TW202106911A - 含有鎵及銦之半導體層系統的沉積方法 - Google Patents

含有鎵及銦之半導體層系統的沉積方法 Download PDF

Info

Publication number
TW202106911A
TW202106911A TW109114429A TW109114429A TW202106911A TW 202106911 A TW202106911 A TW 202106911A TW 109114429 A TW109114429 A TW 109114429A TW 109114429 A TW109114429 A TW 109114429A TW 202106911 A TW202106911 A TW 202106911A
Authority
TW
Taiwan
Prior art keywords
layer
indium
gallium
process chamber
substrate
Prior art date
Application number
TW109114429A
Other languages
English (en)
Inventor
亞登 博伊德
Original Assignee
德商愛思強歐洲公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商愛思強歐洲公司 filed Critical 德商愛思強歐洲公司
Publication of TW202106911A publication Critical patent/TW202106911A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45572Cooled nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Abstract

本發明係有關於一種沉積半導體層系統的方法,其中,第一層序列具有含鎵之層,第二層序列具有含銦之層。為防止沉積含銦之層時製程室中之殘餘物中的鎵嵌入含銦之層,本發明提出:在第一製程步驟中,額外地將含銦之反應氣體引入製程室(2)並且如此地設定第一製程參數(2),使得第一層或層序列(11)不含銦,或者在第一與第二製程步驟之間的中間步驟中將含銦之反應氣體饋入製程室(2)並且如此地設定製程參數,從而不將銦沉積在基板(4)上,並且在第二製程步驟中如此地設定第二製程參數,使得第二層不含鎵。

