TW202109561A - 電感器及其製造方法 - Google Patents

電感器及其製造方法 Download PDF

Info

Publication number
TW202109561A
TW202109561A TW109104983A TW109104983A TW202109561A TW 202109561 A TW202109561 A TW 202109561A TW 109104983 A TW109104983 A TW 109104983A TW 109104983 A TW109104983 A TW 109104983A TW 202109561 A TW202109561 A TW 202109561A
Authority
TW
Taiwan
Prior art keywords
wiring
inductor
magnetic
magnetic layer
wire
Prior art date
Application number
TW109104983A
Other languages
English (en)
Inventor
奧村圭佑
古川佳宏
Original Assignee
日商日東電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日東電工股份有限公司 filed Critical 日商日東電工股份有限公司
Publication of TW202109561A publication Critical patent/TW202109561A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本發明之電感器1之製造方法具備:第1步驟,其係準備配線2;第2步驟,其係由含有磁性粒子之磁性組合物,以被覆配線2之中途部10之第2外周面13,且配線2之第1端部8及第2端部9於2 mm以上且未達100 mm之範圍內自磁性層3露出之方式,形成磁性層3;及第3步驟,其係去除配線2之第1端部8及第2端部9。

Description

電感器及其製造方法
本發明係關於一種電感器及其製造方法。
先前,已知電感器搭載於電子機器等,被用作電壓轉換構件等之無源元件。
作為此種電感器,例如提出了如下電感器,其具備銅等內部導體、及供埋設該內部導體且由磁性材料構成之晶片本體部(例如參照下述專利文獻1)。於專利文獻1之電感器中,內部導體之兩端面與晶片本體部之兩端面分別形成為同一平面。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開10-144526號公報
[發明所欲解決之問題]
然而,就電感器而言,必須於搭載在電子機器之前,使探針(檢查用端子)等與內部導體之兩端面接觸,實施電感器之電感等磁性特性之評估及/或內部導體有無導通等之檢查。
但,於專利文獻1之電感器中,由於至少內部導體之一端面與晶片本體部之一端面分別形成為同一平面,故而難以使探針與內部導體之一端面直接接觸,因此,有無法實施上述評估及檢查之不良情況。
又,即便可使探針與內部導體之一端面接觸,探針與內部導體之電性連接亦容易變得不良,因此,有上述評估及檢查不可靠之問題。
另一方面,亦要求以低成本製造電感器。
本發明提供一種能夠容易且確實地實施磁性特性之評估及配線之導通檢查,並且能夠以低成本製造電感器之電感器及其製造方法。 [解決問題之技術手段]
本發明(1)包含一種電感器之製造方法,其具備:第1步驟,其係準備配線;第2步驟,其係由含有磁性粒子之磁性組合物,以被覆上述配線之中途部之外周面且上述配線之端部於2 mm以上且未達100 mm之範圍內自磁性層露出之方式形成磁性層;及第3步驟,其係去除上述配線之上述端部。
於該電感器之製造方法中,於第2步驟中,以配線之端部自磁性層露出2 mm以上之方式形成磁性層,故而其後可容易地使端子與配線之端部接觸,端子與配線之電性連接可靠。因此,可容易且確實地實施磁性特性之評估及配線之導通檢查。
又,於第2步驟中,以配線之端部自磁性層露出未達100 mm之方式形成磁性層,於第3步驟中,去除配線之端部,故而可將經去除之端部之長度抑制為未達100 mm之範圍。因此,可抑制要去除之配線量,結果,能夠以低成本製造電感器。
因此,根據該製造方法,能夠容易且確實地實施磁性特性之評估及配線之導通檢查,並且能夠以低成本製造電感器。
本發明(2)包含如(1)所記載之電感器之製造方法,其中上述配線於上述電感器之厚度方向長度為1000 μm以下。
由於配線於電感器之厚度方向長度短至1000 μm以下,故而可製造薄型之電感器。
另一方面,於製造薄型之電感器之方法中,若如專利文獻1之電感器般,配線之端面與磁性層之端面為同一平面,則其後端子更難接觸到端部。
但是,如上所述,於第2步驟中,以配線之端部於2 mm以上之範圍內自磁性層露出之方式形成磁性層,故而即便配線於電感器之厚度方向長度短至1000 μm以下之情形時,其後亦可使端子容易地與配線之端部接觸。
因此,能夠使端子容易地與配線之端部接觸,並且能夠製造薄型之電感器。
本發明(3)包含如(1)或(2)所記載之電感器之製造方法,其中於第2步驟中,上述配線之兩端部自上述磁性層露出。
於第2步驟中,配線之兩端部自磁性層露出,故而於第2步驟後,可使2個端子之各者容易地與配線之兩端部之各者接觸,2個端子與配線之電性連接可靠。
本發明(4)包含如(1)至(3)中任一項所記載之電感器之製造方法,其中於上述第1步驟中,準備具備導線、及被覆上述導線之外周面之絕緣層之上述配線,該電感器之製造方法進而具備第4步驟,該第4步驟係於上述第2步驟後且上述第3步驟前,使上述導線於上述配線之上述端部自上述絕緣層露出。
於第1步驟中,準備具備導線、及被覆導線之外周面之絕緣層的配線,故而可藉由絕緣層抑制導線與磁性層之短路。
又,於第4步驟中,使導線於配線之端部自絕緣層露出,故而可容易地使端子與配線之端部之導線接觸,端子與導線之電性連接可靠。
本發明(5)包含一種電感器,其具備:複數條配線;及磁性層,其形成上述複數條配線各自之中途部;上述磁性層含有磁性粒子,上述複數條配線各自之端部於2 mm以上且未達100 mm之範圍內自上述磁性層露出。
於該電感器中,複數條配線各自之端部自磁性層露出2 mm以上。因此,可容易地使端子與配線之端部接觸,端子與配線之電性連接可靠。因此,可容易且確實地實施電感器等之磁性特性之評估及配線之導通檢查。
又,由於複數條配線各自之端部於未達100 mm之範圍內自磁性層露出,故而為了去除端部,將電感器對應於複數條配線之各者而單片化,從而製造電感器,可抑制要去除之配線量,結果,能夠以低成本製造複數個電感器。 [發明之效果]
根據本發明之電感器及其製造方法,能夠容易且確實地實施磁性特性之評估及配線之導通檢查,並且能夠以低成本製造電感器。
