前驅物可增加交聯密度並改善內側間隔物層228的完整性。此外,交聯前驅物可強化內側間隔物層228對犧牲層如磊晶層206的附著性。致孔前驅物的末端烷基可增加內側間隔物層228的孔隙率與碳含量。致孔前驅物可增加碳含量,以改善內側間隔物層228的抗蝕刻性。在一些實施例中,步驟112採用至少一種交聯前驅物與至少一種致孔前驅物以沉積內側間隔物層228。在本發明實施例中,步驟112所用的前驅物、反應物氣體、與載氣不含氧或氧化劑,因此步驟112沒有氧化磊晶堆疊204的磊晶層206與208之風險。然而這不表示最後形成的內側間隔物層228不含氧原子。在破真空並自真空腔室移出工件200時,可觀察到環境大氣中的氧可進入內側間隔物層228的晶格並氧化內側間隔物層228。內側間隔物層228中的氧含量取決於步驟112的沉積溫度。當步驟112的沉積製程溫度高於500℃,比如介於約500℃至約650℃之間,結合至內側間隔物層228中的氮原子較多,且環境氣體中的氧原子可用的反應位點較少。當結合至內側間隔物層228中的氮原子較多時,內側間隔物層228的介電常數較高,且其電性更接近介電常數為約7的非多孔氮化矽。類似地,當結合至內側間隔物層228中的氮原子較多時,內側間隔物層228的密度較高,且其晶格結構更接近密度為約2.8 g/cm3 或更高的非多孔氮化矽。當步驟112的沉積製程溫度低於500℃ (比如介於約150℃至約350℃之間),結合至內側間隔物層228中的氮原子較少,而環境氣體中的氧原子所用的反應位點更多。當進入內側間隔物層228的晶格中的氧原子越多,內側間隔物層228的介電常數越低,而其電性更接近介電常數為約3.9的氧化矽。類似地,當更多氧原子進入內側間隔物層228的晶格時,內側間隔物層228的密度更低,且其晶格結構更接近非多孔的氧化矽晶格(密度大於或等於約2.2 g/cm3 )。
此處提供一些實施例如下以作為例子。在一實施例中,含鹵化物的交聯前驅物Si(CH2 )2 SiCl4 用於沉積內側間隔物層228,且沉積溫度介於約500℃至約650℃之間。為了易於標示,為了易於說明,最後形成的內側間隔物層228可視作第一內側間隔物層。隨著沉積溫度靠近上述的溫度範圍上限,內側間隔物層的介電常數介於約4.9與約5.2之間,密度介於約2.1 g/cm3 至約2.3 g/cm3 之間,氮含量介於約30%至約40%之間,且碳含量介於約3%至約8%之間。在另一實施例中,致孔前驅物Si(CH3 )2 (N(CH3 )2 )2 用於沉積內側間隔物層228,且沉積溫度介於約150℃至約350℃之間。為了簡化說明,最後的內側間隔物層228可視作內側間隔物層。當沉積溫度為所述溫度範圍的下限,內側間隔物層的介電常數可介於約3.7至約4.2之間、密度可介於約1.7 g/cm3 至約2.0 g/cm3 之間、氮含量可介於約4%至約8%之間、且碳含量可介於約5%至約10%之間。一般的低介電常數的介電材料指的是介電常數小於3.9 (如氧化矽的介電常數)的介電材料。值得注意的是,本發明實施例中的內側間隔物層228之介電常數介於約3.7至約5.2之間,其小於氮化矽的介電常數但大部分大於3.9。因此與習知定義的低介電常數材料相反,本發明實施例中的內側間隔物層228可視為具有較低介電常數。
