TW202120939A - 製造用於電子裝置的探針頭的接觸探針的製造方法及相應的接觸探針 - Google Patents

製造用於電子裝置的探針頭的接觸探針的製造方法及相應的接觸探針 Download PDF

Info

Publication number
TW202120939A
TW202120939A TW109126388A TW109126388A TW202120939A TW 202120939 A TW202120939 A TW 202120939A TW 109126388 A TW109126388 A TW 109126388A TW 109126388 A TW109126388 A TW 109126388A TW 202120939 A TW202120939 A TW 202120939A
Authority
TW
Taiwan
Prior art keywords
alloy
printing
nickel
manufacturing
alloys
Prior art date
Application number
TW109126388A
Other languages
English (en)
Inventor
羅貝多 克立巴
Original Assignee
義大利商探針科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 義大利商探針科技公司 filed Critical 義大利商探針科技公司
Publication of TW202120939A publication Critical patent/TW202120939A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07371Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate card or back card with apertures through which the probes pass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

揭露的是一種製造用於電子裝置的測試設備的探針頭的至少一接觸探針(10)的製造方法,包括用選自於一導體材料或一半導體材料中的至少一種列印材料進行該接觸探針(10)的亞微米3D列印的一步驟。

Description

製造用於電子裝置的探針頭的接觸探針的製造方法及相應的接觸探針
本發明在較一般性的方面,是關於一種製造用於電子裝置的探針頭的接觸探針的製造方法,以及關於相應的接觸探針,以下撰寫是參考本應用領域,其唯一目的是簡化說明。
已知,探針頭本質上是一種適於將一微結構的多個接觸墊電性連接的裝置,特別是整合在晶圓上的電子裝置,其以測試設備對應的通道執行功能測試,特別是電性測試或一般測試。
執行在積體裝置上的測試即要用於檢測和隔離已在生產階段的缺陷裝置。通常,探針頭因此用於整合在晶圓上的裝置在切割及將它們組裝於晶片封裝前的電性測試。
探針頭通常包括大量接觸元件或接觸探針,該些接觸元件或接觸探針是由具有良好電性和機械性的特殊合金所形成且配備有至少一個接觸部分,其用於待測裝置的多個相對應接觸墊。
一種通常被稱為「垂直探針頭」的探針頭本質上包括多個接觸探針,其等由至少一對實質上為板狀且平行的板或引導件保持著。該些引導件配置有適當的孔並且以彼此間隔一定距離放置,以留下自由區或空氣區,以用於接觸探針的移動和可能的形變。特別地,該對引導件包括一上引導件和一下引導件,它們均設有各自的引導孔,接觸探針在其中軸向滑動,該些接觸探針通常由具有良好電和機械性能的特殊合金形成。
接觸探針與待測裝置的各個接觸墊之間的良好連接是經由探針頭於其裝置本身上的壓力來確保,接觸探針可在上、下引導件上的引導孔中移動,在按壓接觸期間,在該兩個引導件之間的空氣區內部發生彎曲並且在該些引導孔內滑動。