參照圖1A~圖5來說明本發明之電感器之製造方法及藉由該方法獲得之電感器之第1實施形態。
<第1實施形態> 如圖1A~圖2H所示,於電感器1之製造方法中,製造具備複數條配線2及被覆該等配線2之磁性層3的電感器30,其後,由電感器30製造複數個電感器1。
具體而言,電感器1之製造方法具備:第1步驟,其係準備配線2;第2步驟,其係以被覆配線2之中途部10且配線2之第1端部8及第2端部9自磁性層3露出之方式,形成磁性層3;及第3步驟,其係去除配線2之第1端部8及第2端部9。於該製造方法中,如圖3所示,依序實施第1步驟、第2步驟及第3步驟。
又,該製造方法進而具備:第4步驟,其係於第2步驟後且第3步驟前,使導線6於配線2之第1端部8及第2端部9自絕緣層7露出;及評估檢查步驟,其係於第4步驟後且第3步驟前,實施複數個電感器1之電感之評估及複數條配線2之導通檢查。即,於該製造方法中,如圖3所示,依序實施第1步驟、第2步驟、第4步驟、評估檢查步驟及第3步驟。
如圖1A~圖1B所示,於第1步驟中,準備複數條配線2。複數條配線2例如具備第1配線4及第2配線5。
第1配線4具備導線6、及被覆該導線6之絕緣層7。
導線6於電流流動之方向上較長地延伸,例如具有俯視大致U字形狀。具體而言,於第1步驟中,將第1配線4以成為俯視大致U字形狀之方式載置於未圖示之水平台,藉此,導線6具有上述俯視形狀。導線6具有與第1配線4共有中心軸線之剖視大致圓形狀。
導線6之材料例如為銅、銀、金、鋁、鎳或及其等之合金等金屬導體,較佳為列舉銅。導線6可為單層構造,亦可為於芯導體(例如銅)之表面進行了鍍覆(例如鎳)等之複層構造。
導線6之半徑R1係自導線6之中心至第1外周面12之距離,例如為25 μm以上,較佳為50 μm以上,且例如為2000 μm以下,較佳為250 μm以下。
絕緣層7係用於保護導線6不受化學品或水侵蝕,且防止導線6短路之層。絕緣層7配置為被覆作為導線6之外周面之一例之第1外周面12的整個面。
絕緣層7具有與第1配線4共有中心軸線(中心)之剖視大致圓環形狀。
作為絕緣層7之材料,例如可列舉聚乙烯醇縮甲醛、聚酯、聚酯醯亞胺、聚醯胺(包含尼龍)、聚醯亞胺、聚醯胺醯亞胺及聚胺基甲酸酯等絕緣性樹脂。該等材料可單獨使用1種,亦可併用2種以上。絕緣層7可由單層構成,亦可由複數層構成。
絕緣層7之厚度T1係自導線6之第1外周面12至作為第1配線4(配線2)之外周面之一例之第2外周面13的距離,於圓周方向之任一位置處在配線2之徑向上大致均勻,例如為1 μm以上,較佳為3 μm以上,且例如為100 μm以下,較佳為50 μm以下。
第1配線4之半徑R2係上述導線6之半徑R1與絕緣層7之厚度T1之合計(R1+T1),具體而言,係自第1配線4之中心至第2外周面13之長度R2。第1配線4之半徑R2例如為25 μm以上,較佳為50 μm以上,且例如為2000 μm以下,較佳為250 μm以下,更佳為200 μm以下,進而較佳為150 μm以下。
第1配線4之直徑D(相當於電感器1中之第1配線4之厚度)係上述第1配線4之半徑R2之2倍值(2×R2),具體而言,例如為50 μm以上,較佳為100 μm以上,且例如為4000 μm以下,較佳為1000 μm以下,更佳為500 μm以下,進而較佳為400 μm以下,特佳為300 μm以下。
若第1配線4之半徑R2及/或直徑D為上述下限以上,則可獲得優異之電感。若第1配線4之半徑及/或直徑為上述上限以下,則可獲得薄型之電感器1。
又,如圖1A所示,該第1配線4一體地具有配置於電流之流動方向兩側端部之第1端部8及第2端部9、及位於其等之流動方向中途(其等之間)之中途部10。
第1端部8及第2端部9例如用作下述評估檢查步驟中之電接點(端子)。
中途部10於流動方向上連結第1端部8及第2端部9。中途部10於電流之流動方向中央例如具有彎曲部11,該彎曲部11具有俯視大致半圓弧形狀。又,中途部10具有與第1端部8連結(連續)之第1連結部19及與第2端部9連結(連續)之第2連結部29。
於俯視時,第1連結部19與第1端部8配置且形成於一直線上。又,於圖1A~圖1B中雖未描畫出,但第1連結部19於沿著電流之流動方向之剖面中,與第1端部8配置及形成於一直線上。第1連結部19之一端與第1端部8連接,第1連結部19之另一端與彎曲部11之一端連接。
於俯視時,第2連結部29與第2端部9配置且形成於一直線上。又,於圖1A~圖1B中雖未描畫出,但第2連結部29於沿著電流之流動方向之剖面中與第2端部9配置及形成於一直線上。第2連結部29之一端與第2端部9連接,第2連結部29之另一端與彎曲部11之另一端連接。
中途部10係配線2中除第1端部8及第2端部9以外之部分之全部。又,於複數條配線2之各者中,中途部10之平面面積例如為60%以上,較佳為80%以上,且例如為99%以下,較佳為95%以下。
第1端部8及第2端部9之剖視(或前視)時之中心間距離L2例如為20 μm以上,較佳為50 μm以上,且例如為3000 μm以下,較佳為2000 μm。
第2配線5係與第1配線4相同之形狀,且具有相同之構成及材料。
第1配線4之第2端部9與第2配線5之第1端部8之中心間距離L1例如為20 μm以上,較佳為50 μm以上,且例如為3000 μm以下,較佳為2000 μm以下。
如圖1C~圖1D所示,於第2步驟中,以被覆配線2之中途部10之第2外周面13且配線2之第1端部8及第2端部9露出之方式,形成磁性層3。
於第2步驟中,由含有磁性粒子之磁性組合物形成磁性層3。具體而言,磁性組合物含有磁性粒子及黏合劑。
作為構成磁性粒子之磁性材料,例如可列舉軟磁體、硬磁體。自電感之觀點來看,較佳為列舉軟磁體。
作為軟磁體,例如可列舉以純物質狀態包含1種金屬元素之單一金屬體、及例如1種以上之金屬元素(第1金屬元素)與1種以上之金屬元素(第2金屬元素)及/或非金屬元素(碳、氮、矽、磷等)之共熔體(混合物)即合金體。該等可單獨使用或併用。
作為單一金屬體,例如可列舉僅由1種金屬元素(第1金屬元素)構成之金屬單質。作為第1金屬元素,例如自鐵(Fe)、鈷(Co)、鎳(Ni)及其他作為軟磁體之第1金屬元素而含有之金屬元素中適當選擇。
又,作為單一金屬體,例如可列舉包括僅包含1種金屬元素之芯、及修飾該芯之表面一部分或全部之包含無機物及/或有機物質之表面層的形態、例如包含第1金屬元素之有機金屬化合物或無機金屬化合物經分解(例如熱分解)後的形態。作為後一種形態,更具體而言,可列舉包含鐵作為第1金屬元素之有機鐵化合物(具體而言為羰基鐵)經熱分解所得之鐵粉(有時稱為羰基鐵粉)等。再者,修飾僅包含1種金屬元素之部分之包含無機物質及/或有機物質之層的位置不限於如上所述之表面。再者,作為可獲得單一金屬體之有機金屬化合物或無機金屬化合物,並無特別限定,可自能獲得軟磁體之單一金屬體之公知或常用之有機金屬化合物或無機金屬化合物中適當選擇。