如圖1、7A、7B、與7C所示,方法100包含的步驟114以處理製程處理內側間隔物層228。圖7A、7B、與7C顯示處理製程的三個實施例。在圖7A所示的一些實施例中,處理製程可為退火製程300,其可為爐退火製程、雷射退火製程、快閃退火製程、快速熱退火製程、合適的退火製程、或上述之組合。在一些實施方式中,退火製程300包含的退火溫度介於約350℃至約700℃之間,且退火環境含氦氣、氬氣、氮氣、氫氣、惰性氣體、或上述之組合。在圖7B所示的一些實施例中,處理製程可為紫外線固化製程400,其包括以紫外線照射內側間隔物層228。在一些實施方式中,紫外線固化製程400包含的固化溫度介於150℃至約450℃之間,且固化環境包含氦氣、氬氣、氮氣、氫氣、惰性氣體、或上述之組合。在圖7C所示的一些實施例中,處理製程可為遠端電漿處理製程500,其可包含遠端產生的氦、氫、氮、或氬電漿,以與沉積的內側間隔物層228作用。在一些實施方式中,遠端電漿處理製程500包含的製程溫度介於約室溫(比如約20℃至約25℃之間)至約350℃之間。
方法100的步驟114的處理製程可用於固化沉積的內側間隔物層228,並移除多孔內側間隔物層228中的殘留氣體。在一些實施例中,步驟114中的處理製程有利於聚合反應以增加交聯密度,並移除內側間隔物層228中的未反應物種。因此步驟114的處理製程可強化內側間隔物層228。在一些實施例中,步驟114的處理製程可分離並移除吸附於多孔的內側間隔物層228上的氣體物種,比如氨、氮、或氧。目前發現到步驟114的處理製程可固化內側間隔物層228並移除內側間隔物層228中吸附的殘留氣體,但其不會改變內側間隔物層228的性質與結構。關於預處理內側間隔物層228的密度、介電常數、與組成的上述內容,仍適用於處理後的內側間隔物層228。
如圖1與8所示,方法100包含的步驟116拉回內側間隔物層228。在一些實施例中,等向且選擇性地回蝕刻內側間隔物層228 (或處理後的內側間隔物層228),直到露出閘極間隔物222的側壁與通道層如磊晶層208的側壁。進行上述步驟,直到實質上移除閘極間隔物222的側壁與通道層如磊晶層208的側壁上的處理後的內側間隔物層228。在一些實施方式中,步驟118中進行的等向蝕刻包含採用乾蝕刻劑(如氫氟酸、氟氣、氫、氨、三氟化氮、或其他氟為主的蝕刻劑)或濕蝕刻劑(如稀釋氫氟酸)。由於內側間隔物層228的組成與結構不同於閘極間隔物222與通道層如磊晶層208的組成與結構,步驟116中的拉回步驟採用的蝕刻劑與蝕刻製程可對處理後的內側間隔物層228具有選擇性。蝕刻選擇性可選擇性地回蝕刻內側間隔物層228,而以較慢的蝕刻速率蝕刻閘極間隔物222與通道層如磊晶層208。在一些實施方式中,閘極間隔物222的組成為碳氧化矽,且步驟116的拉回製程可採用稀釋比例介於約100:1至約500:1之間的稀釋氫氟酸,使內側間隔物層228對閘極間隔物222的蝕刻選擇性可介於約80至約120之間。在一些其他實施方式中,閘極間隔物222的組成為碳氧化矽,且步驟116的拉回製程可採用氫氟酸與氨的電漿,使內側間隔物層228對閘極間隔物222的蝕刻選擇性可介於約1.8至約3.5之間。內側間隔物層228的蝕刻選擇性來自於其多孔結構所造成的低密度與高比表面積。在圖8所示的一些實施例中,可蝕刻沉積於內側間隔物凹陷226中的內側間隔物層228,使內側間隔物層228的外側表面與閘極間隔物222的側壁共平面。然而本發明實施例不限於此,且可想像內側間隔物層228的外側表面不與閘極間隔物222的側壁共平面(比如自閘極間隔物222的側壁凹陷)。保留於內側間隔物凹陷226中的內側間隔物層228的分開部分,可視作內側間隔物結構。
