TW202039067A - 微粒子除去裝置及微粒子除去方法 - Google Patents

微粒子除去裝置及微粒子除去方法 Download PDF

Info

Publication number
TW202039067A
TW202039067A TW109109851A TW109109851A TW202039067A TW 202039067 A TW202039067 A TW 202039067A TW 109109851 A TW109109851 A TW 109109851A TW 109109851 A TW109109851 A TW 109109851A TW 202039067 A TW202039067 A TW 202039067A
Authority
TW
Taiwan
Prior art keywords
membrane
water
group
particles
liquid
Prior art date
Application number
TW109109851A
Other languages
English (en)
Inventor
田中洋一
藤村侑
飯野秀章
川勝孝博
Original Assignee
日商栗田工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商栗田工業股份有限公司 filed Critical 日商栗田工業股份有限公司
Publication of TW202039067A publication Critical patent/TW202039067A/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2626Absorption or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2319/00Membrane assemblies within one housing
    • B01D2319/02Elements in series
    • B01D2319/025Permeate series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2319/00Membrane assemblies within one housing
    • B01D2319/06Use of membranes of different materials or properties within one module
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/12Adsorbents being present on the surface of the membranes or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/14Membrane materials having negatively charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/16Membrane materials having positively charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一種微粒子除去裝置,具有除去液體中的微粒子的膜,所述微粒子除去裝置的特徵在於:串列配置具有正電荷的微過濾膜或超濾膜、與具有負電荷的微過濾膜或超濾膜。一種微粒子除去方法,使用所述裝置。可按照具有負電荷的膜、具有正電荷的膜的順序通液,藉此,可高水準地除去液體中的粒徑50 nm以下特別是10 nm以下的極微小的微粒子。亦可按照與所述相反的順序來通液。