合金體係1種以上之金屬元素(第1金屬元素)與1種以上之金屬元素(第2金屬元素)及/或非金屬元素(碳、氮、矽、磷等)之共熔體,只要為可用作軟磁體之合金體者,則並無特別限定。
第1金屬元素係合金體中之必需元素,例如可列舉鐵(Fe)、鈷(Co)、鎳(Ni)等。再者,若第1金屬元素為Fe,則合金體係設為Fe系合金,若第1金屬元素為Co,則合金體係設為Co系合金,若第1金屬元素為Ni,則合金體係設為Ni系合金。
第2金屬元素係合金體中次要地含有之元素(副成分),且係與第1金屬元素相容(共熔)之金屬元素,例如可列舉鐵(Fe)(第1金屬為Fe以外之元素時)、鈷(Co)(第1金屬元素為Co以外之元素時)、鎳(Ni)(第1金屬元素為Ni以外之元素時)、鉻(Cr)、鋁(Al)、矽(Si)、銅(Cu)、銀(Ag)、錳(Mn)、鈣(Ca)、鋇(Ba)、鈦(Ti)、鋯(Zr)、鉿(Hf)、釩(V)、鈮(Nb)、鉭(Ta)、鉬(Mo)、鎢(W)、釕(Ru)、銠(Rh)、鋅(Zn)、鎵(Ga)、銦(In)、鍺(Ge)、錫(Sn)、鉛(Pb)、鈧(Sc)、釔(Y)、鍶(Sr)及各種稀土元素等。該等可單獨使用或併用2種以上。
非金屬元素係合金體中次要地含有之元素(副成分),且係與第1金屬元素相容(共熔)之非金屬元素,例如可列舉硼(B)、碳(C)、氮(N)、矽(Si)、磷(P)、硫(S)等。該等可單獨使用或併用2種以上。
作為合金體之一例之Fe系合金,例如可列舉磁性不鏽鋼(Fe-Cr-Al-Si合金)(包含電磁不鏽鋼)、鐵矽鋁合金(Fe-Si-Al合金)(包含超級鐵矽鋁合金)、坡莫合金(Fe-Ni合金)、Fe-Ni-Mo合金、Fe-Ni-Mo-Cu合金、Fe-Ni-Co合金、Fe-Cr合金、Fe-Cr-Al合金、Fe-Ni-Cr合金、Fe-Ni-Cr-Si合金、矽銅(Fe-Cu-Si合金)、Fe-Si合金、Fe-Si-B(-Cu-Nb)合金、Fe-B-Si-Cr合金、Fe-Si-Cr-Ni合金、Fe-Si-Cr合金、Fe-Si-Al-Ni-Cr合金、Fe-Ni-Si-Co合金、Fe-N合金、Fe-C合金、Fe-B合金、Fe-P合金、鐵氧體(包含不鏽鋼系鐵氧體、進而Mn-Mg系鐵氧體、Mn-Zn系鐵氧體、Ni-Zn系鐵氧體、Ni-Zn-Cu系鐵氧體、Cu-Zn系鐵氧體、Cu-Mg-Zn系鐵氧體等軟鐵氧體、鐵鈷合金(Fe-Co合金)、Fe-Co-V合金、Fe基非晶合金等。
作為合金體之一例之Co系合金,例如可列舉Co-Ta-Zr及鈷(Co)基非晶合金等。
作為合金體之一例之Ni系合金,例如可列舉Ni-Cr合金等。
於該等軟磁體中,自磁特性之觀點來看,較佳為列舉合金體,更佳為列舉Fe系合金,進而較佳為列舉鐵矽鋁合金(Fe-Si-Al合金)。又,作為軟磁體,較佳為列舉單一金屬體,更佳為列舉以純物質狀態包含鐵元素之單一金屬體,進而較佳為列舉鐵單質或者鐵粉(羰基鐵粉)。
磁性組合物中之磁性粒子之體積比率例如為40體積%以上,較佳為50體積%以上,更佳為60體積%以上,且例如為95體積%以下,較佳為90體積%以下。
作為磁性粒子之形狀,並無特別限定,例如可列舉扁平板(板狀)、針狀等各向異性形狀、且例如球狀等非各向異性形狀等,自配向性之觀點來看,可列舉各向異性形狀,自面方向(二維)上相對磁導率良好之觀點來看,更佳為列舉扁平狀。
扁平狀磁性粒子之扁率(扁平度)例如為8以上,較佳為15以上,且例如為500以下,較佳為450以下。扁率係例如設為將扁平狀磁性粒子之平均粒徑(平均長度)(下述)除以扁平狀磁性粒子之平均厚度所得之縱橫比來算出。
扁平狀磁性粒子之平均粒徑(平均長度)例如為3.5 μm以上,較佳為10 μm以上,且例如為200 μm以下,較佳為150 μm以下。若扁平狀磁性粒子為扁平狀,則其平均厚度例如為0.1 μm以上,較佳為0.2 μm以上,且例如為3.0 μm以下,較佳為2.5 μm以下。
再者,非各向異性磁性粒子之平均粒徑例如為0.1 μm以上,較佳為0.5 μm以上,且例如為200 μm以下,較佳為150 μm以下。
作為黏合劑,例如可列舉樹脂,作為此種樹脂,例如可列舉環氧樹脂、酚系樹脂等熱硬化性樹脂、例如丙烯酸系樹脂等熱塑性樹脂。該等可單獨使用或併用。
較佳為列舉熱硬化性樹脂及熱塑性樹脂之併用,更佳為列舉丙烯酸系樹脂、環氧樹脂及酚系樹脂之併用。
再者,磁性組合物中亦可視需要添加熱硬化觸媒、無機粒子(磁性粒子除外)、有機粒子、交聯劑等添加劑。
磁性組合物中之黏合劑及添加劑之比率係上述磁性粒子之比率之其餘部分。
磁性組合物之詳細情況例如記載於日本專利特開2014-165363號公報等中。
於第2步驟中,首先,由上述磁性組合物製作例如大致矩形片狀之磁性片材20。再者,該磁性片材20具有於厚度方向上對向,相互平行且平坦之一表面及另一表面。磁性片材20較佳為首先製備磁性組合物之清漆,將該清漆塗佈於未圖示之剝離片材,製備A階段片材,繼而,對該A階段片材進行加熱,製備成B階段片材。
繼而,藉由磁性片材20被覆複數條配線2各自之中途部10(包含彎曲部11之中途部10)之第2外周面13。較佳為,將複數條配線2各自之中途部10埋設於B階段片材之磁性片材20。或者,將複數條配線2各自之中途部10埋入B階段片材之磁性片材20。供埋設中途部10之磁性片材20形成磁性層3。
詳細而言,於第2步驟中,如圖4A~圖4B所示,準備(製作)分別獨立地具備第1磁性片材21、第2磁性片材22及第3磁性片材23之磁性片材20。第1磁性片材21、第2磁性片材22及第3磁性片材23之各者之俯視形狀與上述磁性片材20相同。又,第1磁性片材21、第2磁性片材22及第3磁性片材23之俯視尺寸相互相同。
如圖4A所示,另行將複數條配線2以上述配置載置於未圖示之水平台。具體而言,複數條配線2各自之第1端部8及第2端部9配置為於朝其等之鄰接方向投影時重疊。
如圖4B所示,隨後,藉由第1磁性片材21(較佳為B階段之第1磁性片材21)被覆複數條配線2各自之中途部10。詳細而言,將第1磁性片材21自厚度方向一側朝向中途部10加壓。藉此,中途部10之整個第2外周面13(中之除厚度方向另一端緣以外)由第1磁性片材21被覆。再者,加壓後之第1磁性片材21於磁性組合物含有熱硬化性樹脂之情形時,例如仍為B階段。
於第1磁性片材21中,在前視(或者剖視)時,其厚度方向一表面具有與配線2對應之彎曲面。
如圖4C所示,繼而,於中途部10及第1磁性片材21之厚度方向一側及另一側分別配置第2磁性片材22及第3磁性片材23(於磁性組合物含有熱硬化性樹脂之情形時,較佳為B階段之第2磁性片材22及第3磁性片材23之各者),將第2磁性片材22及第3磁性片材23相對於中途部10及第1磁性片材21進行加壓。再者,加壓後之第2磁性片材22及第3磁性片材23於磁性組合物含有熱硬化性樹脂之情形時,例如均仍為B階段。