如圖1與9所示,方法100包含的步驟118形成源極/汲極結構230於鰭狀單元210的源極/汲極區2000上。在磊晶成長製程時,虛置閘極堆疊212與閘極間隔物222可限制磊晶的源極/汲極結構230成長至鰭狀單元210的源極/汲極區2000。在一些例子中形成介電鰭狀物,且介電鰭狀物可避免自不同鰭狀單元210形成的磊晶的源極/汲極結構230彼此接觸。在其他實施例中不存在介電鰭狀物,而相鄰的鰭狀單元210之磊晶的源極/汲極結構230可合併,只要合併不會造成半導體裝置失效即可。合適的磊晶製程包括化學氣相沉積技術(如氣相磊晶及/或超高真空化學氣相沉積)、分子束磊晶、及/或其他合適製程。磊晶成長製程可採用氣體及/或液體的前驅物,其與基板202以及通道層如磊晶層208的組成作用。在圖9所示的實施例中,磊晶的源極/汲極結構230直接接觸通道層如磊晶層208與源極/汲極溝槽224中露出的基板202的部分(見圖5)。在這些實施例中,磊晶的源極/汲極結構230不直接接觸犧牲層如磊晶層206。相反地,磊晶的源極/汲極結構230直接接觸沉積於內側間隔物凹陷226中的內側間隔物層228。
在多種實施例中,磊晶的源極/汲極結構230可包含鍺、矽、砷化鎵、砷化鋁鎵、矽鍺、磷砷化鎵、磷化矽、或其他合適材料。在磊晶製程時可導入摻雜物種如p型摻質(比如硼或二氟化硼)、n型摻質(比如磷或砷)、及/或包含上述之組合的其他合適摻質,以原位摻雜磊晶的源極/汲極結構230。若未原位摻雜磊晶的源極/汲極結構230,可進行佈植製程(如接面佈植製程)以摻雜磊晶的源極/汲極結構230。在例示性的實施例中,n型金氧半裝置中的磊晶的源極/汲極結構230包含磷化矽,而p型金氧半裝置中的磊晶的源極/汲極結構230包含硼化矽鍺。在一些實施方式中,分開形成n型金氧半裝置與p型金氧半裝置所用的磊晶的源極/汲極結構230,使n型金氧半裝置與p型金氧半裝置可具有不同的磊晶的源極/汲極結構230。
此外,可形成矽化物或鍺矽化物於磊晶的源極/汲極結構230上。舉例來說,矽化物如鎳矽化物、鈦矽化物、鉭矽化物、或鎢矽化物的形成方法,可為沉積金屬層於磊晶的源極/汲極結構230上並退火金屬層,使金屬層與磊晶的源極/汲極結構230中的矽反應形成金屬矽化物。之後可移除未反應的金屬層。
如圖1與10所示,方法100包含的步驟120形成層間介電層234。在一些實施例中,可在形成層間介電層234之前先形成接點蝕刻停止層232。在一些例子中,接點蝕刻停止層232包括氮化矽層、氧化矽層、氮氧化矽層、及/或本技術領域已知的其他材料。接點蝕刻停止層232的形成方法可為原子層沉積、電漿輔助化學氣相沉積製程、及/或其他合適的沉積或氧化製程。在一些實施例中,層間介電層234包括的材料可為四乙氧基矽烷的氧化物、未摻雜的矽酸鹽玻璃、摻雜的氧化矽(如硼磷矽酸鹽玻璃、摻雜氟的矽酸鹽玻璃、磷矽酸鹽玻璃、或硼矽酸鹽玻璃)、及/或其他合適的介電材料。層間介電層234的沉積方法可為電漿輔助化學氣相沉積製程或其他合適的沉積技術。在一些實施例中,在形成層間介電層234之後,可退火工件200以改善層間介電層234的完整性。在一些實施方式中,沉積層間介電層234之後可進行平坦化製程以移除多於的介電材料。舉例來說,平坦化製程包含化學機械研磨製程,其移除虛置閘極堆疊212上的層間介電層234的部分(與接點蝕刻停止層232,若存在),並平坦化工件200的上表面。在圖10所示的一些實施例中,化學機械研磨製程亦移除硬遮罩220並露出虛置電極層214。