Description

微粒子除去裝置及微粒子除去方法
本發明是有關於一種除去純水或超純水製造製程、或者電子零件製造及半導體清洗製程等中的液體中的微粒子的微粒子除去裝置及微粒子除去方法。本發明可有效用作特別是於超純水製造、供給系統中的使用點前的子系統或供水系統路、以及電子零件製造製程及半導體清洗製程等系統中,高水準地除去液體中的粒徑50 nm以下特別是10 nm以下的極微小的微粒子的技術。
先前,作為半導體、電子零件製造用等的過濾器及半導體、電子零件製造製程的步驟中使用的過濾器,提出帶正電荷的膜、具體而言於多酮膜中具有選自由一級胺基、二級胺基、三級胺基、及四級銨鹽所組成的群組中的一個以上官能基的多酮多孔膜(專利文獻1)。
另外,作為陰離子性粒子的分級用的過濾用過濾器中所使用的帶負電荷的膜,提出於多酮膜中具有選自由磺酸基、磺酸酯基、羧酸基、羧酸酯基、磷酸基、磷酸酯基、及羥基所組成的群組中的一個以上官能基的膜(專利文獻2)。 [現有技術文獻] [專利文獻]
[專利文獻1]日本專利特開2014-173013號公報 [專利文獻2]日本專利特開2014-171979號公報
[發明所欲解決之課題] 使用陽離子性膜的微粒子除去膜中問題為對帶正電荷的微粒子的除去性能降低,陰離子性膜中問題為對帶負電荷的微粒子的除去性能降低。另外,自陽離子性膜中溶出TOC成分。
本發明的目的在於提供一種微粒子除去性能優異的微粒子除去裝置及微粒子除去方法。 [解決課題之手段]
本發明者為了解決所述課題而反覆努力研究,結果發現,藉由串列配置陽離子膜與陰離子膜,可囊括性地除去正電荷及負電荷的微粒子,從而完成了本發明。
即,本發明將以下作為主旨。
[1] 一種微粒子除去裝置,具有除去液體中的微粒子的膜,於所述微粒子除去裝置中,串列配置具有正電荷的微過濾膜或超濾膜、與具有負電荷的微過濾膜或超濾膜。
[2] 一種微粒子除去方法,使用如[1]所述的微粒子除去裝置。
[3] 如[2]所述的微粒子除去方法,其中按照具有負電荷的膜、具有正電荷的膜的順序進行通液。
[4] 如[2]所述的微粒子除去方法,其中按照具有正電荷的膜、具有負電荷的膜的順序進行通液。 [發明的效果]
根據本發明,可高水準地除去液體中的粒徑50 nm以下特別是10 nm以下的極微小的微粒子。
根據本發明,可自水系整體、特別是純水或超純水製造製程、或者電子零件製造及半導體清洗製程中的各種液體中高水準地除去極微小的微粒子,而有效地實現高純度化。
以下對本發明的實施形態進行詳細說明。
<機理> 本發明中,可藉由使用經陽離子性或陰離子性官能基修飾的膜來獲得高的微粒子除去能力的機理考慮如下。
即,如圖1的(a)所示,帶負電的液體中的微粒子被導入膜中的陽離子性官能基的正電荷吸引而被捕捉除去。另外,如圖1的(b)所示,帶正電的液體中的微粒子被導入膜中的陰離子性官能基的負電荷吸引而被捕捉除去。
<被處理液體> 本發明中,作為除去微粒子的被處理液體,並無特別限制,例如可列舉:純水、異丙醇等醇、硫酸水溶液、鹽酸水溶液等無機酸水溶液、氨水溶液等鹼性水溶液、稀釋劑、碳酸水、過氧化氫水、氟化氫溶液等。
本發明對於除去該些液體中的粒徑50 nm以下、特別是10 nm以下的極微小粒子而言有效。
再者,所述被處理液體中的微粒子濃度並無特別限制,通常為100 μg/L以下、或0.03個/mL~1010 個/mL。被處理液體的pH並無特別限制。其中,更理想的是通水中微粒子的動電位不反轉的區域(不跨越等電點的區域),例如理想的是帶正電荷的氧化鋁粒子始終為pH 8以下或始終為pH 8以上的區域,帶負電荷的二氧化矽粒子始終為pH 3以下或pH 3以上的區域。