藉此,以被覆複數條配線2之第2外周面13之方式,形成自厚度方向一側朝向另一側依序具備第2磁性片材22、第1磁性片材21及第3磁性片材23之磁性片材20。再者,如圖4C所示,雖明確地描畫了第2磁性片材22、第1磁性片材21及第3磁性片材23之邊界,但例如於第2磁性片材22、第1磁性片材21及第3磁性片材23之積層片材即磁性片材20中,其等之邊界不清晰,更具體而言,如圖1D所示,可不確認邊界。
磁性片材20之厚度方向一表面具有平坦面。
另一方面,複數條配線2各自之第1端部8及第2端部9自磁性片材20露出。具體而言,第1端部8及第2端部9自磁性片材20之4個周端面中之一端面(前端面)16突出。
然後,如圖1C所示,自磁性片材20露出之第1端部8及第2端部9各自之長度L處於2 mm以上且未達100 mm之範圍。
若長度L未達2 mm,則如圖2E及圖5所示,於評估檢查步驟(下述)中,無法容易地使端子25(下述)與配線2之第1端部8及第2端部9接觸,端子25與配線2之電性連接不可靠。因此,無法容易且確實地實施電感器1之磁性特性之評估及配線2之導通檢查。
另一方面,如圖2G所示,若長度L為100 mm以上,則考慮於第3步驟(下述)中去除配線2之第1端部8及第2端部9,於是無法將要去除之第1端部8及第2端部9之長度L抑制為未達100 mm之範圍內。因此,無法抑制要去除之配線量,因此,配線2之良率降低,結果,無法以低成本製造電感器1。
詳細而言,長度L之範圍較佳為3 mm以上,更佳為4 mm以上,進而較佳為5 mm以上,進而較佳為10 mm以上,且較佳為99 mm以下,更佳為95 mm以下,更佳為75 mm以下,特佳為50 mm以下,最佳為40 mm以下,進而宜為25 mm以下。
其後,若磁性片材20仍為B階段,則使其成為C階段。
如圖1C~圖1D所示,藉此,以使複數條配線2各自之第1端部8及第2端部9露出,且被覆複數條配線2各自之中途部10之方式,形成由磁性片材20構成之磁性層3。
藉由該第2步驟,獲得電感器30,該電感器30具備複數條配線2、及形成複數條配線2各自之中途部10之磁性層3。於該電感器30中,磁性層2含有磁性粒子,複數條配線2各自之第1端部8及第2端部9以2 mm以上且未達100 mm之範圍,於與磁性層3之厚度方向正交之方向上自磁性層3露出。
如圖2G及圖2H所示,該電感器30係用以獲得下述電感器1之集合體片材,而非電感器1本身,除包含複數個電感器1以外,還包含第1端部8及第2端部9。電感器30係單獨流通,且可於產業上利用之器件。
電感器30之厚度與磁性層3之厚度相同,具體而言,例如為5000 μm以下,較佳為1000 μm以下,且例如為100 μm以上。
如圖2F所示,於第4步驟中,於複數條配線2各自之第1端部8及第2端部9處,使導線6自絕緣層7露出。
例如,藉由自厚度方向一側照射雷射光之雷射處理等,於第1端部8及第2端部9處,去除與導線6之第1外周面12之厚度方向一端部對向之絕緣層7,使導線6之第1外周面12之厚度方向一端部自絕緣層7露出。
或者,亦可藉由研磨使導線6之第1外周面12之厚度方向一端部自絕緣層7露出。
於評估檢查步驟中,例如實施複數個電感器1之電感之評估及複數條配線2之導通檢查。
具體而言,將1對端子25配置於第1端部8及第2端部9之厚度方向一側,使1對端子25之厚度方向另一表面於第1端部8及第2端部9處與自絕緣層7露出之導線6之第1外周面12接觸。
端子25之形狀並無特別限定,例如可列舉於厚度方向之另一端面具有相對較寬之平坦面之大致圓柱形狀、例如於電感器30之厚度方向上較長地延伸之針形狀等,自確保方便性及與導線6之較大之接觸面積之觀點來看,可列舉大致圓柱形狀。
端子25經由連接線(未圖示)與檢查裝置(具體而言為LCR(Inductance Capacitance Resistance,電感電容電阻)測定計、向量網路分析器、阻抗分析器等)連接。
於電感之評估中,一面向1對端子25施加微弱電流,一面測定阻抗,並將其測定值代入理論公式,藉此算出由1條配線2及其周圍之磁性層3決定之電感。
於配線2之導通檢查中,藉由測定1對端子25間之電阻而確認配線2有無導通。
如圖2G~圖2H所示,於第3步驟中,去除配線2之第1端部8及第2端部9。
具體而言,以對應於複數條配線2之各者,且與第1端部8及第2端部9分離之方式,將電感器30切斷,而獲得電感器1。
此時,並非僅去除露出之第1端部8及第2端部9,而以切下之方式去除磁性層3之內側。
例如,於俯視下,以形成較磁性層3之周端面更靠內側之第1切斷線26之方式,切斷配線2及磁性層3,又,以形成通過鄰接之第1配線4及第2配線5間之第2切斷線27之方式,切斷磁性層3。上述切斷例如使用切割、雷射處理、及衝壓加工等。
藉此,獲得複數個電感器1,該電感器1具備1條配線2、及被覆流動方向全部之第2外周面13之1個磁性層3。即,以第1端部8及第2端部9殘存於電感器30之方式,自電感器30分離出(切下)電感器1。即,以去除第1端部8及第2端部9之方式,獲得電感器1。再者,該電感器1較佳為僅具備1條配線2及1個磁性層3。
該電感器1例如具有矩形平板形狀,具體而言,具有複數個(4個)平坦之周端面。電感器1不包含第1端部8及第2端部9。電感器1係單獨流通且可於產業上利用之器件。
於該電感器1之4個周端面中之一端面18中,配線2之端面及磁性層3之端面形成為同一平面。
電感器1之厚度與上述磁性層3之厚度相同。
而且,於該電感器1之製造方法中,如圖1C~圖1D所示,於第2步驟中,以配線2之第1端部8及第2端部9自磁性層3露出2 mm以上之方式形成磁性層3。因此,如圖2E~圖2F所示,於第2步驟後之評估檢查步驟中,可使端子25容易地與配線2之第1端部8及第2端部9接觸,端子25與配線2之電性連接可靠。因此,能夠容易且確實地實施電感器1及30之電感之評估及配線2之導通檢查。
詳細而言,由於配線2之第1端部8及第2端部9自磁性層3露出2 mm以上,故而可使具有各種形狀之端子25與導線6接觸,如圖2F及圖5所示,例如厚度方向之另一端(前端)為銳利之針形狀之端子25(實線)自不待言,亦可使大致圓柱形狀之端子25(假想線)與導線6接觸。因此,無論端子25之形狀及/或尺寸如何,均可容易且確實地實現端子25與配線2之接觸。即,可使用之端子25之自由度較高,因此,利用端子25之檢查及評估較容易。
反之,當配線2之第1端部8及第2端部9自磁性層3露出未達2 mm時,即便可使針狀之端子25(實線)與導線6接觸,亦難以使大致圓柱形狀之端子25(假想線)與導線6接觸。
又,如圖1C~圖1D所示,於第2步驟中,以配線2之第1端部8及第2端部9自磁性層3露出未達100 mm之方式形成磁性層3,如圖2G~圖2H所示,於第3步驟中,去除配線2之第1端部8及第2端部9,故而可將要去除之第1端部8及第2端部9之長度L抑制為未達100 mm之範圍。因此,可抑制要去除之配線2之量(或者長度),因此,配線2之良率優異,結果,能夠以低成本製造電感器1。