此外,透過探針本身適當配置或其引導件的適當配置可以幫助接觸探針在空氣區中的彎曲,如圖1示意性地所示,其中為了圖式簡明起見,在此僅顯示通常包括在探針頭中多個探針中的一個接觸探針,所顯示的探針頭是所謂的位移板(shifted plate)型。
特別地,圖1示意性地顯示探針頭9,包括至少一個上板或上引導件(上模具)2和一個下板或下引導件(下模具)3,上引導件2和下引導件3分別具有上引導孔2A和下引導孔3A,至少一個接觸探針1在其中滑動,該接觸探針1具有本質上沿圖式中指示的H-H軸在縱向展開方向上延伸的一探針主體1C。多個接觸探針1通常位於探針頭9的內部,隨著所述的縱向展開方向與待測裝置及引導件正交設置,也就是說,在圖式的局部參考中本質上垂直地沿著z軸。
接觸探針1具有至少一個接觸端或接觸尖端1A。術語「端」或「尖端」在此處和下文中稱為端部,不一定是尖銳的。特別地,接觸尖端1A鄰接待測裝置4的接觸墊4A,進而實現了該裝置和探針頭9形成為其終端元件的測試設備(未示出)之間的機械性和電性接觸。
在某些情況下,接觸探針會以固定的方式被限制在上導板的探針頭上:這些探針被稱為具有封閉探針的探針頭。
或者,探針頭被使用時探針沒有被固定方式繫住,而是透過一個中間板保持與板的接面:這些探針被稱為具有非封閉探針的探針頭。該中間板是一種空間轉換板,通常稱為「空間轉換器(space transformer)」,除了與探針的接觸之外,其還可以相對於待測裝置上存在的接觸墊,在空間上重新分佈其上設置的接觸墊,特別是隨著墊自身中心之間的距離限制的放鬆,也就是說,針對相鄰墊中心之間的距離進行空間轉換。
在這種情況下,如圖1所示,接觸探針1具有另一個朝向這個空間轉換器5的多個接觸墊5A的接觸尖端1B,在本領域中又稱為接觸頭。透過接觸探針1的接觸頭1B在空間轉換器5的接觸墊5A上的壓力,以類似與待測裝置4接觸的方式確保探針與空間轉換器5之間良好的電性接觸。
如已說明的是,上引導件2和下引導件3由空氣區6適當地間隔開,以在探針頭9的操作期間允許接觸探針1的形變,並確保接觸探針1的接觸尖端和接觸頭1A、1B與待測裝置4和空間轉換器5的接觸墊4A、5A分別連接。顯然,上引導孔2A和下引導孔3A的尺寸應設置成在經由探針頭9進行的測試操作其間允許接觸探針1在其內部滑動。
應該注意的是,該上引導孔2A和下引導孔3A的尺寸也取決於需要被容置在其中的接觸探針1的尺寸公差(dimensional tolerance),這些公差導致尺寸增大,並因此導致該上引導孔2A和下引導孔3A的總體積更大,而能夠在相應的引導件上放置的導孔數量更少,如圖2示意性所示,參考上引導件2以及參考圖2A中將其放大顯示的細節,其中特別根據圖中所示的x軸和y軸,顯示該引導孔2A的兩個展開方向上分別設置有間隙Gx和間隙Gy。下引導件3的下引導孔3A具有類似的間隙。
更具體地,該些間隙是設立成確保接觸探針1分別在上引導件2和下引導件3中的上引導孔2A和下引導孔3A中的正確插入、保持和滑動。
接觸探針的尺寸公差還會影響其他因素,例如接觸頭1B的尺寸等,如此以在正常操作過程中確保接觸頭1B鄰接在上引導件2上,並允許接觸探針1正確保持在探針頭9內,甚至在探針頭9應鄰接在上的待測裝置4的晶圓不存在的情況下。
同樣為已知技術的是,接觸探針1的尺寸公差基本上取決於其製造方法。
基本上,目前在本領域中用於製造用於電子裝置的探針頭的接觸探針有兩種製造方法。
第一種方法是基於微影技術(photolithographic technique),從適當形狀的基板開始,透過使用後續的光罩及材料移除步驟來製造探針,僅能夠製造尺寸精度有限的接觸探針。
使用微影技術的製造方法可以輕易製造包含不同材料層的探針,但從幾何形狀和可用材料的組合兩者的角度來看,卻嚴重限制了接觸探針的整體尺寸以及創造特別複雜的結構的可能性。
第二種已知方法是基於雷射切割技術(laser cutting technique),其被廣泛用於本領域;特別地,使用雷射光束能夠從適當的材料的一個層壓板(也可能多層)開始「切割」接觸探針。
由於雷射方法,可以創造比起使用微影技術更複雜的形狀的結構。在雷射技術上增加額外的沉積技術通常是必須的,例如以獲得完整的接觸探針的或其中部分的覆蓋膜。