<膜材質、膜形態> 作為本發明的微粒子除去膜的基材的過濾膜的材質並無特別限制,可為高分子膜,亦可為無機膜,抑或可為金屬膜。
作為高分子膜,可使用:聚乙烯、聚丙烯等聚烯烴、聚環氧乙烷、聚環氧丙烷等聚醚、PTFE(polytetrafluoroethylene,聚四氟乙烯)、CTFE(chlorotrifluoroethylene,三氟氯乙烯)、PFA(perfluoroalkyl,全氟烷基)、聚偏二氟乙烯(polyvinylidene fluoride,PVDF)等氟樹脂、聚氯乙烯等鹵化聚烯烴、尼龍-6、尼龍-66等聚醯胺、脲樹脂、酚醛樹脂、三聚氰胺樹脂、聚苯乙烯、纖維素、乙酸纖維素、硝酸纖維素、聚醚酮、聚醚酮酮、聚醚醚酮、聚碸、聚醚碸、聚醯亞胺、聚醚醯亞胺、聚醯胺醯亞胺、聚苯並咪唑、聚碳酸酯、聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯、聚苯硫醚、聚丙烯腈、聚醚腈、聚乙烯基醇及該些的共聚物等原材料,但並不限於此。並不特別限定於一種原材料,可視需要選擇各種原材料。亦可於帶電性或導電性的聚合物中混合聚烯烴、聚醚等其他聚合物。
作為無機膜,可列舉氧化鋁、氧化鋯等金屬氧化膜。
膜的形態亦無特別限制,只要根據用途使用中空纖維膜、平板膜等適當的膜即可。例如,作為用於在超純水裝置的單元中除去微粒子的末端膜模組,通常使用中空纖維膜。另一方面,安裝於製程清洗機的過濾器多使用褶狀平板膜。
本發明的微粒子除去膜是藉由導入膜中的陽離子性或陰離子性官能基的電性吸附能力捕捉除去水中的微粒子,因此其孔徑可大於除去對象微粒子,若過大,則微粒子除去效率差,反之即便過小,膜過濾時的壓力亦變高而欠佳。因此,若為MF(microfiltration,微過濾)膜,則較佳為孔徑0.05 μm~0.2 μm左右者,若為UF(ultrafiltration,超濾)膜,則較佳為分級分子量為4000~100萬左右者。
<官能基導入方法> 官能基的導入方法並無特別限定,可採用各種方法。例如,於聚苯乙烯的情況下,向硫酸溶液中適量添加多聚甲醛,並進行加熱交聯,藉此可導入磺酸基。於聚乙烯基醇的情況下,可藉由使三烷氧基矽烷基或三氯矽烷基、或者環氧基等作用於羥基等來導入官能基。於因材質而無法直接導入官能基的情況下,可經過首先導入苯乙烯等反應性高的單體(稱為反應性單體),在此基礎上導入官能基之類的二階段以上的導入操作,來導入目標官能基。作為該些反應性單體,有甲基丙烯酸縮水甘油酯、苯乙烯、氯甲基苯乙烯、丙烯醛、乙烯基吡啶、丙烯腈等,但並不限於此。
<陽離子性官能基及其導入方法> 對於向膜中導入陽離子性官能基的方法並無特別限制,可列舉利用化學反應的方法、利用塗佈的方法、進而將該些組合的方法等。利用化學修飾(化學反應)的方法可列舉脫水縮合反應等。另外,可列舉電漿處理或電暈處理等。利用塗佈的方法可列舉含浸於包含聚合物的水溶液等中的方法。
作為藉由化學修飾導入陽離子性官能基的方法,例如作為對多酮膜賦予弱陽離子性胺基的化學修飾方法,可列舉與一級胺的化學反應等。若為乙二胺、1,3-丙二胺、1,4-丁二胺、1,2-環己二胺、N-甲基乙二胺、N-甲基丙二胺、N,N-二甲基乙二胺、N,N-二甲基丙二胺、N-乙醯基乙二胺、異佛爾酮二胺、N,N-二甲基胺基-1,3-丙二胺等般包含一級胺的二胺、三胺、四胺、聚乙烯亞胺等多官能化胺,則可賦予大量的活性點,因此較佳。