因此,根據該製造方法,能夠容易且確實地實施電感器1之電感之評估及配線2之導通檢查,並且能夠以低成本製造電感器1。
又,於該製造方法中,當配線2之直徑D小至1000 μm以下時,可製造薄型之電感器1。
另一方面,於製造薄型之電感器1之方法中,若如專利文獻1之電感器般,配線2之端面與磁性層3之一端面16為同一平面,其後,端子25更難接觸到配線2之端面。
但是,於該第1實施形態中,如上所述,於第2步驟中,以配線2之第1端部8及第2端部9於2 mm以上之範圍內自磁性層3露出之方式,形成磁性層3,故而即便於配線2之直徑D小至500 μm以下之情形時,其後亦可容易地使端子25與第1端部8及第2端部9接觸。
因此,可使端子25容易地與配線2之第1端部8及第2端部9接觸,並且能夠製造薄型之電感器1。
又,如圖1C所示,於該第1實施形態之第2步驟中,配線2之第1端部8及第2端部9自磁性層3露出,故而於第2步驟後,於圖2E所示之評估檢查步驟中,可使2個端子25之各者容易地與配線2之第1端部8及第2端部9之各者接觸,2個端子25與配線2之電性連接可靠。
即便如圖1B所示,於該第1實施形態之第1步驟中,準備具備導線6及被覆導線6之第1外周面12之絕緣層7之配線2,由於如圖2F及圖5所示,於第4步驟中,在配線2之第1端部8及第2端部9處使導線6自絕緣層7露出,故而亦可容易地使端子25與配線2之第1端部8及第2端部9處之導線6接觸,端子25與導線6之電性連接可靠。
於圖1C~圖1D所示之第1實施形態之電感器30中,複數條配線2各自之第1端部8及第2端部9自磁性層3露出2 mm以上。因此,如圖2E~圖2F所示,可容易地使端子25與配線2之第1端部8及第2端部9接觸,端子25與配線2之電性連接可靠。因此,能夠容易且確實地實施電感器1之電感之評估及配線2之導通檢查。
又,由於複數條配線2各自之第1端部8及第2端部9於未達100 mm之範圍內自磁性層3露出,故而即便以去除第1端部8及第2端部9之方式,將電感器30對應於複數條配線2之各者單片化而製造電感器1,亦可抑制要去除之配線量,結果,能夠以低成本製造複數個電感器1。
變化例 於以下各變化例中,對與上述第1實施形態相同之構件及步驟附上相同之參照符號,並省略其詳細之說明。又,除特別記載以外,各變化例可發揮與第1實施形態相同之作用效果。進而,可適當地組合第1實施形態及變化例。
如圖2E及圖5所示,於第1實施形態之第4步驟中,在第1端部8及第2端部9處,去除與導線6之第1外周面12之厚度方向一端部對向之絕緣層7,使導線6之第1外周面12之厚度方向一端部自絕緣層7露出。
如圖6所示,於該變化例中,亦可去除與導線6之第1外周面12之整個面對向之絕緣層7,使導線6之第1外周面12之整個面自絕緣層7露出。即,於第4步驟中,可去除第1端部8及第2端部9處之全部絕緣層7。
又,如圖1C所示,於第1實施形態中,於第2步驟(電感器30)中,使第1端部8及第2端部9之兩者自磁性層3露出。但是,雖未圖示,亦可使第1端部8及第2端部9中之僅一者自磁性層3露出。
如圖5所示,配線2之剖視形狀(或者第1端部8及第2端部9之前視形狀)為大致圓形狀,但於變化例中,如圖7所示為大致矩形狀。具體而言,於電感器30中,第1端部8及第2端部9之各者具有大致箱形狀。
該變化例之配線2之厚度T2與第1實施形態之配線2之直徑D相同。
再者,於該變化例中,進而,剖視時之配線2之角部(例如由厚度方向一表面與鄰接方向(第1配線4及第2配線5鄰接之方向)兩外側面形成之角部)例如亦可具有彎曲形狀。
又,如圖4A~圖4C所示,於第1實施形態中,以3片磁性片材(第1磁性片材21、第2磁性片材22及第3磁性片材23)之積層片之形式形成了磁性層3,但其數量無限定,可為1、2或4以上。
又,於第1實施形態之第2步驟中,藉由形成為片狀之磁性片材20(磁性層3)被覆配線2,但例如亦可對配線2塗佈磁性組合物之清漆,其後,使磁性組合物形成為片狀,而形成磁性層3。
如圖2G所示,於一實施形態之第3步驟中,將配線2中之埋設於磁性層3之中途部10切斷。即,以形成第1切斷線26之方式切斷電感器30。
但是,於該變化例中,如圖8所示,亦可將配線2中之未埋設於磁性層3之部分(具體而言為配線2及中途部10之邊界部分)切斷。以形成沿著電感器30之端面之第3切斷線28之方式,切斷配線2。
如圖2G所示,於一實施形態之第3步驟中,以使複數條配線2單片化之方式,即,以形成第2切斷線27之方式,切斷磁性層3。
如圖9所示,於變化例中,以不使複數條配線2單片化,即,不形成第2切斷線27之方式,切斷磁性層3。藉由第3步驟而獲得之電感器1具備複數條配線2。
於圖9之變化例中,切斷了磁性層3及配線2。
但是,於變化例中,如圖10所示,亦可不切斷磁性層3而僅切斷配線2。以形成第3切斷線28之方式,切斷配線2。
於一實施形態中,如圖1C所示,製作具備複數條配線2之電感器30。
但是,如圖11A及圖11B所示,於變化例中,可製作具備1條配線2之電感器準備片材15。
如圖11A所示,於第3步驟中,以形成第1切斷線26之方式,切斷配線2及磁性層3。
或者,如圖11B所示,於第3步驟中,以形成第3切斷線28之方式,切斷配線2。
於一實施形態之評估檢查步驟中,實施了電感器1之電感之評估及配線2之導通檢查之兩者,但亦可實施任一者。
又,磁性層3中之磁性粒子之比率於磁性層3中可相同,又,亦可隨著遠離各配線2而變高抑或變低。為了製造磁性層3中之磁性粒子之比率隨著遠離配線2而變高之電感器1,例如,如圖4B所示,將第2磁性片材22中之磁性粒子之存在比率及第3磁性片材23中之磁性粒子之存在比率設定為高於第1磁性片材21中之磁性粒子之比率。
<第2實施形態> 於以下之第2實施形態中,對與上述第1實施形態及其變化例相同之構件及步驟附上相同之參照符號,並省略其詳細之說明。又,除特別記載以外,第2實施形態可發揮與第1實施形態及其變化例相同之作用效果。進而,可適當地組合第1實施形態、其變化例及第2實施形態。
於第1實施形態中,圖1A所示、於第1步驟中準備之配線2(參照圖1A)及圖1C所示、於第2步驟中製作之電感器30(圖1C)中之配線2具有俯視大致U字形狀。
但是,配線2之俯視形狀不限於上述形狀。
例如,如圖12所示,於第2實施形態中,上述配線2具有俯視大致曲折之形狀。
配線2之中途部10亦具有俯視大致曲折之形狀,更具體而言,具有俯視時彎折之屈曲部14。屈曲部14於中途部10,在電流之流動方向上相互隔開間隔地配置有複數個。
於電感器30中,自磁性層3之4個周端面中之相互隔開間隔地對向之一端面(前端面)16及另一端面(後端面)17之各者,分別露出有第1端部8及第2端部9。
<第3實施形態> 於以下之第3實施形態中,對與上述第1實施形態、其變化例及第2實施形態相同之構件及步驟附上相同之參照符號,並省略其詳細之說明。又,除特別記載以外,第3實施形態可發揮與第1實施形態、其變化例及第2實施形態相同之作用效果。進而,可適當地組合第1實施形態、其變化例、第2實施形態及第3實施形態。