Description

含有鎵及銦之半導體層系統的沉積方法
本發明係有關於一種透過將反應氣體連同載氣一起饋入CVD反應器之製程室來將半導體層系統沉積在基板上的方法,其中,在第一製程步驟中,在第一製程參數下透過饋入至少一個含鎵之第一反應氣體來沉積含鎵之第一層或層序列,並且隨後在第二製程步驟中,在第二製程參數下透過饋入至少一個含銦之第二反應氣體來沉積含銦之第二層或層序列。
採用此種特別是在MOCVD反應器中實施之方法來製造特別是用於生產HEMT(高電子遷移率電晶體)的半導體多層結構。首先在基板,特別是矽基板上沉積矽摻雜AlN層。往後者上沉積AlGaN層。其又承載一AlN層。該層序列含有更多的AlGaN層及一形成u-GaN通道的GaN層。隨後,視情況以在其間沉積一AlN中間層的方式往此種含鎵之層或層序列沉積含銦之層或層序列,其中,該層可具有AlInN。
在沉積含鎵之第一層序列期間,在製程室之壁部上,特別是在與承載基板之製程室底部相對佈置的製程室頂部上,會形成含鎵之寄生沉積。在下一第二製程步驟中,此種鎵可能對含銦之第二層或層序列的層品質造成負面影響,其中鎵嵌入含銦之層。
本發明之目的在於採取措施來抑制鎵原子有害地嵌入第二層或層序列。
本發明用以達成上述目的之解決方案為在申請專利範圍中給出之發明,其中,附屬項不僅為請求項1中給出之發明的有益改進方案,亦為用以達成上述目的之獨立解決方案。
首先且實質上提出:在該第一製程步驟中,除了含鎵原子之該反應氣體以外將含銦原子之反應氣體饋入該製程室。例如在採用三甲基鎵的同時,例如亦可將三甲基銦或三乙基銦饋入製程室。第一製程參數如此地設定,使得在第一製程步驟中,不將銦嵌入含鎵之層。為此,本發明特別是提出:第一製程步驟期間的基板表面溫度高於1000℃。此外還提出,將氫用作載氣,使用氫不利於將銦沉積在待沉積之層中甚至對其有害。作為替代方案,可在第一製程步驟完畢後實施一中間步驟,其中將含銦之反應氣體,如TMI或TEI,饋入製程室。在此較佳亦將H2 用作載氣。該溫度較佳高於1000℃。如此地選擇製程參數,從而不將銦沉積在基板上。在第一製程步驟或中間步驟期間,在特別是已冷卻100℃的製程室頂部上發生交換反應。該含銦之反應氣體,特別是有機金屬銦化合物,與附著在製程室頂部或製程室之另一壁部上的鎵發生反應。此處可指在製程室頂部上冷凝的元素鎵或鎵化合物。在此反應過程中,銦化合物與鎵發生反應,其中特定言之,有機金屬銦化合物可與元素鎵反應成為元素銦及易失性有機金屬鎵化合物。元素銦可停留在製程室頂部上。該交換反應亦可引起一銦化合物,其至少暫時附著在製程室壁部上。在該方法的一種方案中,亦可例如透過以下方式將製程室頂部帶至高於100℃的溫度:將氣體入口構件進行沉降或者將佈置在氣體入口構件下方之由石英或石墨構成的防護板進行沉降,使其表面溫度因其更接近經加熱之基板座以及與經冷卻之氣體入口構件距離更遠而升高。隨後在此等條件下實施一中間步驟,其中,與第一製程步驟中的情形相比,氣體入口構件之排氣面或者防護板與經加熱之基板座的距離更近。在此中間步驟中,將含銦之反應氣體特別是連同載氣(如氫)一起饋入製程室。在該中間步驟完畢後,往該含鎵之第一層或層序列沉積含銦之層或層序列。較佳在低於1000℃之溫度條件下且較佳以氮作為載氣來實施此點。在第一製程步驟或中間步驟期間,較佳將與製程室頂部上之鎵原子數量相同的銦原子饋入製程室。為此,在低於100℃的製程室頂部溫度條件下,銦與鎵的莫耳比至少為三分之一。製程室頂部溫度更高時,該莫耳比可能更小,例如至少為十分之一。採用本發明之方法後,便能在沉積含鎵之層(如亞硝酸鎵層或亞硝酸鋁鎵層)期間,減輕鎵在製程室壁部上的寄生沉積。亦可透過同時饋入三甲基銦或三乙基銦來清除已存在之寄生的含鎵塗層或者用含銦之層加以置換。總壓可低於100 mbar或低於200 mbar。隨後,在低溫下實施之第二製程步驟期間,對不含鎵的含銦之層進行沉積。
圖2及3所示裝置為具有反應器殼體1的MOCVD反應器,該反應器殼體可被抽真空。在殼體1內部設有氣體入口構件5,其形式為具有冷卻之排氣板6的蓮蓬頭。為此,在排氣板中設有供冷卻劑流過的冷卻通道。多個在排氣板6上均勻分佈的排氣孔穿過排氣板6,自外部被饋入氣體入口構件5的製程氣體可自該等排氣孔流入製程室2。
在該實施例中,在排氣板6下方設有具有若干通孔9的防護板10,在防護板10緊靠排氣板6下方之圖2所示工作位置中,該等通孔與排氣孔7對齊。排氣板6可由石英或石墨構成。氣體入口構件5及排氣板6可由金屬,特別是不鏽鋼構成。
製程室2之底部形成有基板座3,其可由經塗佈之石墨體構成。基板座3承載一或多個基板4,該等基板在製程室2中被半導體層或半導體層序列塗佈。
基板座3可圍繞旋轉軸被旋轉驅動。用加熱裝置8自下而上地將基板座3加熱至製程溫度,可用位於基板4上或者位於基板座3之指向製程室2的寬側表面上的未予繪示之測溫儀來測量該製程溫度。
圖1示出在圖2及3所示裝置中可用本發明之方法沉積的層序列。