然而,沒有一種已知方法可以在同一批次製造的探針上獲得最佳的尺寸精度及其完美的可重複性,最佳的尺寸精度必須要考慮到每一批次的統計計算出的最大公差。
此外,沒有一種已知方法可以製造包含交替且形狀有點複雜的材料的探針。
本發明的技術問題即是提供一種製造用於積體電路裝置的探針頭的接觸探針的製造方法,其能夠使用任何材料組合來製造具有任何複雜性的幾何形狀的探針,同時確保所獲得的探針具有高精度,進而克服仍然困擾著根據現有技術來實現的方法的侷限性和缺點。
本發明的方案思想在於實現該些接觸探針,經由適當列印材料的3D列印,該列印材料特別是至少一種導體材料或半導體材料,使用噴嘴以輸出具有亞微米尺寸的該列印材料。
基於上述方案思想,解決上述技術問題是藉由一種製造用於電子裝置的測試設備的探針的至少一接觸探針的製造方法,其特徵在於,它包括用選自於一導體材料或一半導體材料中的至少一種列印材料進行該接觸探針的亞微米3D列印的一步驟。
更特別地,本發明包括以下附加與選擇性之多項特徵,可單獨或在必要的情況下組合實施。
根據本發明之一觀點,3D列印的該步驟可包括輸出亞微米尺寸的該列印材料的一步驟以及根據一預設的幾何形狀沉積該列印材料的一步驟。
更具體地,輸出該列印材料的該步驟可包括形成該列印材料的一線材的直徑是介於0.1至0.9微米(
Figure 02_image001
)的範圍的一步驟,優選是介於0.2至0.4微米(
Figure 02_image001
)的範圍。
根據本發明之另一觀點,該製造方法可包括加熱該列印材料的一預備步驟。
特別地,該預備加熱的步驟可包括加熱該列印材料至其一軟化點,優選為至其一熔點。
根據本發明之另一觀點,3D列印的該步驟可由多個不同列印材料執行。
在這種情形下,3D列印的該步驟可包括輸出和沉積該些不同列印材料的多個步驟。
此外,輸出和沉積的該些步驟可以是同時且依順序地執行。
根據本發明之另一觀點,3D列印的該步驟可使用一導體材料,例如選自銅、銀、金或其等合金的一金屬,例如銅鈮合金或銅銀合金,或鎳或其合金,例如鎳錳合金、鎳鈷合金或鎳磷合金,或鎢或其合金,例如鎳鎢合金,或包含鎢、鈀或其合金的一多層,例如鎳鈀合金、鈀鈷合金或鈀鎢合金,或鉑或銠或其合金,優選為鎢。
根據本發明之另一觀點,3D列印的該步驟使用一半導體材料,例如矽或碳化矽,可能有摻雜(doped)。
根據本發明之再一觀點,3D列印的該步驟可使用一絕緣材料,例如聚對二甲苯,優選是形塑成該接觸探針的一塗佈層。
此外,根據本發明之另一觀點,該些不同的列印材料可包括一種或多種導體材料,例如選自銅、銀、金或其等合金的一金屬,例如銅鈮合金或銅銀合金,或鎳或其合金,例如鎳錳合金、鎳鈷合金或鎳磷合金,或鎢或其合金,例如鎳鎢合金,或包含鎢、鈀或其合金的一多層,例如鎳鈀合金、鈀鈷合金或鈀鎢合金,或鉑或銠或其合金,優選為鎢,或者一種或多種半導體材料,例如矽或碳化矽,而可能有摻雜,或一種或多種絕緣材料,例如聚對二甲苯,或以上任何組合。
本發明還有關於一種用於電子裝置的測試設備的探針頭的接觸探針(10),其特徵在於,其經由亞微米3D列印的一步驟提供,該步驟用選自於一導體材料或一半導體材料中的至少一種列印材料進行。
根據本發明之另一觀點,該接觸探針可包括一種或多種導體材料,例如選自銅、銀、金或其等合金的一金屬,例如銅鈮合金或銅銀合金,或鎳或其合金,例如鎳錳合金、鎳鈷合金或鎳磷合金,或鎢或其合金,例如鎳鎢合金,或包含鎢、鈀或其合金的一多層,例如鎳鈀合金、鈀鈷合金或鈀鎢合金,或鉑或銠或其合金,優選為鎢,或者一種或多種半導體材料,例如矽或碳化矽,而可能有摻雜,或一種或多種絕緣材料,例如聚對二甲苯,或以上任何組合。
特別地,該些材料可以一相互貫通或交織形狀結合,可能與空洞部分或空氣區結合。
最後,根據本發明之另一觀點,該接觸探針可具有用亞微米精度定義的尺度。
本發明之探針之多項特徵與優勢在配合圖式詳述於以下實施例,但實施例僅為示例而非限制。
參考該些圖式,並特別參考圖3,描述了藉由3D列印設備執行一種製造用於探針頭的接觸探針的製造方法,3D列印設備全文被指示為20,因此獲得的對應接觸探針表示為10。