如圖1C所示,於第1實施形態中,於電感器30中,將中途部10中流動方向之全部埋設於磁性層3。
如圖13所示,於第3實施形態中,亦可使中途部10中流動方向之一部分自磁性層3露出。
具體而言,於電感器30中,使中途部10(配線2)中相當於流動方向大致中央部18之彎曲部11自磁性層3之另一端面17露出。
於評估檢查步驟中,不使端子25與彎曲部11接觸,而使端子25與第1端部8及第2端部9接觸。
於第3步驟中,以去除第1端部8及第2端部9,且保留彎曲部11之方式,切斷配線2及磁性層3。即,使彎曲部11隨附於電感器1。
藉此,可獲得如下電感器1,其具備磁性層3、自磁性層3露出之彎曲部11、及具有埋設於磁性層3之部分(中途部10中除彎曲部11以外之部分)之配線2。 [實施例]
以下示出實施例及比較例,更具體地說明本發明。再者,本發明不受任何實施例及比較例限定。又,以下之記載中所使用之調配比率(含有比率)、物性值及參數等具體數值可代替上述「用以實施發明之形態」中所記載之對應於其等之調配比率(含有比率)、物性值及參數等相應記載之上限(定義為「以下」、「未達」之數值)或下限(定義為「以上」、「超過」之數值)。
實施例1 如圖1A~圖2D所示,依序實施第1步驟及第2步驟,獲得圖1C及圖1D所示之電感器30。
如圖1A~圖1B所示,於第1步驟中,準備了複數條直徑D為220 μm(半徑R2為110 μm)之配線2。詳細而言,準備複數條配線2,將其等以成為俯視U字形狀之方式載置於未圖示之水平台,該配線2具備半徑R1為100 μm之導線6、及厚度T1為10 μm之絕緣層7。
另行藉由含有磁性粒子及黏合劑之磁性片材20(更具體而言為第1磁性片材21、第2磁性片材22、第3磁性片材23之積層片材(參照圖4A~圖4C)),被覆了導線6之中途部10。磁性片材20以第1端部8及第2端部9露出之方式,形成片狀。
如圖1C所示,第1端部8及第2端部9各自之長度L為10 mm。
如圖2E~圖2H所示,其後依序實施第4步驟及第3步驟,獲得電感器1。
實施例2~比較例2 根據表1之記載,除變更了長度L以外,以與實施例1相同之方式進行處理而製作電感器30,繼而,獲得電感器1。
[檢查評估步驟中之檢查容易性] 按照下述基準來評估各實施例及各比較例之製造中途之電感器30之檢查容易性。將其結果記載於表1中。 ○直徑5 mm之針狀端子25及直徑5 mm之圓柱狀端子25均可與第1端部8及第2端部9接觸,可測定電感器1之電感,且可實施配線2之導通檢查。 △直徑5 mm之針狀端子25可與第1端部8及第2端部9接觸,可測定電感器1之電感,且可實施配線2之導通檢查。但是,直徑5 mm之圓柱狀端子25無法與第1端部8及第2端部9接觸,無法測定電感器1之電感,且亦無法實施配線2之導通檢查。 ×直徑5 mm之針狀端子25或直徑5 mm之圓柱狀端子25均無法與第1端部8及第2端部9接觸,無法測定電感器1之電感,且亦無法實施配線2之導通檢查。
[製造成本] 測定各實施例及各比較例之第4步驟中之第1端部8及第2端部9之去除量,按照下述基準評估製造成本。將其結果記載於表1中。 ○配線2之第1端部8及第2端部9各自之長度L為40 mm以下 △配線2之第1端部8及第2端部9各自之長度L超過40 mm且未達100 mm ×配線2之第1端部8及第2端部9各自之長度L為100 mm以上。
[表1]
表1
   實施例1 實施例2 實施例3 比較例1 比較例2
第1端部及第2端部之長度L[mm] 10 5 90 1 100
檢查評估步驟中之檢查容易性 ×
製造成本 ×
再者,上述發明係作為本發明之例示之實施形態而提供,但此僅為例示,不應限定性地解釋。本領域技術人員所明確之本發明之變化例包含於後述申請專利範圍中。 [產業上之可利用性]
電感器係例如搭載於電子機器等。
1:電感器 2:配線 3:磁性層 4:第1配線 5:第2配線 6:導線 7:絕緣層 8:第1端部 9:第2端部 10:中途部 11:彎曲部 12:第1外周面 13:第2外周面 14:屈曲部 15:片材 16:磁性層之一端面 17:磁性層之另一端面 18:一端面 18:大致中央部 19:第1連結部 20:磁性片材 21:第1磁性片材 22:第2磁性片材 23:第3磁性片材 25:端子 26:第1切斷線 27:第2切斷線 28:第3切斷線 29:第2連結部 30:電感器 D:剖面大致圓形狀之配線之直徑 L:端部之長度 L1:中心間距離 L2:中心間距離 R1:導線之半徑 R2:第1配線之半徑 T1:絕緣層之厚度 T2:剖面大致矩形狀之配線之厚度
圖1A~圖1D表示本發明之電感器之製造方法之第1實施形態的製造步驟圖。圖1A~圖1B表示第1步驟,圖1A表示俯視圖,圖1B表示圖1A之沿箭頭方向觀察之前視圖。圖1C~圖1D表示第2步驟,圖1C表示俯視圖,圖1D表示前視圖。 圖2表示繼圖1D之後之第1實施形態之製造步驟圖。圖2E~圖2F表示第4步驟及評估檢查步驟,圖2E表示俯視圖,圖2F表示前視圖。圖2G~圖2H表示第3步驟,圖2G表示電感器之俯視圖,圖2H表示電感器之前視圖。 圖3表示圖1A~圖2H所示之第1實施形態之製造方法之流程圖。 圖4A~圖4C係圖1C~圖1D所示之第2步驟之詳細之步驟立體圖的一例,圖4A表示準備配線及第1磁性片材之步驟,圖4B表示將第1磁性片材向配線加壓之步驟、及準備第2磁性片材及第3磁性片材之步驟,圖4C表示將第2磁性片材及第3磁性片材向第1磁性片材及配線加壓而形成磁性片材之步驟。 圖5表示說明圖2E~圖2F所示之評估檢查步驟之立體圖。 圖6表示說明圖5所示之第1實施形態之評估檢查步驟之變化例的立體圖。 圖7表示圖1C及圖1D所示之第1實施形態之電感器之變化例的立體圖。 圖8表示圖2G所示之第1實施形態之第3步驟之變化例的電感器及電感器之俯視圖。 圖9表示圖2G所示之第1實施形態之第3步驟之變化例的電感器及電感器之俯視圖。 圖10表示圖2G所示之第1實施形態之第3步驟之變化例的電感器及電感器之俯視圖。 圖11A~圖11B係圖2G所示之第1實施形態之第3步驟之變化例的俯視圖,圖11A表示未切斷磁性層而切斷配線之變化例,圖11B表示切斷磁性層及配線之變化例。 圖12表示說明本發明之電感器之製造方法之第2實施形態的第3步驟之俯視圖 圖13表示說明本發明之電感器之製造方法之第3實施形態的第3步驟之俯視圖。
2:配線
3:磁性層
4:第1配線
5:第2配線
6:導線
7:絕緣層
8:第1端部
9:第2端部
10:中途部
11:彎曲部
12:第1外周面
13:第2外周面
16:磁性層之一端面
19:第1連結部
20:磁性片材
29:第2連結部
30:電感器
D:剖面大致圓形狀之配線之直徑
L:端部之長度
L1:中心間距離
L2:中心間距離
R1:導線之半徑
R2:第1配線之半徑
T1:絕緣層之厚度