在塗佈製程的第一階段中,在第一製程工序11中沉積可含有鎵、鋁及氮的層序列。該層序列不含銦。為此,透過氣體入口構件5將形式為氨以及鋁與鎵的有機金屬化合物的製程氣體引入製程室2。在此過程中將製程室2加熱至高於1000℃的溫度。在基板4上或者在基板座3之指向製程室2的頂側上測量該溫度。
在沉積第一層序列11期間,在鄰接製程室2的表面上,即特別是在防護板10的底側上,可能出現含鎵之覆層。為了清除覆層或者清除覆層中的鎵,在該等第一製程步驟11中的一個中,特別是在該等製程步驟11中的最後一個中,除了該等有機金屬鎵組分(如TMG)以外將含銦之反應氣體引入製程室2。此處係指TMI或TEI或另一有機金屬銦化合物。如此地選擇製程參數,從而不將銦嵌入在此等製程步驟中沉積之層。為此,將基板座表面的溫度保持在1000℃以上。
作為鎵、鋁及銦之有機金屬化合物的替代方案,亦可將無機金屬化合物(如氯化物)用作反應氣體。
在下一步驟中,將含銦之層12、13沉積至該層系統。此點透過將含銦之反應氣體饋入製程室2來實現。
在本發明的一種方案中,可以不採用含銦之反應氣體的方式沉積該第一層序列11。隨後可在一中間步驟中,在較高的溫度下將含銦之反應氣體饋入製程室。選擇某種溫度水平,從而不將銦沉積在基板4上。為了提高防護板10之指向製程室2之表面的溫度,如圖3所示,可將防護板朝經加熱之基板座3進行沉降。在沉積第一層序列11及/或在該中間步驟期間,將氫用作載氣。在隨後沉積含銦之層的過程中(該製程步驟係在較低的製程溫度下實施),可將氮用作載氣。
特定言之,具有至少含銦之層的該第二層序列亦含有鋁及氮。為此,在沉積第二層或層序列過程中額外地將含鋁之反應氣體,特別是金屬有機鋁化合物,饋入製程室。連同可為氮的載氣一起將氨饋入製程室,其提供該層的氮組分。
前述實施方案係用於說明本申請整體所包含之發明,該等發明至少透過以下特徵組合分別獨立構成相對於先前技術之改良方案,其中,此等特徵組合中的兩項、數項或其全部亦可相互組合,即:
一種方法,其特徵在於:在該第一製程步驟中,額外地將含銦之反應氣體引入該製程室2並且如此地設定該等第一製程參數2,使得該第一層或層序列11不含銦,或者在該第一與該第二製程步驟之間的中間步驟中將含銦之反應氣體饋入該製程室2並且如此地設定該等製程參數,從而不將銦沉積在該基板4上,並且在該第二製程步驟中如此地設定該等第二製程參數,使得該第二層不含鎵。
一種方法,其特徵在於:該第一製程步驟或該中間步驟中的基板溫度高於1000℃,以及,該第二製程步驟中的基板溫度低於1000℃。
一種方法,其特徵在於:該第一製程步驟或該中間步驟中的載氣為H2 ,該第二製程步驟中的載氣為N2
一種方法,其特徵在於:在該中間步驟期間該製程室頂部的表面溫度不同於,特別是高於,在該第一及/或第二製程步驟期間的表面溫度,以及/或者,在該中間步驟期間該製程室高度有所降低。
一種方法,其特徵在於:在該第一製程步驟中或該中間步驟中,該製程室高度透過以下方式而有所降低:將形成該製程室頂部的氣體入口構件5或者佈置在該氣體入口構件5下方的防護板10進行沉降。
一種方法,其特徵在於:該氣體入口構件5為具有若干均勻佈置在排氣面上之排氣孔7的蓮蓬頭,其中,對該排氣面進行主動冷卻。
一種方法,其特徵在於:在該第一及該第二製程步驟期間,在具有至少300 mm之直徑的相同基板4上沉積用於生產HEMT的層,其中,該製程室高度為9至25 mm。
一種方法,其特徵在於:該第一層或層序列11含有GaN、AlGaN或GaAs,以及/或者該第二層12含有AlLnN,以及/或者在第一層或層序列與第二層或層序列之間沉積由AlN構成之中間層13。
一種方法,其特徵在於:在該第一製程步驟或該中間步驟期間,將該製程室頂部之溫度保持在低於100℃的溫度水平,其中特定言之,在該第一製程步驟中,銦與鎵的莫耳比至少為1/3,或者該製程室頂部溫度高於100℃且銦與鎵的莫耳比大於1/10。
所有已揭露特徵(作為單項特徵或特徵組合)皆為發明本質所在。故本申請之揭露內容亦包含相關/所附優先權檔案(在先申請副本)所揭露之全部內容,該等檔案所述特徵亦一併納入本申請之申請專利範圍。附屬項以其特徵對本發明針對先前技術之改良方案的特徵予以說明(即使不含相關請求項之特徵),其目的主要在於在該等請求項基礎上進行分案申請。每個請求項中所給出的發明可進一步具有前述說明中給出的、特別是以符號標示且/或在符號說明中給出的特徵中之一或數項。本發明亦有關於如下設計形式:前述說明中所述及之個別特徵不實現,特別是對於具體用途而言為非必需的或者可被技術上具有相同功效的其他構件所替代之特徵。
1:CVD反應器 2:製程室 3:基板座 4:基板 5:氣體入口構件 6:排氣板 7:排氣孔 8:加熱裝置 9:通氣孔 10:防護板 11:第一層序列 12:第二層序列 13:中間層
下面結合附圖對本發明之實施例進行詳細說明。其中: 圖1為用本發明之方法沉積之層系統的示意圖, 圖2為用於實施該方法之裝置的第一工作位置,及 圖3為圖2所示裝置的第二工作位置。
1:CVD反應器
2:製程室
3:基板座
4:基板
5:氣體入口構件
6:排氣板
7:排氣孔
8:加熱裝置
9:通氣孔
10:防護板