就賦予正的動電位的觀點而言,於將構成基材膜的至少一個氫原子取代為其他基的情況下,作為取代方法,例如可列舉如下方法:藉由電子束、γ射線、電漿等的照射產生自由基後,藉由接枝聚合使甲基丙烯酸縮水甘油酯等具有反應性側鏈的單體進行聚合,並對其加成具有陽離子性官能基的反應性單體。作為反應性單體的例子,可列舉:包含一級胺、二級胺、三級胺、四級銨鹽的丙烯酸、甲基丙烯酸、乙烯基磺酸的衍生物、烯丙基胺、對乙烯基苄基三甲基氯化銨等。作為更具體的例子,可列舉:丙烯酸3-(二甲基胺基)丙酯、甲基丙烯酸3-(二甲基胺基)丙酯、N-[3-(二甲基胺基)丙基]丙烯醯胺、N-[3-(二甲基胺基)丙基]甲基丙烯醯胺、(3-丙烯醯胺丙基)三甲基氯化銨、三甲基[3-(甲基丙烯醯基胺基)丙基]氯化銨等。所述加成處理可於成形為多孔膜之前進行,亦可於成形為多孔膜之後進行,但就成形性的觀點而言,較佳為於成形為多孔膜之後進行。
作為賦予正的動電位的聚合物,可列舉:聚苯乙烯四級銨鹽(polystyrene quaternary ammonium salt,PSQ)、聚乙烯亞胺、聚二烯丙基二甲基氯化銨、含胺基的陽離子性聚(甲基)丙烯酸酯、含胺基的陽離子性聚(甲基)丙烯醯胺、聚胺醯胺-表氯醇、聚烯丙基胺、聚二氰二胺、殼聚糖、陽離子化殼聚糖、含胺基的陽離子化澱粉、含胺基的陽離子化纖維素、含胺基的陽離子化聚乙烯基醇及所述聚合物的酸鹽。另外,所述聚合物或聚合物的酸鹽亦可為與其他聚合物的共聚物。
<陰離子性官能基及其導入方法> 就賦予負的動電位的觀點而言,作為陰離子性官能基,可列舉選自由磺酸基、磺酸酯基、羧酸基、羧酸酯基、磷酸基、磷酸酯基、羥基所組成的群組中的一個以上的官能基。
作為具有官能基的形態的例子,可列舉化學鍵結或物理鍵結的狀態。作為化學鍵,可為共價鍵。作為共價鍵,可列舉:C-C鍵、C=N鍵、介隔吡咯環的鍵等。作為進行化學鍵結的物質,可為聚合物,亦可為分子量小的單體。另一方面,作為物理鍵結的狀態,可列舉於不經由化學鍵結的情況下利用氫鍵、凡得瓦力、靜電引力、疏水相互作用般的分子間力而鍵結的吸附或附著之類的狀態。
作為用於賦予負的動電位的聚合物,可列舉:聚苯乙烯磺酸、聚苯乙烯磺酸鈉、聚乙烯基磺酸、聚乙烯基磺酸鈉、聚(甲基)丙烯酸、聚(甲基)丙烯酸鈉、陰離子性聚丙烯醯胺、聚(2-丙烯醯胺-2-甲基丙烷磺酸)、聚(2-丙烯醯胺-2-甲基丙烷磺酸鈉)、羧甲基纖維素、陰離子化聚乙烯基醇、聚乙烯基膦酸。
就賦予負的動電位的觀點而言,亦可使具有負的動電位的聚合物等附著或塗佈於多孔膜上。作為具有負的動電位的聚合物,可列舉:聚苯乙烯磺酸、聚苯乙烯磺酸鈉、聚乙烯基磺酸、聚乙烯基磺酸鈉、聚(甲基)丙烯酸、聚(甲基)丙烯酸鈉、陰離子性聚丙烯醯胺、聚(2-丙烯醯胺-2-甲基丙烷磺酸)、聚(2-丙烯醯胺-2-甲基丙烷磺酸鈉)、羧甲基纖維素、陰離子化聚乙烯基醇、聚乙烯基膦酸等。另外,所述聚合物或聚合物的酸鹽亦可為與其他聚合物的共聚物。
就對多孔膜賦予負的動電位的觀點而言,於將構成多孔膜的聚合物的至少一個氫原子取代為其他基的情況下,作為取代方法,例如可列舉如下方法:藉由電子束、γ射線、電漿等的照射產生自由基後,加成具有表現出所期望的功能的官能基的反應性單體。作為反應性單體的例子,可列舉:包含磺酸基、磺酸酯基、羧酸基、羧酸酯基、磷酸基、磷酸酯基、羥基的丙烯酸、甲基丙烯酸、乙烯基磺酸的衍生物等。作為更具體的例子,可列舉:丙烯酸、甲基丙烯酸、乙烯基磺酸、苯乙烯磺酸、及該些的鈉鹽、2-丙烯醯胺-2-甲基丙烷磺酸、2-甲基丙烯醯胺-2-甲基丙烷磺酸、2-丙烯醯胺-2-甲基丙烷羧酸、2-甲基丙烯醯胺-2-甲基丙烷羧酸等。