Claims (5)

  1. 一種電感器之製造方法,其特徵在於具備: 第1步驟,其係準備配線; 第2步驟,其係由含有磁性粒子之磁性組合物,以被覆上述配線之中途部之外周面且上述配線之端部於2 mm以上且未達100 mm之範圍內自磁性層露出之方式形成磁性層;及 第3步驟,其係去除上述配線之上述端部。
  2. 如請求項1之電感器之製造方法,其中上述配線於上述電感器之厚度方向長度為1000 μm以下。
  3. 如請求項1或2之電感器之製造方法,其中於上述第2步驟中,上述配線之兩端部自上述磁性層露出。
  4. 如請求項1或2之電感器之製造方法,其中於上述第1步驟中,準備具備導線、及被覆上述導線之外周面之絕緣層之上述配線, 該電感器之製造方法進而具備第4步驟,該第4步驟係於上述第2步驟後且上述第3步驟前,使上述導線於上述配線之上述端部自上述絕緣層露出。
  5. 一種電感器,其特徵在於具備: 複數條配線;及 磁性層,其形成上述複數條配線各自之中途部; 上述磁性層含有磁性粒子, 上述複數條配線各自之端部於2 mm以上且未達100 mm之範圍內自上述磁性層露出。
TW109104983A 2019-03-12 2020-02-17 電感器及其製造方法 TW202109561A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-044774 2019-03-12
JP2019044774A JP7477263B2 (ja) 2019-03-12 2019-03-12 インダクタおよびその製造方法