如圖1與11所示,方法100包含的步驟122移除虛置閘極堆疊212。在一些實施例中,移除虛置閘極堆疊212可定義閘極溝槽於通道區1000上的閘極間隔物222之間。接著可形成最後的高介電常數閘極結構(比如包含高介電常數的介電層與金屬閘極)於閘極溝槽中,如下所述。步驟122可包含一或多道蝕刻製程,其對虛置閘極堆疊212中的材料具有選擇性。舉例來說,移除虛置閘極堆疊212的步驟可採用選擇性濕蝕刻、選擇性乾蝕刻、或上述之組合,其對虛置電極層214具有選擇性。一旦完成步驟122,閘極溝槽中可露出鰭狀單元210的磊晶層206與208。
如圖1與11所示,方法100包含的步驟124露出通道膜如磊晶層208。步驟124移除內側間隔物結構如保留的內側間隔物層228之間的犧牲層如磊晶層206,且通道區1000中的通道層如磊晶層208之間垂直地隔有每一犧牲層如磊晶層206的厚度。選擇性移除犧牲層如磊晶層206可露出之後作為通道膜的磊晶層208。值得注意的是,磊晶層208亦可為通道膜。步驟124的實施方式可為選擇性乾蝕刻、選擇性濕蝕刻、或其他選擇性蝕刻製程。在一些實施例中,選擇性濕蝕刻包括以氫氧化銨、過氧化氫、與水的混合物進行蝕刻。在一些實施例中,選擇性移除法包括氧化矽鍺後,進行矽鍺氧化物的移除製程。舉例來說,氧化法可為臭氧清潔,且之後的矽鍺氧化物移除法可採用蝕刻劑如氫氧化銨。
如圖1與11所示,方法100包含的步驟126形成金屬閘極堆疊238於通道區1000中,以包覆通道膜如磊晶層208。金屬閘極堆疊238可為高介電常數的閘極介電層與金屬閘極的堆疊,但可能採用其他組成。在一些實施例中,金屬閘極堆疊238形成於工件200上的閘極溝槽中,且沉積於移除犧牲層如磊晶層206之後留下的空間中。在此考量下,金屬閘極堆疊238包覆每一鰭狀單元210中的每一通道膜(如磊晶層208)。在多種實施例中,金屬閘極堆疊238 (或高介電常數的閘極介電層與金屬閘極的堆疊)包含界面層240、形成於界面層240上的高介電常數的閘極介電層242、及/或形成於高介電常數的閘極介電層242上的閘極層244。高介電常數的閘極介電層242之組成可為高介電常數的介電材料,其介電常數可大於熱氧化矽的介電常數(約3.9)。金屬閘極堆疊238中所用的閘極層244可包含金屬、金屬合金、或金屬矽化物。此外,形成金屬閘極堆疊238的方法可包含沉積形成多種閘極材料與一或多個襯墊層,並進行一或多道化學機械研磨製程以移除多餘閘極材料,進而平坦化工件200的上表面。
在一些實施例中,界面層240可包含介電材料如氧化矽、矽酸鉿、或氮氧化矽。界面層的形成方法可為化學氧化、熱氧化、原子層沉積、化學氣相沉積、及/或其他合適方法。金屬閘極堆疊238的高介電常數的閘極介電層242可包含高介電常數的介電層如氧化鉿。在其他實施例中,高介電常數的閘極介電層242可包含其他高介電常數的介電層,比如氧化鈦、氧化鉿鋯、三氧化二鉭、氧化鉿矽、氧化鋯、氧化鋯矽、氧化鑭、氧化鋁、氧化鋯、氧化鈦、五氧化二鉭、氧化釔、鈦酸鍶、鈦酸鋇、氧化鋇鋯、氧化鉿鋯、氧化鉿鑭、氧化鉿矽、氧化鑭矽、氧化鋁矽、氧化鉿鉭、氧化鉿鈦、鈦酸鋇鍶、氧化鋁、氮化矽、鉭氧化物如氮氧化矽、上述之組合、或其他合適材料。高介電常數的閘極介電層242的形成方法可為原子層沉積、物理氣相沉積、化學氣相沉積、氧化、及/或其他合適方法。