值得注意的是,為了凸顯本發明的重要技術特徵,圖式僅表示示意圖,並非按比例來繪製。
此外,以下描述的製程步驟並不形成為製造接觸探針的完整製作流程。本發明可結合已知的3D列印技術一起實現,而本發明僅包括有對於理解本發明必不可少的通常使用的步驟。
最後,應該注意的是,關於與垂直探針或彎曲樑探針(buckling beam probe)方法的圖式說明也可以轉用到如懸臂探針(cantilever probe)、微探針等其他類型的探針上,而關於懸臂探針或微探針方法的圖式說明也可以應用於垂直探針。
本發明特別是關於一種製造方法,該製造方法用於製造至少一個用於電子裝置的測試設備的探針頭的接觸探針,包括用至少一種適於其實現的導體材料或半導體材料的進行該接觸探針10的一亞微米3D列印一步驟。
該導體材料,例如選自銅、銀、金或其等合金的一金屬,例如銅鈮合金或銅銀合金,或鎳或其合金,例如鎳錳合金、鎳鈷合金或鎳磷合金,或鎢或其合金,例如鎳鎢合金,或包含鎢、鈀或其合金的一多層,例如鎳鈀合金、鈀鈷合金或鈀鎢合金,或鉑或銠或其合金,優選為鎢。或者,可以使用例如矽或碳化矽的半導體材料,其也可以適當地進行摻雜以增加其導電性。
適當地,3D列印的步驟包括輸出亞微米尺寸的列印材料的步驟和根據預設的幾何形狀沉積列印材料的步驟。
更具體地,輸出列印材料的步驟包括形成該列印材料的線材的步驟,該線材的直徑在0.1至0.9微米(
Figure 02_image001
)的範圍內,優選地在0.2至0.4微米(
Figure 02_image001
)的範圍內。這些尺寸是屬於目前3D列印技術的極限,特別是對於金屬材料而言,將隨著此技術的發展而明顯改變。
此外,3D列印的步驟可包括加熱列印材料的預備步驟,特別是加熱至其軟化點,優選是加熱至其熔點。
在一較佳實施例中,透過多種不同的列印材料來執行3D列印的步驟。
在這種情況下,該3D列印步驟包括輸出和沉積不同的列印材料的多個步驟。
特別地,該些列印材料可以是選自上述列出的那些導體或半導體材料,但它們也可以是絕緣材料,例如聚對二甲苯,特別是形塑成該接觸探針10的一塗佈層的絕緣材料。絕緣材料也可以用於製造接觸探針10的不必承載電流的部分,這將在下方更清楚地闡述。
適當地,輸出和沉積的步驟可以同時執行且依順序地執行。
如圖3中示意性地顯示,列印接觸探針10是經由3D列印設備20,特別包括至少一個能夠輸出亞微米尺寸的列印材料的3D列印頭11。相對於先前技術所示,接觸探針10至少包括指示為接觸尖端10A的一第一端部、表示為接觸頭10B的一第二端部、以及在它們之間延伸的一桿狀主體10C。
因此,3D列印頭11包括一列印噴嘴11a,該列印噴嘴11a具有列印材料輸出口,其具有亞微米尺寸的直徑,直徑尺寸特別是在介於0.1至0.9微米(
Figure 02_image001
)的範圍,優選是介於0.2至0.4微米(
Figure 02_image001
)的範圍,即為對應於列印材料的線材的直徑尺寸。
列印噴嘴11a連接到適於接觸探針10實現的至少一種的導體或半導體材料製成的容器11b,再經由適當的連接和運輸該材料運輸裝置12a(例如小管形狀),連接到該材料的進料器12。特別地,3D列印頭11可輸出用於列印探針的列印材料,其是具有亞微米尺寸的直徑的線材形狀。
3D列印設備20還可包括至少一個列印材料的加熱器,可能與容器11b相連。
該導體材料可為例如選自銅、銀、金或其合金的一金屬,例如銅鈮合金或銅銀合金,或鎳或其合金,例如鎳錳合金、鎳鈷合金或鎳磷合金,或鎢或其合金,例如鎳鎢合金,或包含鎢、鈀或其合金的一多層,例如鎳鈀合金、鈀鈷合金或鈀鎢合金,或鉑或銠或其合金,優選為鎢。或者,可以使用例如矽或碳化矽的半導體材料,其也可以適當地進行摻雜以增加其導電性。
將在下文中更清楚闡明的是,接觸探針10也可以經由多個材料的組合製成,也包括絕緣材料,特別是用以形塑成塗佈層,例如聚對二甲苯,彼此結合也與導體或半導體材料結合使用。