<陰離子膜、陽離子膜的通水順序> 兩膜只要串列配置即可,通水順序可為陰離子膜→陽離子膜、陽離子膜→陰離子膜的任一種。具有各電荷膜的容器可分開。
再者,若按照陰離子膜→陽離子膜的順序通水,則處理水中的微粒子數變少。 若按照陽離子膜→陰離子膜的順序通水,則處理水中的TOC濃度低。這是因為帶正電荷的官能基自陽離子膜脫離,但被具有負電荷的陰離子膜以電荷形式捕捉並吸附除去。
於本發明中,可於一個容器中設置陰離子膜的區域或陽離子膜的區域。於在各個容器中填充各膜並串列配置的情況下,容器間的距離理想的是儘量接近。另外,於串列配置時,亦可於各膜或一個膜中設置陰離子電荷區域、陽離子電荷區域。
<較佳的適用區域> 具有本發明的微粒子除去膜的本發明的微粒子除去裝置於超純水製造、供給系統中,可較佳地用作由一次純水系統製造超純水的子系統、特別是該子系統的最後段的微粒子除去裝置。另外,亦可設置於自子系統向使用點傳送超純水的供水系統路中。進而,亦可用作使用點中的最終微粒子除去裝置。 [實施例]
以下列舉實施例來更具體地說明本發明。
再者,於以下的實施例1~實施例4、比較例1~比較例6中,作為試驗膜,使用以下的膜。 陽離子膜:旭化成醫療(Asahi Kasei medical)Qyu speed D(厚度70 μm) 陰離子膜:頗爾(Pall)公司ABD1UPWE3EH1(厚度150 μm)
另外,作為試驗水,使用以下的水。 二氧化矽微粒子試驗水:於超純水或pH 4.8的碳酸水中以1×105 個/mL的濃度添加粒徑22 nm的二氧化矽微粒子(西格瑪奧德里奇(Sigma Aldrich)公司製造)而成者 氧化鋁微粒子試驗水:於超純水或pH 4.8的碳酸水中以1×105 個/mL的濃度添加粒徑22 nm的氧化鋁微粒子(西格瑪奧德里奇(Sigma Aldrich)公司製造)而成者
[二氧化矽或氧化鋁微粒子的除去率的評價] 使用圖2所示的試驗裝置,自二氧化矽或氧化鋁微粒子罐1向超純水或pH 4.8的碳酸水中注入微粒子來製備微粒子試驗水,於10 m/d的條件下向安裝有試驗膜的膜模組2、膜模組3通水。
於膜模組2的入口與膜模組3的出口分別設置線上微粒子監視器UDI20(PMS公司製造),根據入口水與出口水的微粒子數來算出微粒子除去率。
[實施例1] 按照陰離子膜→陽離子膜的順序通入含有二氧化矽的水(超純水或碳酸水)。
[實施例2] 按照陰離子膜→陽離子膜的順序通入含有氧化鋁的水(超純水或碳酸水)。
[實施例3] 按照陽離子膜→陰離子膜的順序通入含有二氧化矽的水(超純水或碳酸水)。
[實施例4] 按照陽離子膜→陰離子膜的順序通入含有氧化鋁的水(超純水或碳酸水)。
[比較例1] 僅向陽離子膜通入含有二氧化矽的水(超純水或碳酸水)。
[比較例2] 僅向陽離子膜通入含有氧化鋁的水(超純水或碳酸水)。
[比較例3] 僅向陰離子膜通入含有二氧化矽的水(超純水或碳酸水)。
[比較例4] 僅向陰離子膜通入含有氧化鋁的水(超純水或碳酸水)。
[比較例5] 作為陰離子膜而使用厚度300 μm者,除此以外與比較例3同樣地通水。
[比較例6] 作為陰離子膜而使用厚度300 μm者,除此以外與比較例4同樣地通水。
將實施例1~實施例4、比較例1~比較例6的結果示於表1中。
[表1]
  通水順序 微粒子 水質 供水濃度(個/mL) 出口濃度(個/mL) 除去率(%)
實施例1 陰離子膜→陽離子膜 二氧化矽 超純水 1×105 <1 <99.999
碳酸水 1×105 <1 <99.999