金屬閘極堆疊238的閘極層244可包含單層或多層結構,比如具有選定功函數以增進裝置效能的金屬層(功函數金屬層)、襯墊層、濕潤層、黏著層、金屬合金、或金屬矽化物的多種組合。舉例來說,金屬閘極堆疊238的閘極層244可包含鈦、銀、鋁、氮化鈦鋁、碳化鉭、碳氮化鉭、氮化鉭矽、錳、鋯、氮化鈦、氮化鉭、釕、鉬、氮化鎢、銅、鎢、錸、銥、鈷、鎳、其他合適金屬材料、或上述之組合。在多種實施例中,金屬閘極堆疊238的閘極層244之形成方法可為原子層沉積、物理氣相沉積、化學氣相沉積、電子束蒸鍍、或其他合適製程。此外,可分別形成n型場效電晶體與p型場效電晶體所用的閘極層244,以採用不同的金屬層(用於提供不同的n型與p型的功函數金屬層)。在多種實施例中,可進行化學機械研磨製程,以自金屬閘極堆疊238的閘極層244移除多餘金屬,進而提供金屬閘極堆疊238之實質上平坦的上表面。金屬閘極堆疊238包含夾設於通道區1000中的通道膜如磊晶層208之間的部分。
如圖1與12所示,方法100的步驟128進行額外製程。可對工件200進行額外製程以形成工件200。舉例來說,這些其他製程可包含形成源極/汲極接點248。在此例中,形成源極/汲極接點248所用的開口穿過層間介電層234,並形成金屬填充層於開口中。在一些實施例中,矽化物層246可形成於源極/汲極接點248與磊晶的源極/汲極結構230之間,以降低接點電阻。源極/汲極接點248與閘極接點(未圖示)可讓方法100中形成的電晶體電性耦接至多層內連線結構,且多層內連線結構包含多個接點通孔與金屬線路層於一或多個金屬間介電層中。多層內連線結構設置以連接多種多閘極裝置、記憶體裝置、輸入/輸出裝置、功率閘極裝置、被動裝置、與其他裝置,以形成功能電路。
本發明實施例提供一些優點至半導體裝置與其形成製程,但不侷限於此。舉例來說,本發明實施例提供內側間隔物結構,其部分為含矽與氮的多孔介電材料。本發明實施例的內側間隔物結構之介電常數比習知的內側間隔物結構之介電常數低,以改善半導體裝置的效能,並改善內側間隔物結構與閘及間隔物的蝕刻選擇性,進而加大形成內側間隔物結構的製程容許範圍。此外,本發明實施例揭露的內側間隔物結構之形成製程,易於整合至現有的半導體製作製程中。
在本發明一例示性的實施例中,半導體裝置包括第一半導體通道膜,與第二半導體通道膜位於第一半導體通道膜上;以及含矽與氮的多孔介電結構。多孔介電結構夾設於第一半導體通道膜與第二半導體通道膜之間,且多孔介電結構的密度小於氮化矽的密度。
在一些實施例中,多孔介電結構的介電常數介於約4.9至約5.2之間。在一些實施例中,多孔介電結構的密度介於約2.1 g/cm3 至約2.3 g/cm3 之間。在一些實施例中,多孔介電結構的氮含量介於約30%至約40%之間。在一些實施例中,多孔介電結構更包括碳。在一些實施例中,多孔介電結構的碳含量介於約3%至約8%之間。
在本發明另一例示性的實施例中,半導體裝置的製作方法包括提供鰭狀單元,其包括交錯的多個第一半導體層與多個第二半導體層;形成虛置閘極結構於鰭狀單元的通道區上;蝕刻鰭狀單元的源極/汲極區以露出第一半導體層的側壁與第二半導體層的側壁;使第二半導體層的露出側壁選擇性且部分地凹陷,以形成多個凹陷;採用有機矽烷前驅物與含氮氣體沉積內側間隔物層於凹陷上;處理內側間隔物層;以及回蝕刻內側間隔物層。
在一些實施例中,沉積內側間隔物層的步驟包括採用原子層沉積法沉積內側間隔物層。在一些實施例中,有機矽烷前驅物的化學式為Si(CH2 )SiRx Cly ,其中x+y=6。在一些實施例中,有機矽烷前驅物的化學式為Si(CH2 )2 SiRx Cly ,其中x+y=4。在一些實施例中,有機矽烷前驅物的化學式為Si(CH3 )x Cly ,其中x+y=4。在一些實施例中,有機矽烷前驅物的化學式為Si(CH2 )2 Si(CH3 )x Cly ,其中x為至少2,其中x+y=6。在一些實施例中,有機矽烷前驅物的化學式為SiHx (R1)y (R2)z 。其中R1為甲基,其中R2包括甲基胺基或二甲基胺基,其中x為至少1,其中z為至少1,其中x+y+z=4。在一些例子中,處理內側間隔物層的步驟包括退火製程、紫外線固化製程、或電漿處理製程。