3D列印設備20更包括至少一個可移動平台13,其配備有相應的支撐腳13a,並藉助電機元件13b進行移動,特別是沿著與可移動平台13本身正交的軸14移動,可移動平台呈板狀支撐物的形狀,並位於3D列印設備20的固定基座15上,其接著又設置支撐腳15a。固定基座15也呈板狀,並根據平面π展開。
3D列印設備20還包括多個第一支撐立柱16,該些第一支撐立柱16正交於固定基座15設置,並且藉助於多個第一固定元件16a與其相連。額外的多個第二支撐立柱17與該些第一支撐立柱16正交設置並且透過多個第二固定元件17a與其等相連。
更具體地,第二支撐立柱17將3D列印頭11承載在板上並使其在3D列印設備20的固定基座15的平面π上移動。
經由使用圖中的局部參考系統,3D列印頭11可因此根據x軸和y軸移動,而可移動平台13沿z軸移動。顯然,可移動平台13也能夠根據x軸和y軸移動而3D列印頭11能夠根據z軸移動或任何其他組合的配置都是有可能的考量。
在任何情況下,3D列印頭11的移動和可移動平台13的移動的組合,都可以使列印噴嘴11a沿x、y和z三個方向移動,如此可以根據預設的幾何形狀實現接觸探針10。
從而顯然,3D列印設備20是如何能列印接觸探針10,又具有複雜幾何形狀,特別是在期望的精度下,經由傳統的微影和雷射技術無法獲得的形狀。
特別地,經由上述的3D列印設備20,無論其最終幾何形狀的複雜性如何,經由本發明的製造方法獲得的包括亞微米級3D列印的任何接觸探針10的尺寸精度都將小於1微米。
因此,可以獲得一種具有適當且能夠局部地縮小尺寸的凹口的接觸探針10,如圖4A所示,在配置有懸臂接觸探針的案例中,配置有設在一端部的一第一凹口18a,以及設在主體10C的第二凹口18b。
類似地,經由3D列印可以實現具有整體非常複雜的幾何形狀的接觸探針,如圖4B所示。更具體地,接觸探針10包括在接觸尖端10A處設置的一縮放結構19a,在接觸頭10B處實現的一阻尼結構19b,以及具有放大的形狀19c且配置有T形頂部19d和相應的耦接腳19e的一主體。
藉助於3D列印,還可以實現具有完整部分和空洞部分的複雜形狀,甚至只是接觸探針10的一部分,例如圖4C中所示的被製成線圈形狀的主體10C。
類似地,如圖4D所示,可以將主體10C實現為由適當的分離區21分離的多個薄片22a、22b,該分離區可以是空氣或其他材料。
最後,如圖4E所示,還可列印尺寸縮小的探針(例如微探針),該探針具有任意形狀和高度H小於200微米(
Figure 02_image001
)的接觸部分23a和支撐部分23b。
有利地,根據本發明的製造方法的3D列印還可提供針對接觸探針10的不同部分列印不同列印材料。在這種情況下,可以將3D列印設備20的3D列印頭11以固定或可互換的方式連接到不同列印材料的多個進料器12,進而執行同時或依順序地輸出和沉積不同列印材料的步驟。
經由此方式,可以獲得如圖5A中示意性顯示的多層類型的接觸探針10,其具有桿狀芯24a和幾個塗佈層,塗佈層完全覆蓋芯24a時就像層24b,塗佈層僅部分覆蓋時就像層24c。
可類似地實現配備有多個薄片22a、22b、22c以及分離區21a、21b,至少一個甚至於全部薄片和/或分離區由不同的材料製成,如圖5B示意性地所示。
此外,如圖5C和5D所示,還可能僅實現接觸探針10的一部分,例如接觸尖端10A,以及至少一對由至少兩種不同材料製成的區25a、25b,該些區25a、25b能夠具有複雜的幾何形狀,特別是相對應且共軛在界面部分,以保證如此獲得的接觸尖端10A的有更好的結構穩定性。
根據本發明的優勢而言,即使僅在接觸探針10的表面部分中,3D列印方法也可以實現複雜的形狀。
以此方式,可以獲得具有表面部分26的接觸探針10,如圖6A中示意性顯示的輕微波紋的部分或更明顯波紋的部分,也可以獲得真實表面套形式的表面部分,如圖6B中示意性所示。
適當地,該波紋表面部分26也可以藉助於可能由不同材料製成的分離地交織部分製成,如圖6C和6D所示。
在一個更甚複雜的實施例中,根據本發明的方法的3D列印還允許以完全交織的形式,特別是藉助於三根導線27a、27b、27c來製造接觸探針10,可能由不同的列印和/或具有不同的直徑的材料組成,如圖7A示意性所示。