Claims (12)

  1. 一種透過將反應氣體連同載氣一起饋入CVD反應器(1)之製程室(2)來將半導體層系統沉積在基板(4)上的方法,其中,在第一製程步驟中,在第一製程參數下透過饋入至少一個含鎵之第一反應氣體來沉積含鎵但不含銦之第一層或層序列(11),並且隨後在第二製程步驟中,在第二製程參數下透過饋入至少一個含銦之第二反應氣體來沉積含銦之第二層或層序列(12、13),其特徵在於:在該第一製程步驟中額外地將含銦之反應氣體沉積在該基板(4)上,或者在該第一與該第二製程步驟之間的中間步驟中以不將銦沉積在該基板(4)上的方式將含銦之反應氣體沉積在該基板(4)上,並且在該第二製程步驟中不將鎵沉積在該基板(4)上。
  2. 如請求項1之方法,其中,該等第一製程參數(2)係經設定為使得該第一層或層序列(11)不含銦,以及,該等第二製程參數係經設定為使得該第二層不含鎵。
  3. 如請求項2之方法,其中,在不使銦發生沉積的基板溫度水平上實施該第一製程步驟,以及,該第二製程步驟中的基板溫度低於該第一製程步驟的基板溫度。
  4. 如請求項3之方法,其中,在該第一製程步驟或該中間步驟期間,在製程室頂部上,在冷凝於該製程室頂部上之鎵與該含銦之反應氣體之間實施化學交換反應,以及/或者其中,附著在該製程室頂部上的鎵或附著在該製程室頂部上的鎵化合物至少部分地被銦或銦化合物置換。
  5. 如請求項3之方法,其中,該第一製程步驟或該中間步驟中的基板溫度高於1000℃,以及,該第二製程步驟中的基板溫度低於1000℃。
  6. 如請求項1之方法,其中,該第一製程步驟或該中間步驟中的載氣為H2 ,該第二製程步驟中的載氣為N2
  7. 如請求項1之方法,其中,在該中間步驟期間該製程室頂部的表面溫度不同於,特別是高於,在該第一及/或第二製程步驟期間的表面溫度,以及/或者,在該中間步驟期間該製程室高度有所降低。
  8. 如請求項7之方法,其中,在該第一製程步驟中或該中間步驟中,透過以下方式來降低該製程室高度:將形成該製程室頂部的氣體入口構件(5)或者佈置在該氣體入口構件(5)下方的防護板(10)進行沉降。
  9. 如請求項8之方法,其中,該氣體入口構件(5)為具有若干均勻佈置在排氣面上之排氣孔(7)的蓮蓬頭,其中,對該排氣面進行主動冷卻。
  10. 如請求項1之方法,其中,在該第一及該第二製程步驟期間,在具有至少300 mm之直徑的相同基板(4)上沉積用於生產HEMT的層,其中,該製程室高度為9至25 mm。
  11. 如請求項1之方法,其中,該第一層或層序列(11)含有GaN、AlGaN或GaAs,以及/或者該第二層(12)含有AlLnN,以及/或者在第一層或層序列與第二層或層序列之間沉積由AlN構成之中間層(13)。
  12. 如請求項1之方法,其中,在該第一製程步驟或該中間步驟期間,將該製程室頂部之溫度保持在低於100℃的溫度水平,以及/或者在該第一製程步驟中,銦與鎵的莫耳比至少為1/3,或者該製程室頂部溫度高於100℃且銦與鎵的莫耳比大於1/10。
TW109114429A 2019-05-06 2020-04-30 含有鎵及銦之半導體層系統的沉積方法 TW202106911A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019111598.1 2019-05-06
DE102019111598.1A DE102019111598A1 (de) 2019-05-06 2019-05-06 Verfahren zum Abscheiden eines Halbleiter-Schichtsystems, welches Gallium und Indium enthält