在本發明又一例示性的實施例中,半導體裝置的製作方法包括提供鰭狀單元,其包括交錯的多個第一半導體層與多個第二半導體層;形成虛置閘極結構於鰭狀單元的通道區上;蝕刻鰭狀單元的源極/汲極區,以露出第一半導體層的側壁與第二半導體層的側壁;使第二半導體層的露出側壁選擇性且部分地凹陷,以形成多個凹陷;沉積含矽與氮的內側間隔物層;處理內側間隔物層;以及回蝕刻內側間隔物層,以形成多孔的氮化矽層,且氮化矽比多孔的氮化矽層緻密。
在一些實施方式中,沉積內側間隔物層的步驟包括採用前驅物,其中前驅物的分子包括矽與至少一烷基。在一些實施例中,前驅物的分子更包括氮或鹵基。在一些例子中,處理內側間隔物層的步驟包括退火內側間隔物層,且退火溫度介於約350℃至約700℃之間,且退火環境包括氦氣、氬氣、氮氣、氫氣、或上述之組合。在一些實施方式中,處理內側間隔物層的步驟包括以紫外線照射內側間隔物層,照射步驟的溫度介於約150℃至約450℃之間,且照射步驟的環境包括氦氣、氬氣、或氮氣。在一些實施例中,處理內側間隔物層的步驟包括使內側間隔物層接觸遠端產生的電漿,且電漿包括氦氣、氫氣、氮氣、或氬氣,且溫度介於室溫至約350℃之間。
上述實施例之特徵有利於本技術領域中具有通常知識者理解本發明。本技術領域中具有通常知識者應理解可採用本發明作基礎,設計並變化其他製程與結構以完成上述實施例之相同目的及/或相同優點。本技術領域中具有通常知識者亦應理解,這些等效置換並未脫離本發明精神與範疇,並可在未脫離本發明之精神與範疇的前提下進行改變、替換、或更動。
100:方法 102,104,106,108,110,112,114,116,118,120,122,124,126,128:步驟 200:工件 202:基板 203:淺溝槽隔離結構 204:磊晶堆疊 205:溝槽 206,208:磊晶層 210:鰭狀單元 210a:下側部分 210b:上側部分 211:虛置介電層 212:虛置閘極堆疊 214:虛置電極層 216:氧化物層 218:氮化物層 220:硬遮罩 222:閘極間隔物 224:源極/汲極溝槽 226:內側間隔物凹陷 228:內側間隔物層 230:源極/汲極結構 232:接點蝕刻停止層 234:層間介電層 238:金屬閘極堆疊 240:界面層 242:高介電常數的閘極介電層 244:閘極層 246:矽化物層 248:源極/汲極接點 300:退火製程 400:紫外線固化製程 500:遠端電漿處理製程 1000:通道區 2000:源極/汲極區
圖1係本發明一或多個實施例中,含有內側間隔物結構的全繞式閘極裝置之形成方法的流程圖。 圖2A、2B、3至6、7A、7B、7C、與8至12係本發明一或多個實施例中,依據圖1的方法製作的工件於製程時的部分剖視圖。
Figure 109121980-A0101-11-0002-1
200:工件
202:基板
208:磊晶層
222:閘極間隔物
228:內側間隔物層
230:源極/汲極結構
232:接點蝕刻停止層
238:金屬閘極堆疊
242:高介電常數的閘極介電層
244:閘極層
246:矽化物層
248:源極/汲極接點
1000:通道區
2000:源極/汲極區