此外,如圖7B示意性顯示,接觸探針10可以被製成包括由不同材料組成的不同部分28a、28b。在這種情況下,接觸探針10包括由第一材料組成並且包括接觸尖端10A的第一部分28a和由第二材料組成並且包括接觸頭10B的第二部分28b。該第一材料及該第二材料都可例如為都是導體材料,但具有不同性質;特別地,製成第一部分28a的第一材料可以選擇具有硬度值高於組成第二部分28b的第二材料的一硬度值,進而為接觸探針10的接觸尖端10A賦予更大的硬度。或者,可以用導體材料製成第一部分28a,用絕緣材料製成第二部分28b,該第二部分實際上變成僅用於相對於第一部分18a具有減小的尺寸的探針的阻尼部分。
因此,要指出的是,本發明的製造方法可3D列印接觸探針10,其可包括不同材料的組合,不同材料可為導體、半導體或甚至於絕緣材料以相互貫通或交織形式,可能與空洞部分或空氣區結合。
總結來說,根據本發明的製造方法,基於3D列印可以安全和可重複的方式獲得由材料的任意組合組成並且具有亞微米尺寸精度的探針。
有利地,該方法可以獲得具有特別複雜的形狀以及使用傳統的微影和雷射技術難以獲得的材料組合的探針。
更特別地,透過3D列印獲得的接觸探針可包括材料的交替且相互貫通或交織形狀,可能與空洞部分接合,即使對於特別小的整體尺寸,該探針的確定的幾何形狀的尺寸等級仍然可以精確到小於微米。
顯然,本領域的技術人員為了滿足特定的需求及規格,可針對上述探針頭實現多種修飾與變化,所有這些修飾與變化都包括在由以下申請專利範圍所界定的本發明範圍內。
特別地,顯然可以考慮除了圖中示例性顯示的幾何形狀以外的幾何形狀。
也可以製造不同形式的探針,例如垂直或彎曲樑探針,特別是封閉式或非封閉式的類型、自由的主體、預變形的、懸臂式、微探針、頭部的接觸尖端有膜或甚至彈簧針。
此外,可以考慮本領域技術人員已知用於實現接觸探針的其他導體、半導體、或絕緣材料,以及它們的多層組合,無論是平面、同心或同軸重疊。
最後,可以為本發明的接觸探針配備其他措施,例如用於頭部的特定構造,例如凹陷或放大的部分,有偏移或伸長部分的尖端部分,以及用於主體的特定構造,例如從其突出的止動件。
1:接觸探針 1A、1B:接觸尖端(接觸頭) 1C:探針主體 2 :上引導件 2A:上引導孔 3:下引導件 3A:下引導孔 4:待測裝置 4A:接觸墊 5:空間轉換器 5A:接觸墊 6:空氣區 9:探針頭 10:接觸探針 10A:接觸尖端 10B:接觸尖端 10C:主體 11:3D列印頭 11a:列印噴嘴 11b:容器 12:進料器 12a:運輸裝置 13:可移動平台 13a:支撐腳 13b:電機元件 14:軸 15:基座 15a:支撐腳 16:第一支撐立柱 16a:第一固定元件 17:第二支撐立柱 17a:第二固定元件 18a:第一凹口 18b:第二凹口 19a:縮放結構 19b:阻尼結構 19c:形狀 19d:T型頂部 19e:耦接腳 20:3D列印設備 21、21a、21b:分離區 22a、22b、22c:薄片 23a:接觸部分 23b:支撐部分 24a:芯 24b、24c:層 25a、25b:區 26:表面部分 27a、27b、27c:導線 28a:第一部分 28b:第二部分 H:高度 Gx、Gy:間隙 π:平面
圖1示意性地顯示根據現有技術製造的探針頭的正視圖。 圖2和圖2A分別顯示圖1的探針頭中包括的引導件的平面圖及其放大的細節。 圖3示意性地顯示能夠執行根據本發明的製造方法的3D列印設備的正視圖。 圖4A至圖4E、圖5A至圖5D、圖6A至圖6D及圖7A至圖7B示意性地顯示根據本發明製造的接觸探針的替代實施例。
10:接觸探針
10A:接觸尖端
10B:接觸尖端
10C:主體
11:3D列印頭
11a:列印噴嘴
11b:容器
12:進料器
12a:運輸裝置
13:可移動平台
13a:支撐腳
13b:電機元件
14:軸
15:基座
15a:支撐腳
16:第一支撐立柱
16a:第一固定元件
17:第二支撐立柱
17a:第二固定元件
20:3D列印設備
π:平面