Publications (1)

Publication Number Publication Date
TW202106911A true TW202106911A (zh) 2021-02-16

Family

ID=70681788

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109114429A TW202106911A (zh) 2019-05-06 2020-04-30 含有鎵及銦之半導體層系統的沉積方法

Country Status (7)

Country Link
US (1) US20220205086A1 (zh)
EP (1) EP3966361A1 (zh)
JP (1) JP2022532055A (zh)
KR (1) KR20220003542A (zh)
DE (1) DE102019111598A1 (zh)
TW (1) TW202106911A (zh)
WO (1) WO2020225228A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114141918A (zh) * 2021-11-30 2022-03-04 江苏第三代半导体研究院有限公司 适用于大电流条件工作的发光二极管外延结构及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263023A (ja) * 2007-04-11 2008-10-30 Sumitomo Electric Ind Ltd Iii−v族化合物半導体の製造方法、ショットキーバリアダイオード、発光ダイオード、レーザダイオード、およびそれらの製造方法
US20110244663A1 (en) * 2010-04-01 2011-10-06 Applied Materials, Inc. Forming a compound-nitride structure that includes a nucleation layer
DE102014104218A1 (de) * 2014-03-26 2015-10-01 Aixtron Se CVD-Reaktor mit Vorlaufzonen-Temperaturregelung
DE102014106871A1 (de) * 2014-05-15 2015-11-19 Aixtron Se Verfahren und Vorrichtung zum Abscheiden dünner Schichten auf einem Substrat und einer höhenverstellbaren Prozesskammer
US9917156B1 (en) * 2016-09-02 2018-03-13 IQE, plc Nucleation layer for growth of III-nitride structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114141918A (zh) * 2021-11-30 2022-03-04 江苏第三代半导体研究院有限公司 适用于大电流条件工作的发光二极管外延结构及制备方法
CN114141918B (zh) * 2021-11-30 2023-07-18 江苏第三代半导体研究院有限公司 适用于大电流条件工作的发光二极管外延结构及制备方法

Also Published As

Publication number Publication date
KR20220003542A (ko) 2022-01-10
DE102019111598A1 (de) 2020-11-12
WO2020225228A1 (de) 2020-11-12
JP2022532055A (ja) 2022-07-13
EP3966361A1 (de) 2022-03-16
US20220205086A1 (en) 2022-06-30
CN114008239A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
US9932670B2 (en) Method of decontamination of process chamber after in-situ chamber clean
US9552979B2 (en) Cyclic aluminum nitride deposition in a batch reactor
US20160115590A1 (en) Method and system for treatment of deposition reactor
US8138069B2 (en) Substrate pretreatment for subsequent high temperature group III depositions
JP2009533879A5 (zh)
CN103548116A (zh) 用于预处理iii族氮化物沉积的方法
TWI434950B (zh) Gallium nitride (GaN) self-supporting substrate manufacturing method and manufacturing device
TW202106911A (zh) 含有鎵及銦之半導體層系統的沉積方法
CN108428621B (zh) 一种在非晶态SiO2 衬底上生长GaN薄膜的方法
CN114008239B (zh) 用于沉积包含镓和铟的半导体层系统的方法
WO2010129289A4 (en) Decontamination of mocvd chamber using nh3 purge after in-situ cleaning
JP5333156B2 (ja) 気相成長装置
KR101336489B1 (ko) 화학 기상 증착 장치
US20070031991A1 (en) Method for depositing compounds on a substrate by means of metalorganic chemical vapor deposition
KR101205424B1 (ko) 질화갈륨계 엘이디 박막성장을 위한 화학기상증착장치
CN111560601A (zh) 基板处理方法和基板处理装置
JP2007176777A (ja) Ga含有窒化物半導体の製造方法
KR101205425B1 (ko) 질화갈륨계 엘이디 박막성장을 위한 화학기상증착장치
JP2007531236A (ja) 有機発光層形成方法
JP5360136B2 (ja) Ga含有窒化物半導体の製造方法
JP3403194B2 (ja) Cvd装置及びcvd法
KR100548907B1 (ko) 원자층증착법에 의한 Alq3 박막 제조방법
KR20140135852A (ko) 반도체 제조장치
KR100548909B1 (ko) 화학기상증착법에 의한 Alq3 박막 제조방법
JPH1174200A (ja) 窒化物系半導体の成長方法