Claims (1)

  1. 一種半導體裝置,包括: 一第一半導體通道膜,與一第二半導體通道膜位於該第一半導體通道膜上;以及 含矽與氮的一多孔介電結構, 其中該多孔介電結構夾設於該第一半導體通道膜與該第二半導體通道膜之間; 其中該多孔介電結構的密度小於氮化矽的密度。
TW109121980A 2019-09-17 2020-06-30 半導體裝置 TW202125828A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/572,679 2019-09-17
US16/572,679 US10950731B1 (en) 2019-09-17 2019-09-17 Inner spacers for gate-all-around semiconductor devices

Publications (1)

Publication Number Publication Date
TW202125828A true TW202125828A (zh) 2021-07-01

Family

ID=74869787

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109121980A TW202125828A (zh) 2019-09-17 2020-06-30 半導體裝置

Country Status (3)

Country Link
US (3) US10950731B1 (zh)
CN (1) CN112531030A (zh)
TW (1) TW202125828A (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11437490B2 (en) * 2020-04-08 2022-09-06 Globalfoundries U.S. Inc. Methods of forming a replacement gate structure for a transistor device
US11901428B2 (en) 2021-02-19 2024-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with backside gate isolation structure and method for forming the same
US11916105B2 (en) * 2021-03-26 2024-02-27 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with corner isolation protection and methods of forming the same
US20230197816A1 (en) * 2021-12-21 2023-06-22 Mohammad Hasan Integrated circuit structures having metal gate plug landed on dielectric anchor
TW202338997A (zh) * 2022-03-29 2023-10-01 南韓商Hpsp股份有限公司 半導體器件及半導體器件的製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037013A (en) * 1997-03-06 2000-03-14 Texas Instruments Incorporated Barrier/liner with a SiNx-enriched surface layer on MOCVD prepared films
US7498270B2 (en) * 2005-09-30 2009-03-03 Tokyo Electron Limited Method of forming a silicon oxynitride film with tensile stress
KR101142334B1 (ko) * 2009-06-04 2012-05-17 에스케이하이닉스 주식회사 반도체 소자 및 그의 제조방법
US9899416B2 (en) * 2016-01-11 2018-02-20 Samsung Electronics Co., Ltd. Semiconductor device and fabricating method thereof
KR20180068591A (ko) * 2016-12-14 2018-06-22 삼성전자주식회사 식각용 조성물 및 이를 이용한 반도체 장치 제조 방법
US10243060B2 (en) * 2017-03-24 2019-03-26 International Business Machines Corporation Uniform low-k inner spacer module in gate-all-around (GAA) transistors
US10290549B2 (en) * 2017-09-05 2019-05-14 Globalfoundries Inc. Integrated circuit structure, gate all-around integrated circuit structure and methods of forming same
US20190081155A1 (en) * 2017-09-13 2019-03-14 Globalfoundries Inc. Nanosheet transistor with improved inner spacer
US10818777B2 (en) * 2017-10-30 2020-10-27 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device and a semiconductor device
US11335807B2 (en) * 2018-06-29 2022-05-17 Intel Corporation Isolation schemes for gate-all-around transistor devices
US10679906B2 (en) * 2018-07-17 2020-06-09 International Business Machines Corporation Method of forming nanosheet transistor structures with reduced parasitic capacitance and improved junction sharpness
US11588052B2 (en) * 2018-08-06 2023-02-21 Intel Corporation Sub-Fin isolation schemes for gate-all-around transistor devices
US11380684B2 (en) * 2018-09-28 2022-07-05 Intel Corporation Stacked transistor architecture including nanowire or nanoribbon thin film transistors
US10741456B2 (en) * 2018-10-10 2020-08-11 International Business Machines Corporation Vertically stacked nanosheet CMOS transistor
US10700064B1 (en) * 2019-02-15 2020-06-30 International Business Machines Corporation Multi-threshold voltage gate-all-around field-effect transistor devices with common gates
US10832907B2 (en) * 2019-02-15 2020-11-10 International Business Machines Corporation Gate-all-around field-effect transistor devices having source/drain extension contacts to channel layers for reduced parasitic resistance
US10957761B2 (en) * 2019-03-26 2021-03-23 International Business Machines Corporation Electrical isolation for nanosheet transistor devices

Also Published As

Publication number Publication date
US20210083091A1 (en) 2021-03-18
US20210202735A1 (en) 2021-07-01
US20240136438A1 (en) 2024-04-25
CN112531030A (zh) 2021-03-19
US11855214B2 (en) 2023-12-26
US10950731B1 (en) 2021-03-16

Similar Documents

Publication Publication Date Title
KR102063235B1 (ko) 반도체 디바이스용 콘택 구조체
TWI791855B (zh) 半導體裝置及其製造方法和多閘極半導體裝置
TWI582990B (zh) 鰭式場效電晶體之源極/汲極區域及其形成方法
TW202125828A (zh) 半導體裝置
CN110957259A (zh) 半导体装置的形成方法
TW202127663A (zh) 半導體裝置
TWI737007B (zh) 積體電路裝置及其形成方法
TWI777501B (zh) 半導體裝置與其形成方法
CN108807161B (zh) 半导体装置的形成方法
TW202118058A (zh) 半導體裝置
TW202036675A (zh) 製造半導體裝置之方法
CN110957271A (zh) 集成电路装置的形成方法
TW202011487A (zh) 半導體裝置的形成方法
TWI777530B (zh) 半導體裝置與其形成方法
TW202036688A (zh) 製造半導體元件之方法以及半導體元件
TWI762265B (zh) 半導體裝置與其製造方法
TW202002302A (zh) 半導體結構
TW202220210A (zh) 半導體裝置
TWI822111B (zh) 半導體裝置與其形成方法
US20220336626A1 (en) Densified gate spacers and formation thereof
TWI765673B (zh) 半導體裝置與其形成方法
TWI831246B (zh) 多閘極裝置與其形成方法
TWI799185B (zh) 半導體結構與其形成方法
US11855140B2 (en) Gate oxide of nanostructure transistor with increased corner thickness
TWI817165B (zh) 半導體裝置的形成方法