Claims (18)

  1. 一種製造用於電子裝置的測試設備的探針頭的至少一接觸探針(10)的製造方法,其特徵在於,它包括用選自於一導體材料或一半導體材料中的至少一種列印材料進行該接觸探針(10)的亞微米3D列印的一步驟。
  2. 如請求項1所述的製造方法,其中,3D列印的該步驟包括輸出亞微米尺寸的該列印材料的一步驟以及根據一預設的幾何形狀沉積該列印材料的一步驟。
  3. 如請求項2所述的製造方法,其中,輸出該列印材料的該步驟包括形成該列印材料的一線材的直徑是介於0.1至0.9微米(
    Figure 03_image001
    )的範圍的一步驟。
  4. 如請求項2所述的製造方法,其中,輸出該列印材料的該步驟包括形成該列印材料的一線材的直徑是介於0.2至0.4微米(
    Figure 03_image001
    )的範圍的一步驟。
  5. 如請求項1所述的製造方法,更包括加熱該列印材料的一預備步驟。
  6. 如請求項5所述的製造方法,其中,加熱的該預備步驟包括加熱該列印材料至其一軟化點。
  7. 如請求項5所述的製造方法,其中,加熱的該預備步驟包括加熱該列印材料至其一熔點。
  8. 如請求項1所述的製造方法,其中,3D列印的該步驟由多個不同列印材料執行。
  9. 如請求項8所述的製造方法,其中,3D列印的該步驟包括輸出和沉積該些不同列印材料的多個步驟。
  10. 如請求項9所述的製造方法,其中,輸出和沉積的該些步驟是同時且依順序地執行。
  11. 如請求項1所述的製造方法,其中,3D列印的該步驟使用一導體材料,例如選自銅、銀、金或其等合金的一金屬,例如銅鈮合金或銅銀合金,或鎳或其合金,例如鎳錳合金、鎳鈷合金或鎳磷合金,或鎢或其合金,例如鎳鎢合金,或包含鎢、鈀或其合金的一多層,例如鎳鈀合金、鈀鈷合金或鈀鎢合金,或鉑或銠或其合金,優選為鎢。
  12. 如請求項1所述的製造方法,其中,3D列印的該步驟使用一半導體材料,例如矽或碳化矽,可能有摻雜(doped)。
  13. 如請求項1所述的製造方法,其中,3D列印的該步驟使用一絕緣材料形塑成該接觸探針(10)的一塗佈層。
  14. 如請求項8所述的製造方法,其中,該些不同的列印材料包括一種或多種導體材料,例如選自銅、銀、金或其等合金的一金屬,例如銅鈮合金或銅銀合金,或鎳或其合金,例如鎳錳合金、鎳鈷合金或鎳磷合金,或鎢或其合金,例如鎳鎢合金,或包含鎢、鈀或其合金的一多層,例如鎳鈀合金、鈀鈷合金或鈀鎢合金,或鉑或銠或其合金,優選為鎢,或者一種或多種半導體材料,例如矽或碳化矽,而可能有摻雜,或一種或多種絕緣材料,或以上任何組合。
  15. 一種用於電子裝置的測試設備的探針頭的接觸探針(10),其特徵在於,其經由亞微米3D列印的一步驟提供,該步驟用選自於一導體材料或一半導體材料中的至少一種列印材料進行。
  16. 如請求項15所述的接觸探針(10),其中,其包括一種或多種導體材料,例如選自銅、銀、金或其等合金的一金屬,例如銅鈮合金或銅銀合金,或鎳或其合金,例如鎳錳合金、鎳鈷合金或鎳磷合金,或鎢或其合金,例如鎳鎢合金,或包含鎢、鈀或其合金的一多層,例如鎳鈀合金、鈀鈷合金或鈀鎢合金,或鉑或銠或其合金,優選為鎢,或者一種或多種半導體材料,例如矽或碳化矽,而可能有摻雜,或一種或多種絕緣材料,或以上任何組合。
  17. 如請求項16所述的接觸探針(10),其中,該些材料以一相互貫通或交織形狀結合,可能與空洞部分或空氣區結合。
  18. 如請求項15所述的接觸探針(10),其中,其具有用亞微米精度定義的尺度。
TW109126388A 2019-08-07 2020-08-04 製造用於電子裝置的探針頭的接觸探針的製造方法及相應的接觸探針 TW202120939A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT102019000014214 2019-08-07
IT102019000014214A IT201900014214A1 (it) 2019-08-07 2019-08-07 Metodo di fabbricazione di sonde di contatto per teste di misura di dispositivi elettronici e relativa sonda di contatto