實施例2 陰離子膜→陽離子膜 氧化鋁 超純水 1×105 <1 <99.999
碳酸水 1×105 <1 <99.999
實施例3 陽離子膜→陰離子膜 二氧化矽 超純水 1×105 <1 <99.999
碳酸水 1×105 <1 <99.999
實施例4 陽離子膜→陰離子膜 氧化鋁 超純水 1×105 <1 <99.999
碳酸水 1×105 <1 <99.999
比較例1 僅陽離子膜 二氧化矽 超純水 1×105 2×101 99.9
碳酸水 1×105 2×101 99.9
比較例2 僅陽離子膜 氧化鋁 超純水 1×105 6×102 99
碳酸水 1×105 8×102 99
比較例3 僅陰離子膜 二氧化矽 超純水 1×105 2×102 99
碳酸水 1×105 4×102 99
比較例4 僅陰離子膜 氧化鋁 超純水 1×105 8 99.99
碳酸水 1×105 7 99.99
比較例5 僅陰離子膜(厚度300 μm) 二氧化矽 超純水 1×105 2×101 99.9
碳酸水 1×105 3×101 99.9
比較例6 僅陰離子膜(厚度300 μm) 氧化鋁 超純水 1×105 4 99.99
碳酸水 1×105 5 99.99
[實驗例1] 作為空白試驗,將通入的水設為二氧化矽及氧化鋁微粒子均未添加的超純水、pH 4.8的碳酸水或pH 11的氨水,除此以外以與實施例1相同的條件進行通水。
[實驗例2] 作為空白試驗,將通入的水設為二氧化矽及氧化鋁微粒子均未添加的超純水、pH 4.8的碳酸水或pH 11的氨水,除此以外以與實施例3相同的條件進行通水。
將實驗例1、實驗例2的結果示於表2中。再者,於實驗例1、實驗例2中,測定通過超純水時的處理水(透過雙方的膜的水)的TOC。將結果示於表2中。
[表2]
  通水順序 微粒子 水質 供水濃度(個/mL) 出口濃度(個/mL) 處理水TOC(μg/L)
實驗例1 陰離子膜→陽離子膜 氨水 <1 <1 -
超純水 <1 <1 2
碳酸水 <1 <1 -
實驗例2 陽離子膜→陰離子膜 氨水 <1 5 -
超純水 <1 5 <0.5
碳酸水 <1 4 -
[考察] (1) 如表1般,超純水中及弱酸性區域中動電位帶負電荷的22 nm二氧化矽藉由陰離子膜與陽離子膜的串列配置,具有99.999%以上的除去性能。另外,相對於兩區域帶正電荷的22 nm氧化鋁粒子,具有99.999%以上的除去性能。該除去性能相對於單獨使用的其他比較例的性能亦具有優越的性能。
(2) 另外,藉由按照陰離子膜與陽離子膜的順序串列配置,可抑制處理水微粒子的微粒子個數。這是因為膜材料(樹脂系)或配管類(特氟隆系)的材料大部分於液體中是負電荷粒子,因此來自膜的塵埃或來自配管的塵埃被末端的陽離子膜吸附除去。
(3) 如表2般,於使超純水按照陰離子膜→陽離子膜的順序通水的實驗例1中,處理水中的TOC濃度為2 μg/L,相對於此,於按照陽離子膜→陰離子膜的順序通水的實驗例2中,濃度低至未滿0.5 μg/L。這是因為帶正電荷的官能基自陽離子膜脫離,但被具有負電荷的陰離子膜以電荷形式捕捉並吸附除去。
本領域技術人員明確,使用特定的態樣對本發明進行了詳細說明,但可於不脫離本發明的意圖與範圍的情況下進行各種變更。 本申請案基於2019年3月29日提出申請的日本專利申請案2019-066872,藉由引用而援用其全文。
1:微粒子罐 2、3:膜模組
圖1的(a)、圖1的(b)是說明微粒子除去膜的基於陽離子性或陰離子性官能基的微粒子捕捉機構的示意圖。 圖2是表示實施例中使用的試驗裝置的系統圖。