Publications (1)

Publication Number Publication Date
TW202109561A true TW202109561A (zh) 2021-03-01

Family

ID=72427965

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109104983A TW202109561A (zh) 2019-03-12 2020-02-17 電感器及其製造方法

Country Status (4)

Country Link
JP (2) JP7477263B2 (zh)
CN (1) CN113474855A (zh)
TW (1) TW202109561A (zh)
WO (1) WO2020183998A1 (zh)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868913A (ja) * 1981-10-19 1983-04-25 Taiyo Yuden Co Ltd インダクタンス素子及びその製造方法
JPS5889807A (ja) * 1981-11-20 1983-05-28 Matsushita Electric Ind Co Ltd インダクタの製造方法
JPS61177704A (ja) * 1985-02-02 1986-08-09 Tdk Corp チツプ型インダクタの製造方法
JPH01266705A (ja) * 1988-04-18 1989-10-24 Sony Corp コイル部品
JPH01302712A (ja) * 1988-05-30 1989-12-06 Tokin Corp 小型コイルの製造方法
JPH0236014U (zh) * 1988-09-02 1990-03-08
JPH0485159U (zh) * 1990-11-29 1992-07-23
JPH06260869A (ja) * 1993-03-04 1994-09-16 Nippon Telegr & Teleph Corp <Ntt> ノイズフィルタ
JPH0714720A (ja) * 1993-06-23 1995-01-17 Taiyo Yuden Co Ltd チップインダクタなどの電子部品とその製造方法
JPH08306536A (ja) * 1995-05-02 1996-11-22 Taiyo Yuden Co Ltd チップ状インダクタ及びインダクタ・アレイ並びにその製造方法
JPH1140426A (ja) * 1997-07-18 1999-02-12 Tdk Corp インダクタンス素子
US7751205B2 (en) 2006-07-10 2010-07-06 Ibiden Co., Ltd. Package board integrated with power supply

Also Published As

Publication number Publication date
JP2024061883A (ja) 2024-05-08
JP7477263B2 (ja) 2024-05-01
CN113474855A (zh) 2021-10-01
JP2020150062A (ja) 2020-09-17
WO2020183998A1 (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
TW202034355A (zh) 電感器
JP7325197B2 (ja) インダクタ
KR20210137033A (ko) 인덕터
TWI832971B (zh) 電感器
TW202109561A (zh) 電感器及其製造方法
JP7362269B2 (ja) インダクタ
TWI828865B (zh) 電感器之製造方法
KR20220044953A (ko) 인덕터
US10026543B2 (en) Coil component and method for manufacturing the same
JP7219641B2 (ja) インダクタ
JP7294833B2 (ja) インダクタ
TW202036615A (zh) 電感器
KR20220045148A (ko) 인덕터