Publications (1)

Publication Number Publication Date
TW202120939A true TW202120939A (zh) 2021-06-01

Family

ID=69173147

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109126388A TW202120939A (zh) 2019-08-07 2020-08-04 製造用於電子裝置的探針頭的接觸探針的製造方法及相應的接觸探針

Country Status (8)

Country Link
US (1) US20220155344A1 (zh)
EP (1) EP4010715A1 (zh)
JP (1) JP2022543644A (zh)
KR (1) KR20220043183A (zh)
CN (1) CN114222923A (zh)
IT (1) IT201900014214A1 (zh)
TW (1) TW202120939A (zh)
WO (1) WO2021023744A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798076B (zh) * 2022-04-29 2023-04-01 中華精測科技股份有限公司 懸臂式探針卡及其探針模組

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11815527B2 (en) * 2020-11-06 2023-11-14 New York University 3D multipurpose scanning microscopy probes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150080664A (ko) * 2014-01-02 2015-07-10 정하익 멀티형 3차원프린팅 또는 3차원프린터
US9887356B2 (en) * 2015-01-23 2018-02-06 The Trustees Of Princeton University 3D printed active electronic materials and devices
DE102015004151B4 (de) * 2015-03-31 2022-01-27 Feinmetall Gmbh Verfahren zur Herstellung einer Federkontaktstift-Anordnung mit mehreren Federkontaktstiften
KR102329801B1 (ko) * 2015-10-21 2021-11-22 삼성전자주식회사 테스트 소켓의 제조 방법 및 반도체 패키지의 테스트 방법
US10593574B2 (en) * 2015-11-06 2020-03-17 Applied Materials, Inc. Techniques for combining CMP process tracking data with 3D printed CMP consumables
DE102016005704A1 (de) * 2016-05-10 2017-11-16 Linde Aktiengesellschaft 3D-Druck von Werkstücken mit Zellstruktur, insbesondere aus Kunststoff
US9977052B2 (en) * 2016-10-04 2018-05-22 Teradyne, Inc. Test fixture
US11268983B2 (en) 2017-06-30 2022-03-08 Intel Corporation Chevron interconnect for very fine pitch probing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798076B (zh) * 2022-04-29 2023-04-01 中華精測科技股份有限公司 懸臂式探針卡及其探針模組

Also Published As

Publication number Publication date
WO2021023744A1 (en) 2021-02-11
IT201900014214A1 (it) 2021-02-07
JP2022543644A (ja) 2022-10-13
US20220155344A1 (en) 2022-05-19
EP4010715A1 (en) 2022-06-15
CN114222923A (zh) 2022-03-22
KR20220043183A (ko) 2022-04-05

Similar Documents

Publication Publication Date Title
US6414501B2 (en) Micro cantilever style contact pin structure for wafer probing
US7674112B2 (en) Resilient contact element and methods of fabrication
JP4721099B2 (ja) 電気信号接続装置及びこれを用いたプローブ組立体並びにプローバ装置
TWI397696B (zh) Probe assembly
US20070057685A1 (en) Lateral interposer contact design and probe card assembly
US8237461B2 (en) Contactor, probe card, and method of mounting contactor
KR101141206B1 (ko) 검사용 치구
US9194887B2 (en) Fine pitch probes for semiconductor testing, and a method to fabricate and assemble same
TW201346269A (zh) 用於探針卡之空間變換器及其製造方法
KR20100130160A (ko) 검사용 치구 및 검사용 접촉자
KR102050987B1 (ko) 전기 소자들을 테스트하기 위한 장치용 프로브 카드
TW202120939A (zh) 製造用於電子裝置的探針頭的接觸探針的製造方法及相應的接觸探針
JP2010515057A (ja) 回転コンタクト部品および製造方法
JP2012093375A (ja) 接触子組立体を用いたlsiチップ検査装置
JP4859572B2 (ja) プローブカードの製造方法
KR101209068B1 (ko) 전기적 특성 검사장치용 프로브
US8115504B2 (en) Microspring array having reduced pitch contact elements
TWI345064B (en) Cmos process compatible mems probe card
JP2009257910A (ja) 二重弾性機構プローブカードとその製造方法
KR102490034B1 (ko) 전기 전도성 접촉핀의 정렬 모듈 및 정렬 이송방법
TW490832B (en) Spring interconnect structures and methods for making spring interconnect structures
KR100852514B1 (ko) 반도체 검사용 수직형 프로브 및 이 프로브를 구비한프로브 카드 및 그 제조방법
KR20090074383A (ko) 프로브 구조물 및 그 제조방법
CN116888481A (zh) 用于生产探针卡的方法
KR100446551B1 (ko) 화산형 프로브, 이의 제조방법 및 이를 구비한프로브카드