Claims (4)

  1. 一種微粒子除去裝置,具有除去液體中的微粒子的膜,所述微粒子除去裝置的特徵在於:串列配置具有正電荷的微過濾膜或超濾膜、與具有負電荷的微過濾膜或超濾膜。
  2. 一種微粒子除去方法,使用如請求項1所述的微粒子除去裝置。
  3. 如請求項2所述的微粒子除去方法,其中按照具有負電荷的膜、具有正電荷的膜的順序進行通液。
  4. 如請求項2所述的微粒子除去方法,其中按照具有正電荷的膜、具有負電荷的膜的順序進行通液。
TW109109851A 2019-03-29 2020-03-24 微粒子除去裝置及微粒子除去方法 TW202039067A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019066872 2019-03-29
JP2019-066872 2019-03-29

Publications (1)

Publication Number Publication Date
TW202039067A true TW202039067A (zh) 2020-11-01

Family

ID=72668307

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109109851A TW202039067A (zh) 2019-03-29 2020-03-24 微粒子除去裝置及微粒子除去方法

Country Status (6)

Country Link
US (1) US20220212145A1 (zh)
JP (1) JPWO2020203142A1 (zh)
KR (1) KR20210141462A (zh)
CN (1) CN113631242A (zh)
TW (1) TW202039067A (zh)
WO (1) WO2020203142A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021159785A (ja) * 2020-03-30 2021-10-11 栗田工業株式会社 微粒子除去装置
JP2022126355A (ja) * 2021-02-18 2022-08-30 栗田工業株式会社 微粒子除去装置及び微粒子除去方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2921763B2 (ja) * 1989-05-02 1999-07-19 旭化成工業株式会社 超純水製造方法
JP3210733B2 (ja) * 1992-05-11 2001-09-17 日東電工株式会社 多段式逆浸透システム及びこれを用いた超純水の製造方法
JP3659716B2 (ja) * 1995-11-27 2005-06-15 旭化成ケミカルズ株式会社 ユースポイントフィルターシステム
JP2003200161A (ja) * 2002-01-09 2003-07-15 Toray Ind Inc 造水方法および造水装置
JP2004305832A (ja) * 2003-04-03 2004-11-04 Toray Ind Inc 液体製造装置および方法
US8075780B2 (en) * 2003-11-24 2011-12-13 Millipore Corporation Purification and concentration of synthetic biological molecules
JP2009505821A (ja) * 2005-08-26 2009-02-12 インテグリス・インコーポレーテッド 交換樹脂を含有する多孔性膜
WO2011079062A1 (en) * 2009-12-21 2011-06-30 Siemens Industry, Inc. Charged porous polymeric membranes and their preparation
JP6226535B2 (ja) 2013-03-08 2017-11-08 旭化成株式会社 アニオン性ポリケトン多孔膜
JP6110694B2 (ja) 2013-03-08 2017-04-05 旭化成株式会社 カチオン性ポリケトン多孔膜
CN105517960A (zh) * 2013-10-04 2016-04-20 栗田工业株式会社 超纯水制造装置
JP2016155052A (ja) * 2015-02-23 2016-09-01 栗田工業株式会社 水中微粒子の除去装置及び超純水製造・供給システム
CN107847873B (zh) * 2015-06-26 2021-11-26 恩特格里斯公司 接枝聚砜膜
JP2018001072A (ja) * 2016-06-29 2018-01-11 栗田工業株式会社 電気脱イオン装置の洗浄方法
JP7133429B2 (ja) * 2018-10-19 2022-09-08 日東電工株式会社 水処理システム及び水処理方法

Also Published As

Publication number Publication date
JPWO2020203142A1 (zh) 2020-10-08
WO2020203142A1 (ja) 2020-10-08
KR20210141462A (ko) 2021-11-23
US20220212145A1 (en) 2022-07-07
CN113631242A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
CN108905624B (zh) 一种聚酯聚酰胺两性电荷复合纳滤膜及其制备方法
JP5568835B2 (ja) 逆浸透膜、逆浸透膜装置及び逆浸透膜の親水化処理方法
Homayoonfal et al. Amoxicillin separation from pharmaceutical solution by pH sensitive nanofiltration membranes
US20090039019A1 (en) Porous membranes containing exchange resins
US20070007196A1 (en) Filter cartridge for fluid for treating surface of electronic device substrate
TW201941820A (zh) 微粒子除去膜、液體中的微粒子除去裝置、純水或超純水的製造裝置及液體中的微粒子除去方法
TW202039067A (zh) 微粒子除去裝置及微粒子除去方法
TWI733330B (zh) 用於自液體組合物減少金屬之經配位體修飾之過濾器及方法
CN110801738B (zh) 一种高分散二氧化钛掺杂聚酰胺纳滤膜的制备方法
CN103316599B (zh) 一种甜菜碱胶体纳米粒子改性壳聚糖纳滤膜的制备方法
TW201801789A (zh) 超純水製造系統
CN112316752B (zh) 一种磺胺类小分子表面改性聚酰胺复合膜及其制备方法
US20180044205A1 (en) Device for removing microparticles contained in water and ultrapure-water prouction and supply system
US9212238B2 (en) Microparticle, addition agent and filtering membrane
CN205340595U (zh) 一种用于水处理的复合层式工业膜
JP2018187533A (ja) 複合半透膜
CN109041579B (zh) 湿式洗净装置及湿式洗净方法
WO2021200690A1 (ja) 微粒子除去装置
TW202233299A (zh) 微粒子除去裝置、純水或超純水製造裝置、及液體中的微粒子除去方法
JP2022126354A (ja) 微粒子除去装置及び微粒子除去方法
CN110801737A (zh) 一种高分散二氧化钛掺杂聚酰胺反渗透膜的制备方法
CN117138607A (zh) 一种高截留型纳滤膜及其批量化制备方法和应用
JP2020179367A (ja) 複合半透膜
Xiao et al. Uio-66-(Oh) 2-Mediated Ultra-Thin Defect-Free Polyamide Membrane by Introducing Active Interlayer for Enhanced Desalination